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Abstract— For certain problems of casual modeling in mar-
keting, the information is obtained by means of questionnaires.
When these questionnaires include more than one item for
each observable variable, the value of this variable can not
be assigned a number, but a potentially scattered set of values.

In this paper, we propose to represent the information
contained in this set of values by means of a fuzzy number.
A novel fuzzy statistics-based interpretation of the semantic of
a fuzzy set will be used for this purpose, as we will consider that
this fuzzy number is a nested family of confidence intervals for a
central tendency measure of the value of the variable. A genetic
learning algorithm, able to extract association fuzzy rules from
this data, is also proposed. The accuracy of the model will be
expressed by means of a fuzzy-valued function. We propose to
jointly minimize this function and the complexity of the rule
based model with multicriteria genetic algorithms, that in turn
will depend on a fuzzy ranking-based ordering of individuals.

I. INTRODUCTION

In previous works [1], we have stated that, when a variable
is composed of a set of parameters (items), the data is
uncertain, because each one of the items provide only partial
information to describe the variable, and these informations
may be in conflict. Therefore, the use of association fuzzy
rules to extract knowledge from casual models in marketing
has some inherent advantages:
• Since the models have to relate uncertain variables, the

fuzzy logic framework is a priori well suited to express
the relationships between them.

• The obtained fuzzy models can be linguistically inter-
preted, and this fact provides the researcher with an
additional insight into the data.

Regarding the first benefit, the conversion of a set of items
into a compound value that can be fed to the model has been
solved in different ways. The classical solution [2] consists
in preprocessing these sets of values, then replacing each
one of them by a suitable, numerical characteristic value,
say its mean or median. This solution might not be the
best one, because the model should know not only about
the characteristic values of the variable, but also about the
degree of imprecision with which these values are known.
More recently [1], a mechanism that assigns a degree of truth
to any fuzzy assert about the value of the variable, given
the mentioned set of values, has also been proposed. This
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second approach is better, because it allows to take profit
from the original format without any preprocessing stage,
but it can be further improved. In this paper, we apply a
novel interpretation of the semantics of a fuzzy set [3], that
allows us to define a mapping between sets of items and
fuzzy numbers. Therefore, we will model each set of items
by means of a fuzzy number, either for the input and the
output variables.

The definition of the learning problem that arises involves
optimizing a fuzzy valued function, because the accuracy of
the model is measured by the squared difference between the
fuzzy representation of the output variables, and the images
of the input values provided by the candidate model, which
are also fuzzy [4]. As done in previous works, we will jointly
optimize the precision of the model and its complexity, by
mean of multicriteria genetic algorithms. The purpose of the
learning is to find a model both accurate and linguistically
understandable.

The paper is organized as follows. Section II briefly
describes the dealt problem based on consumer behavior
models. Section III introduces the fuzzy representation is-
sues, and Section IV details the proposed methodology.
Section V shows some obtained experimental results. Finally,
Section VI concludes.

II. CAUSAL MODELING IN MARKETING: A KIND OF
FUZZY DATA

Marketing academics and practitioners have emphasized
the need for knowing and explaining the consumer’s behavior
patters in a manner increasingly efficient. This is mainly due
to firms focused on final markets are immersed in highly
competitive systems in which it is needed that their decision
processes to be as correct as possible. In this sense, models
of consumer behavior are considered as a specific case of
marketing management support system, and throughout the
time have demonstrated to be a source of transcendental
relevance for the development of marketing science [5].

Notwithstanding, current models of consumer behavior do
not seem to cover all the necessities that it should supposedly
satisfy a model which aims to aid on the marketing decision
making. Thus, as the main problem that actually face firms
oriented to consumer markets is not the availability of
information (data), but the possession of appropriate levels
of knowledge to take the right decisions, the use of avant-
garde knowledge discovery techniques able to exploit it may
represent an essential source of competitive advantage.

In this respect, we focus our paper on the modeling
estimation techniques by providing a knowledge extraction
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method that provides more quantity of qualitative information
than preceding estimation techniques used in this field [5].
Before presenting the proposal in Section IV, the following
subsections introduce the kind of data and information which
are available in causal modeling.

A. Data Gathering

First step is to collect the data related to the variables
defining the theoretical model of consumer behavior pro-
posed. In this sense, as it has been traditionally done in
marketing, data are obtained by means of a questionnaire
in a similar way to the models estimated by structural
equation modeling. Thus, at first, attention should be paid
to how consumer behavior modelers face and develop the
measurement process of variables which complex behavioral
models contain.

