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Herrera2

1 Dept. of Computer Science, University of Jaén, Spain,
mjjesus@ujaen.es

WWW home page: http://wwwdi.ujaen.es
2 Dept. of Computer Science and A.I., University of Granada,

alfh@ugr.es,{salvagl,herrera}@decsai.ugr.es

WWW home page: http://sci2s.ugr.es

Abstract. In this work a preliminary study on the use of classification
systems based on fuzzy reasoning in classification problems with non-
balanced classes is carried out. The objective of this study is to evaluate
the cooperation with pre-processing mechanisms of instances and the
use of different granularity levels (5 and 7 labels) in the fuzzy parti-
tion considered. To do so, we will use simple fuzzy rule based models
obtained with the Chi (and co-authors’) method that extends the well-
known Wang and Mendel method to classification problems.
The results obtained show that the previous step of instance selection
and/or over sampling is needed. We have observed that a high over-
fitting exists when we use 7 labels per variable. We will analyze this fact
and we will discuss some proposals on the subject.

Key words: Fuzzy Rule Based Classification Systems, Instance Selec-
tion, Over-sampling, Imbalanced Data-sets.

1 Introduction

The design of a classification system, from the point of view of supervised learn-
ing, consists in the establishment of a decision rule that enables to determine the
class of a new example in a set of known classes. When this knowledge extrac-
tion process uses as a representation tool fuzzy rules, the classification system
obtained is called fuzzy rule-based classification system (FRBCS) [7].

In the classification problem field, we often encounter the presence of classes
with a very different percentage of patterns between them: classes with a high
pattern percentage and classes with a low pattern percentage. These problems
receive the name of “classification problems with imbalanced data sets” and
recently they are being studied in the machine learning field [5].
? Supported by the Spanish Project TIN-2005-08386-C05-01 and TIC-2005- 08386-

C05-03.
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Learning systems can have difficulties in the learning of the concept related
to the minority class, so in the specialized literature it is common to use pre-
processing techniques to adjust the databases to a more balanced format [4].

Studying specialized literature, we have found only a few works [10,11,12]
that study the use of fuzzy classifiers for this problem, and all of them from
the point of view of approximate fuzzy systems, not from the descriptive fuzzy
systems ones that are the ones used in this work.

In this work our aim is to analyze the behaviour of descriptive FRBCSs
applied to data-bases with non-balanced classes. We want to evaluate the pre-
processing mechanism of instances that are commonly used in the field in co-
operation with the FRBCS, and to study the importance of the granularity of
fuzzy partitions in these problems.

To do that, this paper is organized as follows. In Section 2 we introduce the
components of an FRBCS and the inductive learning algorithm used. Section
3 presents the pre-processing techniques considered in this work . In Section
4 we introduce the way to evaluate the classification systems in domains with
imbalanced data-sets. Section 5 shows the experimental study carried out with
seven different data-sets. Finally, in Section 6 we present some conclusions about
the study done.

2 Fuzzy rule based classification systems

An FRBCS is composed of a Knowledge Base (KB) and a Fuzzy Reasoning
Method (FRM) that, using the information of the KB, it determines the class
for any pattern of data admissible that comes to the system.

The power of the approximate reasoning consists in the possibility to obtain
a result (a classification) even when we have not an exact compatibility (with
degree 1) between the example and the antecedent of the rules.

2.1 Knowledge base

In the KB two different components are distinguised:

– The Data Base (DB), that contains the definition of the fuzzy sets associated
to the linguistic terms used in the Rule Base.

– The Rule Base (RB), composed of a set of classification rules

R = {R1, ..., RL} (1)

There are different types of fuzzy rules in the specialized literature but in
our case we will use the following one:
• Fuzzy rules with a class and a certainty degree associated to the classi-

fication for this class in the consequent

Rk : If X1 is Ak
1 and . . . and XN is Ak

N

then Y is Cj with degree rk
(2)
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where X1, . . . , XN are features considered in the problem, Ak
1 , . . . , Ak

N

are linguistic labels employed to represent the values of the variables
and rk is the certainty degree associated to the classification of the class
Cj for the examples that belong to the fuzzy subspace delimited by the
antecedent of the rule.

