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Abstract. The rapid development of methods that select over/under expressed 
genes from RNA microarray experiments have not yet satisfied the need for 
tools that identify differential profiles that distinguish between experimental 
conditions such as time, treatment and phenotype. We evaluate several microar-
ray analysis methods and study their performance, finding that none of the 
methods alone identifies all observable differential profiles, nor subsumes the 
results obtained by the other methods. Therefore, we propose a machine learn-
ing based methodology that identifies and combines the abilities of microarray 
analysis methods to recognize differential profiles. We encode the results of this 
methodology in decision making association rules able to decide which method 
or method-aggregation is optimal to retrieve a set of genes exhibiting a common 
profile. These solutions are optimal in the sense that they constitute partial or-
dered subsets of all method-aggregations bounded by the most specific and the 
most sensitive available solution. This methodology was successfully applied to 
a study of inflammation and host response to injury  data set derived from the 
analysis of longitudinal blood microarray profiles of human volunteers treated 
with intravenous endotoxin compared to placebo. Our approach was able to un-
cover a cohesive set of differentially expressed genes and novel members ex-
hibiting previously studied differential profiles. This guideline serves as a 
means to support decisions on new microarray problems. 

1   Background 

Advances in molecular biology and computational techniques permit the systematical 
study of molecular processes that underlie biological systems [1]. Particularly, mi-
croarray technology has revolutionized modern biomedical research by its capacity to 
monitor changes in RNA abundance for thousands of genes simultaneously [2].  

To address the statistical challenge of analyzing these large data sets, new methods 
have emerged ([3], [4], [5], [6], [7]). However, there is a dearth of computational 
methods to facilitate understanding of differential gene expression profiles (e.g., pro-
files that change over time and/or over treatments and/or over patients) and to decide 
which is the most reliable method to identify differences across profiles. 

We develop a detailed evaluation of the performance of several commonly used 
statistical methods to identify differential expression profiles. We found that the ap-
plication of these methods return different results applied over the same set of data: 
the methods do not identify all observable differential profiles (genes exhibiting a 
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common behavior throughout experimental conditions). Moreover, none of the meth-
ods subsume the results obtained by the other methods.  

Our study reveals how some methods are able to recognize some differential pro-
files and not others and that some of the not retrieved profiles might contain signifi-
cant genes for the experiment under study. Therefore, we propose a methodology that 
combines the properties of each method into a set of decision making association 
rules ([8], [9], [10]) devoted to discover optimal aggregations of microarray analysis 
methods in an effort to identify differential gene expression profiles. The association 
rules allow users to query for the most appropriate method or aggregation of them to 
retrieve significant genes based on the differential profiles they exhibit.  

To create such set of decision association rules we perform the following steps 
over a set of microarray gene expression data (Fig. 1). First, we extract from the data 
set all genes which behave in a different way from one experimental condition to the 
others (i.e., genes that change over time, treatments and phenotype). We apply several 
classical microarray analysis methods (T-Tests [11], Permutation Tests [6], Analysis 
of Variance [5] and Repeated Measures ANOVA [12]). Second, we create a database 
containing distinct types of differential profiles over time, experiment and subjects 
from previously recovered genes.  
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Fig. 1. Graphical representation of the methodology. The squared boxes represent the phases of 
the methodology, the round cornered boxes correspond to the input/output data at each step, 
and the ellipses the operations performed at each phase. 

Third, we create decision making association rules, where the antecedents are dif-
ferential profiles and the consequents are methods or aggregations of them capable to 
identify the profiles. Fourth, we arrange the association rules into a lattice, where the 
rules are ordered from the most general (top) to the most specific solution (bottom). 
We use this structure to evaluate the performance of the rules by analyzing their 
specificity, sensitivity and cost, applying multiobjective optimization techniques. 
Fifth, we use a selected set of optimal rules as a framework to support new decisions 
about the applicability of microarray analysis methods to retrieve differential gene 
expression profiles.  
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2   Results 

