
Continuous Optimization by Evolving

Probability Density Functions with a Two-Island
Model

Alicia D. Beńıtez and Jorge Casillas

Dept. Computer Science and Artificial Intelligence
University of Granada. Spain, E-18071

casillas@decsai.ugr.es

Abstract. The work presents a new evolutionary algorithm designed for
continuous optimization. The algorithm is based on evolution of proba-
bility density functions, which focus on the most promising zones of the
domain of each variable. Several mechanisms are included to self-adapt
the algorithm to the feature of the problem. By means of an experi-
mental study, we have observed that our algorithm obtains good results
of precision, mainly in multimodal problems, in comparison with some
state-of-the-art evolutionary methods.

1 Introduction

Continuous (real-parameter, global) optimization implies an important problem
for engineering, because, it is hard to find a method able to obtain solutions
constituting global optimum for the problem we are dealing with. Metaheuristics,
such as Genetic Algorithms (GAs), Evolutionary Strategies (ESs), and Memetic
Algorithms (GAs hybrided with local search techniques), are the ones being most
currently applied to continuous optimization.

There are algorithms specifically designed for this type of optimization, Es-
timation of Distribution Algorithms (EDAs) [3], which do not use crossover
operators, or mutation operators, unlike GAs and ESs. In order to evolve pop-
ulation evolution they use a mechanism consisting of individuals sampling from
a given density of probability. In the same way of this algorithm, we find con-
tinuous PBIL [5], with a density of probability being normal for each variable,
from which a population updating the normal ones is generated. Mechanisms to
adapt standard deviation are also included.

In many cases, a number of populations working in a parallel way [1] can give
rise to a good behavior of the algorithm. This kind of algorithms are known
as Multideme Parallel Evolutionary Algorithms (PEAs) or island models. They
consist of a number of subpopulations evolving independently which, occasion-
ally, exchange information among them.

In this work, a new algorithm is proposed, as a result from taking essen-
tial ideas of several metaheuristics: GAs, ESs, Memetic Algorithms, EDAs, and

L. Jiao et al. (Eds.): ICNC 2006, Part I, LNCS 4221, pp. 796–805, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Continuous Optimization by Evolving Probability Density Functions 797

PEAs. The basic algorithm is based on evolving a mixture of normal distribu-
tions by keeping the best obtained solutions. It is embedded on an algorithm that
evolves several set of them to avoid premature convergence and that considers
two islands of different behaviors to self-adapt the algorithm to the problem.

According to that, this contribution is organized as follows: Section 2 describes
the algorithm; Section 3 shows an empirical study of the algorithm compared
with other proposals; and finally, Section 4 shows some conclusions and future
works.

2 Description of the EvolPDF-2 Algorithm

For a better understanding, we have distinguished between what we call the
basic algorithm and the final proposed algorithm (called EvolPDF-2). The basic
algorithm, that can be considered the search process’ core, is described in sub-
sections 2.1 and 2.2. This basic algorithm would not work properly as such due
to its high risk of falling in local optima and its high dependence with respect
to the value parameters set. To face this, we have designed a more complex
algorithm based on the basic one that is described in subsections 2.3 and 2.4.

2.1 Basic Components: Representation, Initialization, Sampling,
and Replacement

The basic algorithm consists on four main components: representation, that de-
scribes how solutions are coded; initialization, that creates a set of initial solu-
tions; sampling, that generates new solutions with the probability density func-
tions (PDFs) estimated from the current best solutions; and replacement, that
update the set of solutions considered to generate new ones. The mentioned
components are designed as follows:

– Representation: The algorithm maintains a set of k solutions during the search
process. Each solution is represented as follows: Si =

(
µ1

i , ..., µ
v
i , ..., µn

i

)
, with

n being the number of continuous variables of the problem.
– Initialization: The algorithm begins generating randomly k solutions accord-

ing to a uniform distribution.
– Sampling: In each iteration, a number of solutions is generated from the cur-

rent set. To do that, we consider that the current set of solutions constitutes
a PDF (mixture of normal distributions) for each variable:

PDFv =
k∑

i=1

ωi · N(µv
i , σ),

k∑

i=1

ωi = 1 (1)

where
N(µ, σ) =

1
σ
√

2π
e−

(x−µ)2

2σ2 (2)

It should be noticed that the standard deviation is common to all the
normals.

