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Summary. In this paper, we propose a replacement strategy for steady-state genetic algo-
rithms that takes into account two features of the element to be included into the population: a
measure of the contribution of diversity to the population and the fitness function. In particular,
the proposal attempts to replace an element in the population with worse values for these two
features. In this way, the diversity of the population is increased and the quality of its solutions
is improved, simultaneously, maintaining high levels of useful diversity. Experimental results
show that the use of the proposed replacement strategy allows significant performance to be
achieved for problems with different difficulties, which regards to other replacement strategies
presented in the literature.

1 Introduction

There are two primary factors in the search carried out by an genetic algorithm (GA):
population diversity and selective pressure [30]. In order to have an effective search
there must be a search criteria (the fitness function) and a selection pressure that
gives individuals with higher fitness a higher chance of being selected for reproduc-
tion, mutation, and survival. Without selection pressure, the search process becomes
random and promising regions of the search space would not be favored over non-
promising regions. On the other hand, population diversity is crucial to a GA’s ability
to continue the fruitful exploration of the search space [16]. If the lack of population
diversity takes place too early, a premature stagnation of the search is caused. Under
these circumstances, the search is likely to be trapped in a region not containing the
global optimum. This problem, called premature convergence, has long been recog-
nized as a serious failure mode for GAs [6, 10].

Selective pressure and population diversity are inversely related [30]. Increasing
selective pressure results in a faster loss of population diversity, while maintaining
population diversity offsets the effect of increasing selective pressure. These two
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factors should be controlled in order to obtain their beneficial advantages simultane-
ously, allowing the most promising search space regions to be reached and refined.
Under these circumstances, we will say that the population has achieved useful di-
versity, i.e., population diversity that in some way helps produce good solutions [18].

In steady-state GAs (SSGAs) usually only one or two offspring are produced in
each generation. Parents are selected to produce offspring and then a decision is made
as to which individuals in the population to select for deletion to make room for the
new offspring. SSGAs are overlapping systems, since parents and offspring compete
for survival. Different studies have shown that improved performance in SSGAs with
regards to generational GAs (where entire population is replaced every generation
by the offspring population) is due to their higher selection pressure and changes in
the exploration/exploitation balance caused by using different parent selection and
replacement strategies and is not due to the use of an overlapping model [4]. This
justifies the study on SSGAs, and in particular, the design of effective replacement
strategies having the aim of propitiating useful diversity.

In this paper, we propose a replacement strategy that takes into account two fea-
tures of the element to be included into the population: a measure of the contribution
of diversity to the population and the fitness function. It attempts to replace an el-
ement in the population with worse values for these two features. In this way, the
diversity of the population is increased and the quality of its solutions is improved,
simultaneously. The goal of this strategy is to protect those individuals that allow the
highest levels of useful diversity to be maintained.

The paper is set up as follows. In Sect. 2, the SSGA model is described. In Sect. 3,
different types of replacement strategies presented in the literature for promoting
SSGA population diversity are explained. In Sect. 4, we propose the replacement
strategy based on the contribution of diversity. In Sect. 5, different empirical experi-
ments are carried out for studying the performance of this strategy. Finally, in Sect. 6,
some conclusions are pointed out.

2 Steady-State Genetic Algorithms

The generational GA creates new offspring from the members of an old population
using the genetic operators and places these individuals in a new population which
becomes the old population when the whole new population is created. The SSGA is
different to the generational model in that there is typically one single new member
inserted into the new population at any one time. A replacement/deletion strategy
defines which member of the population will be replaced by the new offspring. The
basic algorithm step of SSGA is the following [30]:

1. Select two parents from the population.
2. Create an offspring using crossover and mutation.
3. Evaluate the offspring with the fitness function.
4. Select an individual in the population, which may be replaced by the offspring.
5. Decide if this individual will be replaced.
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In step 4, one can chose the replacement strategy (e.g., replacement of the worst, the
oldest, or a randomly chosen individual). In step 5, one can chose the replacement
condition (e.g., replacement if the new individual is better, or unconditional replace-
ment). A widely used combination is to replace the worst individual only if the new
individual is better. In the paper, this strategy will be called standard replacement
strategy. In [11], it was suggested that the deletion of the worst individuals induced
a high selective pressure, even when the parents were selected randomly.

