636

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

Quick Design of Fuzzy Controllers With Good
Interpretability in Mobile Robotics

Manuel Mucientes and Jorge Casillas

Abstract—This paper presents a methodology for the design of
fuzzy controllers with good interpretability in mobile robotics. It is
composed of a technique to automatically generate a training data
set plus an efficient algorithm to learn fuzzy controllers. The pro-
posed approach obtains a highly interpretable knowledge base in a
very reduced time, and the designer only has to define the number
of membership functions and the universe of discourse of each
variable, together with a scoring function. In addition, the learned
fuzzy controllers are general because the training set is composed
of a number of automatically generated examples that cover the
universe of discourse of each variable uniformly and with a pre-
defined precision. The methodology has been applied to the design
of a wall-following and moving object following behavior. Several
tests in simulated environments using the Nomad 200 robot soft-
ware and a comparison with another learning method show the
performance and advantages of the proposed approach.

Index Terms—Ant colony optimization, behavior design, fuzzy
control, learning, mobile robot navigation.

1. INTRODUCTION

UTONOMOUS mobile robots are those robots that have

the ability to move and perform tasks in real environments
without human supervision. According to [1], control tasks on
a robot can be of two different kinds: reactive and deliberative.
Reactive control uses the current sensor information to select
the control action, while deliberative control also uses previous
sensor information and, as a result, plans about future positions
and actions of the robot. Modern control architectures for this
kind of robots are hybrid, thus they have several layers: at the
lowest layer all the reactive control is grouped, while on the
top layer the planning tasks are done. In that way, the robot is
able to implement complex tasks and react to changes in the
environment (obstacles moving, people appearing, etc.).

The reactive layer is usually implemented with behaviors
(tasks like wall-following, go through a door, follow a person,
avoid a moving object, etc.) that are coordinated by the planning
layer. The environments in which an autonomous robot moves
are unconstrained and have a high amount of uncertainty.

Manuscript received January 25, 2005; revised October 17, 2005 and January
19, 2006. This work was supported in part by the Spanish Ministry of Education
and Science under Grants TIC2003-00877, TIN2005-08386-C05-01, TIN2005-
08521, and TIN2005-03844 and by the DXID of the Xunta de Galicia under
Grant PGIDIT04TIC206011PR.

M. Mucientes is with the Department of Electronics and Computer Science,
University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
(e-mail: manuel@dec.usc.es).

J. Casillas is with the Department of Computer Science and Artificial
Intelligence, University of Granada, E-18071 Granada, Spain (e-mail:
casillas@decsai.ugr.es).

Digital Object Identifier 10.1109/TFUZZ.2006.889889

Furthermore, information provided by robot sensors is noisy
and unreliable. This problem becomes more important when
data from ultrasound sensors are used because of low angular
resolution and specular reflection. Fuzzy logic has shown to be
a useful tool when dealing with this uncertainty and has been
widely used for the design of behaviors in robotics [2], [3].

However, the design of fuzzy controllers has mainly two
problems. On the one hand, the knowledge about the task to
be controlled must be extracted, and sometimes this is very
difficult. On the other, the designer usually has to spend a long
time tuning the controller [4]. Due to these difficulties, the use
of learning methods for the design of fuzzy controllers has been
generalized [5]. There are different approaches: evolutionary
algorithms [6]-[13], neural networks [14], [15], reinforcement
learning [16]—[23], a combination of neural networks and evo-
lutionary algorithms [24]-[27], etc. Evolutionary algorithms
have some characteristics that make them especially useful
for the design of fuzzy controllers: they are flexible to design
different components of a controller, constraints can be easily
included, and they let the designer decide the most adequate
tradeoff between interpretability and accuracy for a specific
controller.

The approaches that can be found in the bibliography have
different shortcomings. Some of them take a long time to learn
the behaviors [6], [7], [11], [17], [21]. Others need the defini-
tion of a lot of parameters that depend on the problem and/or
environment, or a partial description of a knowledge base [9],
which complicates the design of new behaviors since parame-
ters must be tuned and expert knowledge has to be acquired.
Besides, sometimes the learned behavior is not general [7], [9],
[11], [27], [28]; thus the performance is adequate in some envi-
ronments but poor in others. As a result, the learned behavior is
not reliable and its implementation on the real robot is not ad-
equate. Finally, the interpretability of some of the learned con-
trollers is poor [6], [15], [21], [25], [27]-[30] and, as a conse-
quence, it is difficult to detect and solve errors during the oper-
ation of the controller.

This paper presents a methodology to design behaviors in mo-
bile robotics that tries to address the above mentioned draw-
backs. This methodology consists of two parts: a novel tech-
nique to automatically generate data sets plus a learning method
to automatically design fuzzy controllers from them.

