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ABSTRACT

The main goal of this research is the development of a
genetic fuzzy system (GFS) to solve the problem of
estimating the maintenance cost of medium voltage
lines in Spanish towns. The hybrid system is composed
by the Fuzzy Inductive Reasoning (FIR) methodology
and a genetic algorithm (GA) that is the responsible of
determining in an automatic way the fuzzification
. parameters involved in the fuzzy system, i.e. the number
of fuzzy sets (classes) per variable and the membership
functions. The results obtained are compared with some
of the most popular classical statistical modeling
methods, neural networks and other hybrid evolutionary
data analysis techniques.

L INTRODUCTION

Fuzzy systems have demonstrated their ability to solve
- different kind of problems such are control (Driankov
1993; Leondes 1999), modeling (Pedrycz 1996) or
- classification (Kuncheva 2000; Chi et al. 1996; Vapnik
1998), and have been successfully applied to a wide
range of applications, i.e. signal and image processing
(Chi et al. 1996; Sattar and Tay 1999; Suzuki et al.
2001), risk assessment (Leondes 1999), information
retrieval (Chen et al. 2001; Miyamoto 1989), industrial
applications (Leondes 1999; Hirota and Sugeno 1995;
Dote and Ovaska 2001), etc.

In the last decade, there was an increasing interest to
include learning in fuzzy systems. This has been
achieved by means of the development of hybrid
techniques that include fuzzy systems together with
complementary technigques such are neural networks,
evolutionary algorithms or probabilistic methods.

It is well known that more intelligent systems can be
obtained by the hybridization of soft computing
methodologies (Bonissone 1997; Corddn et al. 2001).
Neural fuzzy systems (NFSs) and genetic fuzzy systems
(GFSs) are the most successful approaches of hybrid
systems within soft computing. NFS and GFS hybridize
the approximate reasoning method of fuzzy systems
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with the learning capabilities of neural networks and
evolutionary algorithms, respectively.

In the research presented in this paper we propose a new
GFS to improve the Fuzzy Inductive Reasoning (FIR)
methodology. FIR is a inductive modeling and
prediction methodology that has been applied to
different kinds of applications (e.g. control,
biomedicine, ecology), usually obtaining good results
(Nebot et al. 1996; Mugica and Cellier 1994; Nebot et
al. 2001). In these studies, default values have been used
to determine the number of classes and the associated
membership functions. The default value for the number
of classes’ parameter for each system variable is three
and the equal frequency partition (EFP) is used as the
default method to obtain the membership functions of
the classes. However, experience has shown that in
some applications, i.e. biomedical and ecological, the
determination of the parameters needed in the
discretization step of FIR becomes significant for the
identification of a good model that captures systems
behavior in an accurate way. Therefore, the automatic
determination of good fuzzification parameters in the
FIR methodology is an interesting and useful alternative
to the use of heuristics and/or default values. This is,
precisely, the main contribution of this paper, i.e. the
design and development of a GFS composed by the FIR
methodology and a GA for the automatic determination
of FIR fuzzification parameters.

The GFS developed is used for model identification of a
real problem, i.e. estimating the maintenance cost of
medium voltage lines in Spanish towns. The results
obtained with the new method are compared with the
ones obtained by other methodologies in the same
application, i.e. neural networks, genetic programming,
genetic fuzzy rule-base systems, lineal models, etc.

The FIR methodology is presented in Section 2. The GA
proposed is described in Section 3. Section 4 presents
the electrical application and the discussion of the
obtained results. Fimally, the conclusions of this
research are given.

II. FUZZY INDUCTIVE REASONING
METHODOLOGY

The conceptualization of the Fuzzy Inductive Reasoning




(FIR) methodology arises of the General System
Problem Solving approach (GSPS) proposed by (Klir
1985). This methodology of modeling and qualitative
simulation is based on systems behavior rather that on
structural knowledge. It is able to obtain good
qualitative relations between the variables that compose
the system and to infer future behavior of that system. It
has the ability to describe systems that cannot easily be
described by classical mathematics (e.g. differential
equations), i.e. systems for which the underlying
physical laws are not well understood. FIR is composed
of four main processes, namely: fuzzification,
qualitative model identification, fuzzy forecasting and
defuzzification. Fig. 1 describes the processes of the FIR
methodology.
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Figure 1: Fuzzy Inductive Reasoning (FIR) scheme

The fuzzification process converts quantitative data
stemming from the system into fuzzy data, i.e.
qualitative triples. The first element of the triple is the
class value, the second element is the fuzzy membership
value, and the third element is the side value. The side
value indicates whether the qualitative value is to the
left or to the right of the peak value of the associated
membership function (see Fig. 2).
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Figure 2: FIR fuzzification process of ambient
temperature variable

The side value, that is not commonly used in fuzzy
logic, is responsible for preserving, in the qualitative
triple, the complete knowledge that had been contained
in the original quantitative value.

The result of the fuzzifieation process are three matrices
of identical size named qualitative data matrices, one
containing the class values, the second storing the
membership information, and the third recording the
side values. Each column represents one of the observed
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variables and each row denotes one time point, i.e. one
recording of all variables or one recorded state. For
simplicity, in FIR the class values are represented
numerically, i.e. the fresh, normal and warm classes of
Fig. 2 are represented with the numerical values 1, 2 and
3, respectively.

The qualitative model identification process is the
responsible of finding causal and temporal relations
between variables and therefore of obtaining the best
model that represents the system. A FIR model is-
composed by a structure, called mask, and a pattern rule -
base, named behaviour matrix.

A mask denotes a dynamic relationship among
qualitative variables. An example of a mask is presented
in Equation (1). '
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Each negative element in the mask is called a m-input*
(mask input). It denotes a causal relation with the
output, i.e. it influences the output up to a certain.
degree. The enumeration of the m-inputs is immaterial -
and has no relevance. The single positive value denotes;
the output. The mask of Equation (1) contains four m-
inputs. In position notation, it can be written as
(1,4,10,12,15), enumerating the mask cells from top to
bottom and from left to right. In this example, the first.
and second m-inputs, i; and iy, correspond to the input:
variables u; and us two sampling intervals back,:
whereas the third m-input, i, refers to the output
variable y; one sampling interval into the past, etc,
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Figure 3: FIR Pattern rule base obtaining

The gualitative model identification process evaluates
all the possible masks and concludes which one has th
highest prediction power by means of the quality of th
mask Q, based on an entropy reduction measure. The



- mask with the maximum Q value is the optimal mask.
- Once the best mask has been identified, it can be
applied to the qualitative data obtained from the system,
resulting in a particular pattern rule base.

