
European Journal of Operational Research 180 (2007) 116–148

www.elsevier.com/locate/ejor
Discrete Optimization

A taxonomy and an empirical analysis of multiple objective
ant colony optimization algorithms for the bi-criteria TSP q

C. Garcı́a-Martı́nez, O. Cordón, F. Herrera *

Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain

Received 30 August 2004; accepted 6 March 2006
Available online 5 June 2006
Abstract

The difficulty to solve multiple objective combinatorial optimization problems with traditional techniques has urged
researchers to look for alternative, better performing approaches for them. Recently, several algorithms have been pro-
posed which are based on the ant colony optimization metaheuristic. In this contribution, the existing algorithms of this
kind are reviewed and a proposal of a taxonomy for them is presented. In addition, an empirical analysis is developed by
analyzing their performance on several instances of the bi-criteria traveling salesman problem in comparison with two well-
known multi-objective genetic algorithms.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Traveling salesman; Ant colony optimization; Multiple objective optimization; Multiple objective evolutionary algorithms
1. Introduction

Multi-criteria optimization problems are charac-
terized by the fact that several objectives have to be
simultaneously optimized, thus making especially dif-
ficult the problem solving [6]. The use of metaheuris-
tics for these problems has been subject to a growing
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved

doi:10.1016/j.ejor.2006.03.041

q This work was partially supported by the Spanish Ministerio
de Ciencia y Tecnologı́a under project TIC2003-00877 (including
FEDER fundings), under Network HEUR TIC2002-10866-E,
and under a scholarship from the Education and Universities
Spanish Government Secretariat given to the author C. Garcı́a-
Martı́nez.

* Corresponding author. Tel.: +34 58 244019; fax: +34 58
243317.

E-mail addresses: cgarcia@decsai.ugr.es (C. Garcı́a-Martı́-
nez), ocordon@decsai.ugr.es (O. Cordón), herrera@decsai.ugr.es
(F. Herrera).
interest in the last decade. The existence of many
multi-objective problems in the real world, their
intrinsic complexity and the advantages of metaheu-
ristic procedures to deal with them has strongly devel-
oped this research area in the last few years [26,33].

Ant colony optimization (ACO) is a metaheuris-
tic inspired by the shortest path searching behavior
of various ant species. Since the initial work of
Dorigo, Maniezzo, and Colorni on the first ACO
algorithm, the ant system [20], several researchers
have developed different ACO algorithms that
performed properly when solving combinatorial
problems such as the traveling salesman problem,
the quadratic assignment problem, the sequential
ordering problem, production scheduling, time-
tabling, project scheduling, vehicle routing, telecom-
munication routing, investment planning, staff
scheduling, among others [21,11].
.

mailto:cgarcia@decsai.ugr.es
mailto:ocordon@decsai.ugr.es
mailto:herrera@decsai.ugr.es

1 Note that ants only communicate indirectly, through modi-
fications of the physical environment they perceive. This form of
communication is called artificial stigmergy in [18].

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 117
Recently, some researchers have designed ACO
algorithms to deal with multi-objective problems
(MOACO algorithms) [1,3,5,16,17,25,28,30,32,38,
39,41,46]. The most of them are specific proposals
to solve a concrete multi-criteria problem such as
scheduling, vehicle routing, or portfolio selection,
among others.

The aim of the current contribution is to review
and classify the existing MOACO algorithms by
proposing a taxonomy for them and developing a
systematic experimental study comparing them
when tackling a concrete benchmark problem, the
multi-objective traveling salesman problem
(MOTSP). An empirical study based on this taxon-
omy will allow us to analyze whether the fact of
belonging to a specific MOACO family involves a
good or bad performance or, instead, the character-
istics of the specific MOACO algorithm itself deter-
mine the quality of the Pareto fronts generated.

To do our study, six instances of the bi-criteria
TSP are chosen and all the former MOACO algo-
rithms are applied to solve them. Besides, two
well-established multi-objective genetic algorithms
(MOGAs) are considered as baselines to check the
global performance of MOACO approaches,
NSGA-II [15] and SPEA2 [48]. A detailed study is
then developed to analyze the performance of each
algorithm by considering several classical multi-
objective quality metrics.

This paper is structured as follows. In Section 2,
some preliminaries about ACO and multi-objective
optimization are reviewed. In Section 3, the existing
MOACO algorithms are introduced, reporting their
key characteristics. In Section 4, a taxonomy for
them is presented. The requirements of the experi-
mentation (adaptation of the algorithms considered
to the bi-objective TSP, MOTSP instances used,
metrics of performance considered and parameter
settings) are commented on in Section 5. The exper-
imental results of the MOACO algorithms and
MOGAs considered are analyzed in Section 6. In
Section 7, some concluding remarks and proposals
for future works are shown. Finally, the paper is
complemented with an introduction to evolutionary
multi-objective optimization in Appendix A.

2. Preliminaries

2.1. Ant colony optimization

Ants are social insects that live in colonies and
that, thanks to their collaborative interaction, are
capable of showing complex behaviors and to per-
form difficult tasks from an ant’s local perspective.
A very interesting aspect of the behavior of several
ant species is their ability to find shortest paths
between the ants’ nest and the food sources. This
fact is specially noticeable having in mind that, in
many ant species, ants are almost blind, which
avoids the exploitation of visual clues.

While walking between their nest and food
sources, some ant species deposit a chemical called
pheromone (an odorous substance). If no phero-
mone trails are available, ants move essentially at
random, but in the presence of pheromone they
have a tendency to follow the trail. In practice,
choices between different paths occur when several
paths intersect. Then, ants choose the path to follow
by a probabilistic decision biased by the amount of
pheromone: the stronger the pheromone trail, the
higher its desirability. Because ants in turn deposit
pheromone on the path they are following, this
behavior results in a self-reinforcing process leading
to the formation of paths marked by high phero-
mone concentration. This behavior also allows ants
to identify shortest paths between their nest and the
food source.1

The latter procedure is complemented in the nat-
ural environment by the fact that pheromone evap-
orates after some time. This way, less promising
paths progressively loose pheromone because of
being visited by less and less ants.

ACO algorithms take inspiration from the
behavior of real ant colonies to solve combinatorial
optimization problems. They are based on a colony
of artificial ants, that is, simple computational
agents that work cooperatively and communicate
through artificial pheromone trails [22].

ACO algorithms are essentially construction
algorithms: in each algorithm iteration, every ant
constructs a solution to the problem by traveling
on a construction graph. Each edge of the graph,
representing the possible steps the ant can make,
has associated two kinds of information that guide
the ant movement:

• Heuristic information, which measures the heuris-
tic preference of moving from node i to node j,
i.e., of traveling the edge aij. It is denoted by gij.

118 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
This information is not modified by the ants dur-
ing the algorithm run.

• (Artificial) pheromone trail information, which
measures the ‘‘learned desirability’’ of the move-
ment and mimics the real pheromone that natural
ants deposit. This information is modified during
the algorithm run depending on the solutions
found by the ants. It is denoted by sij.

Several ACO algorithms have been proposed
which are included within the ACO metaheuristic
[11,18,21], such as the Ant System [20], the ant col-
ony system [19], the Max–Min ant system [45], the
rank-based ant system [4], and the best–worst ant
system [8–10]. The two former algorithms are briefly
reviewed as follows.

2.1.1. Ant system

Ant system (AS) [20], developed by Dorigo,
Maniezzo and Colorni in 1991, was the first ACO
algorithm. AS is characterized by the fact that the
pheromone update is triggered once all ants have
completed their solutions and it is done as follows.
First, all pheromone trails are reduced by a constant
factor, implementing in this way the pheromone
evaporation. Second, every ant of the colony depos-
its an amount of pheromone in its path which is a
function of the quality of its solution. Initially, AS
did not use any centralized daemon actions (actions
not performed by the ants but by an external agent,
which have not got any natural counterpart, but are
just additional procedures to improve the metaheu-
ristic performance), but it is very straightforward to,
for example, add a local search procedure to refine
the solutions generated by the ants.

Solutions in AS are constructed as follows. At
each construction step, an ant h in AS chooses to
go to a next node with a probability that is com-
puted as

ph
ij ¼

½sij �a�½gij�bP
u2Nh

i
½siu�a�½giu �b

; if j 2NhðiÞ;

0; otherwise;

8<
:

where NhðiÞ is the feasible neighborhood of ant h

when located at node i, and a; b 2 R are two param-
eters that weight the relative importance of the pher-
omone trail and the heuristic information. Each ant
h stores the sequence it has followed so far and this
memory Lh is exploited to determine NhðiÞ in each
construction step.

As said, the pheromone deposit is made once all
ants have finished to construct their solutions. First,
the pheromone trail associated to every edge is
evaporated by reducing all pheromones by a con-
stant factor:

sij ð1� qÞ � sij;

where q 2 (0,1] is the evaporation rate. Next, each
ant retraces the path it has followed (stored in its
local memory Lh) and deposits an amount of
pheromone Dsh

ij on each traversed connection
(on-line a posteriori update or global update):

sij sij þ Dsh
ij; 8aij 2 Sh;

where Dsh
ij ¼ f ðCðShÞÞ, i.e., the amount of phero-

mone released is function of the quality C(Sh) of
the solution Sh of ant h. In the TSP, f(x) is usually
equal to x�1.

Before concluding this section, it is important to
notice that the creators of AS also proposed a typ-
ically better performing, extended version of this
algorithm called elitist AS [20]. In elitist AS, once
the ants have released pheromone on the connec-
tions associated to their generated solutions, the
daemon performs an additional pheromone deposit
on the edges belonging to the best solution found
until that moment in the search process (this solu-
tion is called global-best solution in the following).
The amount of pheromone deposited, which
depends on the quality of that global best solution,
is weighted by the number of elitist ants considered,
e, as follows:

sij sij þ e � f ðCðSglobal-bestÞÞ; 8aij 2 Sglobal-best:
2.1.2. Ant colony system

Ant colony system (ACS) [19] is one of the first
successors of AS. It introduces three major modifi-
cations into AS:

1. ACS uses a different transition rule, which is
called pseudo-random proportional rule: Let h be
an ant located at a node i, q0 2 [0,1] be a param-
eter, and q a random value in [0, 1]. The next
node j to be visited is randomly chosen according
to the following probability distribution:
• If q 6 q0:
ph
ij ¼

1; if j ¼ arg max
u2NhðiÞ

fsa
iu � g

b
iug;

0; otherwise;

8<
:

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 119
• else (q > q0):

ph
ij ¼

½sij �a�½gij �bP
u2Nh

i
½siu �a�½giu�b

; if j 2NhðiÞ;

0; otherwise:

8<
:

2 ACS is actually based on Ant-Q, an earlier algorithm
proposed by Gambardella and Dorigo [24]. The only difference
between ACS and Ant-Q is in the definition of the term s0 in the
online step-by-step update rule, which in Ant-Q is the discounted
evaluation of the next state, set to c �maxj2NhðiÞfsijg. However,
experimental results suggested that ACS results in the same level
of performance and, because of its greater simplicity, it was
preferred.
As can be seen, the rule has a double aim: when
q 6 q0, it exploits the available knowledge, choos-
ing the best option with respect to the heuristic
information and the pheromone trail. However,
if q > q0, it applies a controlled exploration, as
done in AS. In summary, the rule establishes a
trade-off between the exploration of new connec-
tions and the exploitation of the information
available at that moment.

2. Only the daemon (and not the individual ants)
triggers the global pheromone update, i.e., an
offline pheromone trail update is done. To do
so, ACS only considers a single ant, the
one who generated the global best solution,
Sglobal-best.
The pheromone update is done by first evaporat-
ing the pheromone trails on all the connections
used by the global-best ant (it is important to
notice that in ACS, pheromone evaporation is only

applied to the connections of the solution that is
also used to deposit pheromone (see p. 77 in
[22])) as follows:

sij ð1� qÞ � sij; 8aij 2 Sglobal-best:

Next, the daemon deposits pheromone by the
rule:

sij sij þ q � f ðCðSglobal-bestÞÞ; 8aij 2 Sglobal-best:

Additionally, the daemon can apply a local
search algorithm to improve the ants’ solutions
before updating the pheromone trails.

3. Ants apply an online step-by-step pheromone trail

update (local update) that encourages the genera-
tion of different solutions to those yet found.
Each time an ant travels an edge aij, it applies
the rule:

sij ð1� uÞ � sij þ u � s0;

where u 2 (0, 1] is a second pheromone decay
parameter. As can be seen, the online step-by-step

update rule includes both, pheromone evapora-
tion and deposit. Because the amount of phero-
mone deposited is very small (in fact, s0 is the
initial pheromone trail value which is chosen in
such a way that, in practice, it corresponds to a
lower pheromone trail limit. That is by the choice
of the ACS pheromone update rules, no phero-
mone trail value can fall below s0), the applica-
tion of this rule makes the pheromone trail on
the connections traversed by an ant decrease.2

Hence, this results in an additional exploration
technique of ACS by making the connections tra-
versed by an ant less attractive to the following
ants and helps to avoid that every ant follows
the same path.