The proposed technique automatically generates data sets for
the design of behaviors in mobile robotics. It aims at providing
a learned behavior totally general where the robot implements
a valid control action in any situation. Therefore, the technique
addresses two of the above-mentioned drawbacks since it
simplifies the design of fuzzy controllers and they are built to

1063-6706/$25.00 © 2007 IEEE

MUCIENTES AND CASILLAS: QUICK DESIGN OF FUZZY CONTROLLERS WITH GOOD INTERPRETABILITY IN MOBILE ROBOTICS 637

properly work in any environment. To illustrate its performance,
we have chosen two different behaviors (wall-following and
moving object following) in this paper, though the technique
could be easily adapted to other behaviors.

The technique “opens the door” to the automatic design of
fuzzy robot controllers for any data-driven learning method.
The technique automates a number of tasks in the fuzzy
controller design, thus leaving only a few components to be
defined by the expert. With the aim of addressing some of the
above-mentioned drawbacks by performing a quick learning
and providing fuzzy controllers with good interpretability, we
propose to use a simple but effective method: the cooperative
rules (COR) methodology [31]-[33]. In this paper, we have
adapted this methodology to our problem by considering sev-
eral consequent variables and using a different fitness function
to facilitate the rule base reduction. Besides, we use ant colony
optimization (ACO) [34] as a search algorithm to decrease
the learning time. Several experiments in different simulated
environments (Nomad 200 simulator) have been done in order
to test the performance of the proposed method.

This paper is organized as follows. Section II introduces
the technique to generate data sets for the wall-following and
moving object following behaviors. Section III presents the
considered learning method. Section IV shows the obtained
results and a detailed experimental analysis. Section V outlines
some conclusions.

II. AUTOMATIC DESIGN OF BEHAVIORS IN MOBILE ROBOTICS

Our proposed technique for the generation of data sets for
learning fuzzy controllers in mobile robotics has the following
steps.

1) Definition of the input and output variables, and calculation
of the input values using the information provided by the
sensors and the robot’s odometry.

2) Definition of the universe of discourse, the number of fuzzy
sets, and the precision (p,,) of each variable n.

3) Definition of the scoring function (SF), a function that eval-
uates the action of the fuzzy controller over an example.

4) Definition of the objective function, the index that mea-
sures the global quality of the encoded rule set. This func-
tion is independent of the behavior.

5) Robot simulation, in order to reduce the time needed for
learning. The robot is modeled with a set of equations that
are valid for all behaviors.

6) Construction of the training set. The set of examples is cre-
ated combining the values of the variables of the antecedent
part. The values for the consequent part are calculated by
testing all the possible combinations of the discrete output
values.

In order to describe the steps of this technique in detail, a
couple of behaviors are used as examples: wall-following and
moving object following. Similar steps could be applied for
learning other behaviors.

e The wall-following behavior is usually implemented
when the robot is exploring an unknown area or when
it is moving between two points in a map, generally in
indoor environments. A good wall-following controller

(xm’ ym) : em

(%, ¥

Fig. 1. Description of the points, distances, and angles needed for the calcula-
tion of the input variables for the moving object following behavior.

is characterized by three features: to maintain a suitable
distance from the wall that is being followed, to move
at a high velocity whenever possible, and to avoid sharp
movements, making smooth and progressive turns and
changes in velocity.

The controller can be configured modifying the values of
two parameters: the reference distance (dyai1), which is the
desired distance between the robot and the selected wall,
and the maximum velocity attainable by the robot (vmax)-
In this paper, it is assumed that the robot is going to follow
a contour that is on its right side. Of course, the robot could
also follow the left-hand wall by simply interchanging the
sensor inputs.

* A mobile robot can implement the moving object following
behavior for pursuing a person, or when it is cooperating
with other robots in the implementation of a task and one
of the robots is guiding the other ones. A good implemen-
tation of the behavior has to place the robot at the objec-
tive point (Zobj, Yobj) (see Fig. 1). This point is defined
using the desired distance (d,ef) between the robot and
the moving object, and the reference deviation (dev,.f),
which is an angle that indicates the position of the robot
with respect to the advance direction of the moving object.
If dev,er = 0, the robot will follow the moving object ex-
actly behind it, while positive values of dev,.¢ indicate that
the robot will be placed at the right of the advance direction
of the object, and negative values to the left. Furthermore,
a good controller for this behavior must implement smooth
changes in the velocity and angle of the robot.

A. Preprocessing of the Variables

The first step in the design of the controller is the selection of
the input and output variables.