798 A.D. Beńıtez and J. Casillas

The mixture of normals defining the PDF of each variable are weighted
in such a way that the integral of the PDF equals to 1, with the weights
being directly related to the objective of the solution. They are computed
as follows:

ωi =
f(Si)

∑k
h=1 f(Sh)

(3)

where f(Si) is the objective function of the solution from which the ith
normal comes from. We assume the function is maximized.
To generate, i.e. sample, new solutions, the following process is performed.
For each variable, firstly, we choose with proportional probability a normal
of the corresponding PDF (the higher ωi, the greater the probability of
being chosen). Secondly, a random number with normal density is generated
centered on the mean of the normal chosen in the previous step. The obtained
value will be the one assigned to the corresponding variable of the generated
solution. In case of generating a value out of the allowed range for each
variable, the value is set with the corresponding extreme of the interval.
Consequently, a saturation takes place in the extremes to compensate the
lack of accumulation of density in these regions.

– Replacement : Among the solutions generated in the current iteration, the
best one according to the fitness f(Si) is chosen and replaces to the worst
of the k current best solutions kept by the algorithm in case that the former
outperforms it. This replacement can be considered as a kind of estimation.

2.2 Standard Deviation Convergence

In every metaheuristic, it is necessary the existence of exploration and exploita-
tion. In the beginning of the algorithm, we are more interested on a higher
exploration, so diversification can be favored in the search space. As long as we
get close to the final point of the algorithm, it is more convenient a higher ex-
ploitation, in order to reach a local or global optimum, from the area which has
turned out to be more promising. According to that, our algorithm regulates the
standard deviation of the distributions, trying to make it higher at the beginning
of the algorithm and lower at the end. In order to achieve that, we have defined
a schema of convergence of the standard deviation, according to the following
formula:

C(t) =






σ0 if t ≤ α

(σ0 − σf)(1 − 2(t−α
β−α)2) if α < t ≤ α+β

2

(σ0 − σf)(2(t−β
β−α)2) + σf if α+β

2 < t ≤ β

σf if t > β

(4)

with t being the evaluation number, σ0 and σf the initial and final desired
values of the standard deviation respectively, and α and β two fixed constants
depending on the number of evaluations: α = evaluations ·0.1, β = evaluations ·
0.8. With this formula, we regulate the decrease of the standard deviation to
distinguish three stages during the evolution of PDFs:

Continuous Optimization by Evolving Probability Density Functions 799

1. Initialization: At first (10% of evaluations), the standard deviation remains
constant and the algorithm is used for the configuration of a number of initial
PDFs.

2. Consolidation: Then, we slowly reduce the standard deviation in order to
gradually favor the exploitation to the detriment of exploration.

3. Tuning: Finally, during the last 20% of evaluations, the final adjustment of
the PDFs is carried out, keeping the standard deviation low and constant.

The following values are used for σ0 and σf : σ0 = 10e-01 and σf = 10e-04.
These values have been proven to work properly in different problems.

2.3 Island-Based Model

Once defined the basic algorithm as described in the three previous sections,
we have studied its behavior in different situations. It is clear that two of the
more important parameters of the basic algorithm is the number of samples
and normals. Obtained results with different combinations of them are shown
in Table 1, for Rosenbrock (unimodal) and Rastrigin (multimodal) problems,
both with 25 variables. The shown results are the mean and standard deviation
of 10 runs of the basic algorithm. In this table, it can be observed how in the
Rosenbrock unimodal problem, the less samples per iteration are carried out and
the lower the number of normals we have, the better the result is. With low values
for number of samples and number of normals, a higher intensification appears,
which is good for the behavior of the algorithm to face unimodal problems. If we
pay attention to Rastrigin (multimodal problem), we can see that what happens
is just the opposite than in Rosenbrock’s case. That is, the solutions improve
as long as the number of samples and normals higher. This is due to the fact
that, with the increase of the value of these parameters, diversity is encouraged,
which involves appropriate functioning in multimodal problems.