How is the pattern rule based obtained from the mask?
- This process is illustrated in Fig. 3. The mask can be
uwed to ‘flatten’ dynamic relationships into pseudo-
static relationships. The left side of Fig. 3 shows an
excerpt of the qualitative data matrix that stores the
class values. It shows the numerical rather than the
symbolic class values. In the example shown in Fig. 3,
all the variables were discretized into three classes,
except variable y;, that has been discretized into two
classes. The dashed box symbolizes the mask that is
shified downwards along the class value matrix. The
round shaded ‘holes’ in the mask denote the positions of
the m-inputs, whereas the square shaded ‘hole’ indicates
the position of the m-output. The class values are read
out from the class value matrix through the ‘holes’ of
the mask, and are placed next to each other in the
havior matrix that is shown on the right side of Fig. 3.
Here, each row represents one position of the mask
‘along the class value matrix. It is lined up with the
bottom row of the mask. Each row of the behavior
‘matrix represents one pseudo-static qualitative state or
‘qualitative rule (also called pattern rule). For example,

the m-inputs (i, i, i3 i) have a value of 2
-T‘:(cm'responding to medium) then the m-output, O,
sumes a value of 1 (corresponding to high)’.

ce the FIR model is available, the prediction system
a take place using the FIR inference engine. This
ocess is called fuzzy forecast. FIR inference engine is
specialization of the k-nearest neighbor rule,
commonly used in the pattern recognition field.
efuzzification is the inverse process of fuzzification. It
lows converting the qualitative predicted output into
uantitative values that can then be used as inputs to an
ternal quantitative model. For a deeper and more
etailed insight into the FIR methodology, the reader is
eferred to (Nebot 1994).

- e w

-

-

II. LEARNING THE FUZZIFICATION
ARAMETERS OF FIR USING GENETIC
ALGORITHMS

GAs are search and optimization techniques based on
ormalization of naturzl genetics (Holland 1975;
Michalewicz 1996). The main aspects to be considered
the implementation of a GA are: (A) genetic
tpresentation, (B) initial gene pool, (C) fitness or
ective function, (D) genetic operators and (E) genetic
ameters. These points are highly important to
ieve a good performance of the algorithm.

Genetic Representation

order to define a useful chromosome codification, it
ecessary to go deeply into the fuzzification process
the FIR methodology.

e most common shapes for the membership functions

e shaded rule of Fig. 3 can be read as follows: ‘If all
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in FIR are triangular or g
illustrates the process of fuzzification by means of an
example. As mentioned earlier, a Guantitative value is
fuzzified into a qualitative triple,le. the Cclass,
membership and side values.
In Fig. 2 a temperature of 23 degrees centi
hence be fuzzified into the class ‘normal’ a side
value ‘right’ and a fuzzy membership value of\().755.
Most fuzzy inference approaches preserve the total
knowledge by associating with each quantitative data
value multiple fuzzy rules consisting of tuples of class
and membership values. They would thus represent the
temperature of 23 degrees centigrade as being ‘normal’
with likelihood 0.755 and being ‘warm’ with likelihood
0.20. FIR accomplishes the same by associating with
each -quantitative data value a single fuzzy rule
consisting of a quantitative triple. Then, in FIR
methodology the queues of the membership functions
are discarded and only the part of the membership
functions in the range [0.5..1] are used. The point where
two neighboring classes match with a membership value
of 0.5 is named landmark. In the example of Fig. 2 the
membership function of the class Normal is defined by
landmarks {13,27}, being this pair the temperature
values that specify the limits between the class Normal
and its adjacent classes, Fresh and Warm, respectively.
Consequently, the fuzzification parameters of the FIR
methodology are the number of fuzzy sets (classes) or
granularity level per variable and the membership
functions that define its semantics (identified by the
landmarks). These are the parameters that the GA
should optimize. Therefore, each chromosome (C) is
composed of two parts:

o Number of classes (C;): The number of linguistic
terms for N variables is codified using a vector of N
integers in the range [2..9]. The values of the genes are
forced to remain in this interval, so the genetic operators
must observe this requirement.

e Membership functions (C;): The genetic
representation chosen takes into account the number of
samples registered for each variable. A specific variable
is represented by the proportion of data samples that
contains each class, codified in the range [0..1]. An
example of chromosome representation for a unigque
variable that has 4 classes could be (0.3,0.4,0.1,0.2),
meaning that the membership function of the first class
contains the 30% of the data samples available for this
variable, and the second, third and forth membership
functions contain 40%, 10% and 20% of the data
records, respectively, Of course, the sum of the
proportions for each variable must be 1. The minimum
proportion, V., is established to 0.05 and the
maximum proportien, V., is defined by Vp,=1 -
Viuin®(Niaper — 1), where Ny, is the number of classes of
the variable. A clear advantage of this representation is
the facility to compute the landmarks from it. This is
done by the following steps:

1) The observed trajectory values of each variable are
sorted in ascending order. .
2) The sorted vector is then split into segments (as many

ade would




segments as classes have been determined for that
variable) that contain the proportion of values
determined by the GA solution.

3) Finally, the landmarks are chosen anywhere between
the extreme values of neighboring segments, i.c. using
the arithmetic mean values of neighboring observed
data points in different segments.

A full chromosome representation, C, is defined by the
ensemble of the representations of the number of
classes, C;, and the membership functions, C,, of each
system variable,

C= C}Cz

Therefore, if we denote by E; the number of classes for
the variable 7, the number of classes representation for a
system of V vaniables, Cy, is defined by:

Cr = (EhEZ:---rEN)

Also, if we denote by D;; the data proportion of the
variable { and class j, and Cj; the information of the data
proportion fer all the classes of the variable i, the
membership representation, C,, for a system of N
variables (including inputs and outputs), is defined by:

C= (CZI: CZZ:---uCZN)
where,
Cai= (Dir...Digy)

Note that each time the number of classes and/or
distribution of the landmarks changes due to the action
of the genetic operators, it is mandatory to re-compute
the new fuzzy partition.

B. Initial Gene Pool

The initial population is composed by four groups with
the same number of individuals each, except the first
one. No repeated chromosomes are allowed. The
generation of the initial gene pool is described next.

1) In the first group, each chromosome has the same
number of classes in all its variables and the
membership functions are uniformly distributed across
the variable working range (EFP Method).

2) In the second group, each chromosome has
different granularity per variable (different values in C;)
and the membership functions are uniformly distributed
(EFP Method) as in group one.