3 Favouring Population Diversity
Throughout Replacement Strategies

There are different replacement strategies that attempt to preserve population diver-
sity. Most of them are instances of the crowding methods [5]. They work as follows:
new individuals are more likely to replace existing individuals in the parent popu-
lation that are similar to themselves based on genotypic similarity. They have been
used to locate and preserve multiple local optimum in multimodal problems.

An effective crowding method is the restricted tournament selection (RTS) [13].
RTS initially selects two element at random, A and B, from the population and per-
form crossover and mutation on these two elements resulting in a new element A′.
Then, RTS scans w (window size) more members of the population and picks the
individuals that most closely resemble A′ from those w elements. A′ then competes
with this element, and if A′ wins, it is allowed to enter the population.

Another type of crowding methods assume that the parents would be ones of the
members of the population closest to the new elements. In this way, children compete
with their parents to be included in the population, i.e., a family competition is held.
These methods include deterministic crowding [17], elitist recombination [25], and
keep-best reproduction [32].

• In deterministic crowding, each pair of parents, (Pi,Pj), undergoes crossover in
combination with mutation to yield two offspring, (Oi,O j), which compete against
the parents for inclusion in the population through the following method of com-
petition:

If [d(Pi,Oi)+d(Pj,O j)]≤ [d(Pi,O j)+d(Pj,Oi)] then
If f (Oi) is better than f (Pi) then replace Pi with Oi.
If f (O j) is better than f (Pj) then replace Pj with O j.

Else
If f (Oi) is better than f (Pj) then replace Pj with Oi.
If f (O j) is better than f (Pi) then replace Pi with O j.

where f (·) is the fitness function and d(·, ·) is a distance measure between two
chromosomes.

• In elitist recombination, the best two of these four individuals (parents and off-
spring) go to the next generation.
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• Finally, keep-best keeps the best parent and the best offspring in order to introduce
good new genetic material into the population.

In addition, two replacement strategies for SSGAs have been designed for en-
couraging diversity in the population: the first-in-first-out (FIFO) strategy [9, 28]
and the conservative strategy [29].

• In the FIFO strategy, the element to be replaced is the oldest in the population. In
its elitist form, the replacement of the current best element is not allowed.

• The conservative strategy combines a FIFO replacement strategy with a modi-
fied deterministic binary tournament selection operator. In this case, a tournament
is carried out between the oldest element in the population and another member
picked at random. The worse is replaced. In this way, elitism is implicitly assured.

4 The Proposed Replacement Strategy

The population diversity versus selective pressure problem may be consider as a
biobjective problem. The GA may be used for searching simultaneously the best
chromosomes together with the ones that provide more diversity to the GA popula-
tion, i.e., promoters of useful diversity.

In fact, there are some generational GA approaches that use this idea for avoiding
premature convergence and improving GA behavior [15, 19, 23]. During the selec-
tion phase, they use the fitness function and some type of measures for evaluating the
diversity introduced by the candidate chromosomes with the aim of favoring those
individuals with both high fitness function values and high diversity contributions.

In this paper, we propose to solve the diversity versus selective pressure problem
in the replacement phase of a SSGA. In particular, we present a replacement strategy
based on the contribution of diversity of the offspring to the population where it
will be included. The idea is to replace an element of the population with a worse
fitness function value than the one of the offspring, and with a lower contribution
of diversity than the one provided by the offspring. In this way, we deal with two
underlying objectives simultaneously: to optimize the fitness function and to enhance
population diversity, i.e., to promote useful diversity.