Given these premises, we have decided to specialize the algorithm in both
behaviors with the aim of fixing these parameters a priori regardless the problem
we are facing. To do that, we consider a two island-based parallel model as shown
in Figure 1.

Therefore, each island is assigned to a different behavior. Basically, each is-
land implements the above described basic algorithm with different parameters.
When several iterations have passed, the current best solutions of each island
are migrated to the other one. In each island, their sets of PDFs evolve inde-
pendently and in parallel. The exchange of information between them favors the
cooperation between islands to attain the global optimum. An advantage of the
island-based model is that it is not compulsory the use of the same kind of algo-
rithm in each island, which indicates that we can use each island for one kind of
approach, so we use an island for problems requiring intensification rather than
diversification, and another one for problems requiring more diversification than
intensification. It makes the algorithm being capable of properly adapting itself
to the most promising approach for the problem to be solved. Each island has a
number of characteristics: number of set of PDFs, number of normals constitut-

800 A.D. Beńıtez and J. Casillas

Table 1. Experimental results of the basic algorithm with Rosenbrock and Rastrigin
functions (10 runs)

Rosenbrock Rastrigin

Samples # Normals Mean Std # Samples # Normals Mean Std

1 1.43e+1 4.97e+0 1 6.62e+1 6.42e+1
5 1.73e+1 2.99e+0 5 6.20e+0 7.53e+0

5 10 1.76e+1 2.02e+0 5 10 2.48e+0 7.41e+0
20 1.80e+1 1.72e+0 20 3.64e-1 3.58e+0
30 1.79e+1 1.71e+0 30 9.94e-2 1.63e+0
1 1.69e+1 7.25e+0 1 6.41e+1 8.43e+1
5 1.72e+1 2.81e+0 5 5.53e+0 9.71e+0

10 10 1.98e+1 5.88e+1 10 10 1.98e+0 5.26e+0
20 1.79e+1 2.46e+0 20 4.97e-1 3.37e+0
30 1.82e+1 1.85e+0 30 6.63e-2 1.35e+0
1 1.71e+1 1.49e+1 1 6.62e+1 7.68e+1
5 1.74e+1 2.79e+0 5 5.37e+0 1.03e+1

15 10 1.78e+1 3.02e+0 15 10 1.72e+0 4.86e+0
20 1.81e+1 1.99e+0 20 1.65e-1 2.47e+0
30 1.80e+1 2.20e+0 30 3.31e-2 9.78e-1
1 1.78e+1 6.30e+0 1 6.17e+1 8.64e+1
5 1.80e+1 2.59e+0 5 4.94e+0 1.26e+1

20 10 1.81e+1 6.84e+0 20 10 1.62e+0 5.88e+0
20 2.02e+1 5.88e+1 20 1.32e-1 1.85e+0
30 2.02e+1 5.74e+1 30 6.63e-2 1.35e+0

ing each PDF to a fixed value of the k, number of samples, and implementation
of Local Search (LS).

– Island 1 (I1): The aim of this island is to intensify the search and keeping the
most promising solutions. To attain that, we employ the following parameters
of the basic algorithm:
1. Number of normals k = 1.
2. Number of samples per iteration = 5.
3. LS is applied to the best solution sampled, as soon as it has been updated.

– Island 2 (I2): The aim of this latter island is to provide with the necessary
diversity to the algorithm, so it does not get stuck in local optima. The
following parameters and components are used:
1. Number of normals k = 30.
2. Number of samples per iteration = 20.
3. LS is applied to the solution migrated to I2.