3) In the third group, each chromosome has the same
number of classes in all its variables and the
membership functons are no-uniformly distributed
across the variable working range (the data proportion is
generated randomly).

4) In the last group, each chromosome has different
number of classes per variable, as in group two, and the
membership functions are established in the same way
as in the third group.

Although GAs have proven to be robust and get good
solutions starting from randomly generated populations
(group four), a quick convergence can be obtained using
the knowledge available about the problem to sample

the population in a biased way, achieving at the same
time an appropriate diversity.

C. Fitness or Objective Function

The evaluation of the chromosomes is done following
the next steps:

1) Decode the information of the chromosome,
building the associated fuzzy partiion in the FIR
structures.

2) Execute the gqualitative model identification
process of the FIR methodology with the training data
set, using the partition built in the previous step.
Therefore, the mask associated to that partition with the
highest quality measure is obtained.

3) Compute the objective function. In this research
two objective functions are proposed: a) the guality of
the optimal mask or b) the prediction error of part of the
training data set.

As has been explained earlier, in the qualitative model
identification process of the FIR methodology, the
optimal mask (i.e. the best model structure) is identified
by means of a quality measure, Q. The quality of a mask
is a value between 0 and 1, where 1 indicates the highest
quality. Therefore, the first cost function proposed is 1-
Q, due to the fact that the algorithm task is to minimize
the cost function.
The second cost function is defined as the prediction
error of a portion of the training data set. The
normalized mean square error in percentage (MSE),
given in Equation (2), is used for this purpose,
E [( y() - _‘?'(t))z]
EF=———————=100%
VAR[y(1)]
where y (1) is the predicted output, y(7) the system
output and VAR denotes variance. The idea is to use
part of the training data set to identify the model and the
rest of the data set to evaluate the prediction
performance of that model. It is important to remember
that the FIR model is composed of the optimal mask and
the pattern rule base (behavior matrix). Therefore, both
must be generated in the evaluation process of a certain
fuzzy partiion when this cost function is used.
Moreover, the fuzzy forecasting process of the FIR
methodology needs to be executed to obtain the cost of
the evaluated chromosome. Thus, the computational
cost of this evaluation function is considerably higher
than the one obtained with the cost function that enly
depends on the quality of the mask. However, the
prediction accuracy should be higher. The size of the
portion of the training data set used for cost functicn
evaluation purposes is defined with respect to the size of
the whele training data set.

(2)

D. Genetic Operators

Due to the special nature of the chromosomes involved
in the optimization process, the genetic eoperators
become an important aspect of the GA. Since there is a
strong relationship between the two chromosome parts
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(C; and ), it is required that the genetic operators
work cooperatively in C; and C; in order 1o take
advantage of the representation used.

Taking into account these aspects, the following
operators are considered:

1) Selection: The selection probability calculation
| follows linear ranking (Baker 1985). Chromosomes are
. sorted in fitness order and selection probability of each

chromosome, p,(Cy), is computed according to its rank

(with rank(Cp.) = 1), by using the following non-
increasing assignment function:

). ?’ank(cf)-'l] (3)
NC-1

where NC is the population size and Mg € [0,1]

specifies the expected number of copies for the worst

chromosome (the best one has Ty = 2 - Timm €Xpected

copies). In the experiments Nmin=0.75.

© Linear ranking is performed along with Stochastic

Universal Sampling proposed by (Baker 1987). This

procedure guarantees that the number of copies of any

chromosome is bounded by the floor and by the ceiling

of its expected number of copies.

Our reproduction operator includes the elitist selection.

2) Crossover  operator: As  regards the
recombination process, two different operators are used
according to the two parents implied in the crossing:

o Crossover when both parents have the same

granularity level per variable: If the two parents have
the same values in C; (each variable has the same
number of classes in the two parents), the genetic search
has located a promising space zone that has tc be
adequately exploited. This task is developed by
applying the non-uniform arithmetic crossover operator
. in C; and maintaining the parent C; values in the
offspring. This crossover operator is proposed in
~ (Michalewicz 1996) and works in the way described
subsequently.
This operator generates two offspring as a weighted
mean of the parent values. A real vaiue, u, in the range
[0..1] is selected randomly and used to compute the new
offspring by means of Equation (4).

; 1
.7 Ps(ci): %'(rl‘mu _{Umzx _T]rum

C, =u- father + (1 —u)  mother

)
C, = (1—u)- father +u -mother

. An advantage of the crossover operator selected is that
assures the validity of the offsprings obtained, i.e. the
sum of the data proportion for all the classes of each
- variable is 1.

» Crossover when the parenis encode different
granularity  levels: This second case highly
" recommends the use of the information encoded by the
parents for exploring the search space in order to
discover new promising zones. Hence, when C; is
caossed at a certain point, the values in C;
corresponding to the crossed variables are also crossed
in the two parents. In this way, a standard crossover
operator is applied over the two parts of the
chromosomes. This operator performs as follows: a
crossover point p is randomly generated in C; and the
two parents are crossed at the p-th variable in C; and C,,
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producing two meaningful descendents.
Let us look at an example in order to clarify the
crossover application. Let

o (E ,...,Ep,EPH,...,EN,CH,.,.,CzP,CZH,...,CE‘_\,)
& = e s B i i B Copendny)
be the individuals to be crossed at point p. The two

resulting offspring are:
C, =(E,...E,, 'p+1=---’EN:C21’--w Czp,Czpﬂ,...,CZN)

T, =B s B yu B geess By Cigarees G G v Gy )

Hence, the complete recombination process will allow
the GA to follow an adequate exploration and
exploitation rate in the genetic search. -

3) Mutation operator: Due to the natre of the
values stored in the two parts of the chromosome, two
different operators are considered. A brief description of
them is given below. :

e Mutation on C;: The mutation operator selected
for C, is similar to the one proposed by (Thrift 1991). In
this case, if a mutation on a gene belonging to the first
part of the chromosome is going to be performed, a
local modification is done by changing the number of
classes of the variable to the immediately upper or
lower (the decision is made randomly). When the value
to be changed is the minimum (2) or the maximum (9),
the only possible change is done, i.e. increase or
decrease by one the granularity, respectively. Once a
new value is selected, a uniform fuzzy partition for this
variable is stored in its corresponding zone of C;.

e Mutation on C,: Since both parts are based on a

real coding scheme, the mutation operator selected for
C, is also similar to the one proposed by (Thrift 1991).
Here, the data proportion associated to the gene of the
selected chromosome is increased or decreased (the
decision is made randomly) by a factor in-between
the range [Vin...MAX] set, also, randomly. Where
MAX=0.5 = V,.in"(Niaper — 1). The other proportions of the
same variable are adjusted in order to maintain the
addition to 1.
‘When the value to be changed plus the factor get out of
the limits of the range {Vin.. Vmad/, the only possible
change is done, i.e. increase or decrease by the
proportion factor, respectively.