2.2. Multi-objective optimization

Multi-criteria optimization problems are charac-
terized by the fact that several objectives have to be
simultaneously optimized. Hence, there is not usu-
ally a single best solution solving the problem, i.e.,
being better than the remainder with respect to
every objective, as in single-objective optimization.
Instead, in a typical multi-objective optimization
problem, there is a set of solutions that are superior
to the remainder when all the objectives are consid-
ered, the Pareto set. These solutions are known as
non-dominated solutions [6], while the remainder
are known as dominated solutions. Since none of
the Pareto set solutions is absolutely better than
the other non-dominated solutions, all of them are
equally acceptable as regards the satisfaction of all
the objectives.

This way, the formal definition of the dominance
concept is as follows. Let us consider a multi-objec-
tive minimization problem with n parameters (deci-
sion variables) and K objectives:

Min f ðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fKðxÞÞ; with

x ¼ ðx1; x2; . . . ; xnÞ 2 X :

A decision vector a 2 X dominates another b 2 X

(a � b) if, and only if

8i 2 1; 2; . . . ;KjfiðaÞ 6 fiðbÞ ^
9j 2 1; 2; . . . ;KjfjðaÞ < fjðbÞ:

120 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
Any vector that is not dominated by any other is
said to be Pareto-optimal or non-dominated.

As said, a common difficulty with multi-objective
optimization is the appearance of an objective con-
flict [31], i.e., none of the feasible solutions allows
simultaneous optimal solutions for all objectives.
Mathematically, the best way of acting is to keep
with those solutions with the least objective conflict.
These solutions can be viewed as points in the
search space that are optimally placed from the indi-
vidual optimum of each objective. However, such
solutions may not satisfy a decision-maker because
he may want a solution that satisfies some associ-
ated priorities of the objectives. To find such points,
all classical methods scalarize the objective vector
reducing it to a scalar optimization problem. Actu-
ally, in this case a compromise solution is found
subjected to specified constraints.

Four are the most commonly classical methods
to solve the multi-optimality [7]: objective weight-
ing, distance functions, Min–Max formulation and
Lexicographic approach. All of them are based on
reducing the multi-objective optimization problem
to a single objective one: In the former one, the mul-
tiple objective functions are combined into one
overall objective function, as follows:

F ¼
XK

i¼1

wi � fiðxÞ;
XK

i¼1

wi ¼ 1; 0 6 wi 6 1:

In distance functions, the single-objective F function
to be optimized is calculated using a demand-level

vector, ~f , which has to be specified by a decision-
maker:

F ¼
XK

i¼1

jfiðxÞ � ~f ijr
" #1=r

; 1 6 r <1:

Min–Max formulation attempts to minimize the rel-
ative deviations of the single-objective functions
from the corresponding individual optimum. Hence,
it tries to minimize:

f ðxÞ ¼ max½ZiðxÞ�; i ¼ 1; 2; . . . ;K

where Zi(x) is calculated for a non-negative target
optimal value ~f i > 0:

ZiðxÞ ¼ ðfi � ~f iÞ=~f i:

The last method, Lexicographic approach [7], is
based on an order of importance of the objectives.
Then, it attempts to optimize the ith objective keep-
ing the best found solution for the (i � 1)th
objective.
All the classical techniques used to solve multi-
objective problem have serious drawbacks [7], that
are reviewed as follows:

• Since objectives are combined to form a single
objective function, a single Pareto-optimal solu-
tion can be simultaneously obtained. In real-
world problems, the decision-maker often
requires different alternatives for the decision
making, but these techniques can not offer them.

• Even if different weights are adopted during a
single run in order to obtain several solutions,
the algorithm will not be able to generate con-
cave portions of the Pareto front [12].

• Furthermore, before forming the single objective
from the objectives set, the decision-maker must
usually have a thorough knowledge of the prior-
ity of each objective, which is a difficult problem
in itself.

• If some objectives are noisy or have a discontin-
uous variable space, these methods may not
appropriately work.

• If the objective functions are not deterministic,
the definition of a weight vector or a demand
level may become even more difficult.

• They have much sensitivity and dependency
toward weights or demand levels.

In order to solve these problems, some advanced
multi-objective optimization techniques have been
proposed in the last few years. They are mainly
based on well-established metaheuristics such as
simulated annealing, evolutionary algorithms, and
ACO algorithms, as seen in this paper [26].

3. Multiple objective ant colony optimization
algorithms

In this section, the different existing proposals for
MOACO algorithms are reviewed by reporting their
main characteristics, as well as the original problem
they were designed to tackle.

3.1. Multiple objective Ant-Q algorithm

Multiple objective Ant-Q algorithm (MOAQ) is a
MOACO algorithm that was proposed by Mariano
and Morales in [37,38] to be applied to the design of
water distribution irrigation networks. It was based
on a distributed reinforcement learning algorithm
called Ant-Q [24], a variant of the classical
ACS [19] (see Section 2.1.2). In Ant-Q, several

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 121
autonomous agents learn an optimal policy
p : S! A, that outputs an appropriate action
a 2 A, given the current state s 2 S, where A is the
set of all possible actions in a state and S is the
set of states. The available information to the agent
is the sequence of immediate rewards r(si,ai) for all
the possible actions and states i = 0,1,2, . . .,Q(s,a),
and a domain dependent heuristic value indicating
how good is to select a particular action (a) being
in the actual state (s), HE(s,a). Each agent uses
the following transition rule to select the action a

according to the actual state s:

a ¼
arg max

a2A
ðHEaðs; aÞ � Qbðs; aÞÞ; if q > q0;

P ; otherwise;

(

where a and b are parameters that weight the rela-
tive importance of pheromone trail and heuristic
information, q is a random value in [0, 1], and q0

(0 6 q0 6 1) is calculated in every iteration as
follows:

q0 ¼ ðq0 � kÞ=qmax;

where qmax 2 [0, 1], and P is a random action se-
lected according to the following probability
distribution:

pðaÞ ¼ HEaðs; aÞ � Qbðs; aÞP
b2AHEaðs; bÞ � Qbðs; bÞ

with s being the current state.
The basic idea behind MOAQ is to perform an

optimization algorithm with a family of agents
(ants) for each objective. Each family k tries to opti-
mize an objective considering the solutions found
for the other objectives and its corresponding func-
tion HEk. This way, all the agents from the different
families act in the same environment proposing
actions and expecting a reward value r which
depends on how their actions helped to find trade-
off solutions between the rest of the agents. The
delayed reinforcement is computed as follows:

Qðs; aÞ ¼ ð1� qÞ � Qðs; aÞ þ q � ½rðs; aÞ þ c � Qðs0; a0Þ�;

where q is the learning step, s 0 and a 0 are the state
and action in the next algorithm step, and c is a dis-
count factor. On the other hand, when a solution
found is not feasible, the algorithm applies a punish-
ment to its components on the Q values.

Finally, MOAQ presents a distinguishing charac-
teristic. While the jth ant from the ith family (i > 1)
is constructing its solution, it takes into account the
solution found by the jth ant of family i � 1. Hence,
the objectives are processed in a certain order of
importance similarly to the lexicographic ordering.
This issue is related to the problem to which the
algorithm was applied, the design of water distribu-
tion irrigation networks. In this problem some
objectives needed to be determined before optimiz-
ing others. So, it needed to be tackled in a specific
order. At first sight, this could seem that the algo-
rithm would return only a single solution, which is
the best for the first objective, and try to optimize
the remainder. However, MOAQ keeps an external
set of non-dominated solutions that is returned
when the run finishes. The authors explain this char-
acteristic in [38] by indicating that the algorithm
tries to find a set of compromise solutions for all
the objectives involved according to an order of
importance, which, in some cases, can be arbitrary.

3.2. Ant algorithm for bi-criterion optimization

problems

In [32], Iredi et al. introduced some general tech-
niques in order to solve multi or bi-criteria problems
by ACO algorithms. They tested these techniques
on a bi-criteria vehicle routing problem. In this sec-
tion, we describe one of the algorithms proposed in
[32], which will be called BicriterionAnt. It uses a
pheromone trail matrix for every objective, e.g.,
when there are two objectives, there will be two
pheromone matrices, s and s 0.

In every generation, each of the m ants in the col-
ony generates a solution to the problem. During its
construction trip, the ant selects the next node j to
be visited by means of the following probability
distribution:

pðjÞ ¼
ska

ij �s
0ð1�kÞa
ij �gkb

ij �g
0ð1�kÞb
ijP

u2Xska
iu �s

0ð1�kÞa
iu �gkb

iu �g
0ð1�kÞb
iu

; if j 2 X;

0; otherwise;

8<
:

where a and b are the usual weighting parameters,
gij and g0ij are the heuristic values associated to edge
aij according to the first and the second objective,
respectively, X is the current feasible neighborhood
of the ant, and k is computed for each ant h,
h 2 {1, . . .,m}, in order to force the ants to search
in different regions of the Pareto front, as follows:

kh ¼ ðh� 1Þ=ðm� 1Þ:

Once all the ants have generated their solutions,
the pheromone trails are evaporated by applying
the usual rule on every edge aij:

122 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
sij ¼ ð1� qÞ � sij
with q 2 [0,1] being the pheromone evaporation
rate.

Then, every ant that generated a solution in
the non-dominated front at the current iteration is
allowed to update both pheromone matrices, s
and s 0, by laying down an amount equal to 1/l, with
l being the number of ants currently updating the
pheromone trails. The non-dominated solutions
generated along the algorithm run are kept in an
external set, as it happened in MOAQ.
3.3. Multi-colony for bi-criterion optimization

problems

In the same contribution [32], Iredi et al. pro-
posed another MOACO algorithm. It was designed
from BicriterionAnt (see Section 3.2) with a distin-
guishing remark: it takes as an user parameter the
number of colonies NC, which is independent from
the number of objectives. Then, each colony has a
pheromone trail matrix associated for every objec-
tive, e.g., if there are two objectives to be optimized,
then there will be two pheromone trail matrices in
every colony.

In order to update the pheromone matrices, the
authors consider two different methods:

• Method 1—Update by origin: an ant only updates
the pheromone trail matrices in its own colony.
The algorithm using method 1 will be called
UnsortBicriterion.

• Method 2—Update by region: the sequence of
solutions along the non-dominated front is split
into NC parts of equal size. Ants that have found
solutions in the ith part update the pheromone
trails in colony i, i 2 [1, NC]. The aim is to explic-
itly guide the ant colonies to search in different
regions of the Pareto front, each of them in one
region. The algorithm using method 2 is called
BicriterionMC.

Finally, another difference is the way to compute
the value of the transition parameter k for ant h.
The authors describe three different rules and pro-
pose to use the third of them which gives better
results. This rule overlaps the k-interval of colony
i in a 50% with the k-interval of colony i � 1 and
colony i + 1. Formally, colony i has ants with k-val-
ues in [(i � 1)/(NC + 1), (i + 1)/(NC + 1)].
3.4. Pareto ant colony optimization

Pareto ant colony optimization (P-ACO), pro-
posed by Doerner et al. in [17], was originally
applied to solve the multi-objective portfolio selec-
tion problem. It considers the classical ACS as the
underlying ACO algorithm but the global phero-
mone update is performed by using two different
ants, the best and the second-best solutions gener-
ated in the current iteration for each objective k.
In P-ACO, several pheromone matrices sk are con-
sidered, one for each objective k. At every algorithm
iteration, each ant computes a set of weights
p = (p1, . . .,pk), and uses it to combine the phero-
mone trail and heuristic information. When an ant
has to select the next node to be visited, it uses the
ACS transition rule considering the k pheromone
matrices:

j ¼
arg max

j2X

PK
k¼1

pk � sk
ij

� �a

� gb
ij

� �
; if q 6 q0;

î; otherwise;

8><
>:

where K is the number of objectives, gij is an aggre-
gated value of attractiveness of edge aij used as heu-
ristic information, and î is a node selected according
to the probability distribution given by

pðjÞ ¼

PK

k¼1
pk �sk

ij

� �a
�gb

ijP
u2X

PK

k¼1
pk �sk

iu

� �a
�gb

iu

; if j 2 X;

0; otherwise:

8><
>:

Every time an ant travels an edge aij, it performs
the local pheromone update in each pheromone trail
matrix, i.e., for each objective k, as follows:

sk
ij ¼ ð1� qÞ � sk

ij þ q � s0

with q being the pheromone evaporation rate, and
s0 being the initial pheromone value.

The global pheromone trail information is
updated once each ant of the population has con-
structed its solution. The rule applied for each
objective k is as follows:

sk
ij ¼ ð1� qÞ � sk

ij þ q � Dsk
ij;

where Dsk
ij has the following values in the tackled

problem:

Dsk
ij ¼

15 if edge
aij 2 best and second-best solutions;

10 if edge aij 2 best solution;
5 if edge aij 2 second-best solution;
0 otherwise:

8>>><
>>>:

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 123
Along the process, the non-dominated solutions
found are stored in an external set, as in the previ-
ous MOACO algorithms.