It can be said that measuring streams for these latent
variables in consumer modeling can be classified into two
groups depending on whether they defend that these con-
structs can or cannot be perfectly measured by means of
observed variables (indicators)—i.e., the existence or not of
a one-to-one correspondence between a construct and its
measurement. Certainly, though consumer behavior modelers
tended to make use in the beginning of what was known
as the operational definition philosophy, a more convenient
and reasonable position is that based on the partial interpre-
tation philosophy which distinguished between unobserved
(constructs) and observed (indicators) variables. This later
approach of measurement, being currently predominant in
the marketing modeling discipline, poses to jointly consider
multiple indicators—imperfect when considered individually,
though reliable when considered altogether—of the subjacent
construct to obtain valid measures.

For instance, we can consider the measurement model
depicted in Figure 1, compounded by three construct or
latent variables (depicted by circles), two exogenous (fashion
consciousness and conservatism), and one endogenous (he-
donism). Since these latent variables are unmeasurable, we
indirectly measure them by means of observable variables
(items), depicted by rectangles in the figure.

Fashion
consciousness

Conservatism

Hedonism

f1

f2

c1
c2

h1
h2

c3

h3

Fig. 1. Example of a simple measurement (structural) model (extracted
from [6])

Likewise, with respect to the measurement scales, imagine
that the constructs have been measured by means of several
nine-points Likert scales ranging from 1: strongly disagree

to 9: strongly agree. Specifically, in Table I we show a
hypothetical example of the set of items that could have
been used for measuring each one, while Table II shows an
example of data available for this problem.

TABLE I
EXAMPLE OF A QUESTIONNAIRE ASSOCIATED TO THE MEASUREMENT

MODEL SHOWN IN FIGURE 1 (EXTRACTED FROM [6])

Fashion consciousness
f1: Fashion is an important means of self-expression
f2: I’m usually the first among my friends to learn about a new

brand or product
Conservatism
c1: I tend to achieve my goals one step at a time
c2: I’m the type to deliberate things
c3: I gather various information and study well when deciding to

buy a specific item
Hedonism
h1: I want to enjoy the present rather than think about the future
h2: I like to go out to night-time entertainment spots
h3: I want to lead a life with lots of ups and downs

TABLE II
EXAMPLE OF FOUR RESPONSES ABOUT THE ITEMS SHOWN IN TABLE I

Fashion consciousness Conservatism Hedonism
f1 f2 c1 c2 c3 h1 h2 h3

2 3 7 6 5 2 3 3
6 6 2 3 3 8 7 7
8 7 2 1 2 7 8 9
5 5 2 2 2 7 7 7

B. Data Processing

To work with this unusual kind of data, one could think
on adapting the collected data to a scheme easily tractable
by classical learning method. However, the approach should
be aware of the special features of the available data (with
several items or indicators to describe a specific variable)
when adapting the observed variables to a learning method.
An intuitive approach could directly reduce the items of
a specific variable to a single value (e.g., by arithmetic
mean) [2]. Another possibility would be to expand any
multi-item example (the result of a questionnaire filled by a
consumer) to several single-item examples and subsequently
reduce the data size with some instance selection process.

The problem of these approaches is that the data are
transformed, so relevant information may be lost or strained.
We propose a more sophisticated process that allows us
to take profit from the original format without any pre-
processing stage: the consideration of fuzzy numbers to
describe each variable. It is described in Section III.

C. Prior Information on the Fuzzy System from the Struc-
tural Model

Prior to applying the genetic fuzzy systems to
automatically design the fuzzy model, we fix a number
of components: the set of variables to be modeled, the
transformation of the scales used for measuring such
variables into fuzzy semantics, and the fuzzy rule structure
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(relations among constructs). As mentioned, the expert
is able to provide its knowledge about the problem by a
measurement structural model like shown in Figure 1 (of
course, a real problem would work with a more complex
model). From this information, we can deduce the variables
and the direction (in terms of antecedents and consequents)
of the relationships existing among them. Therefore, we
can easily fix the input and output variable of the analyzed
relationship. For example, from the measurement model
of Figure 1, the fuzzy rule structure have the following form:

IF FashionConsciousness is A1 and Conservatism is A2

THEN Hedonism is B.