Just with a quick glance, we can see the different configuration of each island.
The number of normals is so much higher in I2 than in I1. Migrations is carried
out every given number of iterations in the following way: the best solution of
each island is chosen to migrate to the other island. The best individual of I2
becomes a part of I1 if it outperforms its current best solution. The solution

Continuous Optimization by Evolving Probability Density Functions 801

Inputs:

– Parameters: σ0, σf

– Let n be the number of variables and T l = {Sl
1, . . . , S

l
kl
} the lth island, l ∈ {1, 2}.

Algorithm:

1. Initialization(Sl
i ∈ T l, for l ∈ {1, 2}, i ∈ {1, . . . , kl}

2. Repeat during 90% of evaluations
(a) For T 1:

R1
t ← Sampling(T 1)

if (better(best(R1
t), worst(T 1)))

r ← Simplex(best(R1
t))

T 1 ← (T 1 − {worst(T 1)}) ∪ {r}
(b) For T 2:

R2
t ← Sampling(T 2)

if (better(best(R2
t), worst(T 2)))

T 2 ← (T 2 − {worst(T 2)}) ∪ best(R2
t)

(c) if (condition of migration)
r ← Simplex(best(T 1))
Migrate(r, T 2)
Migrate(best(T 2), T 1)

3. During the rest 10% of evaluations, to apply Simplex algorithm to the best found
solution

Fig. 1. EvolPDF-2 algorithm

coming from I1 becomes a part of I2, taking the place of the worst of each of the
existing solutions in I2. We have fixed the migration time to every 100 iterations.

We want to emphasize that this migration allows the algorithm to self-adapt
to the faced problem. For multimodal problems, the I2 works better due to their
characteristics; if a stagnation is produced in the I1, the migration of a solution
of I2 to I1 takes place, and this make that the I1 leaves an area with local
optimum, because it will jump to another promising area of the space of search
given by I2. In the same way, for unimodal problems, the solution of I1 migrates
to I2 with the aim of parallelize the search with the aim of speed up the process.

2.4 Local Search

LS is a metaheuristic consisting of the search of good solutions in a neighborhood.
Occasionally, this technique could lead us to local optimum, but it can turn out
to be an efficient tool in the polishing of solutions. In our algorithm, we use LS
as a way of polishing solutions. In I1, we apply LS to the best sampled solution,
as long as it is better than the best elitist in its island. This reinforces even
more the intensification of the search space. In I2, we apply LS to the solution
migrating from I1 to I2, as long as it is better than the worst of each set of
PDFs. LS is also applied at the last 10% of evaluations in order to polish the

802 A.D. Beńıtez and J. Casillas

best found solution. The LS used in this work is based on the implementation
of the Simplex algorithm available in [4].

3 Empirical Study

This section presents the empirical results of the experiment carried out, where
our algorithm is compared with the results obtained by some state-of-the-art
evolutionary algorithms for global optimization.

3.1 Experiment Setup

We have considered the 25 functions proposed in the Special Session on “Real-
parameter optimization” of the IEEE CEC 2005 [2], with the parameters es-
tablished in this session: experimentations have been made on 30 variables for
each function, with a number of 25 runs for each one; and with a maximum of
300,000 evaluations. There are three kinds of functions: unimodal (from function
1 to 6), multimodal (from 7 to 14), and hybridations of multimodal functions
(from function 15 to 25). It is remarkable the fact that all the functions are dis-
placed to avoid symmetric and centered location of the optimum. The maximum
error allowed in the function is 10e-8. We have considered the eleven algorithms
included in this special session for comparison.

We will use two measures to analyze the obtained results:

1. Ranking: It gathers the number of times that an algorithm has been in first,
second, third, fourth, and fifth position, according to the obtained results.
This measure is calculated as follows. For each function, the different algo-
rithms are ordered by their mean error. Then, we assign a position to each
algorithm (1st, 2nd, 3rd, 4th, or 5th). If several algorithms have the same
value of mean (or they reach the optimal value), they will have the same
value of position. Therefore, if two algorithms reach the optimal value and
the third does not, we will assign position 1 to the two first algorithms, and
position 3 to the third. For each algorithm, we add the number of times that
appears in each position for all the considered functions.