3.5. Multiple ant colony system for vehicle routing

problem with time windows

As its name suggests, the multiple ant colony sys-
tem for vehicle routing problem with time windows
(MACS-VRPTW) algorithm introduced by Gam-
bardella et al. in [25] was thought to solve this spe-
cific kind of vehicle routing problems. As P-ACO, it
also starts from the classical ACS.

MACS-VRPTW is based on setting up a prefer-
ence to minimize one objective (the number of
tours) over the other (the travel time). This solution
is defined as the first of a lexicographic order on the
values of the objectives. It defines two different col-
onies, ACS-VEI and ACS-TIME, whose activities
are coordinated by the global MACS-VRPTW algo-
rithm in order that both objectives are simulta-
neously optimized. The former colony tries to
diminish the number of vehicles used while the latter
optimizes the feasible solutions obtained by the for-
mer. Each one uses an independent pheromone trail
matrix for its specific objective, and they collaborate
by sharing the best solution found by their cooper-
ative action. The global algorithm kills and runs
again the two colonies each time a new best solution
containing less vehicles than the previous one is
obtained.

3.6. Multiple ant colony system

Multiple ant colony system (MACS) [1] was pro-
posed as a variation of the MACS-VRPTW algo-
rithm reviewed in the previous section. So, it is
also based on ACS but, contrary to its predecessor,
MACS uses a single pheromone matrix, s, and sev-
eral heuristic information functions, gk, initially
two, g0 and g1. In this way, an ant moves from node
i to node j by applying the following rule:

j ¼
arg max

j2X
ðsij � ½g0

ij�
kb � ½g1

ij�
ð1�kÞbÞ; if q 6 q0;

î; otherwise;

8<
:

where b weights the relative importance of the
objectives with respect to the pheromone trail, k is
computed for each ant h as k = h/m, with m being
the number of ants, and î is a node selected accord-
ing to the following probability distribution:
pðjÞ ¼
sij �½g0

ij �
kb�½g1

ij �
ð1�kÞbP

u2X
siu �½g0

iu�
kb �½g1

iu �
ð1�kÞb ; if j 2 X;

0; otherwise:

8<
:

Every time an ant crosses the edge aij, it performs
the local pheromone update as follows:

sij ¼ ð1� qÞ � sij þ q � s0:

Initially, s0 is calculated from a set of heuristic solu-
tions by taking their average costs in each of the two
objective functions, f0 and f1, and applying the fol-
lowing expression:

s0 ¼ 1=ðf̂ 0 � f̂ 1Þ:
However, the value of s0 is not fixed during the

algorithm run, as usual in ACS, but it undergoes
adaptation. Every time an ant h builds a complete
solution, it is compared to the Pareto set P gener-
ated till now to check if the former is a non-domi-
nated solution. At the end of each iteration, s00 is
calculated by applying the previous equation with
the average values of each objective function taken
from the solutions currently included in the Pareto
set.

Then, if s00 > s0, the current initial pheromone
value, the pheromone trails are reinitialized to the
new value s0 s00.

Otherwise, the global update is performed with
each solution S of the current Pareto optimal set
P by applying the following rule on its composing
edges aij:

sij ¼ ð1� qÞ � sij þ q=ðf 0ðSÞ � f 1ðSÞÞ:

Recently, Pinto et al. have slightly modified
MACS in order to solve a multi-objective multi-cast
routing problem [41].

3.7. Multi-objective network ACO

Multi-objective network ACO (MONACO) is
quite different to the remaining algorithms reviewed
in this section as it was designed to be applied to a
dynamic problem, the optimization of the message
traffic in a network [5]. Hence, the policy of the net-
work changes according to the algorithm’s steps,
and it does not wait till the algorithm ends up. In
the following, we present an adaptation of the origi-
nal algorithm, developed by ourselves, to use MON-
ACO in static problems. It requires several
modifications such as the fact that the ants have
to wait till the cycle ends before updating the pher-
omone trails.

124 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
The original algorithm takes the classical AS [20]
as a base but uses several pheromone trail matrices,
sk. Each ant, which is defined as a message, uses the
multi-pheromone trail and a single heuristic infor-
mation to choose the next node to visit, according
to the following probability distribution:

pðjÞ ¼
gb

ij �
QK

k¼1
ðsk

ijÞ
akP

u2X
gb

iu�
QK

k¼1
ðsk

iuÞ
ak
; if j 2 X;

0; otherwise:

8<
:

In this equation, gij is the heuristic information for
edge aij, both b and the different ak’s weight the
importance of each pheromone matrix value and
the heuristic information, K is the number of objec-
tive functions, and X is the feasible neighborhood of
the ant at this step. After each cycle, the pheromone
trails associated to every edge visited by at least one
ant in the current iteration are evaporated in the
usual way:

sk
ij ¼ ð1� qkÞ � sk

ij

with qk being the pheromone evaporation rate for
objective k (notice that a different evaporation rate
is considered for each pheromone trail matrix).
Then, the pheromone trails of these edges are up-
dated. Every ant h lays down the following amount
of pheromone in each edge aij used by each ant and
for every objective k:

Dsk
ij ¼ Q=f kðShÞ;

where Q is a constant related to the amount of pher-
omone laid by the ants, fk is the objective function k,
and Sh is the solution built by the ant. As said, the
aim of the original algorithm is not to find a good
set of non-dominated solutions but to make the net-
work work efficiently. To apply it to static optimiza-
tion problems, we have to store the non-dominated
solutions generated in each run in an external set.

3.8. COMPETants

Initially, Doerner et al. introduced COMPE-
Tants to deal with bi-objective transportation prob-
lems [16]. The algorithm, based on the rank-based
AS [4], used two ant colonies, each with its own
pheromone trail matrix, s0 and s1, and its heuristic
information, g0 and g1. An interesting point is that
the number of ants in each population is not fixed
but undergoes adaptation. When every ant has built
its solution, the colony which has constructed better
solutions gets more ants for the next iteration. The
ants walk through the edges using the following
probability distribution to select the next node to
be visited (notice that it is an adaptation of the
AS transition rule to the case of multiple heuristic
and pheromone trail values):

pðjÞ ¼
ska

ij �g
kb
ijP

u2X
ska

iu �g
kb
iu

; if j 2 X;

0; otherwise:

8<
:

Each ant uses the s and g values of its colony k. Be-
sides, some ants in every population, called spies,
use another rule combining the information of both
pheromone trails:

pðjÞ ¼
½0:5�sijþ0:5�s0ij�

a�gkb
ijP

u2X
½0:5�siuþ0:5�s0iu �

a�gkb
iu

; if j 2 X;

0; otherwise:

8<
:

In this new rule, s is the ant’s pheromone trail and s 0

the pheromone trail of the other colony. gk is the
ant’s heuristic information.

When every ant has built its solution, the phero-
mone trails of each edge aij are evaporated:

sk
ij ¼ ð1� qÞ � sk

ij:

Then, the C best ants of each population deposit
pheromone on the edges visited using its own pher-
omone trail matrix and the following rule:

Dsk
ij ¼ 1� ðk� 1Þ=C;

where k is the position of the ant in the sorted list of
the C best ants.

Before the end of the cycle, every ant is assigned
to the first colony with the following probability:

f̂ 1=ðf̂ 0 þ f̂ 1Þ

with f̂ 1 being the average of the costs of the solu-
tions in the second colony (that associated to the
second objective function), and f̂ 0 being the average
of the costs of the first colony (that corresponding
to the first objective function). The remaining ants
will be assigned to the second colony.

Finally, the number of spies in both colonies is
randomly calculated with the following probability:

f ðbestÞ=ð4 � f 0ðbest0Þ þ f ðbestÞÞ;

where f is the objective function associated to the
current colony, f 0 is the objective function associ-
ated to the other colony, best is the best ant of the
current colony according to f and best 0 is the best
ant of the other according to f 0.

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 125
3.9. Multiple objective ant colony optimization

metaheuristic

In [28], Gravel et al. proposed a multi-objective
ACO algorithm for a real-world scheduling problem
related to the aluminum production industry, that
was called Multiple Objective ACO metaheuristic
(MOACOM) by its creators. MOACOM is based
on an AS algorithm that deals with the multiple
objectives in a lexicographic order, a priori estab-
lished by the decision maker. At the end of a cycle,
only the first solution according to the lexicographic
order considered is taken into account. For this rea-
son, the aim of MOACOM is not to find a good
non-dominated solution set. Hence, the algorithm
deals with a single heuristic information and phero-
mone trail matrices. The authors provide several
rules to construct the heuristic matrix g, where each
value is the result of the aggregation of information
associated to every objective.

Considering the latter two matrices, the AS tran-
sition rule is applied to build the ants solutions. At
the end of a cycle, the pheromone trail intensity is
updated based on the evaluation of the primary
objective in isolation. Every ant h lays down the fol-
lowing amount of pheromone on the edges used:

Dsij ¼ Q=f 0ðShÞ;
where f 0 is the primary objective function, Sh is the
solution found by the ant, and Q is a constant.

3.10. Ant colony optimization approach to multiple

objectives

As the previous algorithm, the ACO approach to
multiple objectives (ACOAMO), proposed in [39] to
solve a multi-objective JIT sequencing problem, is
based on dealing with a single best solution and
not with a set of non-dominated ones in each itera-
tion. This solution is the first of a lexicographic
order defined on the objectives. ACOAMO splits
the solutions in components and randomly distrib-
utes these components over the search space. The
heuristic information is the inverse of the distances
between the components, and the ants are guided
by the following probability distribution:

pðjÞ ¼
sij �gijP
u2X

siu �giu
; if j 2 X;

0; otherwise

(

with s being the pheromone trail matrix, g referring
to the heuristic information, and X being the current
feasible neighborhood of the ant.
When an ant goes through the edge aij, it applies
the ACS local update rule:

sij ¼ ð1� qÞ � sij þ q � s0:

Finally, every ant that completes a solution com-
putes its cost as the Euclidean sum of the distances
of every edge crossed, C. If this value is lesser than
the smallest value of C found so far, then the global
update is performed to every edge in this solution
according to the following expression:

sij ¼ ð1� qÞ � sij þ q � C�1:
3.11. SACO

SACO is a very specific MOACO algorithm pro-
posed in [46] by T’kindt et al. for 2-machine bi-cri-
teria flowshop scheduling problems. Its name comes
from the fact that it puts into effect a search meth-
odology mimicking that applied by simulated
annealing (developing a stronger diversification at
the beginning of the trek, and a stronger intensifica-
tion at later stages). Again, it is based on only deal-
ing with a single best solution, that having the best
cost for one of the objectives, and not with a set of
non-dominated solutions. At every cycle, each ant
builds a feasible solution using the pheromone trail
information, which can be used in two different
ways: (a) intensification mode, where the ant chooses
the most suitable job according to the highest value
of sij, and (b) diversification mode, where the ant
chooses the next node by a random-proportional
rule. The probability of selecting the intensification
mode is regulated by p0, a parameter computed at
every iteration it as follows:

p0 ¼ logðitÞ= logðNÞ

with N being the total number of iterations.
At the end of the cycle, the evaporation is per-

formed on every edge and the best solution is kept
and used to update the pheromone trails of the
edges composing it

sij ¼ sij þ 1=f 0ðSÞ
with S being the best solution found and f 0 being
one of the objectives.

3.12. Multiple objective ant colony optimization

approach to assembly line balancing problems

The MOACO approach to assembly line balanc-
ing problem (MOACO-ALBP), proposed in [3] to

126 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
solve Assembly Line Balancing Problems, is based
on dealing with a single best solution and not with
a set of non-dominated ones in each iteration. This
solution is the first of a lexicographic order defined
on the objectives.

MOACO-ALBP performs like an AS with a
pheromone matrix and a heuristic one. The phero-
mone matrix is updated according to a function of
all the objective criterions. The used formulas are
specific to the Assembly Line Balancing Problem.
In addition, it keeps the best obtained solution
across the iterations.

3.13. Multi-criteria population-based ACO

In [30], Guntsch and Middendorf proposed an
adaptation of the Population-based ACO (PACO)
[29] for multiple objective optimization (MO-
PACO). PACO differs from the standard ACO heu-
ristic in that it employs a population P = {p1, . . . ,
pk} of k good solutions, from which the pheromone
information sij is derived as follows: Each element
of the pheromone matrix has an initial value sinit.
Whenever a solution enters the population P, a
positive update is performed by adding a phero-
mone amount D. In addition, if a solution is
removed from the population, its influence is explic-
itly removed from the pheromone matrix by per-
forming a negative update, i.e., using �D. As a
result, the pheromone matrix is perfectly defined
by the members in the population P:

sij ¼ sinit þ D � jfp 2 P jði; jÞ 2 pgj:

Notice that, since the construction of the solutions
depends, among others, on the current distribution
of individuals in P, PACO seems similar to the Esti-
mation of Distribution Algorithms, where new solu-
tions depends only on the distribution of the
individual of the current population.