With respect to the fuzzy semantic used for each variable,
it is also possible to fix it according to expert knowledge.
Indeed, when she/he build the questionnaire in order to
collect data, she/he fixes the kind of scale and precision
(number of points) used to measure each variable. From
this information it is possible to define a fuzzy semantic.
At this point, several marketing scale types can be used for
its measurement. With the aim of simplifying the problem, in
this paper we focus on interval scale (i.e., Likert differential
semantic or rating scale), which is one of the most commonly
used in marketing.

We suggest to transform these scales to Ruspini’s strong
fuzzy semantics with uniform density of the fuzzy member-
ship functions to statistically unbias the significance of every
linguistic term. Thus, we define the membership function
shapes such as, given the set S = {min, . . . , max} defining
an interval variable, they hold the following condition:∑

k∈S

µAi
(k) =

max−min

l
, ∀Ai ∈ A, (1)

with l being the number of linguistic terms and A =
{A1, . . . , Al} the set of them.

Figure 2 shows an example based on the transformation of
a nine-point rating scale (a typical marketing scale used to
measure the observed variables related to a construct) into a
fuzzy semantic with the three linguistic terms Low, Medium,
and High.

Low

1 2

1

3 4 5 6 7

Medium High

0M
em

be
rs

hi
p 

de
gr

ee

8 9

Fig. 2. Transformation of a nine-point rating scale into a three-linguistic-
terms fuzzy semantic

At this stage, one could think about using some mechanism
to automatically generate fuzzy partitions from data [7], or
design a tuning method to adapt uniformly initialized fuzzy

semantics [8], or both of them. However, in the analyzed
problem we are not (more accurately, the expert is not)
interested on generating fuzzy semantics that accurately
cover data. It is because of the faithfully way to interpret the
semantic considered by each consumer that filled the form
is the uniform one. If we apply any automatic process to
generate/tune fuzzy membership functions, we are adapting
to the context, i.e., the answers of the consumer, but not to
the meaning of the variables. Therefore, in this problem the
knowledge discovery process is focused on the relationship
among the variables (fuzzy rule surface structures).

III. REPRESENTATION ISSUES

The input and output data comprises multi-item values (as
discussed in Section II). In previous works, different aggrega-
tion functions were proposed [1]. These functions ultimately
lead to the assignment of certain truth value to the assert
“the value of the item is V ” for certain label V of a suitable
linguistic variable. Here we will be taking a different path
assuming that there exists a true value for the multi-item
variable, but also that this value is unknown and we can
know, at the best, a set that contains it.

A. Semantics of a Fuzzy Set

The amplitude of this set can be understood as a tolerance
in the measuring of this last value. According to this, a fuzzy
set will represent a set of tolerances, each one of them is
assigned a confidence degree, being the lower degree the
narrower tolerance. Following the semantic interpretation of
a fuzzy set in [3], which in turn is related to that proposed
in [9], a nested family of confidence sets can be represented
by a fuzzy set, whose α-cuts are confidence intervals with
degree 1− α (see an example in Figure 3.)

180

110

α = 0.5 : measure = 100± 55

100

α = 0.1 : measure = 100± 90

Fig. 3. Fuzzy sets can be assimilated to sets of confidence intervals for
an unknown parameter of a distribution. An α-cut of this set is the smallest
interval that contains the true parameter with probability greater or equal
than 1− α

B. Numerical Procedure of Fuzzification

The numerical method for translating a set of numbers into
a fuzzy set will be made clear with the example that follows.
Let us suppose that a latent variable X has associated the
items valued

X = {2, 1, 3, 3, 2, 2, 4}. (2)

574



The most immediate calculation of a summary value is
the sample mean, which is 2.429. While this is a good
compromise value, we are discarding information that might
be relevant: there are some items as low as 1, and others as
high as 4. To gain additional insight about the importance of
the dispersion of the values, we will assume that the set of
items X is a sample of a larger population, whose mean is
unknown. Given the sample X , we can calculate confidence
intervals for the value of this mean, at different degrees.
To simplify the calculations, let us assume that the sample
was drawn from a normal population. Then, the confidence
intervals for the mean of the population have the form

C(α) = 2.429± 0.9759 · qt6

(
1− 1− α

2

)
, (3)

where qt6 is the quantile function for the t distribution, with 6
degrees of freedom, and therefore, the α-cuts of the fuzzy set
X̃ that represents the value of the variable are the intervals

X̃α = 2.429± 0.9759 · qt6
(
1− α

2

)
. (4)

A graphical representation of the membership function of X̃
is shown in Figure 4. Observe that we can approximate it
by a triangular membership function without incurring large
errors.