2.2 Fuzzy reasoning method

The FRM is an inference procedure that uses the information of the KB to
predict a class from an unclassified example. Usually, in the specialized literature
[8] the FRM of the maximum has been used, also named classic FRM or the
winning rule, that considers the class indicated by only one rule having account
the association degree of the consequent of the rule over the example. Other
FRMs combine the information contributed for all the rules that represent the
knowledge of the area of which the example belongs [8]. In this work we will
use, besides the classic FRM, the FRM of additive combination among rules
classification degree per class.

Next we present the general model of fuzzy reasoning that combines the
information given by the fuzzy rules compatibles with the example.

In the classification process of the example e = (e1, . . . , eN ), the steps of the
general model of a FRM are the following:

1. Computing the compatibility degree of the example with the antecedent of
the rules.

2. Computing the association degree of the example to the consequent class of
each rules by means of an aggregation function between the compatibility
degree and the certainty degree of the rule with the class associated.

3. Setting the association degree of the example with the different classes.
4. Classification. Applying a decision function F over the association degree of

the example with the classes which will determine, on base to the criterion
of the maximum, the label of the class v with the greatest value.

At point (3) we distinguish the two methods used in this study, that is, using
the function of the maximum to select the rule with the greatest association
degree for each class, and using the additive function over the association degrees
of the rules associated with each class.

2.3 Chi et al. Algorithm

For our experimentation we will use simple rule base models obtained with the
method proposed in [7] that extends the well-known Wang and Mendel method
[13] to classification problems. This FRBCS desing method establishes the rela-
tionship between the variables of the problem and sets an association between
the space of the features and the space of the classes by means of the following
steps:
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1. Establishment of the linguistic partitions. Once determined the domain of
variation of each feature Xi, the fuzzy partitions are computed.

2. Generation of a fuzzy rule for each example eh = (eh
1 , . . . , eh

N , Ch). To do
this is necessary:

2.1 To compute the matching degree of the example eh to the different fuzzy
regions.

2.2 To assign the example eh to the fuzzy region with the greatest member-
ship degree.

2.3 To generate a rule for the example, which antecedent is determined by
the selected fuzzy region and with the label of class of the example in
the consequent.

2.4 To compute the certainty degree. In order to do that the ratio Sj/S is
determined, where Sj is the sum of the matching degree for the class Cj

patterns belonging to this fuzzy region delimited by the antecedent, and
S the sum of the matching degrees for all the patterns belonging to this
fuzzy subspace, regardless its associated class.

3 Preprocessing imbalanced datasets.

In this work we evaluate different instance selection and oversampling techniques
to adjust the class distribution in training data. We have chosen the following
ones[4]:

– Undersampling methods:
• Condensed Nearest Neighbor Rule (CNN). This technique is used

to find a consistent subset of examples. A subset ⊆ E is consistent with
E if using a 1-nearest neighbor, correctly classifies the examples in E.

• Tomek links This method works as follows: given two examples ei and
ej belonging to different classes, the distance between ei y ej (d(ei, ej))
is determined. A (ei,ej) pair is called a Tomek link if there is not an
example el, such that d(ei,el) ¡ d(ei,ej) or d(ej ,el) ¡ d(ei,ej). If two
examples form a Tomek link, then either one of these examples is noise
or both examples are borderline.

• One-sided selection (OSS) is an under-sampling method resulting
from the application of Tomek links followed by the application of CNN.
Tomek links are used as an under-sampling method and removes noisy
and borderline majority class examples. CNN aims to remove examples
from the majority class that are distant from the decision border.

• CNN + Tomek links It is similar to the one-sided selection, but the
method to find the consistent subset is applied before the Tomek links.

• Neighborhood Cleaning Rule (NCL) uses the Wilson‘s Edited Near-
est Neighbor Rule (ENN) [15] to remove majority class examples. ENN
removes any example whose class label differs from the class of at least
two of its three nearest neighbors. NCL modifies the ENN in order to
increase the data cleaning.
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• Random under-sampling is a non-heuristic method that aims to bal-
ance class distribution through the random elimination of majority class
examples.

– Oversampling methods:
• Random over-sampling is a non-heuristic method that aims to bal-

ance class distribution through the random replication of minority class
examples.