E. Genetic Parameters

The values of the probabilities have been established
according to (Grefenstette 1986). Table 1 shows the
values of the parameters applied to this algorithm.

Table 1: Genetic parameters of the GA for the
application studied.

Parameter Value
Population size (# individuals) 50
Crossover Probability 0.6
Mutation Probability 0.1
Stop Criteria {5000,10000,20000,40000,
(Chromosomes evaluations) 80000,160000}




We have considered six stop criteria of the GA: to reach
5000, 10000, 20000, 40000, 80000 and 160000
chromosome evaluations, respectively.

IV. ELECTRICAL DISTRIBUTION NETWORK
MODELS

The problem of estimating the maintenance cost of the
electric network becomes difficult when we deal with
medium and low voltage lines. Maintenance cost
depends among other factors on the total length of
electrical line each company owns, and on its kind, i.e.
high, medium and low voltage (Corddn et al. 1999). To
justify the distribution expenses of the companies,
models of the length of the line are used. Although high
voltage lines can be easily measured, this is not the case
for medium and low voltage lines. These lines are
contained in cities and villages, and it is very difficult
and expensive to measure them, due to the fact that they
have been installed incrementally, according to its own
electrical needs in each moment. Therefore, it is
necessary to handle the problem from the modeling
perspective.

We were provided with 1059 data samples of Spanish
towns (Corddén et al. 1999, Cordén et al. 1998). Four
characteristics of each town correspond to the input
variables, i.e. the sum of the lengths of all streets in the
town (SLS) in Km, the total area of the town (TA) in
Km’, the area that is occupied by buildings (AB) in Km*
and the energy supply to the town (ES) in MWh. The
maintenance cost of the medium voltage line (MC) in
Millions of pesetas is the output variable.

In the previous works (Corddn et al. 1999, Cordén et al.
1998), the available data was divided into the training
set (first 847 towns) and the test set (last 212 towns),
corresponding to the 80% and 20% of the whole data
set, respectively. The same data distribution is used in
the present study in order to compare the results
obtained in an accurate way. For the same reason, the
medium square error (SE) used in (Cordén et al. 1999)
and described in Equation (5) is used for the
computation of each model prediction error.

1 . 5
SE=—=>3 (3()-§,(t)) (5)

2-Nao

where, §(f) is the predicted output, y(t} the system
output and N the number of samples.

It is interesting to notice that no temporal relation exists
between two consecutive samples of the five system
variables, due to the fact that each sample represents a
specific town. This is the first time that FIR
methodology is used to deal with a non dynamical
system. However, this is solved easily by forbidding
temporal relations between the system wvariables.

A. Previous Works

Table 2 contains the SE prediction errors achieved when
classical methods and hybrid evolutionary techniques
are used for the same problem (Cordén et al. 1999,
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Cordén et al. 1998). As regards classical methods,
Cordén, Herrera and Sanchez have considered linear
models fitted by linear least squares, second order
polynomial models fitted by nonlinear least square and
three-layer-perceptron neural network (of 4-5-1
neurons). The minimization error algorithm was the
conjugate gradient. With respect to other techniques,
they studied Genetic Fuzzy Rule-Based Systems
(GFRBS) for the optimization of three different fuzzy
models, ie. Wang-Mendel (WM), Mamdami and
Takagi-Sugeno-Kang (TSK). Finally, they use two
hybrid algorithms, GA-P and Interval GA-P, that
combine the traditional genetic algorithms (GA) with
the genetic programming (GP) paradigm (Howeard and
D’Angelo 1995). The Interval GA-P is a modified
version of the GA-P method that uses interval values
instead of punctual ones. All the methodologies use the
same training and test data sets explained previously.

Table 2: Prediction errors (SE) obtained by classical
methods and hybrid evolutionary techniques

Method SEman SEi

Linear 164662 36819
Second-order polynomial 103032 45332
Three-layer perceptron 4-5-1 86469 33105
GA-P 18168 21384

Interval GA-P 16263 18325

WM fuzzy model 20318 27615
Mamdani fuzzy mode] 19679 22591
TSK fuzzy model (2 = 0) 25579 26450
TSK fuzzy model (a = 0.,2) 11074 11836

The first column of Table 2 describes the method
evaluated, the second and third columns show the
prediction errors using the SE formula (described in
Equation (5)), of the training and test data sets,
respectively. As can be seen from this table the GA-P
techniques and fuzzy models outperform again classical
linear and non linear regression methods as well as
neural networks. The TSK fuzzy model has obtained the
best result. A more detailed discussion of the results -
presented in Table 2 can be found in (Cordén et al
1999). These values are taken in this paper as reference
errors to study the performance of the FIR methodology
in the same problem.

B. Learning the Number of Classes for each-System
Variable and Membership Functions of the Classes

This section presents the results obtained when the GA
proposed for learning the number of fuzzy sets (classes)
per variable and the membership functions that define
its semantics is evaluated for the problem at hand,
Thirty executions are preformed for each objective
function and stop criteria.

The results are presented in two sections, based on the
objective function used for the evaluation of the
chromosomes.

1 - O objective function

Table 3 shows the results obtained when 1-Q was used
as objective function. The table is organized as fallows.
The first column is divided in 2 sections. Section A




Table 3: Number of Classes and Membership Functions results of the
electrical distribution problem using 1-Q cost function.