MO-PACO is the multiple objective version of
PACO. It uses an external population, with the
non-dominated solutions it finds (Q), which the
individuals of P are chosen from. Every m solutions,
MO-PACO creates a new P with a randomly chosen
individual and the (k � 1) nearest ones to it. Then,
MO-PACO calculates several pheromone matrix,
one for each optimization criterion, which, together
with a heuristic matrix for each optimization crite-
rion, are used for the transition rule. Every new
solution is tested against the individuals in Q in
order to keep Q updated with the non-dominated
solutions found so far.
In addition, MO-PACO uses an average-rank-

weight method that modifies the probability distribu-
tion used in the transition rule, which assigns a
higher importance to one of the optimizing criterions
according to the quality of the solutions in P, regard
to those in Q, with respect to this criterion (see [30]).

4. A proposal of a taxonomy for the different

MOACO algorithms

MOACO algorithms can be classified according
to different criteria. One of them could be whether
the algorithm returns a set of non-dominated solu-
tions, i.e., if it looks for a set of Pareto solutions
during its run, or it just gives a single solution as
output. According to this, MOAQ, BicriterionAnt,
UnsortBicriterion, BicriterionMC, P-ACO, MACS,
our adaptation of MONACO, COMPETants and
MO-PACO belong to the former group, that could
be called Pareto-based MOACO algorithms, while
the remainder (MACS-VRPTW, MOACOM,
ACOAMO, SACO, and MOACO-ALBP) compose
the second.

Another, more interesting criterion could be the
fact whether the algorithms are based on the opera-
tion of only one or several ant colonies. However,
we should notice that this criterion is problematic
because there are different ways in which several
ant colonies can be used, such as the use of several
pheromone trails, several heuristic functions or,
even, several independent processes as done in
MACS-VRPTW.

We have decided to classify the algorithms
according to two different criteria when the ant
has to choose the next node to be visited:

• The use of only one or several pheromone trails.
• The use of only one or several heuristic functions.

In this way, we get the taxonomy shown in Table 1:
SACO has not been considered for the previous

classification as it does not use any heuristic infor-
mation at all. As seen in Section 3.11, in SACO,
the ants are only guided by the pheromone trails.

An empirical study based on this taxonomy will
allow us to analyze which family can generate better
Pareto fronts. This way, it would be for example
possible to check if the use of more than a single
pheromone trail matrix, which gives a higher diver-
sification capability to the algorithm, is more impor-
tant in order to obtain a better performance than
other factors such as either the use of several or only

Table 1
A taxonomy for MOACO algorithms

A single heuristic
matrix

Several heuristic
matrices

A single pheromone
trail matrix

MOACOM MOAQ

MOACO-ALBP
ACOAMO MACS

BicriterionAnt
Several pheromone

trail matrices
P-ACO UnsortBicriterion

BicriterionMC
MONACO COMPETants

MACS-VRPTW
MO-PACO

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 127
one heuristic matrix, or the specific operation mode
of each MOACO algorithm.

This way, we would be able to corroborate previ-
ous results as regards this issue such as those
obtained in [32] by Iredi et al. They concluded that
the performance of the BicriterionMC algorithm
when using a pheromone trail matrix for each objec-
tive is better than when using a single pheromone
trail matrix for all of them.

5. On the experimental study

To perform the experimental comparison, we will
only consider those MOACO algorithms introduced
in Section 3 whose aim is to obtain a set of non-
dominated solutions for the problem being solved
(Pareto-based MOACO algorithms). We have not
considered the MO-PACO algorithm due to it does
not follows the classical ACO heuristic, which does
not consider any population of solutions. This way,
eight algorithms will be used: MOAQ, Bicriterio-
nAnt, UnsortBicriterion, BicriterionMC, P-ACO,
MACS, our adaptation of MONACO, and
COMPETants.

The reason why the remainder are not imple-
mented and tested in the developed study is because
they are so specific to be applied to the problem
tackled, the bi-objective TSP, as they are usually
based on a lexicographical order, thus requiring to
specify an order of importance between the two
problem objectives (which is not the case). Although
MOAQ also needed an order of importance, the
authors remarked that it could be arbitrary, and
thus this aspect is not taken into account and the
algorithm is considered in our experimental setup.

On the other hand, we should notice that two of
the most known, Pareto-based second generation
MOGAs, NSGA-II (see Appendix A.1) and SPEA2
(see Appendix A.2) (which represent the state-of-
the-art in multi-objective evolutionary optimization,
see [7]), will be run on the same problem instances
and their results used as baselines for the MOACO
algorithms performance. Hence, ten different algo-
rithms will be run on the six bi-criteria TSP
instances selected.

It is important to indicate that, in order to make
fair comparisons, every algorithm will store the
non-dominated solutions found along its run in an
external unbounded archive (there is no limit for
the number of non-dominated solutions collected).
However, this archive will not be used by the algo-
rithms in order to modify their behavior. For
instance, the number of ants in MOACOs or the size
of P 0 in SPEA2 (see Appendix A.2) is constant
through the run.

In addition, as seen in Section 3, the eight
MOACO algorithms implemented are characterized
by tackling very diverse applications. Hence, several
changes have to be done in order to adapt them to
solve the multi-objective TSP. Leaving apart the
fact that all of them have to manage the same prob-
lem representation, the usual permutation, the dif-
ferent changes performed are reported in the
following sections.

Finally, it is interesting to notice that no local
optimizer has been added to the studied MOACO
algorithms in the current contribution. The reason
is that this study aims at comparing the tradeoff
between diversification and intensification offered
by the original algorithms themselves, i.e., by the
good combination of the selection and replacement
mechanism and crossover and mutation operators,
characteristics of MOGAs, and the good manage-
ment of problem specific and learned information,
characteristic of MOACO algorithms. Of course,
local search is usually considered in the latter kind
of algorithms in order to optimize the quality of
the final results in the TSP, but this causes a com-
pletely different behavior where it would be difficult
to determine the real influence of the original algo-
rithm search process with respect to the one of the
local optimizer.

5.1. Adaptation of MOACOs to multi-objective TSP

5.1.1. MOAQ for the multi-objective TSP

In our MOAQ-TSP, the Q values corresponding
to the system rewards (see Section 3.1) will be imple-
mented as a matrix. The set of appropriate actions

128 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
a 2 A will be the set of possible nodes to be visited in
the current step of the ant’s way, and S, the set of
states, will be the set of nodes of the graph.

There will be as many colonies as the number of
objectives (graphs). Ants belonging to different col-
onies will use different heuristic functions HEk.
However, every ant will use the same pheromone
matrix s, initialized using the values of its corre-
sponding reward function Q. The value of HEk for
edge aij will be

HEkði; jÞ ¼ 1=dk
ij

with dk
ij being the cost associated to the edge aij

according to the kth graph.
The reward given to the Q values of the edge aij

will be

rði; jÞ ¼
X

s2NDPI

KPK
k¼1f kðSÞ

;

where K is the number of objectives, NDPI is the set
of non-dominated solutions found in the current
iteration, and fk(S) is the cost of solution S accord-
ing to the kth objective function.

The punishment applied to components of unfea-
sible solutions will not be considered as every per-
mutation is a feasible solution in the multi-
objective TSP. Finally, the jth ant of family i will
build a solution trying to optimize the cost accord-
ing to the ith objective function without using the
solution of the jth ant of family i � 1, due to the fact
that the objectives can be optimized without taking
account any specific ordering.

5.1.2. BicriterionAnt for the multi-objective TSP
BicriterionAnt uses two pheromone matrices, s

and s 0. Every ant in the non-dominated front of
the current generation updates both matrices and
the amount deposited is 1/l, with l being the number
of ants allowed to perform the update. In the bi-cri-
teria TSP, sij and s0ij are, respectively, the phero-
mone trail on edge aij on each matrix, and if we
use the previous rule to update both pheromone
matrices, both of them will have the same values.
Due to this, we have changed the pheromone update
rule. The amount deposited on s by the ant h will be
the inverse of the cost of its solution according to
the first objective function, f1(Sh), and the amount
on s 0 will be the inverse of the cost according to
the second objective function, f2(Sh). Usually, the
cost associated to the first graph will be different
to the cost associated to the second, so the amount
of pheromone on edge aij will be probably different
in s and in s 0

sij ¼ sij þ 1=f 1ðShÞ; s0ij ¼ s0ij þ 1=f 2ðShÞ: ð1Þ
5.1.3. BicriterionMC for the multi-objective TSP

We will use ten colonies in BicriterionMC-
MOTSP with two pheromone matrices in every col-
ony, as Iredi et al. did in [32] for a problem with two
criteria. Besides, the pheromone trail update rule
considered will be that shown in Eq. (1) in the pre-
vious section. When updating the first matrix s, the
algorithm will apply the left-hand expression. On
the other hand, the right-hand expression will be
used when updating the second matrix s 0.

5.1.4. P-ACO for the multi-objective TSP

In P-ACO, gij is an aggregated value of the
attractiveness of edge aij which depends on the spe-
cific problem instance. For P-ACO-MOTSP, gij will
be the inverse of the average of the costs of the edges
for every graph

gij ¼
KPK

k¼1dk
ij

ð2Þ

with dk
ij being the cost of edge aij according to the

kth graph and K being the number of graphs.
P-ACO uses a specific rule to update the phero-

mone trail values. In the multi-objective TSP, we
have considered that the ant which is updating a
pheromone trail matrix, lays down an amount equal
to the inverse of the cost of its solution according to
the graph associated to the matrix

Dsk
ij¼

1=f kðbestÞþ1=f k; if edge aij 2 best;

ðsecond-bestÞ and second-best solutions;

1=f kðbestÞ; if edge aij 2 best solution;

1=f kðsecond-bestÞ; if edge

aij 2 second-best solution;

0; otherwise:

8>>>>>>>>><
>>>>>>>>>:
5.1.5. MONACO for the multi-objective TSP

The only specification to the previously updated
algorithm shown in Section 3.7 is that gij will be
computed as in P-ACO-MOTSP, using Eq. (2).

5.2. TSP instances

The TSP is a very common combinatorial opti-
mization problem that can be described as: given a

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 129
finite number of ‘‘cities’’ along with the cost of trav-
eling between each pair of them, find the cheapest
way of visiting all the cities once and returning to
the starting point.

More formally, it can be represented by a complete
weighted graph, G = (N,A), with N being the set of
cities and A the set of edges fully connecting the nodes
N. Each edge is assigned a value dij, which is the
length of edge aij 2 A. The TSP is the problem of find-
ing a minimal length Hamiltonian circuit of the
graph, where a Hamiltonian circuit is a closed tour
visiting exactly once each of the n = jNj cities of G.

In the K-objective TSP, K different cost factors are
defined between each pair of towns. In practical
applications, the cost factors may for example corre-
spond to cost, length, travel time or tourist attractive-
ness. We could say that an instance of the K-objective
TSP has several graphs associated, each of them hav-
ing a different cost dk

ij for the same edge aij.
In our case, the K-objective symmetric TSP

instances considered have been obtained from Jas-
zkiewicz’s web page: http://www-idss.cs.put.
poznan.pl/~jaszkiewicz/, where several
instances usually tackled in evolutionary multi-
objective optimization are collected. Each of these
instances was constructed from K = 2 different
single objective TSP instances having the same num-
ber of towns. The interested reader can refer to [34]
for more information on them. In this study, we will
use six bi-criteria TSP instances: Kroab50,
Krocd50, Kroab100, Kroad100, Krobc100, and
Krocd100.

5.3. Metrics of performance considered

In this contribution, we are interested on the two
kind of metrics shown in Appendix A.3:

• those which measure the quality of a non-domi-
nated solution set returned by an algorithm and,

• those which compare the performance of two dif-
ferent multi-objective algorithms [47].

As regards the former group, we should notice
that the Pareto-optimal sets X and Y , needed to
compute the values of metrics M1 and M�

1, are not
known, so we will construct a pseudo-optimal Par-
eto front combining all the solutions found by all
the algorithms and removing the dominated ones
in order to use the M�

1 metric in our study. On the
other hand, we will use the M�

2 and M�
3 metrics, with

r = 10,000 and 20,000, depending on the size of the
problem, 50 or 100, respectively (these values are
close to the 10% of the Euclidean distance between
the two outer solutions in the Pareto fronts
obtained).

Besides, the C metric will be taken as the metric
of the second group.

In addition, we will compare the number of iter-
ations and evaluations needed by each algorithm to
generate its Pareto front.

We should remark that, as the main goal of this
work was to study the performance of the MOACO
algorithms to generate proper Pareto fronts for the
bi-criteria TSP, we have not considered the compar-
ison of the solutions in the genotypic space. To do
so, a metric for the decision space would be needed.
This could be an interesting extension for future
works.