The results are obtained from the application of our procedure to a data set derived 
from longitudinal blood expression profiles of human volunteers treated with intrave-
nous endotoxin compared to placebo. The motivation of these experiments is to pro-
vide insight to the host response to injury as part of a Large-scale Collaborative  
Research Project sponsored by the National Institute of General Medical Sciences 
(www.gluegrant.org) [13]. Analysis of the set of gene expression profiles obtained 
from this experiment is complex, given the number of samples taken and variance due 
to treatment, time, and subject phenotype. Therefore, we believe this problem is typi-
cal and informative as a microarray case study. The data were acquired from blood 
samples collected from eight normal human volunteers, four treated with intravenous 
endotoxin (i.e., patients 1 to 4) and four with placebo (i.e., patients 5 to 8). Comple-
mentary RNA was generated from circulating leukocytes at 0, 2, 4, 6, 9 and 24 hours 
after the i.v. infusion and hybridized with GeneChips® HG-U133A v2.0 from Affy-
metrix Inc., which contains 22216 probe sets, analyzing the expression level of 18400 
transcripts and variants, including 14500 well-characterized human genes. 

2.1   Accuracy of the Statistical Methods 

We investigate the performance of several commonly used statistical methods in iden-
tifying differential expression profiles that change over time, treatments and pheno-
type. We name T-Test as 1M , T-Test considering time as 2M , Permutation Test 
as 3M , Permutation Test considering time as 4M , ANOVA over treatment as 5M , 
ANOVA over time as 6M , ANOVA over treatment and time as 7M , RMANOVA 
over treatment as 8M , RMANOVA over time as 9M and RMANOVA over treatment 
and time as 10M , where considering time refers to the fact that the tests have been 
specifically applied to find differences between time points. For our set of data, we 
found that these methods do not identify all observable distinct profiles. Moreover, 
none of them subsumes the results obtained by other methods (Table 1). Different 
methods retrieve different amounts of probe sets (e.g., the application of 1M over the 
microarray dataset retrieves 962 genes as differentially expressed, whereas 5M re-
trieves 1734 genes, and 3M retrieves 612 genes). The concordance rates between the 
sets of genes retrieved also varies widely, indicating that none of the methods sub-
sumes the others (Table 1)(e.g., from the genes retrieved by 3M , only 31.11% are 
also retrieved by 5M , and 52.29% by 1M .  

2.2   Statistical Methods and Differential Profiles 

We found that there is a relationship between the statistical methods and the differen-
tial profiles they are able to identify, having differential profiles identified by some 
methods and not by others. This type of relation is what we encode in the set of deci-
sion making association rules that we obtain from the application of our methodology. 
In our particular problem, there are genes highly related with the inflammation prob-
lem which exhibit profiles that would not be retrieved applying some of the classic 
microarray analysis methods individually. That is the case of probe set 206011_at, 
which is related in behavior and in function (apoptosis-related cysteine peptidase) to 
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probe sets 211367_s_at and 211368_s_at (Fig. 2(a)), stated as relevant for the in-
flammation problem in [13]. For these particular probe set, the isolated application of 

classical methods such as 1M or 3M  with either default p-value or false discovery, 
rate, depending on what each method uses, would not retrieve such probe set as dif-
ferentially expressed. The same situation applies to probe sets 202076_at and 
210538_s_at, related both in behavior and in function (inhibitor of apoptosis protein 2 
and 1 respectively) (Fig. 2(b)). 

Table 1. Intersection of the results between methods recognizing differentially expressed 
genes. The number in each cell represents the ratio of coincidence between genes retrieved by 
the statistical method in the column and in the row relative to the total number of genes recov-
ered by the method in the row RowColumnRow /)(( ∩ ). 