# eval Partition Data Proportion

Opt. Mask __ Q 1-Q  SEwan Sy

A 160000 (27,222 SL5:(0.91,0.09)
& AB: (0.94,0.06)
ES:(0.93,0.07)
MC:(0.92,0.08)

30000 (7.6,6,3,2)

ES:(0.83,0.09,0.08)
MC:(0.90,0.10)
40000 (253,22 SLS:(0.91,0.09)
AB: {0.88,0.06,0.06)
ES5:(0.93,0.07)
MC:(0.92,0.08)
20000 (83,622)

TA:(0.34,0.33,0.33)

ES:(0.92,0,08)
MC:(0.90,0,10}
10000  (7.43,3.2)
AB:(0.48,0.20,0.32)
ES:(0.48,0.19,0.33)

MC:(0.54,0.46)

5000 SLS:(0.29,0.71)

(2,55,2,2)

ES:(0.84,0.16)
MC:(0.90,0.10)

B 160000 (9.8,6,2,2)

ES: (0.46,0.54)
MC: (0.53,047)

80000 5L8:(0.53,0.47)

(2,8,2,2,2)
AB: (0.49,0.51)
ES:(0.47,0.53)
MC:(0.54,0.46)

40000 (45,522

ES:(0.47,0.53)
MC:(0.48,0.52)

20000 (6,7.8,8,2)

MC:(0.90,0.10)

10000 (5,6,8,7,3)

MC:(0.87,0.05,0.08)

5000 (6,9,92,2)

ES:(0.50,0.50)
MC:(0.91,0.09)

TA:(0.14,0.14,0.14,0.14,0.14,0.15,0.15)

§L.8:(0.12,0.12,0.12,0,12,0,13,0.25,0.14)
TA:(0.13,0.13,0.14,0.14,0.33,0.13)
AB: {0.73,0.06,0.06,0.05,0.05,0.05)

TA:(0.48,0.12,0.13,0.13,0.14)

$LS:(0.11,0.11,0,11,6:11,0.12,0.18,0.13,0.13)

AB: (0.74,0.05,0.05,0.05,0.05,0.05)

§L5:(0.15,0.13,0.13,0.15,0.13,0.17,0.14)
TA:(0.25,0.25,0.25,0.25)

TA:(0.20,0.20,0.20,0.20,0.20)
AB:(0.62,0.17,0.11,0.05,0.05)

SLS:(0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.12)
TA:(0.11,0.13,0.11,0.11,0.12,0.12,0.18,0.12)
AB: (0.11,0.14,0.19,0.13,0.12,0.31)

SLS:(0.08,0.69,0.14,0.09)
TA:(0.33,0.13,0.13,0.3,0.11)
AB: (0.15,0.19,0.21,0.17,0.28)

SL5:(0.13,0.13,0.14,0.14,0.15,0.31)
TA:(0.14,0.14,0.14,0.14,0.14,0.15,0.15)
AB: (0.08,0.38,0.29,0.05,0.05,0.05,0.05,0.05)
ES:(0.15,0.12,0.12,0.12,0.15,0.13,0.10,0.11)

§1.5:(0.25,0.23,0.06,0.23,0.23)
TA:(0.16,0.16,0.17,0.17,0.17,0.17)
AB:(0.07,0.14,0.16,0.33,0.08,0.08,0.07,0.07)
ES:(0.14,0.14,0.14,0.14,0.14,0.15,0.15)

SLS5:(0.16,0.16,0.17,0.17,0.17,0.17)
TA:(0.10,0.10,0.10,0.10,0.12,0.11,0.10,0.17,0.10)
AB:(0.10,0.36,0.10,0.09,0.05,0.09,0.08,0.06,0.07)

(1,3,4,5) 0,9638  0,0362 927 2728

(3.4,5) 09777  0,0223 1080 2759

(13.4.5 09721  0,0279 927 2729

(34,5 09559  0,0441 1080 2759

(3.4.5) 0,9503  0,0497 1103 5159

(34,5 0,9423 0,0577 1080 2759

(3.4,5) 0,8934  0,1066 1109 5136

(1,343 0,8979  0,1021 949 5125

TA:(0.14,0.10,0.16,0.10,0.10,0.10,0.10,0.20)

(3.4,5) 0,3821 0,1179 1123 5119

3.5 0,8848  0,1152 199450 25848

(3.5) 0.8548  0,1452 206931 210251

(3,5 08764  0,1236 199988 216862

corresponds to the best result obtained by the GA while
- Section B corresponds to its worse result. The second
column shows the number of evaluations made by the
GA. The third column indicates the number of classes
. (granularity level) per variable. The fourth column
shows the data proportion for the input variables (SLS,
-TA, AB, ES) and the output variable (MC). The number
~of elements of the data proportion corresponds to the
number of classes per variable obtained in the previous
column. Both, the granularity level per variable and the
data proportion are the output of the GA and they
constitute the parameters of the fuzzification process of
the FIR methodology. The fifth column presents the
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optimal mask, in position notation, encountered by FIR
when these parameters are used for the obtaining of
fuzzy partitions in FIR. The sixth column corresponds
to the quality associated to the optimal mask. The
seventh column is the value of the 1-Q objective
function. The eighth column indicates the prediction
error SE obtained for training data set. The last column
shows the prediction error SE obtained for test data set.

MSE,, .in objective function

Table-4 shows the results obtained when the objective
function is defined as the prediction MSE of a portion of
the training data set. The last 20% of the training signal
is used for objective function evaluation and only the




Table 4: Number of Classes and Membership Functions results of the electrical distribution problem
using MSE, ;;, cost function.

# eval Partition Data Proporton

Opt. Mask Q MSEge _ SEes SEe

A 160000  (2,4,5,7.8) SLS:(0.10,0.50)

TA:(0.21,0.24,0.27,0.28)
AB: (0.15,0.33,0.31,0.09,0.08)

ES:(0.17,0.20,0.16,0.17,0.11,0.14,0.05)
MC: (0.13,0.11,0.11,0.12,0.15,0.09,0.06,0.23)

80000  (2,7.5,5.8) SLS:(0.10,0.90)

TA:(0.11,0.11,0.11,0.17,0.12,0.12,0.26)

AB: (0.12,04,0.24,0.10,0.14)
ES:(0.25,0.21,0.25,0.22,0.07)

40000 " (2,8,7,9.9) SLS:(0.08,0.92)

TA:(0.12,0.12,0.12,0.13,0.13,0.13,0.13,0.12)
AB:(0.29,0.12,0.12,0.12,0.12,0.11,0.12)
ES:(0.14,0.07,0.08,0.13,0.08,0.20,0.09,0.16,0.05)
MC:(0.08,0.11,0.05,0.06,0.07,0.08,0.14,0.18,0.23)

20000  (27,7.8,9) SLS:( 0.10,0.90)

TA:(0.11,0.27,0.11,0.12,0.12,0.13,0.14)
AB: (0.12,0.12,0.30,0.11,0.11,0.12,0.12)
ES:(0.11,0.11,0.19,0.11,0.15,0.11,0.11,0.11)
MC:(0.09,0.09,0.05,0.12,0.15,0.10,0.10,0.19,0.11)

10000 (23,587 SL5:(0.57,0.43)

TA:(0.20,0.51,0.29)

MC:(0.13,0.11,0.11,0.12,0.19,0.11,0.13,0.10)

AB:(0.18,0.18,0.18,0.27,0.19)