2. Total mean error : This method consists of calculating the mean error ob-
tained by each algorithm normalized by the best obtained result for each
function. It is computed as follows:

TMEalg =
∑

i∈Functions

fi(Salg) − θi

max
j∈Algorithms

(fi(Sj)) − θi
(5)

with θi being the error threshold of the ith function (10e-8 in our case).
Besides of the ranking of the algorithms, we consider the total mean error
to have a better idea about the accuracy of the algorithm. This measure is
very useful when the algorithms do not reach the optimal value, or when all
the algorithms find very similar but different values.

Continuous Optimization by Evolving Probability Density Functions 803

3.2 Obtained Results

Tables 2, 3 and 4 summarize the position of each algorithm (according to the
ranking described in Sect. 3.1) as well as the total mean error (eq. 5). In these
tables, the algorithms are sorted according to the ranking except our algorithm,
that is shown at the last row. (Some results of algorithms EDA, L-SaDE and
DMS-L-PSO, are not available for dimension 30). Our algorithm is named as
EvolPDF-2. We would like to highlight that we have fixed the parameter values
of our algorithm as mentioned before for all the experimentation, being the same
for the 25 functions. The best results for 1st ranking and total mean error are
shown in boldface.

Table 2. Ranking and total mean errors obtained for unimodals functions (functions
1 to 6) for dimension 30

Ranking Total
Algorithm 1st 2nd 3rd 4th 5th mean error

G-CMA-ES 5 0 0 0 0 0.0001
L-CMA-ES 5 0 0 0 0 1
EDA 4 1 0 0 0 0.009
BLX-GL50 2 1 0 1 2 0.04
K-PCX 2 0 1 1 0 0.24
DMS-L-PSO 1 1 2 0 0 0.26
L-SaDE 1 1 1 0 1 0.14
SPC-PNX 1 1 0 1 1 1.51
DE 1 0 1 1 0 0.73
BLX-MA 1 0 0 0 1 1.07
CoEVO 0 0 1 1 0 3.52

EvolPDF-2 0 1 0 0 0 1.17

As we can observe for unimodal problems (Table 2), G-CMA-ES and L-CMA-
ES are the algorithms most appeared at the first position with 5 times both. From
a global view of the ranking obtained by the algorithms from 1st to 5th positions,
we can say that the three algorithms that have the best values are: BLX-GL50
with 6 appearances and G-CMA-ES and L-CMA-ES with 5. We only obtain 1
second position. With respect to the total mean error, G-CMA-ES obtains the
lowest error and our algorithm is the second worse in error.

For multimodals problems (Table 3), DMS-L-PSO is the most appeared at
the first position with 3 times and it is followed of G-CMA-ES and L-SaDE
with 2 first position. We get 1 third, fourth and fifth position. From a global
view of the ranking obtained by the algorithms from 1st to 5th positions, we
can say that the three algorithms that have the best values are: G-CMA-ES and
L-CMA-ES with 7 times and BLX-GL50 with 5. Our algorithm appears 3 times.
With respect to the total mean error, G-CMA-ES obtains the lowest error and
our algorithm is the ninth better in error.

804 A.D. Beńıtez and J. Casillas

Table 3. Ranking and total mean errors obtained for multimodals functions (functions
7 to 14) for dimension 30

Ranking Total
Algorithm 1st 2nd 3rd 4th 5th mean error

DMS-L-PSO 3 0 2 0 1 2.83
G-CMA-ES 2 2 0 2 1 2.30
L-SaDE 2 1 2 2 0 2.72
K-PCX 2 1 1 0 0 3.58
L-CMA-ES 2 1 0 1 0 4.61
BLX-GL50 1 1 1 0 2 3.03
EDA 1 0 0 0 0 4.95
DE 0 1 0 1 1 3.31
SPC-PNX 0 1 0 0 0 2.87
BLX-MA 0 0 1 1 2 3.23
CoEVO 0 0 0 0 0 6.30