Other, different techniques for estimating the needed con-
fidence degrees would also be possible. If the sample mean is
selected as the summary measure, the normality assumption
will hold for many practical problems and, in particular, it
does for the problem that will be described in Section V.
Otherwise, or when the data contains many outliers, building
the membership function from the quantiles of the bootstrap
distribution of the median should be a sensible choice.
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Fig. 4. Membership function of the set eX that represents the sample
X in Section III-B. This membership can be approximated by a triangular
membership function with reasonable accuracy

IV. PROPOSED GENETIC FUZZY SYSTEM

Once fixed the linguistic variables that properly represent
the tackled available information, a genetic fuzzy system is
proposed in this section to automatically extract the knowl-
edge existing in the considered data. The algorithm has been
designed to perform predictive induction [10], that looks for
generating models that describe with the highest reliability
the data set that represent the analyzed system. However, the
obtained model should not be only accurate enough but also
be easily legible in order to be able to linguistically describe
the real system. As it is known, accuracy and interpretability
are two contradictory properties. To address that, we consider
a multiobjective genetic fuzzy system thanks to their good
behavior to deal with multiple, contradictory objectives. Next
subsections describe the main components of the proposed
method.

A. Fuzzy Rule Structure

In data mining is crucial to use a learning process with
a high degree of interpretability. Therefore, we opt by a
compact description based on the disjunctive normal form
(DNF) [11]. This kind of fuzzy rule structure has the
following form:

IF X1 is cA1 and . . . and Xn is cAn THEN Y is B

where each input variable Xi takes as a value a set of
linguistic terms Âi = {Ai1 ∨ . . . ∨ Aili}, whose members
are joined by a disjunctive (T -conorm) operator, whilst the
output variable remains a usual linguistic variable with a
single label associated. We use the bounded sum (min{1, a+
b}) as T -conorm. The structure is a natural support to allow
the absence of some input variables in each rule (simply
making Âi to be the whole set of linguistic terms available).

B. Coding scheme

Each individual of the population represents a set of fuzzy
rules (i.e., Pittsburgh style). Each chromosome consists of the
concatenation of a number of rules. The number of rules is
not fixed a priori so, the chromosome size is variable-length.
Each rule (part of the chromosome) is encoded by a binary
string for the antecedent part and an integer coding scheme
for the consequent part. The antecedent part has a size equal
to the sum of the number of linguistic terms used in each
input variable. The allele ‘1’ means that the corresponding
linguistic term is used in the corresponding variable. The
consequent part has a size equal to the number of output
variables. In that part, each gene contains the index of the
linguistic term used for the corresponding output variable.

For example, assuming we have three linguistic terms
(S, M, and L) for each input/output variable, the fuzzy
rule [IF X1 is S and X2 is {M or L} THEN Y is M] is
encoded as [100|011||2]. Therefore, a chromosome would
be the concatenation of a number of these fuzzy rules, e.g.,
[100|011||2 010|111||1 001|101||3] for a set of three rules.
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C. Objective Functions
We consider two objective functions to assess the quality

of the generated fuzzy systems, the former (fuzzy approxima-
tion error) to improve the accuracy and the latter (linguistic
complexity) to improve the interpretability.

1) Fuzzy Approximation Error: We will use the mean
squared error (MSE) to measure the differences between the
output of the model and the desired values. Though, we
have stated that we cannot know the precise input neither
output data, but fuzzy sets that describe them (see Section
III). Therefore, we can not compute a number that measures
the error of a candidate model over our train data, but we
can provide upper and lower bounds of it. Following [4], let
our model F be a fuzzy rule base that maps an input vector
x to an output value F(x). If all we can say about x is that
it is contained in the fuzzy set X̃ , then F(x) is contained in
the fuzzy set F(X̃), defined by the family of α-cuts

F(X̃)α = {F(x) | x ∈ X̃α} (5)

and, consequently, the MSE is

Ẽ(F) =
1
N

N⊕
e=1

SQ
(
F(X̃)	 Ỹ

)
, (6)

where [SQ(X)]α = {x2 | x ∈ Xα}.
Observe that, being Ẽ(F) a fuzzy set, we will need to

minimize an imprecisely known function in order to find
the best model. This problem can be solved with the help
of a fuzzy ranking, that defines total order over the set
of errors. In this paper, we decided to use the centroid-
based fuzzy ranking proposed in [12]. It basically consists
on obtaining the centroid point (xi, yi) of each fuzzy number
and computing the distance index to the original point, i.e.