1) Wall-Following: For the wall-following behavior, two of
the input variables are the relative right-hand distance (RD) and
the distances quotient (DQ), which are calculated as

right — hand distance

RD = ey

dwall
left — hand distance

right — hand distance’

DQ = @

638

DQ is the relative position of the robot inside a corridor,
which provides information that is of greater relevance to the
problem than simply using the left-hand distance. A high value
for DQ means that the robot is closer to the right-hand wall,
while a low value indicates that the closer wall is the left-hand
one. In this case, the robot should approach to the right-hand
wall, although the right-hand wall is lower than the reference
distance. The other input variables are the relative linear velocity
of the robot (LV)

Uy

LV = 3)

vmax

where v, is the real linear velocity of the robot and the orienta-
tion of the robot with respect to the wall it is following (O)-
A positive value of the orientation indicates that the robot is ap-
proaching the wall, while a negative value means the robot is
moving away from the wall. The output variables are the rel-
ative linear acceleration (LA) and the relative angular velocity
(AV)

linear acceleration
LA =

“4)

amax

angular velocity

AV = &)

wmax
where a,,.x and wy,.x are the maximum linear acceleration and
the maximum angular velocity attainable by the robot.

All the information used to calculate distances and orienta-
tions is obtained from the ultrasound sensors of the robot. The
data are processed using distributed perception [35], and for this
reason the sensors are grouped in different sets. Distances are
measured as the minimum distance of a set of sensors (obvi-
ously, the set of sensors is different for RD and DQ). 6,1 will
be a weighted sum of the orientation of each sensor in the set,
giving more weight to those sensors that detect closer obstacles

Ny d;
Zi:l anglei ’ (1 - maxud) (6)
Ny d;
Zi:l (1 - maxud)

where n,, is the number of sensors in the set, angle; is the angle
of sensor 7, d; is the measured distance of this sensor, and max,,4
is the maximum distance that a sensor can measure.

2) Moving Object Following: For this behavior, the input
variables are the following.

» The distance between the robot and the objective point

ewall =

\/(xr - zobj)z + (yr - yobj)2

d=
dref

)

* The deviation of the robot with respect to the objective
point. A negative value indicates that the robot is moving in
a direction to the left of the objective point, while a positive
value means that it is moving to the right

dw:mmm<@ﬁl&)—m. (8)

Tobj — T

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

* The difference of velocity between the robot and the object

Uy — Um

Av = 9

/UITIB,X

where v;., U, and vyax are the linear velocities of the
robot, the moving object, and the maximum velocity at-
tainable by the robot (as has been previously defined for
the other behavior).

* The difference of angle between the object and the robot

AN =0, — 0, (10)

The output variables are the LA (4) and the AV (5).

B. Universe of Discourse and Precision

The second step in the design is the definition of the universe
of discourse, the number of fuzzy sets, and the precision (p,,) of
each variable n. The universe of discourse is, for some variables
(RD, DQ, O for wall-following, and d, Av, A§ for moving
object following), a reduced version of the real universe of dis-
course, and it should contain those values of the variable that are
meaningful for learning. For example, high values of distances
are not useful during learning, because for all of them the robot
will execute the same action. Therefore, it is enough to include
only a few high values in the universe of discourse.

The same occurs with the precision of the variables. Precision
is used to generate the examples. Very low values of p,, will gen-
erate a higher number of examples and, therefore, many of them
will not be meaningful because there will be very similar exam-
ples. Selecting valid values for the universes of discourse and
the precisions is not difficult for somebody who has defined the
input and output variables, and it is always possible to select an
extended universe of discourse or a lower precision. In the worst
case, a higher number of examples will be generated (some of
them useless) and learning will take more time.

For the wall-following behavior, different values for these pa-
rameters have been tested, giving a number of examples that
range from 5070 to 23 085. As will be shown in the experimental
section (Section IV), the learning algorithm can last from 4 m
5 s to 20 m in the worst case, which is also quite fast. These
times include the time needed for the generation of the training
set (about 1 s for the 5070 set). For this set, the following values
have been used for the universes of discourse and precisions.

* universes of discourse: RD € [0, 3], DQ € [0, 2], fyan €

[-45,45], LV € [0,1], LA € [-1,1], and AV € [-1,1];
* precisions: prp = 0.25, ppq = 0.5, po,., = 7.5, pv =
0.2, PLA = 0.125, and PAV = 0.05.
For the moving object following behavior, 6435 examples
have been used and, as will be shown later, the controller was
learntin 7 m 19 s (includes 10 s for the generation of examples):
* universes of discourse: d € [0,1], dev € [—180,180],
Av € [-1,1], Af € [-20,20], LA € [-1,1], and AV €
[_ L, 1];

* precisions: pg = 0.1, pgev = 30, pa, = 0.25, pag = 10,
pra = 0.125, and pay = 0.05.