ES:(0.18,0.10,0.10,0.10,0.11,0.17,0.12,0.12)
MC:(0.08,0.08,0.08,0.11,0.28,0.21,0.16)

5000 (2,2,7,9,9 SLS:(0.10,0.90)

TA:(0.50,0.50)

AB; (0.32,0.10,0.12,0.07,0.17,0.12,0.10)
ES:(0.12,0.22,0.06,0.09,0.12,0.12,0.11,0.05,0.11)
MC:(0.12,0.05,0.15,0.06,0.07,0.18,0.13,0,18,0.06)

SLS:(0.17,0.22,0.24,0.17,0.20)

TA:(0.14,0.14,0.14,0.14,0.14,0.15,0.15)

AB: (0.10,0.08,0.11,0.12,0.33,0.13,0.13)

ES: (0.09,0.27,0.09,0.21,0.27,0.07)
MC: (0.06,0.07,0.30,0.33,0.06,0.10,0.08)
SLS:(0.25,0.25,0.25,0.25)

(57,7.67)

80000  (4,54,9,8)

TA:(0.20,0.20,0.20,0.20,0.20)
AB: (0.18,0.07,0.55,0.20)

ES:(0.09,0.16,0.09,0.09,0.09,0.09,0.09,0.18,0.12)
MC:(0.11,0.11,0.18,0.05,0.12,0.12,0.13,0.18)
SL.8:(0.16,0.33,0.24,0.27)

40000 (4,2,4,6,8)
TA:(0.54,0.46)

AB: (0.39,0.16,0.27,0.18)
ES:(0.06,0.16,0.16,0.36,0.21,0.05)

MC:(0.05,0.11,0.07,0.12,0.09,0.32,0.05,0.19)
SL8:(0.25,0.25,0.25,0.25)
TA(0.36,032,0.32)
AB: (0.14,0.14,0.14,0.14,0.14,0.15,0.15)
ES:(0.06,0.11,0.13,0.15,0.07,0.19,0.14,0.07,0.08)
MC:(0.18,0.05,0.09,0.11,0.32,0.13,0.12)
SLS:(0.11,0.53,0.11,0.25)

20000 (43,797

10000 (4,4,4,3,3)

TA:(0.25,0.25,0.25,0.25)
AB: (0.13,0.17,0.35,0.35)

ES:(0.45,0.49,0.06)
MC:(0.15,0.28,0.57)
SLS:(0.11,0.12,0.12,0.12,0.14,0.14,0.13,0.12)
TA:(0.11,0.11,0.12,0.12,0.28,0.13,0.13)

5000 (8,7,2,2.2)

AB: (0.52,0.48)
ES:(0.50,0.50)
MC:(0.35,0.65)

(1,3,4,5) 0.4779 0.1090 932 2936

(13,45 04953 01116 943 8252

(1,34,5) 0.5080 0.1152 938 3022

(1,3,4,5) 0.5217 0.1165 934 3066

(3.4.5) 0.5748 0.1258 1067 3025

(1,3,4,5) 0.4999 0.1180 942 2976

(3.4.5) 0.5357 0.1341 1054 2939

(3.4,5) 0.4470 0.1359 1078 2963

(3,4,5) 0.4646 0.1353 1061 3007

(3,4,5) 0.53%0 0.1361 1058 2978

(3.4,5) 0.5566 0.1390 1052 3053

(34,5 06616  0.1847 1073 7896

first 80% of the signal is used to obtain the FIR models
(masks and pattern rule bases). The table is organized as
Table 3. The only difference is that the seventh column
contains the values of the MSE,;, instead of the 1-Q
objective cost function.

As expected, the CPU time needed by the GA when the
MSErin objective function is used is clearly grater than
the time needed when the 1-Q is used. For example, the
computational time needed to perform 30 executions for
160000 evaluations when the 1-Q and MSE,,;;, objective
functions are studied are 61:16 and 132:17 hours,
respectively, in a Pentium IIT computer (0.6 GHz).

The errors obtained by FIR methodology in this
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application are significantly lower than the ones

obtained by the methodologies of Table 2. The best
result of 11836 SE obtained by the TSK fuzzy model is
much bigger than the 2728 SE obtained by FIR
methodology enhanced by the GA. From Tables 3 and 4
it can be also seen that the results obtained by both cost
functions are equivalent. In this case the performance of
FIR models when the MSE,,,;, cost function is used is
not superior to the performance.of 1-Q objective
function. Therefore, the 1-Q objective function is
preferable because of its lower computational cost,

Fig. 4 presents the best predictions obtained by AG3 for
the two cost functions studied. The top plot shows real

haintanannra Cnat
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and predicted test signals of the partition (2,7,2,2,2)
‘when the 1-Q objective function is used, whereas the
‘bottom plot shows the prediction error signal when
‘using the partition (2,4,5,7,8) with the cost function
- MSE in-

The SE errors for the top and bottom plots are 2728 and
£1936, respectively. The error values are high due to the
_range [0..10000] of the maintenance cost variable and
tb)at the SE formula do not normalize by the variance.
 flowever, as can be observed in the top plot of Fig. 4,
e prediction signals obtained by FIR models are able

o follow the real maintenance cost signal very
ccurately.
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Figure 4: Predictions of the test data set when the best
FIR models with 1-Q (top) and MSE.i, (bottom) cost
functions are used.

V. CONCLUSION

A Fuzzy Inductive Reasoning (FIR) model is a
qualitative, non-parametric, shallow model based on
fuzzy logic. Therefore, variations on fuzzy partitions
have a direct effect to the performance of the model
identification and prediction processes of FIR
methodology. In this paper a new genetic algorithm is
developed in the context of FIR in order to optimize the
fuzzification parameters. Two objective functions have
been evaluated and compared from the perspective of
their performance and computational time.

The performance of FIR models were superior when
compared with the performance of other methodologies
presented in previous works such are linear models,
second order polynomial models, neural networks,
hybrid genetic programming and different fuzzy
models, for the same problem.

REFERENCES

Baker J. E. 1985. “Adaptive selection methods for genetic
algorithms”. In  Proc. First Int. Conf. on Genetic
Algorithms, 1.1. Grefenstette (Ed.). Hillsdale, 101-111.

a57

Baker J. E. 1987. “Reducing bias and inefficiency in the
selection algorithm”. Tn  Proc. Second Int. Conf. on
Genetic Algorithms (ICGA'87), J.J. Grefenstette (Ed.).
Hillsdale, 14-21.