% 1M  2M  3M  4M  5M  6M  7M  8M  9M  10M  
1M  -- 92.20 52.29 75.05 96.48 69.23 85.55 70.06 61.33 50.52 

2M  56.06 -- 34.07 57.84 85.27 59.54 71.11 62.64 50.57 42.98 

3M  82.19 88.07 -- 96.24 94.77 57.35 78.75 72.87 56.86 46.73 

4M  67.22 85.19 54.84 -- 95.16 55.49 73.65 70.20 51.49 42.83 

5M  55.20 77.80 33.45 58.94 -- 50.28 66.72 66.38 46.42 38.93 

6M  59.04 83.51 31.11 52.84 77.30 -- 89.63 56.56 60.64 49.38 

7M  58.36 79.79 34.18 56.10 82.05 71.70 -- 62.34 57.23 49.07 

8M  57.36 84.34 37.96 64.17 95.96 54.30 74.80 -- 49.62 40.51 

9M  62.10 84.21 36.63 58.21 84.74 72.00 84.95 61.36 -- 72.31 

10M  59.56 83.34 35.05 56.37 82.72 68.26 84.80 58.34 84.19 -- 

In contrast, some other available methods retrieve profiles that do not differ be-
tween the considered experimental conditions. For example, ANOVA, perhaps based 
on the violation of statistical constraints ([14]), retrieves a 43% of genes lacking an 
observable change with the default parameter values. The increase of the specificity 
of these parameters generates severe effects on the sensitivity of other true changes.  

These findings reveal that there are desired and undesired differential profiles 
termed positive and negatively, respectively. For example, some profiles exhibiting 
similarly arranged patterns but shifted over time may be relevant for a specific ex-
periment but not for other. In addition, we also found that methods applied to mi-
croarray profiles are focused on identifying differences among expression patterns 
over treatment and/or time since biological replicates are averaged in the same ex-
perimental group. However, we might also need to detect differences among subjects. 

We create a database with all possible differential profiles derived from genes re-
trieved in our inflammation problem by all available methods (i.e., 28 differential pro-
files). This database contains differential profiles that can be labeled as positive or 
negative according to their interest to be retrieved for a particular study. To validate 
biologically these profiles we calculate the coincidence the coincidence between our 
retrieved differential profiles and external information provided by the Gene Ontology 
database ([15]) showing that genes sharing behaviour are related in function ([16]). 
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Fig. 2. Probe sets in blue are stated as relevant for the inflammation problem in ([13]). Probe 
sets in red are detected by application of our methodology but not by applying some classical 
microarray analysis methods individually. In (a) the probe set in red, 206011_at, is related to 
probe sets 211367_s_at and 211368_s_at (blue) both in expression throughout time and in func-
tion (apoptosis-related cysteine peptidase). In (b) we see the same situation between 202076_at 
in red and 210538_s_at in blue, which have correlated level of expression throughout time and 
share their function (inhibitor of apoptosis protein 2 and 1 respectively).  

The temporal expression data in our database can be averaged or sequentially repre-
sented for each biological replicate. Originally, the database was built based on the in-
flammatory response patterns, which is based on a very robust microarray experiment 
([13]). Now, it is being updated with experiments provided from different sources 
such as the Ventilator Associated Pneumonia (unpublished results). 

The application of our methodology to the database of differential profiles allowed 
the optimal retrieval of the desired differential profiles. For example, if we were inter-
ested in probe exhibiting any of 27 of the profiles in the database and not exhibiting 

one of the profiles, we are able to do applying 65 MM ∪ with specificity and sensitiv-
ity levels of 94% and 92% respectively. In Fig. 3 we show the method-aggregations 
from the optimal rules to retrieve individually each of the 28 profiles in our database. 

 

Fig. 3. Microarray analysis methods are able to retrieve some differential profiles and not oth-
ers. Rows correspond to method-aggregations using the union operator and columns to each of 
the 28 individual differential profiles from our example. The coloring scheme corresponds to 
the sensitivity in retrieving the differential profile: from green, the lowest, to black, the highest.  
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Our approach also recovers probe sets with related behavior to other probe sets 
with already known profiles which might have related functionalities ([16]). For in-
stance, probe set 206011_at is related in behavior and in function (apoptosis-related 
cysteine peptidase) to probe sets 211367_s_at and 211368_s_at (Fig. 2(a)), stated as 
relevant for the inflammation problem in [13]. For these particular probe set, the iso-
lated application of classical methods such as 1M or 3M  with the default p-value and 
false discovery rate would not retrieve such probe set as differentially expressed. We 
retrieve such probe set applying the rule that implies the method aggrega-
tion 107 MM ∪  with values (1, 0.25, 0.8) for sensitivity, specificity and cost respec-
tively. The same situation applies to probe sets 202076_at and 210538_s_at, related 
both in behavior and in function (inhibitor of apoptosis protein 2 and 1 respectively) 
(Fig. 2(b)). It is retrieved applying the rule of methods 63 MM ∪ with values (0.93, 
0.35, 0.8). 