In Subsect. 4.1, we present measures of the contribution of diversity of an element
to an SSGA population, and in Subsect. 4.2, we use these measures for defining a
replacement strategy that tackles the biobjective diversity-convergence.

4.1 Contribution of Diversity

Next, we present two different types of measures of the contribution of diversity of a
chromosome x to a population P (x ∈P), ConDiv(x,P). They quantify the importance
of a chromosome as promoter of diversity in the population.
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• Measures based on distance. They are defined as the distance of x to a particular
member of P. We have chosen two possibilities: 1) this member is the best one,
and 2) it is the nearest neighbor of x in P.

These two measures are the ones used in [23] and [3], respectively, and they
will be denoted as ConDiv-B and ConDiv-NN, respectively.

Under these definitions, a chromosome will provide a great contribution of di-
versity when it is very different from all the other chromosomes (ConDiv-NN) or
from the best one (ConDiv-B).

• Measures based on population diversity. Now, we define the contribution of diver-
sity as follows:

ConDiv(x,P) = Div(P∪{x})−Div(P) ,

where Div(P) is a measure of the diversity in the population P. Measures of this
type are to be found in [2, 18].

In this case, the contribution of diversity of a chromosome will be high when
its inclusion in the population allows a significant increasing of diversity to be
achieved. In this paper, we employ the following diversity measure for a popula-
tion with real-coded chromosomes, Cj = (c j

1, · · ·c j
n), j = 1, · · ·N, which is called

average interval usage:

AIU(P) =
1
n

n

∑
i=1

Maxi−Mini

bi−ai

where Maxi = max j=1,...N{c j
i },Mini = min j=1,...N{c j

i }, and ai and bi (ai < bi) are
the extremes of the action interval of the gene i (i = 1, · · · ,n). The measure of the
contribution of diversity derived from AIU will be called ConDiv-AIU.

4.2 The Proposed Replacement Strategy

Now, let us assume that an offspring o is returned from the recombination phase of
an SSGA, then we propose to include o in the population by means of the following
strategy:

1. Find the element z in P that fulfils:
(i) f (o) is better than f (z), f being the fitness function.
(ii) Δz > Δw > 0, for all w in P, where for any t ∈ P:

Δt = ConDiv(o,P−{t})−ConDiv(t,P−{t}) .

2. If z does not exist, then apply the standard replacement strategy (Sect. 2).

First, this strategy attempts to find an element in the population with worse fit-
ness than the offspring and whose contribution of diversity is the lowest with regards
to the one provided by the offspring in a population where this element have been re-
moved. This element will be replaced by the offspring. In this way, we introduce into
the population an element with better fitness function and higher contribution of di-
versity, increasing the population diversity and improving the quality of its solutions.
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If this individual does not exist, then the standard replacement strategy is applied. In
this way, we ensure that the best elements found during the run are included in the
population (elitist strategy).

5 Experiments

Minimization experiments on the test suite described in Sect. 5.1 were carried out
in order to study the behavior of the replacement strategy presented in the previous
section.

In Sect. 5.2, we propose different SSGA instances based on this strategy and
compare its results with the ones of a standard SSGA. Finally, in Sect. 5.3, we com-
pare the best SSGA of Sect. 5.2 with different SSGAs based on the replacement
strategies described in Sect. 3.

5.1 Test Suite

The test suite that we have used for the experiments consists of six test functions
and three real-world problems. The test functions are the following: Sphere model
( fSph) [5, 22], Generalized Rosenbrock’s function ( fRos) [5], Schwefel’s Problem 1.2
( fSch) [22], Generalized Rastringin’s function ( fRas) [1, 26], Griewangk’s function
( fGri) [12], and Expansion of f10 (e f10) [31]. The dimension of the search space is
10 for e f10 and 25 for the remaining test functions. The three real-world problems
are the following: Systems of Linear Equations [8], Frequency Modulation Sounds
Parameter Identification Problem [27], and Polynomial Fitting Problem [24]. For all
the problems, the global optimum has a fitness value of zero.