• Smote Synthetic Minority Over-sampling Technique (Smote)[6]
is an over-sampling method which form new minority class examples by
interpolating between several minority class examples that lie together.
Thus, the overfitting problem is avoided and causes the decision bound-
aries for the minority class to spread further into the majority class
space.

– Hybrid methods: Oversampling + Undersampling:
• Smote + Tomek links. In order to create better-defined class clus-

ters, it could be applied Tomek links to the over-sampled training set
as a data cleaning method. Thus, instead of removing only the majority
class examples that form Tomek links, examples from both classes are
removed.

• Smote + ENN. The motivation behind this method is similar to Smote
+ Tomek links. ENN tends to remove more examples than the Tomek
links does, so it is expected that it will provide a more in depth data
cleaning.

4 Evaluation of FRBCS for imbalanced data sets

In this section we introduce our experimentation framework. First of all we
present the metric we will use to compare the different methods considered.
Then we will describe the data sets we have chosen for this work and all the
parameters used.

4.1 Measuring error: geometric mean on positive and negative
examples

Weiss and Hirsh [14] show that the error rate of the classification of the rules of
the minority class is 2 or 3 time greater than the rules that identify the examples
of the majority class and that the examples of the minority class are less probable
to be predict than the examples of the majority one.

The most straightforward way to evaluate the performance of classifiers is
based on the confusion matrix analysis. From a confusion matrix for a two class
problem it is possible to extract a number of widely used metrics for measuring
the performance of learning systems, such as Error Rate, defined as Err =

FP+FN
TP+FN+FP+TN and Accuracy, defined as Acc = TP+TN

TP+FN+FP+TN = 1− Err.
Instead of using the error rate (or accuracy), in the ambit of imbalanced

problems more correct metrics are considered. Specifically, it is possible to derive
four performance metrics that directly measure the classification performance on
positive and negative classes independently:
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False negative rate FNrate = FN
TP+FN is the percentage of positive cases mis-

classified as belonging to the negative class;
False positive rate FPrate = FP

FP+TN is the percentage of negative cases mis-
classified as belonging to the positive class;.
True negative rate TNrate = TN

FP+TN is the percentage of negative cases cor-
rectly classified as belonging to the negative class;
True positive rate TPrate = TP

TP+FN is the percentage of positive cases cor-
rectly classified as belonging to the positive class.

These four performance measures have the advantage of being independent
of class costs and prior probabilities. The aim of a classifier is to minimize the
false positive and negative rates or, similarly, to maximize the true negative and
positive rates.

The metric used in this work is the geometric mean [3], which can be defined
as g =

√
a+ · a−, where a+ means the accuracy in the positive examples (TPrate)

and a− is the accuracy in the negative examples (TNrate). This metric tries to
maximize the accuracy of each one of the two classes with a good balance. It is
a performance metric that links both objectives.

4.2 Data sets and parameters

In this study we have considered seven data sets from UCI which have differ-
ent degrees of imbalance. Table 1 summarizes the data employed in this study
and shows, for each data set the number of examples (#Examples), number of
attributes (#Attributes), class name of each class (majority and minority) and
class attribute distribution. All attributes are qualitative.

Table 1. Data sets summary descriptions.

Data set #Examples #Attributes Class (min., maj.) %Class(min.,maj.)

Glass 214 9 (Ve-win-float-proc, remainder) (7’94,92’06)

Pima 768 8 (1,0) (34’77,66’23)

Yeast 1486 8 (mit,remainder) (16’49,83’51)

Ecoli 336 7 (iMU, remainder) (10’42,89’58)

Haberman 306 3 (Die, Survive) (26’47,73’53)

New-thyroid 215 5 (hypo,remainder) (16’28,83’72)

Vehicle 846 18 (van,remainder) (23’52,76’48)

In order to realize a comparative study, we use a ten folder cross validation
approach We consider the following parameters and functions:

– Number of labels per fuzzy partition: 5 and 7 labels.
– Computation of the compatibility degree: Min t-norm.
– Combination of the compatibility degree and the certain rule degree: Min

t-norm.
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– Inference method: Classic method (winning rule) and additive combination
among rules classification degree per class (addition) [8].

In table 2 we show the percentages of examples for each class after balancing.

Table 2. Average of class percentage after balancing.