5.4. Parameter settings

Each of the considered multi-objective algo-
rithms (both MOACO and MOGAs) has been run
ten times for each of the six bi-criteria TSP
instances. The generic parameter values considered
are so usual when applying MOACO algorithms
and MOGAs to the TSP problem (see Table 2).
The values of the specific parameters, such as k in
MOAQ or the number of ants for the Bic-
riterionMC algorithm, have been obtained from
the papers where the algorithms using them were
defined.

To choose the initial pheromone trail value s0, we
have considered the method used by each algorithm
to update the pheromone trails. Most of them add
an amount of pheromone equal to the inverse of
the cost of the selected solutions, or the sum of
them. Thus, the initial pheromone trail will be com-
puted with the following rule:

s0 ¼
KPK

k¼1f iðGiÞ
;

where Gi is a solution for the ith graph given by a
greedy algorithm, K is the number of graphs/objec-
tives in the current problem, and fi(Gi) is the cost of
the solution Gi according to the ith graph.

However, two MOACO algorithms use a special
rule in order to update the pheromone trails. Thus,
they will consider a different value for s0 : s0 will be
0.1 for COMPETants, as Doerner et al. did in [16],
and MACS will apply the following rule to compute
it:

http://www-idss.cs.put.poznan.pl/~jaszkiewicz/
http://www-idss.cs.put.poznan.pl/~jaszkiewicz/

Table 2
Parameter values considered

Parameter Value

Number of runs for
each algorithm

10

Maximum run time 300 seconds (50 nodes instances)
900 seconds (100 nodes instances)

Number of ants 20 (100 for BicriterionMC
and UnsortBicriterion)

a 1
b 2
q 0.2
q0 0.98 (0.99 for MOAQ)
c (MOAQ) 0.4
k (MOAQ) 0.9
NC (BicriterionMC and
UnsortBicriterion)

10

MOGA population size 100 (NSGA-II)
80 plus 20 in the elite
population (SPEA2)

Crossover probability 0.8
Mutation probability 0.1

Computer specifications Intel CeleronTM 1200 MHz
with 256 MB RAM

Operating system Linux Red Hat 9.0

130 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
s0 ¼
1QK

i¼1

PK

j¼1
f jðGiÞ

K

� �

as mentioned in Section 3.6.

6. Results and analysis

This section is devoted to report and analyze the
different results obtained in the experimentation
developed. In order to develop this analysis, we will
consider the following aspects:
P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I10

00
20

00
50

00
10

00
0

1e
+

05
5e

+
05

2e
+

06

Fig. 1. Number of iterations (left) and evaluations (right) performed b
scale).
• The number of iterations and evaluations per-
formed by the algorithms. These results will
allow us to identify which algorithms are faster

and which are slower.
• The graphical representation of the Pareto sets

returned. These graphics will help us to under-
stand the values for the following metrics.

• Values for the M�
1 metric. They will evaluate the

distance between the Pareto sets returned and
the pseudo-optimal Pareto front.

• Values for the M�
2 metric. M�

2 values will evaluate
the distribution of the solutions in the Pareto sets
returned.

• Values for the M�
3 metric. M�

3 values will evaluate
the extent of the Pareto sets obtained.

• Values for the C metric. C values will compare
the algorithms between them by calculating the
dominance degree of their respective Pareto sets.

• Global analysis. Finally, we will draw some con-
clusions according to the previous results.

All the experimental data will be reported in the
form of box-plots, where the minimum and maxi-
mum values are the lowest and highest lines, the
upper and lower ends of the box are the upper
and lower quartiles and a thick line within the box
shows the median.

6.1. Analysis of the results

6.1.1. Statistics of the runs

Figs. 1 and 2 show the statistics of the runs con-
sidered for each algorithm in each of the six bi-cri-
teria TSP instances. The former two graphics are
associated to the two small instances, Kroab50
P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

y the algorithms in the Kroab50 and Krocd50 runs (logarithmic

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

10
00

50
00

20
00

0

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I2e

+
04

1e
+

05
5e

+
05

2e
+

06

Fig. 2. Number of iterations (left) and evaluations (right) performed by the algorithms in the Kroab100, Kroad100, Krobc100 and
Krocd100 runs (logarithmic scale).

P−ACO

MONACO

BicriterionAnt

BicriterionMC

UnsortBicriterion

MOAQ

MACS

COMPETants

SPEA2

NSGA−II

Fig. 3. Legend of Pareto front graphics (Figs. 4–9).

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 131
and Krocd50, while the latter two correspond to the
four large instances, Kroab100, Kroad100,
Krobc100 and Krocd100. We have used the follow-
ing abbreviations:

• MONAC for MONACO,
• BIANT for BicriterionAnt,
• BIMC for BicriterionMC,
• UNBI for UnsortBicriterion, and
• C-ants for COMPETants.

In view of these graphics, we can see that both
MOGAs, NSGA-II and SPEA2, can usually per-
form much more iterations and evaluations than
the MOACO algorithms considered in the same
fixed run time. Hence, this shows how MOACO
algorithms are somehow slower than MOGAs in
the current problem. We can also notice that Bic-
riterionMC and UnsortBicriterion perform less iter-
ations whereas MACS is the algorithm which
performs less evaluations than any other. The for-
mer is due to the fact that BicriterionMC and
UnsortBicriterion used 100 ants while the other
MOACO algorithms only handled 20 ants.

On the other hand, COMPETants, MOAQ and
P-ACO are the quickest of the MOACO algorithms
implemented, since they perform more evaluations
and iterations than the remainder.

6.1.2. Visual analysis of the Pareto fronts generated

In order to graphically represent the different
algorithms performance, we will proceed in the
same way that Zitzler et al. did in [47]. All the Par-
eto sets generated by each algorithm in the 10 runs
performed will be fused into a single Pareto front by
removing the dominated solutions from the joined
set.

Let us call P j
i the non-dominated solution set

returned by algorithm i in the jth run, Pi the union
of the solution sets returned by the ten runs of algo-
rithm i (P 1

i [P 2
i [� � � [P 10

i), and finally P i the set of
all non-dominated solutions in Pi. We use the leg-
end in Fig. 3. The graphics in Figs. 4 and 5, show
these sets P i for the Kroab50 and Krocd50
instances, respectively. In the same way, Figs. 6–9
relate to the sets P i when the algorithms are applied
to Kroab100, Kroad100, Krobc100 and Krocd100
instances. These graphics offers a visual informa-
tion, not measurable but sometimes more useful
than numeric valuations.

Looking at Figs. 4–9, we can draw some conclu-
sions, which must be later trusted in view of the per-
formance metrics values:

• Non-dominated solution sets returned by both
MOGAs, NSGA-II and SPEA2, are poor in

20000 30000 40000 50000 60000 70000 80000

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

80
00

0

Fig. 4. Non-dominated solution sets returned by the ten runs of each algorithm when applied to the Kroab50 instance.

20000 30000 40000 50000 60000 70000 80000

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

80
00

0
90

00
0

Fig. 5. Non-dominated solution sets returned by the ten runs of each algorithm when applied to the Krocd50 instance.

132 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148

50000 100000 150000

50
00

0
10

00
00

15
00

00

Fig. 6. Non-dominated solution sets returned by the ten runs of each algorithm when applied to the Kroab100 instance.

50000 100000 150000

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00

14
00

00
16

00
00

Fig. 7. Non-dominated solution sets returned by the ten runs of each algorithm when applied to the Kroad100 instance.

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 133

20000 40000 60000 80000 100000 120000 140000 160000

50
00

0
10

00
00

15
00

00

Fig. 8. Non-dominated solution sets returned by the ten runs of each algorithm when applied to the Krobc100 instance.

50000 100000 15000020
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00

14
00

00
16

00
00

Fig. 9. Non-dominated solution sets returned by the ten runs of each algorithm when applied to the Krocd100 instance.

134 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 135
comparison with most of those returned by
MOACO algorithms. These sets can only domi-
nate some solutions returned by COMPETants
and MOAQ when applied to the two small
instances of size 50.

• COMPETants and MOAQ algorithms offer good
solutions which optimize one of the two objec-
tives. However, they are not able to cover the
middle of the Pareto front in a proper way, i.e.,
to generate good quality solutions which estab-
lish a compromise between the different objec-
tives. In fact, COMPETants is only able to
generate solutions in the central part of the Par-
eto front in the two smaller problem instances
considered. In the remaining four, the Pareto
fronts generated converged to the two extents.
This could be due to the fact that in both algo-
rithms, the ants of a colony only consider the
heuristic information associated to their own col-
ony, and not the remainder.

• P-ACO, MONACO and BicriterionMC algo-
rithms return very good solutions in the central
part of the Pareto front but they are not able to
generate any solution at all in the extents of the
Pareto front. On the one hand, P-ACO and
MONACO only use a single heuristic matrix,
which is built by using the average of the cost
of the edges for every graph. In addition, they
both weight the learned information in a way
that gives some automatic bias towards compro-
mise solutions. On the other hand, Bic-
riterionMC uses the Update by region method.
It makes that the extreme colonies do not receive
pheromone, and thus they loss it by evaporation.
Finally, the ant belonging to the extreme colonies
construct somehow random circuits (every sij and
P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

0
20

00
60

00
10

00
0

0
20

00
60

00
10

00
0

Fig. 10. M�
1 values for the algorithms in t
s0ij are similar and close to zero), which is not suf-
ficient in order to obtain new non-dominated
solutions. In other words, it seems to loss diver-
sity in its pheromone trails.

• Finally, BicriterionAnt and, specially, UnsortBi-
criterion and MACS achieve a good distribution
over the Pareto front. Their solutions are some-
times dominated by those returned by P-ACO,
MONACO, BicriterionMC, but only in the cen-
tral part of the Pareto front.

6.1.3. Analysis of the M�
1 metric

The graphics in Figs. 10–12 show the values of
the M�

1 metric obtained by each algorithm in each
of the six bi-criteria TSP instances. We can see
that P-ACO, MONACO, BicriterionAnt, Bic-
riterionMC, Unsortbicriterion and MACS algo-
rithms are those which get the lowest values on
the two instances with 50 nodes (they produce
non-dominated solution sets very close to the
pseudo-optimal Pareto front), whereas MOAQ,
COMPETants, SPEA2, and NSGA-II obtain Par-
eto sets far away from the pseudo-optimal one.
On the other hand, the M�

1 values of the MOACO
algorithms for the instances with 100 nodes behave
in a similar way to the previous case. The algorithms
that get the lowest values are P-ACO, MONACO,
BicriterionMC, UnsortBicriterion and MACS. Both
MOGAs obtain poor (high) values. This confirms
what we said as regards P-ACO, MONACO, and
BicriterionMC obtain high quality solutions. In
addition, now we can say that the solutions
obtained by BicriterionAnt, UnsortBicriterion, and
MACS are also good, although they were domi-
nated in the central region of the Pareto front.
P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

he instance Kroab50 and Krocd50.

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

0
20

00
0

40
00

0
60

00
0

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

0
10

00
0

30
00

0
50

00
0

Fig. 11. M�
1 values for the algorithms in the instance Kroab100 and Kroad100.

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

0
10

00
0

30
00

0
50

00
0

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

0
20

00
0

40
00

0
60

00
0

Fig. 12. M�
1 values for the algorithms in the instance Krobc100 and Krocd100.

136 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
6.1.4. Analysis of the M�
2 metric

The graphics in Figs. 13–15 show the values of
the M�

2 metric obtained by each algorithm in each
of the six bi-criteria TSP instances. We can see
that UnsortBicriterion and MACS algorithms
P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

0
20

40
60

80

0
20

40
60

80

Fig. 13. M�
2 values for the algorithms in
are those which get the highest values, whereas
P-ACO, MONACO and BicriterionMC get the
lowest ones. This confirms what we said as regards
UnsortBicriterion and MACS cover almost the
whole Pareto front whereas P-ACO, MONACO
P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

the instance Kroab50 and Krocd50.

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

0
20

40
60

80
10

0

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

0
20

40
60

80
10

0

Fig. 14. M�
2 values for the algorithms in the instance Kroab100 and Kroad100.

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

0
20

40
60

80
10

0

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

0
20

40
60

80
10

0

Fig. 15. M�
2 values for the algorithms in the instance Krobc100 and Krocd100.

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 137
and BicriterionMC only obtain solutions in the
central part. In addition, the values obtained by
the MOGAs, NSGA-II and SPEA2, are low,
specially in the instances with 100 nodes. They are
only a little bit higher than those obtained by
MONACO, P-ACO and BicriterionMC.