MUCIENTES AND CASILLAS: QUICK DESIGN OF FUZZY CONTROLLERS WITH GOOD INTERPRETABILITY IN MOBILE ROBOTICS 639

C. Scoring Function

An important aspect of the proposed data set generation tech-
nique is the definition of the SF (11), a function that evaluates
the action of the fuzzy controller over an example. This func-
tion is behavior dependent. The role of the SF is to measure the
deviation of each variable from the desired value (the one asso-
ciated to the ideal state).

1) Wall-Following: For this behavior, SF is defined as

SF(RB(e!)) = a1 + as + as (11)
where ¢! is the /th example and SF(RB(e!)) is the score of the
state reached by the robot starting at the state defined by e! and
applying the control action proposed by the fuzzy rule base RB.
The values a1, s, and ag are computed as follows:

IRD — 1|

oy = 100 - (12)
PrRD
LV-1
as = 10- V=1 (13)
pLv
gwa
o3 = Q (14)
Pbyan

The parameters prp, prv, and pg__, are the precisions of the
respective input variables. Precisions are used in these equations
in order to evaluate the deviations of the values of the variables
from the desired ones in a relative manner (the deviation of the
value of variable n from the desired one is measured in units
of p,). This makes possible the comparison of the deviations
of different variables and, as a consequence, the assignment of
the weights for each one of the variables. These weights (100,
10, and 1 for (12)—(14), respectively) have been intuitively de-
termined and indicate how much important the deviation in the
value of a variable is with respect to the deviation of other vari-
ables. The highest weight has been assigned to the distance, as
small variations of RD with respect to the reference distance
should be highly penalized. An intermediate weight is associ-
ated to the velocity and, finally, the least important contribution
to function SF is given by the orientation of the robot.

2) Moving Object Following: SF is defined for this behavior
as follows:

SF(RB(e')) = a1 4+ g + as (15)
where a1, a2, and a3 are, respectively
d
ar = 100 1 (16)
Pd
d
as =10 19V (17)
Pdev
A
oy = 120 (18)
PArv

The parameters pg, pdev, and pa,, are the precisions of the re-
spective input variables. The highest weight has been assigned
to the distance, as the robot must be close to the objective point.

An intermediate weight is associated to the deviation and, fi-
nally, the least important contribution to function SF is given by
the difference in velocity.

D. Objective Function

The index that measures the global quality of the encoded rule
set is independent of the behavior that is going to be learnt

1 NE
fRB) = 5—=> (9(e"))? (19)
=1

where NE is the number of examples and g(e') is defined as
follows:

gw):{u—hwwyc+L ithe) <1 o

exp(1 — h(e')), otherwise

with ¢ being a scaling factor that has been set to 1000 and

h(el) B min(SF(e!)) + 1

~ SF(RB(e!)) +1 @D

with min(SF(e')) being the minimum score that an action can
obtain, for example, ¢! (using the output values as described in
Section II-F).

E. Robot Simulation

In order to reduce the time needed for learning, the simulation
software of the Nomad 200 robot will only be used for testing
the obtained controller. During learning, the movement of the
robot will be modeled with the following set of equations (this
model is valid for all behaviors, not only the two analyzed ones):

vr(k) = vr(k — 1) + ar(k)At (22)

where v,.(k) and a,(k) are the linear velocity and the linear
acceleration of the robot at time k and A\t is the time between
two control cycles (a value of At = 1/3s has been used)

€r<k> = Hr(k - 1) - wr(k>At (23)

where 6,.(k) and w,.(k) are the orientation and the angular ve-
locity of the robot at time &k and

x&@zxﬂk—”+2m%ﬂﬂc%(g—&@»

(24)
. v

%@Q:%%—lyHMAMAMm(g—&@D

(25)
are the coordinates of the robot at time k.

The model assumes that the final v, and 6, are reached
without time delay. To simulate the inertia of the robot in its

movements, the new position is calculated as if there were two
control cycles between orders [two in (24) and (25)], so the

640

selected accelerations and turnings are smoother (the robot will
move a longer distance) and, on the contrary, decelerations
must be harder.

F. Construction of the Training Set

The learning of the controller is done using a set of exam-
ples. As has been mentioned, depending on the selected values
for the universes of discourse and the precisions, the number
of examples can vary. In this paper, 5070 examples have been
used for the wall-following behavior and 6435 for the moving
object following behavior. The data set is automatically gener-
ated by starting from the minimum value of each variable and
increasing the value in a quantity equal to p,, until the maximum
value is reached; a number of different values for the variables is
obtained. The set of examples is created combining these values
for all the variables of the antecedent part.