Balance Method % Positives (minority class) % Negatives (majority class)

CNN TomekLinks 63.23 36.77
CNNRb 81.29 18.71
NCL 25.52 74.48
OSS 34.56 65.44
RandomOS 50.00 50.00
RandomUS 50.00 50.00
SMOTE 50.00 50.00
SMOTE ENN 52.85 47.15
SMOTE TomekLinks 54.35 45.65
TomekLinks 23.84 76.16

5 Analysis of experiments

We have divided our study into three parts: the analysis of the use of prepro-
cessing for imbalanced problems, the study of the effect of the FRM and finally
the analysis of the influence of the granularity applied to the linguistic partitions
together with the inference method.

Tables 3 and 4 show the global results (in training and test sets) for all the
data-sets used in the experimental study, showing the behaviour of the FRBCSs.
Each column represents the following:

– the FRM used (WR for the Winning Rule and AC for Additive Combination)
and the number of labels employed (5-7),

– the balancing method employed, where “none” means that the original data
set is maintained for training,

– the accuracy per class (a− y a+) where the subindex indicates if it refers
to training (tr) or test (tst). It also shows the geometric mean (GM) for
training (TR) and test (TST).

1. The effect of the preprocessing methods: Our results show that in
all the cases pre-processing is a necessity to improve the behaviour of the
learning algorithms.
Specifically it is noticed that the over-sampling methods provide very good
results in practice. We found a kind of mechanism (the SMOTE pre-process
family) that are very good as pre-process technique, both individually and
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Table 3. Global Results WMWR.

Classifier Balancing Method a−tr a+
tr GMTR a−tst a+

tst GMTST

FRBCS-WR5 CNN TomekLinks 23.86 98.59 45.04 22.49 91.14 40.9

FRBCS-WR5 CNNRb 70.15 73.84 68.64 65.84 63.41 60.01

FRBCS-WR5 NCL 90.87 67.23 74.54 87.26 56.13 64.26

FRBCS-WR5 None 98.68 52.74 68.61 94.51 39.78 55.01

FRBCS-WR5 OSS 86.28 62.01 71.46 83.82 52.45 63.54

FRBCS-WR5 RandomOS 82.33 88.31 84.77 76.9 72.88 74.46

FRBCS-WR5 RandomUS 72.28 87.53 78.11 68.06 77.59 70.61

FRBCS-WR5 SMOTE 81.19 88.32 84.13 75.91 74.86 75.11

FRBCS-WR5 SMOTE ENN 74.41 90.7 81.56 70.01 80.06 74.29

FRBCS-WR5 SMOTE TomekLinks 71.94 94.22 81.69 67.94 83.51 74.8

FRBCS-WR5 TomekLinks 93.88 63.62 73.79 90.2 51.29 62.35

FRBCS-WR7 CNN TomekLinks 30.21 99.1 52.31 26.85 80.1 43.81

FRBCS-WR7 CNNRb 65.04 80.25 70.08 58.17 53.87 51.77

FRBCS-WR7 NCL 89.13 80.81 83.82 79.02 55.34 60.89

FRBCS-WR7 None 99.02 66.8 79.22 87.13 42.9 55.68

FRBCS-WR7 OSS 74.83 65.48 69.69 68.91 46.38 55.11

FRBCS-WR7 RandomOS 89.54 91.19 90.23 76.54 63.36 69.33

FRBCS-WR7 RandomUS 67.23 92.14 77.38 59.51 69.5 63.08

FRBCS-WR7 SMOTE 86.7 92.19 89.23 74.04 66.64 69.95

FRBCS-WR7 SMOTE ENN 80.68 92.02 85.95 70.46 70.3 70.04

FRBCS-WR7 SMOTE TomekLinks 78.94 94.99 86.35 68.7 73.47 70.87

FRBCS-WR7 TomekLinks 93.16 75.46 82.46 83.17 50.88 59.73

the hybrid ones. In this way, for FRBCSs we have highly competitive models.
Nevertheless, this over-sampling can introduce an additional computation
cost if the dataset is relatively large.
Also we may stress that the results in the case of no preprocess method is
employed are very high for the negative class (majority) but quite low for the
positive one (minority); hence the clear necessity of the preprocess methods.