5.2 SSGAs Based on the Proposed Replacement Strategy

We have implemented three instances of SSGA based on the replacement strategy
proposed in Subsect. 4.2. They are called SGA-ConDiv-B, SGA-ConDiv-NN, and
SGA-ConDiv-AIU, and use the ConDiv-B, ConDiv-NN, and ConDiv-AIU measures
of the contribution of diversity defined in Subsect. 4.1, respectively. We compare
these algorithms against a SSGA that uses the standard replacement strategy (see
Sect. 2), which is called SGA-Standard.

All the algorithms use real coding [14] and apply the BGA mutation operator
[20] and the BLX-α operator (α = 0.5) [7]. The mutation probability is 1

n and the
population size is 60 chromosomes. Parents are selected at random. They were exe-
cuted 50 times, each one with a maximum of 100,000 evaluations. Table 1 shows the
results obtained. The performance measures utilized are the following:

• A performance: average of the best fitness function found at the end of each run.
• B performance: best of the fitness values averaged as A performance. If the global

optimum has been reached sometimes, this performance will represent the per-
centage of runs in which this happens.
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Table 1. Results for SSGAs based on the proposed replacement strategy

fsph fRos fSch
Algorithm A B A B A B
SGA-ConDiv-AIU 1.2e−15 ∼ 2.9e−54 2.4e+01 ∼ 1.0e+01 3.4e−01 − 2.9e−02
SGA-ConDiv-NN 4.3e−50 ∼ 7.5e−52 2.0e+01 ∼ 1.9e+01 5.9e−02 − 6.9e−03
SGA-ConDiv-B 1.1e−32 ∼ 1.0e−41 2.7e+01 ∼ 1.6e+01 4.3e+00 ∼ 3.0e−01
SGA-Standard 2.2e−04 1.1e−55 2.3e+01 1.3e+01 2.9e+00 1.5e−01

fRas fGri e f10
Algorithm A B A B A B
SGA-ConDiv-AIU 6.8e−01 − 52.0 % 1.4e−03 − 62.0 % 6.8e−03 ∼ 6.2e−35
SGA-ConDiv-NN 4.4e−01 − 56.0 % 3.5e−04 − 86.0 % 4.8e−26 − 7.4e−27
SGA-ConDiv-B 1.1e+00 ∼ 30.0 % 9.6e−03 + 38.0 % 5.3e−03 ∼ 1.8e−27
SGA-Standard 1.2e+00 32.0 % 4.3e−03 4.0 % 6.3e−03 8.5e−37

Pf ms Psle PCheb
Algorithm A B A B A B
SGA-ConDiv-AIU 7.3e+02 ∼ 1.3e+02 1.4e+02 ∼ 1.8e+01 1.5e+01 ∼ 6.5e−07
SGA-ConDiv-NN 2.9e+02 − 2.8e+00 3.1e+01 − 5.7e−01 1.5e+00 − 2.0e−26
SGA-ConDiv-B 2.9e+03 + 1.3e+02 3.1e+02 + 5.1e+01 1.3e+01 ∼ 2.2e−10
SGA-Standard 7.8e+02 1.2e+02 1.2e+02 1.2e+01 1.4e+01 3.2e−10

A two-sided t-test (Ho : means of the two groups are equal, Ha : means of the two
group are not equal) at 0.05 level of significance was applied in order to ascertain if
differences in the A performance for the standard SSGA are significant when com-
pared against the ones for the SSGAs based on the proposed replacement strategy.
The direction of any significant differences is denoted either by:

• A plus sign (+): the A performance of SGA-Standard is better than the one of the
corresponding algorithm.

• A minus sign (−): the algorithm improves the A performance of SGA-Standard.
• An approximate sign (∼): non significant differences.