F1(Ẽ(F)) =
√
‖xi‖2 + ‖yi‖2. (7)

The values xi and yi must be normalized before computing
the distance. Since yi ∈ [0, 0.5], ‖yi‖ = 2yi. The lower
the value, the better the corresponding model. In our case,
this ranking makes sense because, when the models being
compared have non-overlapping fuzzy errors, it produces the
fuzzy number that corresponds to the lowest error and, when
the errors overlap, the most specific one is chosen.

2) Linguistic Complexity: This second objective intends
to assess the linguistic complexity of the generated fuzzy
rule set. Firstly, it is clear that higher number of rules, higher
complexity. Therefore, we measure the number of rules of the
fuzzy system F as C1(F). However, since each DNF-type
fuzzy rule has also a complexity degree itself, we should also
consider this aspect. Then, let C2(F) =

∑
Rr∈F

∏n
i=1 lri be

the complexity of the fuzzy system F , with lri being the
number of linguistic terms used in the ith input variable of
the rth DNF-type fuzzy rule. The total number of available
linguistic terms is computed when an input variable is not
considered (i.e. “don’t care”).

Therefore, the joint objective (to be minimized) is the
combination of both complexities as follows:

F2(S) = C1(F) · C2(F) (8)

We opt for this combined measurement instead considering
two independent objectives because both are deeply related
and assess the same concept (complexity of the system).

D. Evolutionary Scheme

A generational approach with the multiobjective NSGA-II
replacement strategy [13] is considered. Binary tournament
selection based on the crowding distance in the objective
function space is used.

E. Genetic Operators

The crossover operator randomly chooses a cross point
between two fuzzy rules at each chromosome and exchanges
the right string of them. Therefore, the crossover only ex-
changes complete rules, but it does not create new ones since
it respects rule boundaries on chromosomes representing
the individual rule base. In the case that inconsistent rules
appear after crossover, the ones whose antecedent is logically
subsumed by the antecedent of a more general rule are
removed. Redundant rules are also removed.

The mutation operator randomly selects an input or output
variable of a specific rule. If an input variable is selected,
one of the three following possibilities is applied: expansion,
which flips to ‘1’ a gene of the selected variable; contraction,
which flips to ‘0’ a gene of the selected variable; or shift,
which flips to ‘0’ a gene of the variable and flips to ‘1’ the
gene immediately before or after it. The selection of one
of these mechanisms is made randomly among the available
choices (e.g., contraction can not be applied if only a gene
of the selected variable has the allele ‘1’). If an output
variable is selected, the mutation operator simply increases
or decreases the integer value. In the same way, specific rules
appeared after mutation are subsumed by the most general
ones and redundant rules are removed.

V. EXPERIMENTAL RESULTS AND INTERPRETATION

The consumer behavior model we have used for the
experimentation is based on analyzing the consumer’s flow
state in interactive computer-mediated environments. Data
have been obtained from the survey used in [14] to test a
conceptual model previously presented by the same authors.
We have adapted the original structural model proposed
in [14] by removing the lest significant latent variable in each
second-order variable. To illustrate the flow state concept, it
is achieved when the consumer is so deeply involved in the
process of navigation on the Web that “nothing else seems
to matter” [14].

According to the partition performed by the authors,
training data is composed by 1,154 examples (consumers’
responses) and test data by 500 examples. As an example,
we focus the analysis on a specific relationship among the
six relationships with a total of 12 variables available in the
data set. The four constructs used as input variables of the
system (interaction speed, skill, arousal, and telepresence)
are considered as primary antecedents of the consumer’s flow
state.
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Interaction speed collects the opinion of the individual
with respect to the answering speed of the environment
(quality of the interaction) when she/he is surfing. Skill is the
ability of the individual to use the Web. Arousal stands for
the perception of the consumer about the stimulus level that
represents surfing on the Web. Telepresence is a recent con-
cept associated to computer-based environments. It relates to
the state the consumer reaches when surfing on the Web that
make her/him feel belonged to the virtual environment where
she/he is interacting. It is been hypothesized that these four
latent variables are positively related to the central construct
(flow).