6.1.5. Analysis of the M�
3 metric

Figs. 16–18 show the values of the M�
3 metric

obtained by each algorithm in each of the six bi-cri-
teria TSP instances. In view of these figures, the
algorithms which get the higher values are COMPE-
Tants, MOAQ, MACS and UnsortBicriterion. On
the opposite, P-ACO and MONACO achieve very
low measures in the current problem. We should
remark how, when analyzing Figs. 4–9, we recog-
nized that non-dominated solution sets returned
by P-ACO and MONACO were located in a small
region of the objective space, whereas the Pareto
fronts returned by COMPETants, MOAQ and
MACS were properly spread off.
Finally, it is interesting to remark the special
behavior of BicriterionMC. Notice that it obtains
relatively higher M�

3 values in the Krocd50,
Kroab100 and Kroad100 instances than P-ACO
and MONACO, what indicates that, in these
instances and in some runs, BicriterionMC returned
some non-dominated solutions far away from the
central part of the Pareto front. They may not be
present in Figs. 5–7 because they could be domi-
nated by other solution from other run. However,
one of them can be identified in Fig. 5 near the point
(54,000, 24,000) (highlighted with a circle).

6.1.6. Analysis of the C metric

The graphics in Fig. 19 are box-plots based on
the C metric. Each rectangle contains six box-plots
representing the distribution of the C values for a
certain ordered pair of algorithms. From left to
right, the leftmost box-plot refers to Kroab50, the
second relates to Krocd50, the third to Krobc100,
the fourth to Kroad100, the fifth to Kroab100

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

20
00

0
40

00
0

60
00

0
80

00
0

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

20
00

0
40

00
0

60
00

0
80

00
0

Fig. 16. M�
3 values for the algorithms in the instance Kroab50 and Krocd50.

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

50
00

0
10

00
00

20
00

00

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

50
00

0
10

00
00

15
00

00
20

00
00

Fig. 17. M�
3 values for the algorithms in the instance Kroab100 and Kroad100.

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

50
00

0
10

00
00

15
00

00
20

00
00

P
−A

C
O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−a

nt
s

S
P

E
A

2

N
S

G
A

−I
I

50
00

0
10

00
00

15
00

00
20

00
00

Fig. 18. M�
3 values for the algorithms in the instance Krobc100 and Krocd100.

138 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
and the rightmost to Krocd100. The scale is 0 at
the bottom and 1 at the top per rectangle. Further-
more, each box refers to algorithm A associated
with the corresponding row and algorithm B asso-
ciated with the corresponding column, and gives
the fraction of B covered by A (C(A,B)). Consider,

P
−A

C
O

M
O

N
A

C
O

B
ic

rit
er

io
nA

nt

B
ic

rit
er

io
nM

C

U
ns

or
tB

ic
rit

er
io

n

M
O

A
Q

M
A

C
S

C
O

M
P

E
T

an
ts

S
P

E
A

2

N
S

G
A

−I
I

Fig. 19. Box-plots of the results obtained in the C metric.

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 139

140 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
for instance, the top right box, which represents the
fraction of solutions of NSGA-II covered by the
non-dominated sets produced by the P-ACO
algorithm.

At the end of the analysis, we can draw the fol-
lowing conclusions:

• The MOACO algorithms considered are very
competitive against the MOGAs implemented.
The former offer good sets of non-dominated
solutions which almost always dominate the solu-
tions returned by NSGA-II and SPEA2. In addi-
tion, the Pareto fronts derived by NSGA-II and
SPEA2 do not dominate the fronts given by
MOACO algorithms.

• It is not easy to say which MOACO algorithm
performs best, as many of them derive Pareto sets
of similar quality, as regards the C metric values.
These algorithms usually give non-dominated
solution sets as output which do not dominate
those generated from other algorithms of the
same family, but they are not dominated either.
However, we notice that the Pareto fronts
returned by P-ACO, MONACO and Bic-
riterionMC are practically not dominated by
those obtained from the remaining algorithms.
So we could say that P-ACO, MONACO and
BicriterionMC are the algorithms with the best
performance according to this metric, because
their Pareto fronts are not dominated (see the
box-plots in the first, second and fourth col-
umns), although they actually do not dominate
very well the remainder of the MOACO algo-
rithms (see those in the first, second and fourth
rows). Between them, P-ACO seems to perform
better than the two others.

• However, it is easier to identify the algorithms
which usually return Pareto sets of bad quality
for the problem, when they are compared to
those returned by the remaining algorithms con-
sidered. This is the case of SPEA2, NSGA-II,
COMPETants, and MOAQ. Their Pareto fronts
do not usually dominate those generated by the
other algorithms while they are normally well-
dominated.

6.2. Global analysis

This section is devoted to draw some general con-
clusions summarizing all the analysis developed.
The conclusions obtained are shown as follows.
The MOACO algorithms considered are a good
choice to solve the bi-objective TSP, performing
better than the MOGAs implemented. Notice that,
although NSGA-II is one of the state-of-the-art
MOGAs for continuous optimization, it does not
seem to be well-suited to the TSP since tours can
not be well-represented for the application of
crossover.

Besides, it is interesting to notice that the results
obtained are robust with respect to the six instances
considered, regardless the instance itself and its par-
ticular composition. This way, the MOACO algo-
rithms get similar statistic values in the Pareto
fronts derived regardless the concrete instance.

Finally, it is difficult to relate the performance of
the MOACO algorithms, when tackling the TSP,
according to the taxonomy introduced in Section
4. For example, MOAQ, based on a single phero-
mone trail matrix and two heuristic matrices, and
COMPETants, based on the use of two pheromone
trail and heuristic matrices, perform in the same
way generating Pareto fronts of good quality in
the extremes but badly cover the central parts.
Opposite to what can be thought, the Pareto fronts
generated by MOAQ dominate those got from
COMPETants, although the former considers a sin-
gle pheromone trail matrix and the latter two of
them.

On the other hand, MACS and BicriterionAnt,
which showed very good behavior, also belong to
the two latter, different families (a single pheromone
matrix and two heuristic matrices and two of both
matrices, respectively). Again, the Pareto fronts of
the former, which only considers a single phero-
mone matrix, outperforms those of the latter as
regards the three metrics considered.

Nevertheless, we may say that the use of only one
heuristic matrix, which could be obtained by aver-
aging the different objectives when tackling the
TSP, makes the MOACO algorithm obtain very
good compromise solutions and forget the extreme
regions of the Pareto front. This is the case of P-
ACO and MONACO.

This way, it seems that the operation mode of the
MOACO algorithm itself is more important for per-
formance purposes than the number of pheromone
trail matrices considered by it in the problem
instances tackled.

However, there is a huge diversity in the behavior
of the different MOACO algorithms analyzed. As
seen in the Pareto fronts graphical representations
collected in Section 6.1.2, and later corroborated

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 141
as regards the M�
1, M�

2 and M�
3 metric values in Sec-

tions 6.1.3–6.1.5, we can find three different
behaviors:

• Algorithms obtaining well-spread Pareto fronts
in the objective space extents but with a very
bad covering of the central part of the Pareto
fronts, like MOAQ and COMPETants. This is
clearly checked by the high values of both algo-
rithms in metric M�

3 together with their low val-
ues in metric M�

2, which show a good extent of
the Pareto front obtained but a bad distribution
of the non-dominated solutions. These two algo-
rithms share the interesting property that most or
all their ants only use one of the two heuristic
matrices.

• Algorithms like P-ACO, MONACO and Bic-
riterionMC with the opposite behavior, i.e., gen-
erating very good solutions in the central part of
the Pareto front by obtaining fronts with a very
low extent (with the corresponding lowest values
in the M�

1, M�
2 and M�

3 metrics). The two former
algorithms only use one heuristic matrix which
is built from the average of the two objectives,
whereas BicriterionMC seems to loss diversity
in its pheromone trail matrices and, finally,

• algorithms with a good generation of the non-
dominated solution sets, with a proper trade-
off between the central and extreme parts of
the Pareto surface. This is the case of MACS,
UnsortBicriterion and BicriterionAnt, as can
be seen in view of their very low values in M�

1

metric (showing high quality in their solutions),
highest values in metric M�

2 (showing the best
distribution of solutions in the front) and their
45000 50000 55000 60000 65000 70000

40
00

0
50

00
0

60
00

0
70

00
0

40
00

0
50

00
0

60
00

0
70

00
0

Fig. 20. Central parts of Pareto fronts of P-ACO, MONACO, Bicriter
Krocd100 (right) instances. The line which joins the overall non-domin
good values in the M�
3 one (showing a large

extent covered).
Between these three algorithms, we can consider
that MACS and UnsortBicriterion outperform
BicriterionAnt as they obtain better values in
M�

2, M�
3 and C metrics than the latter. However,

we can not easily state which algorithm is the
best between MACS and UnsortBicriterion,
because they both return very good and similar
values for every metric of performance. In addi-
tion, with regard to the C metric, it does not
seem that the solutions of one algorithm clearly
dominate the ones of the other, as slight differ-
ences are only observed favouring each of them
in different instances.

This way, the algorithms of the latter group seem
to be the best choice for the current problem with
the only drawback that P-ACO, MONACO and
BicriterionMC generate better solutions than them
in the central parts of the Pareto fronts (see
Fig. 20). When comparing the latter group algo-
rithms with those generating well-spread Pareto
fronts such as MOAQ and COMPETants, it can
be seen how this is clearly due the fact that the latter
algorithms do not converge to the pseudo-optimal
Pareto front. An example of this behavior is shown
in Fig. 21.

The only case we found where the algorithms of a
family behaves in the same way is that of P-ACO
and MONACO, characterized by two pheromone
matrices and a single heuristic matrix. Both algo-
rithms achieve a good convergence to the central
parts of the Pareto fronts, avoiding the generation
of solutions in the extents of the front. However,
45000 50000 55000 60000 65000 70000

ionMC, MACS and UnsortBicriterion in the Krobc100 (left) and
ated solutions represents the pseudo-optimal Pareto front.

50000 100000 150000

20
00

0
40

00
0

60
00

0
80

00
0

10
00

00
12

00
00

14
00

00
16

00
00

Fig. 21. Pareto fronts of MACS, UnsortBicriterion, MOAQ, and COMPETants in the Kroad100 instance. The line which joins the overall
non-dominated solutions represents the pseudo-optimal Pareto front.

142 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
the existence of just two MOACO algorithms within
the family could be not enough to consider this as a
generic behavior.

On the other hand, it could be argued that
MOAQ and MACS, both belonging to the single
pheromone-several heuristic matrices family, show
a similar behavior as regards the values obtained
in metric M�

3, where the two MOACO algorithms
always present high values. However, these high val-
ues actually correspond to different kinds of Pareto
fronts as, in view of the figures shown in Section
6.1.2, while MOAQ generates good non-dominated
solution sets in the extremes of the Pareto fronts,
but does not cover their central parts, MACS
obtains a well-distributed set all over the fronts.

7. Concluding remarks and future works

In the current contribution, we have classified the
existing Pareto-based MOACO algorithms into a
taxonomy and developed an experimental study
comparing their performance when applied to sev-
eral classical instances of the bi-criteria TSP. From
the results obtained, we have drawn the conclusion
that the MOACO algorithms considered are more
competitive in the current problem than two of
the state-of-the-art MOGAs, SPEA2 and NSGA-
II. Besides, we have drawn the conclusion that
belonging to a specific family is not enough to
achieve good performance but the operation mode
of the ACO algorithm itself is more determinant
for the quality of the Pareto fronts generated.

Several ideas for future developments arise from
this study: (i) to analyze the influence of adding
local search optimizers to the MOACO algorithms,
as usually done in ACO to solve the TSP, and to
compare the performance of the resulting tech-
niques against that of memetic algorithms such as
Jaszkiewicz’s MOGLS [34], as some authors have
recently started to do for the Quadratic Assignment
Problem (where the use of local optimizers is man-
datory to achieve good performance when using
ACO algorithms) in works such as [36]; and (ii) to
study the performance of MOACO algorithms in
other complex multi-objective combinatorial opti-
mization problems.

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 143
Appendix A. Evolutionary multi-objective

optimization

Evolutionary computation uses computational
models of evolutionary processes as key elements
in the design and implementation of computer-
based problem solving systems. There is a variety
of evolutionary computational models that have
been proposed and studied which are referred as
evolutionary algorithms (EAs) [2]. Concretely, four
well-defined EAs have served as the basis for much
of the activity in the field: genetic algorithms
(GAs) [40], evolution strategies [43], genetic pro-
gramming (GP) [35] and evolutionary program-
ming [23].

An EA maintains a population of trial solutions,
imposes random changes to these solutions, and
incorporates selection to determine which ones are
going to be maintained in future generations and
which will be removed from the pool of trials. But
there are also important differences between them.
Focusing on the kind of EA considered on this
paper, GAs emphasize models of genetic operators
as observed in nature, such as crossover (recombi-
nation) and mutation, and apply these to abstracted
chromosomes with different representation schemes
according to the problem being solved.

EAs are very appropriate to solve multi-objective
problems as, thanks to the use of a population of
solutions, EAs can search many Pareto-optimal
solutions in the same run. Generally, multi-objective
EAs (MOEAS) [7,13] only differ from the rest of
EAs in the fitness function and/or in the selection
mechanism.