2. The reasoning method: Analyzing the tables we find that there are no
great differences between the type of FRM.

3. Granularity analysis: It is empirically shown that a big number of labels
produces over-fitting, the training results are significantly better than the
test ones when 7 labels per variable are used. This situation is evident in
table 5. Besides, we must note that we are using relatively small databases
and with few attributes, which stresses more this undesirable behaviour.

6 Concluding remarks.

In this work we analyze the behaviour of the FRBCSs applied to classification
problems with imbalanced data sets and the cooperation with pre-processing
methods of instances.
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Table 4. Global Results FRBCS-AC.

Classifier Balancing Method a−tr a+
tr GMTR a−tst a+

tst GMTST

FRBCS-AC5 CNN TomekLinks 25.81 96.88 44.7 24.9 89.71 41.26

FRBCS-AC5 CNNRb 69.47 71.54 66.12 66.04 62.05 59.15

FRBCS-AC5 NCL 90.85 63.55 72.02 87.09 54.41 62.86

FRBCS-AC5 None 98.42 46.18 63.7 94.65 36.04 52.2

FRBCS-AC5 OSS 86.74 57.6 68.52 84.98 50.74 62.47

FRBCS-AC5 RandomOS 90.74 73.81 81.03 86.23 61.85 71.39

FRBCS-AC5 RandomUS 70.79 88.23 77.49 67.17 81.36 71.83

FRBCS-AC5 SMOTE 87.35 78.84 82.34 83.08 66.62 72.57

FRBCS-AC5 SMOTE ENN 80.28 85.84 82.55 76.71 73.47 74.24

FRBCS-AC5 SMOTE TomekLinks 77.33 88.56 81.9 73.53 75.28 72.66

FRBCS-AC5 TomekLinks 93.99 58.55 70.48 90.92 49.03 60.94

FRBCS-AC7 CNN TomekLinks 29.15 98.04 50.63 26.58 80.03 43.12

FRBCS-AC7 CNNRb 64.77 77.46 67.73 58.76 55.38 50.37

FRBCS-AC7 NCL 89.54 77.48 81.72 79.45 54.16 60.34

FRBCS-AC7 None 98.82 62.14 75.74 87.38 40.91 54.36

FRBCS-AC7 OSS 75.92 62.24 68.17 70.17 43.17 50.91

FRBCS-AC7 RandomOS 94.06 78.71 85.3 81.54 53.9 63.62

FRBCS-AC7 RandomUS 67.33 91.2 77.28 60.46 69.28 63.79

FRBCS-AC7 SMOTE 90.66 84.94 87.5 78.79 58.31 65.2

FRBCS-AC7 SMOTE ENN 84.38 87.81 85.91 74.94 63.49 68.24

FRBCS-AC7 SMOTE TomekLinks 82.3 91.13 86.23 72.71 65.57 67.62

FRBCS-AC7 TomekLinks 93.06 72.83 80.42 83.7 50.34 59.53

Table 5. FRBCS with 5 labels opposite 7 labels.

FRM Balancing Method GMTR 5 GMTR 7 GMTST 5 GMTST 7

Winning Rule RandomOS 84.77 90.23 74.46 69.33

Winning Rule SMOTE 84.13 89.23 75.11 69.95

Winning Rule SMOTE TL 81.69 86.35 74.8 70.87

Additive Comb. SMOTE 82.34 87.5 72.57 65.2

Additive Comb. SMOTE ENN 82.55 85.91 74.24 68.24

Additive Comb. SMOTE TL 81.9 86.23 72.66 67.62

The main conclusions of our analysis are: the necessity of using pre-processing
instances methods to improve the balance between classes before the use of
the FRBCS method, the similar behaviour of the two fuzzy reasoning methods
analyzed, and the over-fitting produced when we use a high number of labels
per variable.

We must point out that FRBCSs with 5 labels do not reach high classification
percentages in training. It seems that classes with very few examples may need
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labels with a low support that enables to obtain the information associated to the
class, but without including examples from the other class. It seems interesting
to post-process the rule base by means of tuning methods and/or the integration
of labels in a different granularity level to gather all the possible information.

Following this idea, our future work will deal with this problem. We want
to use a post-processing 2-tuples and 3-tuples tuning, two methods that have
shown a good behaviour adjusting the support of the membership functions for
regression problems [1,2].
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