 In addition, the representation used in the inflammation problem (Fig. 4) allows us 
to independently examine the gene behavior in each subject, helping to uncover indi-
vidual tendencies among biological replicates that could represent conditions not pre-
viously considered such as gender or age (e.g., differential profile #15 (Fig. 5), where 
some of the probe sets from patient 1 exhibit a very different behavior than the rest of 
the patients). 

We illustrate the obtained association rules for Profile #19 from our database (Ta-
ble 2) and the Pareto-optimal front for the three objectives corresponding to the se-
lected rules (Fig. 6).  

 

Fig. 4. Profile #19: the expression profiles have been represented separately for each subject the 
experimental group and patients are arranged individually 

3   Methods 

Most machine learning techniques are applied to mine into datasets to discover con-
cepts involving objects which share a common methodological framework, even 
though they employ distinct metrics, heuristics or probability interpretations ([17], 
[18]): (1) identification of a database, different data types can be efficiently organized 
by taking advantage of a naturally occurring structure over feature space. (2) learning 
rules from the database, searching through the feature space for potential relationships 
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among data, and either returning the best one found or an optimal sample of them. This 
learning process would result in the generation of many rules with small extent, as it is 
easier to explain or match small data subsets than those that constitute a significant 
portion of the dataset. For this reason, any successful methodology should also con-
sider additional criteria ([19]) to extract broader or more comprehensive rules as a mul-
tiobjective optimization problem, based on their specificity, sensitivity and cost as a 
measures of the rule quality. (3) Inference, where new observations can be predicted 
from previously learned rules by using classifiers that optimize their matching to the 
rules based on distance ([18]) or probabilistic metrics ([20], [21]).  

We propose a method, inspired on conceptual clustering and optimization tech-
niques ([9], [10], [17]), that identifies a database of gene profiles that change their ex-
pression over time and/or over treatments and/or over subjects, learns associations 
rules and make decisions about the microarray analysis method or the best aggrega-
tion of methods capable of detecting a desired set of differential profiles, and finally 
uses these rules to make decisions based on new situations (Fig.1).  
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Fig. 5. Profile #15: patient 1 behaves different than patients 2, 3 and 4 for the treatment group 

Table 2. Set of decision making association rules generated to retrieve Profile #19. The axes 
(X,Y,Z) represent the number of methods, specificity and sensitivity for each of the 35 solutions 
generated. 

RULES Sensitivity Specificity Cost 

R1:IF x1 IS (PTPC)19 THEN Z1 IS M1  0.878378 0.0675676 0.9 

R2:IF x1 IS (PTPC)19  THEN Z2 IS M2   0.972973 0.045512 0.9 

R3:IF x1 IS (PTPC)19  THEN Z3 IS M7 0.905405 0.0475177 0.9 

R4:IF x1 IS (PTPC)19  THEN Z4 IS M1∩M2  0.864865 0.0721533 0.8 

R5:IF x1 IS (PTPC)19  THEN Z5 IS M2∪M10  1 0.0430733 0.8 

R7:IF x1 IS (PTPC)19  THEN Z7 IS M1∩M10  0.594595 0.090535 0.8 

R8:IF x1 IS (PTPC)19  THEN Z8 IS M2∩M7 0.891892 0.0538776 0.8 

R9:IF x1 IS (PTPC)19  THEN Z9 IS M3∩M9 0.472973 0.100575 0.8 

R10:IF x1 IS (PTPC)19  THEN Z10 IS M3∩M10 0.405405 0.104895 0.8 

R11:IF x1 IS (PTPC)19  THEN Z11 IS M1∩M2∩M7 0.797297 0.0732919 0.7 

R12:IF x1 IS (PTPC)19  THEN Z12 IS M1∩M2∩M9 0.662162 0.0853659 0.7 

R13:IF x1 IS (PTPC)19  THEN Z13 IS M1∩M3 ∩M7∩M10 0.459459 0.112211 0.6 

R14:IF x1 IS (PTPC)19  THEN Z14 IS M3∩M6 ∩M9∩M10 0.364865 0.135 0.6 

R15:IF x1 IS (PTPC)19  THEN Z15 IS M1∩M3∩M6 ∩M9∩M10 0.364865 0.140625 0.6 

R16:IF x1 IS (PTPC)19  THEN Z16 IS M1∩M3∩M4∩M6 ∩M9∩M10 0.364865 0.141361 0.4 
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3.1   Identification of the Database  