Bonissone P.P. 1997. “Soft computing: the convergence of
emerging reasoning technologies.” Soft Comput. 1, no. 1
(Apr.), 6-18. =

Chen S.-M.; Y.-J. Horng; and C.-H. Lee. 2001. “Document
retrieval using fuzzy-valued concept networks.” [EEE
Trans. Syst, Man, Cybern. B 31, no. 1 (Feb.), 111-118.

Chi Z.; H. Yan; and T. Pham. 1996. “Fuzzy Algorithms: With
Applications to Image Processing and Pattern
Recognition”. World Scientific.

Cordén O.; F. Herrera; and L. Sénchez. 1998, “Computing the
Spanish Medium Electrical Line Maintenance Costs by
Means of Evolution-Based Learning Processes”. In Proc.
11" Int. Conf. on Industrial and Engineering Applications
of Al and ES (IEA-98-AIE) (Castellén, Spain). 478-482.

Cordén O.; F. Herrera; and L. Sanchez. 1999. “Solving
Electrical  Distribution  Problems — Using Hybrid

Evolutionary Data Analysis Techniques,” Applied
Intelligence 10, 5-24. :

Cordén O.; F. Herrera; F. Hoffmann; and L. Magdalena, 2001.
“Genetic Fuzzy Systems. Evolutionary tuning and learning
of fuzzy knowledge bases”. World Scientific.

Dote Y. and S.J. Ovaska. 2001. “Industrial applications of soft
computing: a review.” Proc. IEEE 89, no. 9 (Sept. 2001),
1243-1265.

Driankov D.; H. Hellendoorn; and M. Reinfrank. 1993. An
Introduction to Fuzzy Control. Springer-Verlag, New
York.

Grefenstette J. J. 1986. “Optimization of Control Parameters
for Genetic Algorithms.” IEEE Trans. Syst., Man, Cybern.
16, no. 1 (Jan./Feb), 122-128.

Hirota K. and M. Sugeno. 1995. “Industrial Applications of
Fuzzy Technology in The World™. World Scientific.

Holland J. 1975. Adaptation in Natural and Artificial Systems.
The University of Michigan Press, Ann Arbor.

Howeard L. and D. D’ Angelo. 1995. “The GA-P: A genetic
algorithm and genetic programming hybrid.” IEEE Expert,
11-15.

Klir G. 1985. Architecture of Systems Problem Solving.
Plenum Press, N.J.

Kunchova L. L 2000. Fuzzy Classifier Design. Physica-
Verlag, Heidelberg.

Leondes C. T. 1999. Fuzzy Theory Systems: Techniques and
Applications, vols. 1-4. Academic Press, San Diego, CA.

Michalewicz Z. 1996. Genetic Algorithms + Data Structures
= Evolution Programs. Springer-Verlag, New York.

Miyamoto S. 1989. “Two approaches for information retrieval
through fuzzy associations.”  IEEE Trans. Syst., Man,
Cybern. 19, no. 1 (Jan/Feb.), 123-130.

Mugica F. and F. Cellier. 1994. “Automated synthesis of a
fuzzy controller for cargo ship steering by means of
qualitative simulation”. In Froc. ESM’94, European
Simulation MultiConference (Barcelona, Jun.1-3). 523-
528.

Nebot A. 1994, “Qualitative Modeling and Simulation of
Biomedical Systems Using Fuzzy Inductive Reasoning”.
Ph.D. thesis. Dept. Llenguatges i Sistemes Informatics,
Universitat Politécnica de Catalunya, Barcelona, Spain. ;

Nebot A.; F. Cellier; and D. Linkens. 1996. “Synthesis of an -
anaesthetic agent administration system using fuzzy
inductive reasoning.” Artificial Intelligence in Medicine
8, no. 3, 147-166.

Nebot A.; F. Mugica, and P. Gémez. 2001. “Long, term
prediction of maximum ozone concentration using fuzzy




inductive reasoning”. In Proc. EUNITE’0l: European
Symposium on Intelligent Technologies, Hybrid Systems
and their implementation on Smart Adaptive Systems
(Tenerife, Dec. 13-15). 91-101.

Pedrycz W. 1996. Fuzzy Modelling: Paradigms and Practice.
Kluwer Academic Press.

Sattar F. and D. B. H. Tay. 1999. “Enhancement of document
images using multiresolution and fuzzy logic techniques.”
IEEE Signal Processing Leit. 6, no. 10 (Oct.), 249-252.

Suzuki Y.; K. Itakura; S. Saga; and J. Maeda. 2001. “Signal
processing and pattern recognition with soft computing.”
Proc. IEEE 89, no. 9 (Sept.), 1297-1317.

Thrift P. 1991. “Fuzzy logic synthesis with genetic
algorithms”. In Proc. Fourth Int. Conf. on Genetic
Algorithms (ICGA'91) (San Diego, CA). 509-513.

Vapnik V. 1998. Statistical Learning Theory. Wiley & Sons,
New York.

JESUS ACOSTA was bom in Coro-
Estado Falcdn, Venezuela. He received the
Licenciatura degree in  information
engineering (cum laude) in 1995 from the
Universidad Tecnol6gica del Centro
(UNITEC), Guacara, andthe M.S. degree in process
engineering (cum laude) in 2000 from the Universidad
Nacional Experimental Politécnica “Antonio José de
Sucre” (UNEXPO), Barquisimeto. At the moment, he is
pursuing the Ph.D. degree from Technical University of
Catalonia (UPC), Barcelona (Spain), in control
engineering. He joined the Departament of
Instrumentacién Industrial, TUTAG, in 1996 as an
Assistant Professor and since April 1999 he has been
Permanent Professor. He performed research in
optimization of fuzzy partitions for inductive reasoning
at the Soft Computing Group, UPC. His research
interests are in areas including conmtrol, fuzzy logic,
genetic algorithms, pattern recognition and machine
learning. Mr. Acosta received a Ph.D. fellowship in
2001 to 2003 from the Agencia Espafiola de
Cooperacion Internacional (Spain) and is currently a
research fellow at the UPC. He is a member of IEEE
Student since 2004. His e-mail address is:
jacostavecantv.net.