The values of the variables of the consequent part for each ex-
ample are determined by testing all the possible combinations
of their discrete output values (according to the corresponding
precision degrees) and selecting those which let the robot reach
the state closest to the ideal state. For the wall-following be-
havior, the ideal state is that in which the robot is parallel, at
the reference distance to the wall and traveling with the highest
linear velocity. For the moving object following behavior, this
state will be the one in which the robot is placed at the objec-
tive point and traveling with a linear velocity that is equal to
the velocity of the moving object. The function that determines
how close a state is from the ideal state is the SF as defined in
Section II-C: the lower the value of SF, the closer the state is the
ideal state.

III. LEARNING METHODOLOGY BASED ON COR

Once a data set has been generated to design a specific be-
havior as described in the previous section, a learning method
is used to automatically generate a fuzzy controller. We pro-
pose to use a learning process based on the COR methodology
(proposed in [31] and extended in [32]). We have selected this
process due to its good properties to quickly obtain knowledge
bases with a good interpretability. The three following sections
describe the learning methodology, analyze its main properties
to design behaviors in mobile robotics, and present the proposed
algorithm based on COR.

A. COR Methodology

A family of efficient and simple methods to derive fuzzy rules
guided by covering criteria of the data in the example set, called
ad hoc data-driven methods, has been proposed in the litera-
ture in the last few years. Their simplicity, in addition to their
quickness and easy understanding, make them very suitable for
learning tasks. However, ad hoc data-driven methods usually
look for the fuzzy rules with the best individual performance
(e.g., see [36]) and therefore the global interaction among the
rules of the rule base is not considered, thus involving knowl-
edge bases with bad accuracy.

With the aim of addressing these drawbacks but keeping the
interesting advantages of ad hoc data-driven methods, the COR
methodology is proposed [31]. Instead of selecting the conse-
quent with the highest performance in each subspace like these

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

methods usually do, the COR methodology considers the possi-
bility of using another consequent, different from the best one,
when it allows the fuzzy rule-based system to be more accurate
due to having a knowledge base with better cooperation.

COR consists of two stages.

1) Search space construction—It obtains a set of candidate
consequents for each rule.

2) Selection of the most cooperative fuzzy rule set—It per-
forms a combinatorial search among these sets looking for
the combination of consequents with the best global accu-
racy.

A wider description of the COR-based rule generation
process is shown in Fig. 2.

B. Advantages of the COR Methodology to Design Behaviors
in Mobile Robotics

The above-mentioned methodology has some interesting ad-
vantages that make it very useful to learn fuzzy controllers, es-
pecially for the design of behaviors in mobile robotics. We can
mainly highlight two characteristics: search space reduction and
good interpretability.

1) Search Space Reduction: The COR methodology reduces
the search space using heuristic information. This fact differ-
entiates COR from other rule base learning methods [37] and
allows it to be quicker and to make better exploration of the
solutions. This is an important issue for the learning of fuzzy
controllers, where a high number of examples are used. In the
wall-following behavior presented in this paper, the method-
ology spends only 4 m 5 s to obtain the controller. As opposed
to this, a solution based on genetic algorithms with the same
number of examples could take several hours.

This search space reduction is performed by two constraints.

e Maximum number of fuzzy input subspaces: The maximum

number of fuzzy input subspaces, and therefore the max-
imum number of fuzzy rules, is limited by the positive ex-
ample sets. The constrains imposed to construct E+(S,)
[see (26) in Fig. 2] divides the input space with a crisp grid
bounded by the cross-points between labels and, therefore,
each example contributes to generate a single rule. It is a
conservative subspace set selection that generates the least
possible number of rules that guarantee a whole covering
of the examples.
In our problem, since the example data are uniformly
distributed in the whole input space (as described in
Section II), no reduction of the number of fuzzy input
subspaces is done. Nevertheless, the fact of assigning each
example to only one subspace will decrease the number
of candidate consequents, since the positive example sets
are reduced.

* Candidate rule set in each subspace: Once the fuzzy input
subspaces are defined, a second search space reduction is
made by constraining the set of possible consequents for
each antecedent combination, i.e., the candidate rules in
each subspace. Again, we use a restrictive condition to
construct C'(Sy,) [see (27) in Fig. 2] that generates a low
number of candidate rules.

To illustrate the effect of this search space reduction, from the

example data set proposed in Section II-F for the wall-following

Inputs:
o Aninput-output data set—FE = {e1,...,e;,...,en}, withe; =
(b, ... 2b, gl gk e {a,. N} N being the data set

size, and n (m) being the number of input (output) variables—
representing the behavior of the problem being solved.

o A fuzzy partition of the variable spaces. In our case, uniformly
distributed fuzzy sets are regarded. Let A; be the set of
linguistic terms of the ith input variable, with i € {1,...,n},
and B; be the set of linguistic terms of the jth output variable,
with j € {1,...,m}, with | 4;] (|B;|) being the number of labels
of the ith (jth) input (output) variable.