The evolutionary approaches in multi-objective
optimization can be classified in three groups: plain
aggregating approaches, population-based non-Par-

eto approaches and Pareto-based approaches [13,7].
The first group constitutes the extension of clas-

sical methods to EAs. The objectives are artificially
combined, or aggregated, into a scalar function
according to some understanding of the problem,
and then the EA is applied in the usual way. Opti-
mizing a combination of the objectives has the
advantage of producing a single compromise solu-
tion but some of the problems found in the classical
multi-objective approaches (see Section 2.2) remain:
(i) it can be difficult to define the combination
weights in order to obtain acceptable solutions,
and (ii) if the optimal solution generated can not
be finally accepted, new runs of the EA may be
required until a suitable solution is found.
Population-based non-Pareto approaches allow us
to exploit the special characteristics of EAs. A non-
dominated individual set is obtained instead of only
one solution. In order to do so, the selection mech-
anism is changed. Generally, the best individuals
according to each of the objectives are selected,
and then these partial results are combined to
obtain the new population. An example of a
multi-objective GA of this group is vector evaluated
genetic algorithm (VEGA) [42].

Finally, Pareto-based approaches seem to be the
most active research area on multi-objective EAs
nowadays. In fact, algorithms included within this
family are divided in two different groups: first
and second generation [7]. They all attempt to pro-
mote the generation of multiple non-dominated
solutions, as the former group, but directly making
use of the Pareto-optimality definition (see Section
2.2).

This way, to calculate the probability of repro-
duction of each individual in this approach, the
solutions are compared by means of the dominance
relation. Different equivalence groups are defined
depending on the dominance of their constituent
individuals among the remainder and those individ-
uals belonging to the ‘‘good’’ classes (those groups
including individuals dominating a large number
of the remainder) are assigned a higher selection
probability than those in the ‘‘bad’’ classes.

The difference between the first and the second
generation Pareto-based approaches arise on the
use of elitism. Algorithms included within the first
generation group [7,13], such as Niched Pareto
Genetic Algorithm (NPGA), Non-dominated Sort-
ing Genetic Algorithm (NSGA) and Multiple-
Objective Genetic Algorithm (MOGA), do not pres-
ent this characteristic. On the other hand, second
generation Pareto-based multi-objective EAs are
based on the consideration of an auxiliary popula-
tion where the non-dominated solutions generated
among the different generations are stored. Exam-
ples of the latter family are Strength Pareto EA
(SPEA) and SPEA2 [48] and NSGA-II [15], among
others. As can be seen, several of the latter algo-
rithms are elitist versions of the corresponding first
generation ones.

Finally, it is important to notice that, although
the Pareto-based ranking correctly assigns all non-
dominated individuals the same fitness, it does not
guarantee that the Pareto set is uniformly sampled.
When multiple equivalent optima exist, finite popu-
lations tend to converge to only one of them, due to

144 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
stochastic errors in the selection process. This phe-
nomenon is known as genetic drift [14]. Since pres-
ervation of diversity is crucial in the field of multi-
objective optimization, several multi-objective EAs
have incorporated the niche and species concepts
[27] for the purpose of favoring such behavior.

The next two subsections are devoted to intro-
duce the two second generation Pareto-based
MOGAs considered in this contribution as baselines
for the MOACO algorithms implemented, NSGA-
II and SPEA2.

A.1. Non-dominated sorting genetic Algorithm II

The so-called non-dominated sorting genetic
Algorithm II (NSGA-II) was designed by Deb
et al. in [15] to alleviate three difficulties of MOEAs
which use non-dominated sorting and sharing: (i)
O(K ÆN3) computational complexity (where K is
the number of objectives and N is the population
size); (ii) nonelitist approach; and (iii) the need of
specifying a sharing parameter.

NSGA-II uses two key concepts, ranking and
crowding-distance. In order to define the former,
NSGA-II classifies every chromosome in the
population P in several fronts. The first front is
composed of the non-dominated solutions. Chro-
mosomes belonging to the second front are solu-
tions which are only dominated by at least one
solution in the first front. Those belonging to the
third front are solutions only dominated by solu-
tions in the first front and at least one of the second,
and so on. Finally, the ranking of the chromosome
p, prank, is the index of the front which the chromo-
some p belongs to.
f2

f1

Cuboid

0

1i

i + 1

i - 1

Fig. 22. Crowding-distance calculation. Points marked in filled
circles are solutions of the same non-dominated front. Figure
taken from [15].
On the other hand, the crowding-distance is a
value which estimates the density for every chromo-
some in the population P. It is the average side
length of the cuboid showed in Fig. 22. The crowd-
ing-distance of the chromosome p will be called
pdistance.

According to the crowding-distance, NSGA-II
defines the Crowded-Comparison Operator, �n.
Given two chromosomes p and q, p � n q if prank <
qrank or prank = qrank and pdistance > qdistance.

Finally, the main loop of the algorithm is as fol-
lows. Initially, a random population P0 is created.
The population is sorted based on the non-domi-
nance criterion. Each solution is assigned a fitness
equal to its non-dominance level, prank. Thus,
minimization of fitness is assumed. At first, the
usual binary tournament selection, recombination,
and mutation operators are used to create an off-
spring population Q0 of size N, the number of chro-
mosomes in P0. Since elitism is introduced by
comparing the current population with the best
non-dominated solutions previously found, the pro-
cedure is different after the initial generation.

Then, at every iteration, a combined population
Rt = Pt [Qt is formed. The population Rt is of size
2 ÆN. Then, Rt is classified in fronts according to
dominance. Since all previous and current popula-
tion members are included in Rt, elitism is ensured.
Now, if the size of the first front in the combined
population is smaller than N, NSGA-II chooses all
the members from that front for the new popula-
tion. The remaining population members are chosen
from subsequent non-dominated fronts in the order
of their ranking. Thus, solutions from the second
front are chosen next, followed by solutions from
the third front, and so on. This procedure is contin-
ued until no more sets can be accommodated. Let us
say that the ith front is the last non-dominated set
beyond which no other set can be accommodated.
To choose exactly N population members, we sort
the solutions of the ith front using the crowded-
comparison, �n, operator in descending order and
choose the best solutions needed to fill all the new
population slots. The NSGA-II procedure is also
graphically illustrated in Fig. 23. The new popula-
tion Pt+1 of size N is now used for selection, cross-
over, and mutation to create a new population Qt+1

of size N. Notice that we use a binary tournament
selection operator but the selection criterion is
now based on the crowded-comparison operator,
�n. Since this operator requires both the rank and
crowded distance of each solution in the population,

Rejected

P
t+1

P
t

Qt

F
1

F
2

F
3

Rt

Non-dominated
sorting

Crowding
distance
sorting

Fig. 23. NSGA-II procedure. Figure taken from [15].

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 145
we calculate these quantities while forming the new
population, as shown in Fig. 23.

A.2. Strength Pareto EA2

Strength Pareto EA2 (SPEA2), proposed by Zit-
zler et al. in [48], was developed as an improvement
of SPEA [49]. In contrast to its predecessor, SPEA2
incorporates a fine-grained fitness assignment strat-
egy, a density estimation technique, and an
enhanced archive truncation method.

This algorithm uses two separate populations of
chromosomes, P with N chromosomes as the cur-
rent population, and P 0 which will contain the N 0

best chromosomes found so far.
At every iteration, the algorithm copies all the

non-dominated individuals in Pt and P 0t to P 0tþ1. If
the size of P 0tþ1 exceeds N 0 then it reduces P 0tþ1 by
means of the truncation operator; otherwise if the
size of P 0tþ1 is less than N 0 then it fills P 0tþ1 with dom-
inated individuals in Pt and P 0t. Then, it performs a
binary tournament selection with replacement on
P 0tþ1 in order to fill a mating pool. Finally, the algo-
rithm applies the recombination and mutation oper-
ators to the mating pool and set Pt+1 to the resulting
population.

In order to assign a fitness value to every chro-
mosome p of populations P and P 0, the algorithm
uses the following rule:

fitnessðpÞ ¼ RðpÞ þ DðpÞ:

In this equation, R(p) is the raw fitness of chromo-
some p, and D(p) its density. The raw fitness, R, is
calculated as follows:
RðpÞ ¼
X
i�p

SðiÞ; SðiÞ ¼ jj; j 2 P [P 0 ^ i � jj;

where i � j indicates that solution i dominates solu-
tion j. S(i) is called the strength of solution i.

At the other hand, D(p) is computed using an
adaptation of Silverman’s kth nearest neighbor
method [44]. The algorithm calculates D(p) as
follows:

DðpÞ ¼ 1=ðrk
p þ 2Þ;

where rk
p is the distance between the chromosome p

and its kth nearest neighbor. Usually k is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ N 0
p

.
When the size of P 0tþ1 is lesser than N 0, the algo-

rithm fills this external population with the best
solutions in (Pt [P 0t) � P 0tþ1, according to their fit-
ness values. Otherwise, if the size of P 0tþ1 is greater
than N 0, the algorithm iteratively removes individu-
als from P 0tþ1 until jP 0tþ1j = N 0. Here, at each itera-
tion, the algorithm removes the individual i, with
i 6 d j for all j 2 P 0tþ1 where

i6d j ()
8k; 0< k< jP 0tþ1j : rk

i ¼ rk
j _

9k; 0< k< jP 0tþ1j : ½ð8l; 0< l< k

: rl
i ¼ rl

jÞ^rk
i < rk

j �

with rk
i denoting the distance of i to its kth nearest

neighbor in P 0tþ1.

A.3. Metrics of performance

Experimentally comparing different optimization
techniques always involves the notion of perfor-
mance. In the case of multi-objective optimization,

146 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
the definition of quality is substantially more com-
plex than for single-objective optimization prob-
lems, because the optimization goal itself consists
of multiple objectives [7]:

• The distance of the resulting non-dominated set to
the real Pareto-optimal front should be minimized.

• A good (in most cases uniform) distribution of
the solutions found is desirable. The assessment
of this criterion might be based on a certain dis-
tance metric.

• The extent of the obtained non-dominated front
should be maximized, i.e., for each objective, a
wide range of values should be covered by the
non-dominated solutions.

Several individual metrics aiming at measuring
the achievement of the previous goals by the Pareto
set derived from a specific multi-objective algorithm
have been proposed in the literature [7,13,47]. Some
of them, proposed by Zitzler et al. in [47], are
reviewed as follows:

Given a set of pairwise non-dominated decision
vectors X 0 � X, a neighborhood parameter r > 0
(to be chosen appropriately), and a distance metric
kÆk:

1. Function M1 gives the average distance to the
Pareto-optimal set X � X :
M1ðX 0Þ ¼ 1=jX 0j
X
a02X 0

minfka0 � ak; a 2 Xg:
2. Function M2 takes the distribution in combina-
tion with the number of non-dominated solutions
found into account:
M2ðX 0Þ ¼ 1=jX 0 � 1j
X
a02X 0
jfb0 2 X 0; ka0 � b0k > rgj:
3. Function M3 considers the extent of the front
described by X 0:
M3ðX 0Þ ¼
ffiXm

i¼1
maxfka0i � b0ik; a0; b0 2 X 0g

q
:

Analogously, Zitzler et al. define three metrics
M�

1, M�
2 and M�

3 on the objective space. Let
Y 0; Y � Y be the sets of objective vectors that corre-
spond to X 0 and X , respectively, and r* > 0 and kÆk*

as before:

M�
1ðY 0Þ ¼ 1=jY 0j

X
p02Y 0

minfkp0 � pk�; p 2 Y g;
M�
2ðY 0Þ ¼ 1=jY 0 � 1j

X
p02Y 0
jfq0 2 Y 0; kp0 � q0k� > r�gj;

M�
3ðY 0Þ ¼

ffiXn

i¼1
maxfkp0i � q0ik

�
; p0; q0 2 Y 0g

q
:

While M1 and M�
1 are intuitive, M2 and M3 (respec-

tively, M�
2 and M�

3) need further explanation. The
distribution metrics give a value within the interval
[0, jX 0j] ([0, jY 0j]). The higher the value of the metric,
the better the distribution for an appropriate neigh-
borhood parameter (e.g., M�

2ðY 0Þ ¼ jY 0j means that,
for each objective vector, there is no other objective
vector within a r*-distance to it). Functions M3 and
M�

3 use the maximum extent in each dimension to
estimate the range to which the front spreads out.
In the case of two objectives, this equals the distance
of the two outer solutions.

The previous metrics allows us to determine the
absolute, individual quality of a Pareto front. On
the other hand, other metrics whose aim is to com-
pare the performance of two different multi-objec-
tive algorithms by comparing the Pareto sets
generated by each of them, have also been intro-
duced in the literature. One of the most used among
these metrics was that proposed by Zitzler et al. in
[47], which compares a pair of non-dominated sets
by computing the fraction of each set that is covered
by the other:

CðX 0;X 00Þ ¼ jfa00 2 X 00; 9a0 2 X 0 : a0 � a00gj=jX 00j;
where a 0 � a00 indicates that the solution a 0 domi-
nates the solution a00.