Our database is composed of differential profiles obtained from the probe sets differ-
entially expressed retrieved from the expression datasets. The probe sets are obtained 
using several classical microarray analysis methods. These methods include Student’s 
T-Test proposed in [11], with variants that distinguish changes in the abundance of 
RNA occurring not only over treatment but also over time; Permutation Test de-
scribed in ([6]), also including a time approach; Analysis of Variance described in 
([5]); and Longitudinal Data approach using Repeated Measures Analysis of Variance 
described in ([12]). 

 

Fig. 6. Pareto-front representation for the set of rules generated to retrieve Profile #19. The axes 
(X,Y,Z) represent the number of methods, specificity and sensitivity for each of the 35 solutions 
generated.   

The probe sets identified by the statistical methods serve as a means to create dif-
ferential expression profiles (i.e., sets of genes with coordinate changes in RNA 
abundance) expressed from one experimental condition to the others (i.e., probe sets 
that change over time, treatments and phenotype). We group separately probe sets for 
different experimental conditions, treatment and PT control PC by applying the K-
means clustering algorithm ([22]), which takes three input parameters: first, number 
of resulting clusters K, which is estimated by application of the Davies-Bouldin valid-
ity index ([23]); second, the similarity measure applied, Euclidean distance, which 
yields the best results in the clustering of this problem and third,  the initialization 
strategy, random generation of the cluster centroids.  

Particularly, in our inflammation problem, we consider the temporal expression 
data sequentially represented for each biological replicate (i.e., patients in the same 
experimental group) instead of averaging them to uncover phenotype differences.  

We identify differential profiles by applying a coincidence index (CI) based on the 
hypergeometric distribution (p-value <0.05), which determines the statistical signifi-
cance of overlap between pairwise profile association in treatment and control condi-
tions ([16]): 
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CP , and vice versa. We define a differential profile by a triplet (PTPCG), which repre-
sents a set of genes G with similar behavior in treatment TP  and control CP  experi-
ments. The available profiles can be labeled as positive or negative examples for the 
decision process according to their relevance for a desired analysis. 

3.2   Learning Association Rules 

We create a set of decision making association rules from the database that, given a 
desired differential profile or set of profiles, suggests the most appropriate method-
aggregations to recognize it. The rules are created to retrieve all possible combina-
tions of differential profiles })(,....,){( 1 lCTCT GPPGPPP =  present in our database. 

We say that a method iM is able to retrieve a differential profile jCT GPP )(  if it 
identifies a sufficient number of the genes exhibiting that profile in the data set. That 
is, Mi(G) > t, where t satisfies a statistical power of 80%. Then, an association rule is 
defined as:  

R : IF X IS jCT GPP )( THEN Z  IS iM , (2) 

where X is the profile queried by the user and Z is a latent class returned from iM , 
which represents a method or a method-aggregation. The antecedent of the rule is ac-
tivated by considering the degree of matching between a query and a profile, both of 
which are represented by their centroids as a fuzzy set prototype ([19]). We use the 
Euclidean distance normalized in the unit interval to account for this matching. We 
extend the antecedent to encode several profiles linked by using typical AND-
operations in fuzzy rules (e.g., T-norms including the MINIMUM or the PRODUCT 
([24]). The consequent of the rules is composed of a single or a method-aggregation 
(e.g., Mi& Mh (G) > t). The potential method-aggregations are defined as: 

}...,...,,,,,{ 21312121 nn MMMMMMMMMMM ⊕⊕⊕⊕⊕=  (3) 

where ⊕  is a classical set operator (e.g., the union (∪ ) or the intersection (∩ )). The 
association rules are arranged into a lattice (Fig. 7) for one or a set of desired profiles, 
and structured from top (i.e., intersection of all methods, increasing Type I error) to 
bottom (i.e., union of all methods increasing error of Type II) [21].  