Algorithm:
1) Search space construction:

1.1. Define the fuzzy input subspaces containing positive
examples: To do so, we should define the positive
example set (E*(S,)) for each fuzzy input subspace

Ss = (A3,...,As,... A%), with A? € A; being a
label, s € {1 ,Ng},and Ng = H*%Zl |A;| being the
number of fuzzy input subspaces. In this paper, we use
the following:

EY(Ss)={ ee€b|Vie{l,...,n},
VAL € A, pas (al) > MA;(%) }

(26)

with pas (+) being the membership function associated

with the label A,

Among all the Ngs possible fuzzy input subspaces,

consider only those containing at least one positive

example. To do so, the set of subspaces with positive

examples is defined as St = {S}, | ET(S},) # 0}.

1.2. Generate the set of candidate rules in each subspace
with positive examples: Firstly, the candidate conse-
quent set associated with each subspace containing at
least an example, S;, € St is defined. In this paper, we
use the following:

C(Sp) =A{ (Bkh kh)egl X B |
Je; € E*(Sh) where Vj € {1,...,m},

VB; € By pgw, (v) 2 iy 05))
' @n

Then, the candidate rule set for each subspace is de-
fined as CR(S,) = {Ry, = [IF X1 is A} and ... and
X, is AR THEN Y; is B¥" and ... and Y;,, is Bk”] such
that BFn — (BFn ... "h) € C(Sp)}-
To allow COR to reduce the initial number of fuzzy rules,
the special element R; (which means “don’t care”)
is added to each candidate rule set, i.e., CR(S) =
CR(Sr) U Ry. Ifitis selected, no rules are used in the
corresponding fuzzy input subspace.

2) Selection of the most cooperative fuzzy rule set—This stage

is performed by running a combinatorial search algorithm to
look for the combination RB = {R1 € CR(S1),...,Rp €
CR(Sp), o Rige) € CR(SlSﬂ)} with the best accuracy.
Since the tackled search space is usually large, approximate
search techniques should be used.
An index f(RB) measuring the global quality of the encoded
rule set (see eq. 19) is considered to evaluate the quality
of each solution. In order to obtain solutions with a high
interpretability, the original function is modified to penalize an
excessive number of rules:

#RB

/(RB) = S(RB) +7 - f(RBy) - o

(28)

with v € [0, 1] being a parameter defined by the designer to
regulate the importance of the number of rules, #RB being
the number of rules used in the evaluated solution (i.e., |S*|—
[{Rr € RB such that R, = Ry}|), and RBy being the initial
rule base considered by the search algorithm.

Fig. 2. COR algorithm.

behavior (with 5070 examples), and using the following number
of linguistic terms for each input/output variable, |A4;| = 4,

MUCIENTES AND CASILLAS: QUICK DESIGN OF FUZZY CONTROLLERS WITH GOOD INTERPRETABILITY IN MOBILE ROBOTICS 641

|A2| = 2, |As] = 5, |A4] = 2, |B1| = 9, |[Bz| = 9, our
methodology generates a search space of [[g s+ [C(Sh)| =
2.2e+492 combinations, while the total of possible combinations
(considering the |S™| = 80 input subspaces analyzed) is (|B1]| -
|B2|)® = 4.8e + 152.

2) Interpretability Issues: The proposed methodology also
has some interesting advantages from the point of view of the
interpretability of the obtained fuzzy knowledge base. This is
an important issue in fuzzy control for mobile robots naviga-
tion, since when the actions of the robot are easily understand-
able, it is easier to detect possible errors during the design or the
learning process. Basically, we can remark the two following
points.

* Model structure and membership functions keep invariable
to provide excellent interpretability: The COR method-
ology is an effort to exploit the accuracy ability of linguistic
fuzzy rule-based systems by exclusively focusing on the
rule base design. In this case, the membership functions
and the model structure keep invariable, thus resulting in
the highest interpretability. Indeed, instead of improving
the accuracy by deriving the shape of the membership func-
tions [38] or by extending the model structure (weighted
rules [39], linguistic hedges [38], [40], hierarchical knowl-
edge bases [41], etc.), COR methodology improves the
accuracy by inducing cooperation among linguistic fuzzy
rules.

* Rule base reduction to improve interpretability and ac-
curacy: A problem when defining a rule base is that one
cannot be sure whether the rules are correctly defined, i.e.,
without redundant rules or rules that generate conflicts with
others in certain situations. Moreover, a high number of
rules is difficult to interpret, even when a linguistic fuzzy
rule structure is considered.

To face this problem, a rule reduction postprocessing
is usually developed. When no restriction to the inter-
pretability is considered, the rules can be merged [6], thus
generating a scatter structure where each fuzzy rule uses
different fuzzy sets for each variable.