Hence, the value C(X 0,X00) = 1 means that all the
solutions in X00 are dominated by or equal to solu-
tions in X 0. The opposite, C(X 0,X00) = 0, represents
the situation where none of the solutions in X00 are
covered by the set X 0. Note that both C(X 0,X00)
and C(X00,X 0) have to be considered, since C(X 0,X00)
is not necessarily equal to 1 � C(X00,X 0).

References

[1] B. Barán, M. Schaerer, A multiobjective ant colony system
for vehicle routing problem with time windows, in: Proc.
Twenty first IASTED International Conference on Applied
Informatics, Insbruck, Austria, February 10–13, 2003, pp.
97–102.

[2] T. Bäck, Evolutionary Algorithms in Theory and Practice,
Oxford University Press, 1996.

[3] A. Baykasoglu, T. Dereli, I. Sabuncu, A multiple objective
ant colony optimization approach to assembly line balancing
problems, in: 35th International Conference on Computers
and Industrial Engineering (CIE35), Istanbul, Turkey, 2005,
pp. 263–268.

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148 147
[4] B. Bullnheimer, G. Kotsis, C. Strauss, A new rank-based
version of the ant system: A computational study, Central
European Journal for Operations Research and Economics 7
(1) (1999) 25–38.

[5] P. Cardoso, M. Jesús, A. Márquez, MONACO-multi-objec-
tive network optimisation based on an ACO, in: Proc. X
Encuentros de Geometrı́a Computacional, Seville, Spain,
June 16–17, 2003.

[6] V. Chankong, Y.Y. Haimes, Multiobjective Decision Mak-
ing Theory and Methodology, North-Holland, 1983.

[7] C.A. Coello, D.A. Van Veldhuizen, G.B. Lamont, Evolu-
tionary Algorithms for Solving Multi-objective Problems,
Kluwer, 2002.

[8] O. Cordón, I. Fernández de Viana, F. Herrera, L. Moreno,
A new ACO model integrating evolutionary computation
concepts: The best–worst ant system, in: M. Dorigo, M.
Middendorf, T. Stützle (Eds.), Proc. of ANTS2000—From
Ant Colonies to Artificial Ants, Brussels, Belgium, Septem-
ber, 2000, pp. 22–29.

[9] O. Cordón, I. Fernández de Viana, F. Herrera, Analysis of
the best–worst ant system and its variants on the TSP,
Mathware and Soft Computing 9 (2–3) (2002) 177–192.

[10] O. Cordón, I. Fernández de Viana, F. Herrera, Analysis of
the best–worst ant system and its variants on the QAP, in:
M. Dorigo, G. Di Caro, M. Sampels (Eds.), Ant Algorithms,
Proc. of ANTS2002, Lecture Notes in Computer Science,
vol. 2463, Springer-Verlag, Berlin, Germany, 2002, pp. 228–
234.

[11] O. Cordón, F. Herrera, T. Stützle, A review on the ant
colony optimization metaheuristic: Basis, models and new
trends, Mathware and Soft Computing 9 (2–3) (2002) 141–
175.

[12] I. Das, J. Dennis, A closer look at drawbacks of minimizing
weighted sums of objectives for Pareto set generation in
multicriteria optimization problems, Structural Optimization
14 (1997) 63–69.

[13] K. Deb, Multi-objective Optimization Using Evolutionary
Algorithms, Wiley, 2001.

[14] K. Deb, D.E. Goldberg, An investigation of niche and
species formation in genetic function optimization, in: Proc.
Third International Conference on Genetic Algorithms
(ICGA’89), Hillsdale, USA, 1989, pp. 42–50.

[15] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and
elitist multiobjective genetic algorithm: NSGA-II, IEEE
Transactions on Evolutionary Computation 6 (2) (2002)
182–197.

[16] K. Doerner, R.F. Hartl, M. Teimann, Are COMPETants
more competent for problem solving?—The case of full
truckload transportation, Central European Journal of
Operations Research 11 (2) (2003) 115–141.

[17] K. Doerner, W.J. Gutjahr, R.F. Hartl, C. Strauss, C.
Stummer, Pareto ant colony optimization: A metaheuristic
approach to multiobjective portfolio selection, Annals of
Operations Research 131 (1–4) (2004) 79–99.

[18] M. Dorigo, G. Di Caro, The ant colony optimization meta-
heuristic, in: D. Corne, M. Dorigo, F. Glover (Eds.), New
Ideas in Optimization, McGraw-Hill, London, UK, 1999,
pp. 11–32.

[19] M. Dorigo, L. Gambardella, Ant colony system: A cooper-
ative learning approach to the travelling salesman problem,
IEEE Transactions on Evolutionary Computation 1 (1)
(1997) 53–66.
[20] M. Dorigo, V. Maniezzo, A. Colorni, The ant system:
Optimization by a colony of cooperating agents, IEEE
Transactions on Systems, Man, and Cybernetics—Part B 26
(1) (1996) 29–41.

[21] M. Dorigo, T. Stützle, The ant colony optimization meta-
heuristic: Algorithms, applications, and advances, in: F.
Glover, G.A. Kochenberger (Eds.), Handbook of Metaheu-
ristics, Kluwer, 2003, pp. 251–258.

[22] M. Dorigo, T. Stützle, Ant Colony Optimization, MIT Press,
Cambridge, MA, 2004.

[23] D.B. Fogel, System Identification Trough Simulated Evolu-
tion, A Machine Learning Approach, Ginn Press, USA,
1991.

[24] L.M. Gambardella, M. Dorigo, Ant-Q: A reinforcement
learning approach to the traveling salesman problem, in:
Proc. Twelfth International Conference on Machine
Learning (ML-95), Tahoe City, CA, USA, 1995, pp. 252–
260.

[25] L. Gambardella, E. Taillard, G. Agazzi, MACS-VRPTW: A
multiple ant colony system for vehicle routing problems
with time windows, in: D. Corne, M. Dorigo, F. Glover
(Eds.), New Ideas in Optimization, McGraw-Hill, 1999, pp.
73–76.

[26] X. Gandibleux, M. Sevaux, K. Sörensen, V. T’kindt (Eds.),
Metaheuristics for Mutiobjective Optimisation, Lecture
Notes in Economics and Mathematical Systems, vol. 535,
Springer-Verlag, 2004.

[27] D.E. Goldberg, J. Richardson, Genetic algorithms with
sharing for multimodal function optimization, in: Proc.
Second International Conference on Genetic Algorithms
(ICGA’87), Hillsdale, USA, 1987, pp. 41–49.

[28] M. Gravel, W.L. Price, C. Gagné, Scheduling continuous
casting of aluminium using a multiple objective ant colony
optimization metaheuristic, European Journal of Opera-
tional Research 143 (1) (2002) 218–229.

[29] M. Guntsch, M. Middendorf, A population based approach
for ACO, applications of evolutionary computing, in: Proc.
of EvoWorkshops2002: EvoCOP, EvoIASP, EvoSTim,
2279, Kinsale, Ireland, 2002, pp. 71–80.

[30] M. Guntsch, M. Middendorf, Solving multi-objective per-
mutation problems with population based ACO, in: Proc.
Evolutionary Multi-Criteria Optimization (EMO’03), Faro,
Portugal, 2003, pp. 464–478.

[31] A.E. Hans, Multicriteria optimization for highly accurate
systems, in: W. Stadler (Ed.), Multicriteria Optimization in
Engineering and Sciences, Mathematical Concepts and
Methods in Science and Engineering, vol. 19, Plenum Press,
1988, pp. 309–352.

[32] S. Iredi, D. Merkle, M. Middendorf, Bi-criterion optimiza-
tion with multi colony ant algorithms, in: Proc. First
International Conference on Evolutionary Multi-criterion
Optimization (EMO’01), Lecture Notes in Computer Science
1993, 2001, pp. 359–372.

[33] A. Jaszkiewicz, Multiple Objective Metaheuristic Algorithms
for Combinatorial Optimization, Habilitation thesis, 360,
Poznan University of Technology, 2001.

[34] A. Jaszkiewicz, Genetic local search for multi-objective
combinatorial optimization, European Journal of Opera-
tional Research 137 (1) (2002) 50–71.

[35] J. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection, The MIT Press,
1992.

148 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 180 (2007) 116–148
[36] M. López-Ibáñez, L. Paquete, T. Stützle, On the design of
ACO for the biobjective quadratic assignment problem, in:
M. Dorigo, M. Birattari, C. Blum, L. Gambardella, F.
Montada, T. Stützle (Eds.), Proc. of the Fourth International
Workshop on Ant Colony Optimization (ANTS 2004),
Lecture Notes in Computer Science, vol. 3172, Springer-
Verlag, 2004, pp. 214–225.

[37] C.E. Mariano, E. Morales, A multiple objective Ant-Q
algorithm for the design of water distribution irrigation
networks, Technical Report HC-9904, Instituto Mexicano de
Tecnologı́a del Agua, Mexico, June, 1999.

[38] C.E. Mariano, E. Morales, MOAQ: An Ant-Q algorithm for
multiple objective optimization problems, in: W. Banzhaf, J.
Daida, A.E. Eiben, M.H. Garzon, V. Hnavar, M. Jakiela,
R.E. Smith (Eds.), Proc. of the Genetic and Evolutionary
Computing Conference (GECCO 99), San Francisco, Cali-
fornia, USA, July 1999, pp. 894–901.

[39] P.R. McMullen, An ant colony optimization approach to
addressing a JIT sequencing problem with multiple objectives,
Artificial Intelligence in Engineering 15 (3) (2001) 309–317.

[40] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolution Programs, Springer-Verlag, 1996.

[41] D. Pinto, B. Barán, Solving multiobjective multicast routing
problem with a new ant colony optimization approach, in:
Second IFIP/ACM Latin American Networking Conference
(LANC’05), Cali Colombia, 2005, pp. 11–19.

[42] J.D. Schaffer, Multiple objective optimization with vector
evaluated genetic algorithms, in: J.J. Grefenstette (Ed.),
Genetic Algorithms and Their Applications: Proc. of the 1st
Int. Conf. on Genetic Algorithms, Lawrence Erlbaum, 1985,
pp. 93–100.

[43] H.P. Schwefel, Evolution and Optimum SeekingSixth-Gen-
eration Computer Technology Series, John Wiley and Sons,
1995.

[44] B.W. Silverman, Density Estimation for Statistics and Data
Analysis, Chapman and Hall, London, 1986.

[45] T. Stützle, H.H. Hoos, MAX–MIN ant system, Future
Generation Computer Systems 16 (8) (2000) 889–914.

[46] V. T’kindt, N. Monmarché, F. Tercinet, D. Laügt, An ant
colony optimization algorithm to solve a 2-machine bicrite-
ria flowshop scheduling problem, European Journal of
Operational Research 142 (2) (2002) 250–257.

[47] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective
evolutionary algorithms: Empirical results, Evolutionary
Computation 8 (2) (2000) 173–195.

[48] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the
strength Pareto evolutionary algorithm, in: K. Giannakog-
lou et al. (Eds.), EUROGEN 2001, Evolutionary Methods
for Design, Optimization and Control with Applications to
Industrial Problems, Athens, Greece, September 2001, pp.
12–21.

[49] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms:
A comparative case study and the strength Pareto approach,
IEEE Transactions on Evolutionary Computation 3 (4)
(1999) 257–271.

	A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP
	Introduction
	Preliminaries
	Ant colony optimization
	Ant system
	Ant colony system

	Multi-objective optimization

	Multiple objective ant colony optimization algorithms
	Multiple objective Ant-Q algorithm
	Ant algorithm for bi-criterion optimization problems
	Multi-colony for bi-criterion optimization problems
	Pareto ant colony optimization
	Multiple ant colony system for vehicle routing problem with time windows
	Multiple ant colony system
	Multi-objective network ACO
	COMPETants
	Multiple objective ant colony optimization metaheuristic
	Ant colony optimization approach to multiple objectives
	SACO
	Multiple objective ant colony optimization approach to assembly line balancing problems
	Multi-criteria population-based ACO

	A proposal of a taxonomy for the different MOACO algorithms
	On the experimental study
	Adaptation of MOACOs to multi-objective TSP
	MOAQ for the multi-objective TSP
	BicriterionAnt for the multi-objective TSP
	BicriterionMC for the multi-objective TSP
	P-ACO for the multi-objective TSP
	MONACO for the multi-objective TSP

	TSP instances
	Metrics of performance considered
	Parameter settings

	Results and analysis
	Analysis of the results
	Statistics of the runs
	Visual analysis of the Pareto fronts generated
	Analysis of the {M}_{1}^{\ast} metric
	Analysis of the {M}_{2}^{\ast} metric
	Analysis of the {M}_{3}^{\ast} metric
	Analysis of the C metric

	Global analysis

	Concluding remarks and future works
	Evolutionary multi-objective optimization
	Non-dominated sorting genetic Algorithm II
	Strength Pareto EA2
	Metrics of performance

	References