EvolPDF-2 0 0 1 1 1 4.38

Table 4. Ranking and total mean errors obtained for highly multimodals functions
(functions 15 to 25) for dimension 30

Ranking Total
Algorithm 1st 2nd 3rd 4th 5th mean error

SPC-PNX 1 1 2 0 3 5.34
DE 1 1 1 0 0 6.34
BLX-MA 1 0 5 0 1 6.13
BLX-GL50 1 0 2 3 2 5.87
G-CMA-ES 0 5 1 0 1 5.69
K-PCX 0 4 0 2 2 6.99
L-CMA-ES 0 1 3 4 0 7.31
DMS-L-PSO 0 0 0 1 1 n/a
CoEVO 0 0 0 1 0 9.11
L-SaDE 0 0 0 0 1 n/a
EDA 0 0 0 0 0 n/a

EvolPDF-2 9 0 1 0 0 1.79

For hybridations of multimodals problems (Table 4), our algorithm is the
most appeared at the first position with 9 times and it is followed of SPC-PNX,
DE, BLX-MA and BLX-GL50 with 1 first position. From a global view of the
ranking obtained by the algorithms according to positions, we can say that the
three algorithms that have the best values are: our algorithm with 10 times and
BLX-GL50, K-PCX and L-CMA-ES with 8. With respect to the total mean
error, our algorithm obtains the lowest error.

To sum up, we can say that our algorithm obtains very good results for prob-
lems not solved by any other analyzed algorithm. We can also observe that
where we obtain the lowest error are between functions number 15 and 25 (all
of them being highly multimodal problems). These results suggest that our al-

Continuous Optimization by Evolving Probability Density Functions 805

gorithm, thanks to the mechanisms included to avoid local optima, works better
in multimodal problems.

4 Conclusions and Future Works

We have proposed a simple algorithm for continuous optimization. It involves
using several PDF to model the interest region of each variable and evolving them
to focus the search region. Some mechanisms to avoid premature convergence
and local optima are included. The algorithm does not belong to any specific
metaheuristic paradigm but it takes ideas from some of them such as GA and
EDA. The obtained empirical results lead us to think that the algorithm has a
high performance, obtaining the best results in multimodal problems. As further
works, we suggest to consider self-adaptation of more parameters (e.g., σ0 and
σf) as well as to do a deeper characterization of the problems where the algorithm
has a competitive advantage.

Acknowledgment

The authors would like to thank to Carlos Garćıa and Daniel Molina (both from
the University of Granada, Spain) for providing us with the tools used in the
empirical comparison. This work was supported in part by the Spanish Ministry
of Science and Technology under grant no. TIC2003-00877 and by ERDF.

References

1. E. Alba, J.M. Troya. A survey of parallel distributed genetic algorithms. Complexity,
4:303-346, 1999.

2. K. Deb, D. Corne, Z. Michalewicz, Special Session on Real-parameter Optimization,
IEEE Congress on Evolutionary Computation 2005, Edimburgh, UK, September
2005.

3. P. Larrañaga, J.A. Lozano (Eds.) (2001). Estimation of distribution algorithms. A
new tool for evolutionary computation. Kluwer Academic Publishers.

4. Numerical Recipes in C. The Art of Scientific Computing. Second Edition. William
H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery. Cambridge
University Press.

5. M. Sebag, A. Ducoulombier (1998). Extending population-based incremental learn-
ing to continuous search spaces. Lecture Notes in Computer Science 1498: 418-427.

	Introduction
	Description of the EvolPDF-2 Algorithm
	Basic Components: Representation, Initialization, Sampling, and Replacement
	Standard Deviation Convergence
	Island-Based Model
	Local Search

	Empirical Study
	Experiment Setup
	Obtained Results

	Conclusions and Future Works