On the other hand, if we want to obtain linguistic fuzzy
rules with good interpretability, a selection process can be
developed to obtain a subset of the original rule base [41].
However, this approach does not seem to be appropriate
to generate an accurate final rule set since the interdepen-
dency between the learning and reduction tasks is not con-
sidered. That happens because it is sure that after reducing
the rule set, the new set of rules that best cooperate will be
different.

The COR methodology achieves the reduction process at
the same time as the learning one with the aim of improving
the accuracy (the cooperation among rules and thus the
system performance can be improved by removing rules)
and interpretability (a model with less number of rules is
more interpretable) of the learned model.

This process is performed by adding the null rule (Rp) to
the candidate rule set corresponding to each subspace, as
shown in step 1.2 of Fig. 2. In this way, if such an element
is selected for a specific subspace, this will mean that no
rule will select the corresponding antecedent combination.

642

XN S M L

1
B,B,
dc

S4
B.B;
dc

There aren't

S There aren't
examples

examples

S
M |By B, B3
dc

There aren't
examples

E
B; dc

L There aren't|There aren't
examples | examples

Fig. 3. Example of a graph built from sets of candidate rules generated by COR.

Notice that the addition of Ry in each candidate rule set
slightly increases the search space. Moreover, the objective
function used to guide the search algorithm [see (28) in
Fig. 2] is modified to penalize solutions with a high number
of rules.

C. COR Methodology With Ant Colony Optimization

Since the search space tackled in step 2 of Fig. 2 is usually
large, it is necessary to use approximate search techniques.
In [31], accurate linguistic models have been obtained using
simulated annealing. However, since one of our constrains is
to deal with a computationally expensive evaluation function,
in this paper the use of ACO [34], [42] is considered. It is a
population search bioinspired technique that considers heuristic
information to allow it to get good solutions quickly. Indeed,
as was shown in [33] and [43], the use of ACO in COR, as
opposed to other kinds of optimization techniques such as
simulated annealing and genetic algorithms, performs a quick
convergence obtaining accurate results. This section briefly
describes the main components of the considered COR-based
ACO algorithm [33].

1) Problem Representation for Learning Cooperative Fuzzy
Rules: To apply ACO in the COR methodology, it is conve-
nient to see it as a combinatorial optimization problem with
the capability of being represented on a weighted graph. In this
way, we can face the problem considering a fixed number of
subspaces and interpreting the learning process as the way of
assigning consequents vectors—i.e., labels of the output fuzzy
partitions—to these subspaces with respect to an optimality cri-
terion (i.e., following the COR methodology).

Therefore, according to the notation introduced in Fig. 2,
each node S;, € ST is assigned to each candidate consequent
(B, ... Bk € C(S)) and to the special symbol “don’t
care” (Ryp) that stands for the absence of rules in such a sub-
space. Fig. 3 shows the explored graph built from an example
of candidate rule sets. To construct a complete solution, an ant
iteratively goes over each rule and chooses a consequent with
a probability that depends on the pheromone trail 7 and the
heuristic information 7 associated to each decision. The order
of selection of the rules is irrelevant.

2) Heuristic Information: The heuristic information on the
potential preference of selecting a specific consequent vector

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

For each subspace S;, € St do:
1) Build the sets E*(S}),) and C(S},) as shown in Fig. 2.

2) For each B = (BF» ... Bfr) e C(Sh), make
use of an initialization function based on a covering
criterion to give a heuristic preference degree to each
choice. In this paper, we use the following:

max
e €ET(Sy)

3) For each B*» ¢ C(S4), make g, = 0.
4) Finally, for the “don’t care” symbol, make the follow-
ing:

Mh,|B1)-..c| B |+1 =

Thky, = Min (/w CONT (y’)) . (29
J

1

(30

max Wk
khe{l‘...,lc(s,.mn .

Fig. 4. Heuristic assignment process.

B*" in each antecedent combination (subspace) is determined
as described in Fig. 4.

3) Pheromone Initialization: The initial pheromone value of
each assignment is obtained as follows:

1
"= —— max ke . 31
0= 18] Z+ g Rax Tk €1V

SpES

In this way, the initial pheromone will be the mean value of
the path constructed taking the best consequent in each rule ac-
cording to the heuristic information (a greedy assignment).

4) Fitness Function: The fitness function will be the said
objective function, defined in (28) in Fig. 2.

5) Ant Colony Optimization Scheme, the Best—Worst Ant
System Algorithm: Once the previous components have been
defined, an ACO algorithm has to be given to solve the problem.
In [32], the ant colony system [44] was applied. Opposite to
that, in this paper an advanced ACO algorithm, the best—worst
ant system (BWAS) [45], is considered in order to improve the
search process. Its global scheme is shown in Fig. 5.