Taking into consideration these results, we would make the following comments:

• SGA-ConDiv-NN returns better A results than SGA-Standard (see t-test results)
on all test functions except on the unimodal fsph and fRos, where they are similar.
Moreover, SGA-ConDiv-NN achieves a better B measure than SGA-Standard for
the more complex functions: fSch, PCheb,Pf ms, and Psle.
SGA-ConDiv-AIU provides better A results than SGA-Standard on the complex
fSch and on the multimodal fRas and fGri. For the remaining function, their perfor-
mance is similar.
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These facts show that using the proposed replacement strategy, the results may
be improved with regards to a standard SSGA. This means that its formulation
(which has the aim of propitiate useful diversity) allows a profitable operation to
be achieved. Furthermore, the measure of contribution of diversity ConDiv-NN
arises as a very adequate measure for designing this strategy.

• On the other hand, SGA-ConDiv-B losses performance with regards to SGA-
Standard on fGri,Psle, and Pf ms. Therefore, we may claim that the measure
ConDiv-B is not suitable for building the proposed replacement strategy. The idea
of favoring those elements in the population that are located far away from the cur-
rent best individual is not a good diversification strategy, because it may obstruct
the refinement of the best solutions, degrading the quality of the final solutions.

5.3 Comparison with Other Replacement Strategies

In this section, we compare the best algorithm based on the proposed replacement
strategy, SGA-ConDiv-NN, against different SSGAs that use the replacement strate-
gies described in Sect. 3. Table 2, shows these algorithms along with their main
features.

Table 2. Algorithms based on other replacement strategies

Algorithm Replacement Strategy
SGA-RTS Restricted tournament selection (ω = 5)
SGA-DC Deterministic crowding
SGA-ER Elitist recombination
SGA-KBR Keep-best reproduction
SGA-FIFO First-in-first-out
SGA-Conse Conservative strategy

Table 3 has the results. A t-test was applied in order to ascertain if differences in
the A performance for SGA-ConDiv-NN are significant when compared against the
one for the other algorithms.

Table 4 was introduced in order to analyse the results. It shows the number of im-
provements, reductions, and non differences (according to the t-test results in Table
3) in the A performance for SGA-ConDiv-NN with regards to the one for the other
algorithms.

The table shows that SGA-ConDiv-NN outperforms all the other algorithms, be-
cause it improves their results on a great number of functions and never achieves a
worse A performance measure. The source of diversity for these algorithms is the
same than for SGA-ConDiv-NN since they use the same mating and recombination
strategies. The difference between them is the way in which diversity is retained
by the replacement strategies. The promising results of the proposal reveal that it
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Table 3. Results for the comparison

fsph fRos fSch
Algorithm A B A B A B
SGA-RTS 9.2e−17 + 5.7e−20 2.1e+01 ∼ 1.5e+01 1.6e+01 + 2.1e+00
SGA-DC 9.4e−32 + 6.5e−33 2.1e+01 + 2.0e+01 1.2e+01 + 3.8e+00
SGA-ER 8.0e−46 + 2.3e−47 2.1e+01 ∼ 2.0e+01 3.8e−01 + 7.6e−02
SGA-KBR 2.8e−12 ∼ 6.2e−14 2.3e+01 ∼ 1.5e+01 1.4e−01 + 1.9e−02
SGA-FIFO 1.9e−02 + 9.3e−12 2.5e+01 + 2.1e+00 5.5e+01 + 3.6e−01
SGA-Conse 7.0e−03 ∼ 2.2e−12 3.2e+01 + 4.5e+00 1.2e+02 + 7.8e−01
SGA-ConDiv-NN 4.3e−50 7.5e−52 2.0e+01 1.9e+01 5.9e−02 6.9e−03