ANGELA NEBOT received her B.S. and
Ph.D. degrees in computer science from
the Polytechnical University of Catalonia
(UPC), Barcelona, Spain, in 1988 and
1994, respectively. From 1988 to 1992 she
was a research student at the Instirut de
Cibernética  (Spanish  Consejo  Superior  de
Investigaciones Cientificas), Barcelona, holding a pre-
doctoral research grant from the Government of
Catalonia and finishing the doctoral courses on software
and artificial intelligence. She joined the Department of
Llenguatges i Sistemes Informatics, UPC, in 1994 as an
Assistant Professor, and since March 1998 she has been
Associate Professor in the same department. She is
currently the head of the Soft Computing group of the
UPC. Her current research interests include fuzzy
systems, mneuro-fuzzy systems, genetic algorithms,
simulation and e learning. Dr. Nebot is an associate
editor of the journal “Simulation: Transactions of the

358

Society for Modeling and Simulation International” and
collaborates as a reviewer with other international
journals such are “IEEE Transactions on Fuzzy
Systems”, “International Journal of General Systems”,
“Neurocomputing”, “Artificial Intelligence  in
Environmental Engineering” and “Artificial Intelligence

Communication”. Her e-mail address is:
angela@lsi.upc.edu.

PEDRO VILLAR was born in Granada,
Spain, on August 15, 1968. He received his
M. S. degree in Computer Science in 1991
from the University of Granada, Spain and
his Ph. D. in Computer Science in 2000
from the University of Vigo, Spain. He
joined the Department of Lenguajes y Sistemas
Informdticos at the University of Vigo in October 1991,
as an Assistant Professor, and since May 2002 until
October 2004 he was an Associate Professor in the same
department. Now, he is an Assistant Professor in the
Department of Software Engineering at the University
of Granada. His current main research interests are
genetic fuzzy systems, evolutionary algerithms and
multi-objective genetic algorithms. His e-mail address
is: pvillarc@ugr.es.

JOSEP M. FUERTES was born i
Barcelona, received his Industrial Engineer
degree in 1976, his PhD degree in 1986,
and became Permanent Professor at the
Technical University of Catalonia (UPC) in
1987. He was Researcher (1975-1986) at
the Institut de Ciberngtica (Spanish Consejo Superior de
Investigaciones Cientificas). In 1987 he got a position
for a year at the Lawrence Berkeley Laboratory working
as Visiting Scientific Fellow in the design of the Active
Control System of the W.M.Keck 10 meter segmented
telescope (Hawaii). From 1992 to 1999 he was the
director of the University Research Line in Advanced
Control Systems. From 2001 to 2005 he was the director
of the Department of Enginyeria de Sistemes,
Automatica i Informatica Industrial, also at UPC. Dr.
Fuertes has collaborated as organizer (IEEE-WFCS’97,
IEEE-ETFA’99), chairman, session organizer, or
member of program committee in several international
conferences and has participated with many papers in
the areas of Intelligent Control Systems and of
Distributed Control Systems and Applications. From
1989 he has coordinated projects at national and
international level, related with the above areas of
expertise. He acted (1996-2001) as- Spanish '
Representative at the Council of the European Union
Control Association (EUCA). He is member of thé
ADCOM at the IEEE IES (Industrial Electronics °
Society); He is also member of CEA-IFAC (Comité -
Espafiol de Automitica, International Federation of
Automatic Control) and other stientific and technical
societies. His e-mail address is:
Jjosep.m. fuertes@upc. edu. .




EMSS06-3566432994 — Using Generic Event for a Simple Reflexive Intelligent
Agent SDL Specification
Pau Fonseca, Josep Casanovas

EMSS06-4000367555 — A Diagraph Method for Qualitative/ Quantitative
Modelling of the Dynamics of Combined Operator-Process Systems
Y.M. Sebzali, X.Z. Wang and Abdullah Akbar

EMSS06-4108657785 — Supporting Multi-Agent-Based Simulation With Data
Mining Techniques
Nicolas Knaak

EMSS06-4433736410 — Activity Based Modelling with Automatic Prototype
Generation of Process Based Arena Models
Luis M. Silva Dias, Guilherme A. B. Pereira and A. J. M. Guimaraes Rodrigues

EMSS06-4721693229 — Object-Oriented Approach to Implementation of Supply
Chain Optimization and Simulation Models
Charu Chandra Janis Grabis

EMSS06-4965680106 — The Mathematical Modeling and Simulation of Low
Voltage Network for Harmonic Analysis
Abdullah |. Al-Odienat

EMSS06-6863930475 — Simulation-Based Evaluation of Agriculture Strategies
under Uncertainty of Weather Forecast
Yuri Merkuryev, Vladimir Bardachenko and Andrey Solomennikov

EMSS06-7219608442 — A fault diagnosis approach using ODPN simulation for
hydraulic systems
A. Mokhtari, M.V Le Lann, G. Hetreux and J.M Le Lann

EMSS06-7236636954 — Body of Knowledge of Modeling and Simulation
(M&SBOK): Pragmatic Aspects
Tuncer |. Oren

EMSS06-7795786332 — A Devs M&S Framework Based on Java And Actors
Franco Cicirelli, Angelo Furfaro and Libero Nigro

EMSS06-7855528474 — A Generalized Framework for Abstraction and Dynamic
Loading of Numerical Solvers
Filip H.A. Caléis, Peter A. Vanrolleghem and Peter Fritzson

EMSS06-8277611576 — Estimating the Maintenance Cost in Electric Networks
Using an Hybrid Soft Computing Methodology
JesUs Acosia, Angela Nebot, Pedro Villar and Josep M. Fuertes

EMSS06-8320383669 — Designing Reliable Systems and Networks Using
Discrete Event Simulation: A Case Study
Angel A. Juan, Carles Serra, Javier Faulin and Joan M. Marques

EMSS06-9130732547 — Heat Exchangers Network Symthesis for Pulp and Paper
Process Using Different Methodologies
Jalel Labidi, Zsolt Szitkai, Katalin Koczka, Rodrigo Llano-Ponte and Peter Mizsey

EMSS06-9919232093 — An Efficient and Effective Partitioning Algorithm for Air

Traffic Management
Bjérn Paul, Jan Himmelspach, Wolfgang Theeck and Adelinde Uhrmacher

Xiv

261

267

277

287

297

313

319

327

337

343

349

359

367

373




International Mediterranean
Modelling Multiconference

I=sM

2006 | October,ﬂ 4-6, 2006

Barcelona, Spain

EDITED BY

Agostino G. Bruzzone

Antoni Guasch

LOGISIM Miquel Angel Piera
Jerzy Rozenblit

International Mediterranean & Latin American
Council of Simulation

Liophant Simulation

McLeod institute of Simulation Science
MISS Spanish & Genoa Centers

Comité Espafiol de Automatica

GIP Universitat Technical
Genoa Autonoma University of
University

de Barcelona 8 Catalonia

ISBN 84-690-0726-2