We have run 10 times the proposed genetic fuzzy system.
The fuzzy semantic shown in Figure 2 is considered for all
variables. The resulting joint Pareto-front and average con-
vergence plot are depicted on Figures 5 and 6, respectively.
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Fig. 5. Joint Pareto-front. Each symbol type represents fuzzy models with
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corresponds to the solution shown in Table III
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Fig. 6. Convergence plot (solid lines) of mean error (top) and mean
complexity (bottom) of the Pareto set. Dotted lines show x̄± σ

From Figure 5, we can observe that the algorithm is
able to obtain a wide collection of solutions with different
interpretability-accuracy tradeoffs. It is interesting to see how
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Fig. 7. Convergence plot of the most accurate solution (solid line) and its
corresponding test error (dashed line) obtained by the proposed algorithm.
Dotted lines show x̄± σ
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Fig. 8. Convergence plot of the most accurate solution (solid line) and its
corresponding test error (dashed line) obtained by the algorithm proposed
in [1]. Dotted lines show x̄± σ

there is a threshold, around 5 DNF-type fuzzy rules, where
improving the accuracy is only possible at the expense of
significantly increasing the number of rules. Furthermore,
the fact of obtaining accurate fuzzy models with a low
number of DNF-type rules but a high number of equivalent
Mamdani rules shows the ability of the algorithm to obtain
rules as abstract (general) as possible. (We have to say that
the inference process was designed to return a value outside
the domain when no rules are matched in order to avoid
over-abstraction.) Figure 6 shows the good convergence and
robust behavior of the algorithm, where the complexity is
gradually decreased without worsening the accuracy and the
standard deviation of the 10 runs is low.

Moreover, Figure 7 shows the mean and standard deviation
values of the most accurate solution obtained at each genera-
tion and its corresponding error over the test data set. We can
observe the robust behavior of the proposed algorithm and
the lack of overfitting during the optimization process. It is
due to the fact of considering a fitness based on fuzzy error.
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TABLE III
AN OBTAINED FUZZY RULE SET—mdm STANDS FOR medium. F1(F) = 1.096140, F2(F) = 306

Interaction Speed Skill Arousal Telepresence Flow
low mdm high

× ×

low mdm high

× ×

low mdm high

× ×

low mdm high
× ×

×
× ×

low mdm high
×
×

×

This behavior is more clear if we compare with the results
(shown in Figure 8) obtained by the method proposed in [1]
that does not consider a fuzzy fitness function. In this latter
case, the progression of the test error is very unstable and
the standard deviation among the 10 runs is higher.

Likewise, Table III shows an example of the fuzzy models
available in the Pareto optimal set. According to this example
fuzzy model, we can observe that the three first constructs
(input variables) seems to exert a poor influence over the
consumer’s flow state, even with no repercussions depending
on the case. However, telepresence is, with no doubt, the
most relevant construct. As it can be easily seen, it plays a
key role to specially determine low and medium levels of
flow state and shows a positive (direct) relationship with it.
It is also interesting to highlight that, when telepresence is
low, medium degrees of flow can still be obtained if skill
and arousal are high. Furthermore, the interaction speed
variable is only significative in combination with low degrees
of telepresence to obtain a low degree of flow.

To sum up, we can deduce several interesting relationships
between the variables that would be useful for the marketing
decision makers. On the one hand, it is difficult to obtain
a high degree of flow. On the other, it is possible to obtain
a medium degree of the consumer’s flow by providing an
attractive surfing process (good telepresence) with no matter
about the experience or the stimulus of the consumer. When
the telepresence is low, consumers with highly experienced
or stimulated can still get medium degrees of flow. Finally,
when the speed of the computer environment and the telep-
resence take extreme values (low or high), the consumer’s
flow is low.

VI. CONCLUDING REMARKS

The paper has introduced a novel problem—causal mod-
eling in marketing—where knowledge extraction by genetic
fuzzy systems can help to generate highly understandable
fuzzy models for predictive induction. The problem provides
a specific kind of uncertain data set that justifies the use of
fuzzy rules. We develop multiobjective optimization to obtain
accurate and legible fuzzy models. The proposed knowledge
extraction methodology has been appropriately applied to a
real-world causal modeling problem that analyzes interactive
computer-mediated environments.
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