fRas fGri e f10
Algorithm A B A B A B
SGA-RTS 6.8e−01 ∼ 3.3e−10 6.6e−03 + 1.1e−18 1.4e−02 + 1.3e−09
SGA-DC 2.2e+01 + 3.2e+00 4.3e−08 ∼ 90.0 % 9.6e−15 + 3.0e−15
SGA-ER 2.6e+00 + 8.0 % 8.9e−04 ∼ 84.0 % 4.7e−25 + 1.3e−25
SGA-KBR 5.4e−01 ∼ 1.9e−10 2.0e−03 ∼ 6.6e−11 8.8e−03 + 1.8e−03
SGA-FIFO 1.0e+00 + 1.2e−08 3.7e−02 + 8.7e−09 4.5e−01 + 4.0e−06
SGA-Conse 1.2e+00 + 2.8e−04 4.3e−02 + 1.5e−08 3.7e−01 + 3.1e−11
SGA-ConDiv-NN 4.4e−01 56.0 % 3.5e−04 86.0 % 4.8e−26 7.4e−27

Pf ms Psle PCheb
Algorithm A B A B A B
SGA-RTS 5.7e+02 + 6.1e+01 7.0e+01 + 6.7e+00 4.8e+00 + 4.6e−15
SGA-DC 2.8e+02 ∼ 3.4e+01 2.4e+01 ∼ 2.5e+00 3.9e+00 + 2.4e−05
SGA-ER 3.2e+02 ∼ 2.1e+01 5.1e+01 + 1.3e+00 3.4e+00 ∼ 3.0e−17
SGA-KBR 3.3e+02 ∼ 5.5e+01 6.9e+01 + 3.0e+00 7.9e+00 + 1.1e−15
SGA-FIFO 1.6e+03 + 3.6e+02 2.2e+02 + 4.1e+01 1.7e+01 + 5.8e−07
SGA-Conse 1.5e+03 + 1.5e+02 2.5e+02 + 2.6e+01 1.8e+01 + 4.0e−04
SGA-ConDiv-NN 2.9e+02 2.8e+00 3.1e+01 5.7e−01 1.5e+00 2.0e−26

Table 4. SGA-ConDiv vs. the other algorithms

Algorithm Num. Impr. (+) Num. Red. (−) Num. Non Diff. (∼)

SGA-RTS 7 0 2
SGA-DC 6 0 3
SGA-ER 5 0 4
SGA-KBR 5 0 4
SGA-FIFO 9 0 0
SGA-Conse 8 0 1

conserves those elements (the more diverse and with the higher quality) that al-
low the search process to be driven towards better regions than by means of the
other strategies. Thus, we conclude that it is an adequate replacement strategy for
SSGAs.
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6 Conclusions

This paper presented a replacement strategy for SSGAs that attempts to promote use-
ful diversity by considering the merit of the offspring as solution and its contribution
of diversity to the population. It attempts to replace an individual that is worse than
the offspring with regards to these two factors, obtaining two benefits simultane-
ously: an increase of the population diversity and an improvement on the quality of
its solutions. The principal conclusions derived from the results of the experiments
carried out are the following:

1. The ConDiv-NN measure of the contribution of diversity is the best choice for
designing the proposed strategy. However, other measures (such as ConDiv-AIU)
allow the effectiveness of the strategy to be exhibited as well, with regards to a
standard SSGA.

2. The proposal is a suitable replacement strategy for SSGAs. Its effects on SSGA
performance are more decisive than the ones derived from the use of other re-
placement strategies presented in the GA literature.

3. These results confirm that the replacement strategy is a determinant issue to take
into account for designing effective SSGAs.

Finally, we should point out that extensions of the proposed replacement strategy
may be followed in four ways: 1) consider additional features of the chromosomes for
deciding which individual should be replaced, such as their age, average distance to
their k nearest neighbours, distance to a neighbouring subpopulation (in a distributed
SSGA framework), etc., 2) design similar replacement strategies for working under
other types of coding (such as binary-coding, order-based codings, codings used for
the genetic programming, etc.), and 3) study the effects of the application of this
strategy on nonstationary problems.
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