3.3   Selecting Association Rules  

We evaluate a rule by the ability of a method-aggregation to recognize a desired posi-
tive and not to detect an undesired negative differential profile, as well as the number 
of methods being considered in the consequent. We explicitly perform a multiobjec-
tive evaluation of the performance of the rules by considering three objectives: speci-
ficity, sensitivity and cost: 

)/( FNTPTNySpecificit += )/( FNTPTPySensitivit +=
))(/(#1 MethodsMaxMethodsCost −= , 

(4) 

where TP stands for True Positive, TN stands for True Negative, FP stands for False 
Positive, FN stands for False Negative, #Methods is the number of methods included 
in the consequent and Max(Methods) is the total number of methods available.  
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Fig. 7. Lattice structure containing possible association rules 

We obtain a set of optimal rules by calculating a trade-off between the opposing 
objectives that is estimated by selecting a set of solutions that are non-dominated, in 
the sense that there is no solution that is superior to them in all objectives (i.e., Pareto 
optimal frontier ([25])). The dominance relationship in a maximization problem of at 
least two objectives is defined as:  

)()()()( bOaOjbOaOiiffba jjii >∃≥∀>  (5) 

where the iO and jO are either one or another defined objective. 

3.4   Inferring from Association Rules  

We use the set of non-dominated rules and the corresponding metrics derived from 
the multiobjective optimization process to update the rule defined in equation (2) : 

R : IF X IS jCT GPP )( THEN Z  IS iM WITH C (6) 

where C is the confidence of the rule, defined as a weighted sum of the sensitivity, 
specificity and cost. The rules are fired as typical fuzzy classification rules ([26]): 

},..,1{,))(),...,(( 1 niiXRXRINFERENCE n ∈=  (7) 

where:  

)},(),...,({)( 1 XRXRconormTXR ni −=  (8) 

and, 

},...,1{,)( nkCXR kkk ∈∀×= α  (9) 

with kα and kC being the degree of matching of the antecedent and the confidence 
value of the rule k when the profile jCT GPP )( is evaluated, and the T-conorm is the 
fuzzy operation defined as the MAXIMUM. 
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4   Discussion 

The emergence of microarray technology as a standard tool for biomedical research 
has necessarily led to the rapid development of specific analytical methods to handle 
these large data sets. Based on what we learnt from studying the performance of clas-
sical microarray analysis methods, different methods yield different results for the 
same set of input data, and some methods are more capable to retrieve certain differ-
ential profiles than others, we create a set of decision making association rules be-
tween methods or aggregation of them, and differential profiles, that will help us in 
the decision of which microarray analysis methods to apply on new data sets in order 
to retrieve the genes exhibiting the desired differential profile.  

Our method addressed the need for computational methods to facilitate understand-
ing of differential gene expression profiles, to establish comparisons among them, and 
to decide which is the most reliable method to identify informational profiles. The 
proposed methodology is valid for either providing the optimal method-aggregations 
for a query profiles, or identifying all differential profiles in a given set of microarray 
data, suggesting the optimal method-aggregations for them and updating the set of 
possible profiles used for prediction. Although we have applied our procedure to 
time-course structured experiments, they constitute more general cases of simpler mi-
croarray problems where microarray samples are taken as single data points. There-
fore, the methodology presented is also useful for simpler microarray experiments 
with single data points. 

Our approach presents various advantages over the standard analytical methods for 
microarray experiments. First, our proposal consists of machine learning techniques that 
combine the properties of the methods applied. Second, it permits interaction with the 
user: given the differential profile queried from the set of data obtains the optimal combi-
nation of statistical methods to retrieve the genes exhibiting such profile. Third, the  
representation used for the profiles, allowing us to examine the behavior of the genes in-
dependently in each subject, facilitates the identification of different behaviors of genes 
across the subjects in the same experimental group. Finally, the system provides solutions 
based on a trade-off of specificity, sensitivity and cost and the number of methods ap-
plied, whereas other methods evaluate their solutions only over one measure, usually a 
ratio between False Positives and the total number of genes retrieved ([6], [11]).  

The computational procedure we propose solves many of the problems actually 
present in the process of analyzing a microarray experiment, such as the decision of 
analytical methodology to follow, extraction of biologically significant results, proper 
management of complex experiments harboring experimental conditions, time-series 
and intersubject variation. Therefore, it provides a robust platform for the analysis of 
many types of microarray experiments, from the simplest experimental design to the 
most complex, providing accurate and reliable results.  
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