In the original BWAS, local search is applied to every gen-
erated solution. However, in our fuzzy rule learning problem,
opposite to other applications such as traveling salesman or
quadratic assignment problems, it is not possible to optimize
the evaluation of neighbor solutions. Therefore, in order to keep
a high speed of the learning process, we apply the local search

MUCIENTES AND CASILLAS: QUICK DESIGN OF FUZZY CONTROLLERS WITH GOOD INTERPRETABILITY IN MOBILE ROBOTICS 643

1) Give an initial pheromone value, 7, to each edge.
2) While (termination_condition is not satisfied) do:

a) Perform the track of each ant by the solution
construction process.

b) Apply the pheromone evaporation mecha-
nism.

¢) Apply the local search process on the current-
best solution.

d) Update Sglobal best and Scur'rent worst.

e) Apply the Best-Worst pheromone trail up-
date rule.

f) Apply the pheromone trail mutation.

g) If (stuck_condition is satisfied) then apply
restart.

Fig. 5. BWAS algorithm.

TABLE I
SUMMARY OF THE LEARNING PROCESS PERFORMED FOR THE TWO ANALYZED
BEHAVIORS
Behavior #Examp. texamp tiearn Fitness
Wall-following 5,070 Is 4mSs 181,569
Moving obj. fol. 6,435 10s 7m 19s 162,661

only to the current best solution (step 2.c in Fig. 5). The local
search is a simple hill-climbing algorithm.

IV. EXPERIMENTAL RESULTS

The methodology for the design of behaviors in mobile
robotics has been tested with two different behaviors: wall-fol-
lowing and moving object following. Table I collects a summary
of the results obtained by each of them. It shows the number of
examples of the training set, the time needed for the generation
of that training set (fexamp), the time expended by the learning
method (tjearn) to design the fuzzy controller (fexamp i in-
cluded in this time), and the number of rules and fitness values
(19) of the obtained fuzzy controllers.

A. Wall-Following Behavior

1) Experiment Setup: The learned fuzzy controller has been
tested in six simulated environments using the Nomad 200 sim-
ulation software. These environments include very different sit-
uations that the robot usually faces during navigation: straight
walls of different lengths, followed and/or preceded by a number
of concave and convex corners, thus covering a wide range of
contours to follow and truly defining very complex test environ-
ments. Itis important to remark that these environments have not
been used during training. The training set is only composed of
a list of examples (5070) that have been chosen covering the
input space with an adequate precision. These conditions guar-
antee that the quality of the learned behavior does not depend
on the environment, and also that the robot will be capable to
face any situation.

We have used the following parameter values for the COR-
based ACO algorithm: 50 iterations, 30 ants, p = 0.8, a = 2,
[= 2, probability of mutation F,,, = 0.3, mutation rate o = 4,
iterations of the local search LSi = 10, neighbor size in the
local search LSn = 30, and number of iterations before restart
R = 5. We would like to highlight that these values have been
intuitively chosen according to experimentations usually done
with ACO [34] and that, in our experimental study, they are fixed

regardless the problem or the environment. Therefore, an expert
that would like to apply the proposed methodology to design a
new behavior could keep the same values. Anyway, no exper-
iments were made with different values for these parameters;
therefore, the results shown below maybe could be improved
with a more exhaustive parameter value selection.

2) Obtained Results: Fig. 6 shows the robot path along four
of the environments used for testing. The robot trajectory is rep-
resented by circular marks. A higher concentration of marks
indicates lower velocity. The learned controller (Table I, row
1) has 52 linguistic rules and has been obtained in only 4 m
5 s (with an Intel Pentium 4 CPU 3.20 GHz processor) using
a value of v = 0.20 (28). This time includes the time needed
for the generation of the training set, which is of 1 s. If for any
situation no rule is fired, then a null linear acceleration and an-
gular velocity are selected. The maximum velocity the robot can
reach is 61 cm/s, and the reference distance at which the robot
should follow the right wall is 51 cm. Ten tests have been done
for each one of the analyzed environments. The mean values and
the standard deviations measured for some parameters that re-
flect the controller performance are shown in Table II. These pa-
rameters are the average distance to the right wall (the wall that
is being followed), the average linear velocity, the time spent by
the robot along the path, and the average velocity change. The
latter parameter measures the change in the linear velocity be-
tween two consecutive cycles, reflecting the smoothness of the
behavior (a low value indicates a smooth behavior).

3) Analysis of Efficiency and Accuracy: In order to show the
quality of the controller, the path of the robot in environment F
[Fig. 6(a)] will be described in detail. This environment is quite
complex, with ten concave corners and six convex corners in a
circuit of a length of 48 m. Also, the walls have several gaps,
which increase the noise in the measurement of the distances.
Convex corners are truly difficult situations, because the robot’s
sensors may cease to correctly detect the wall at some given
moments, even though some of them may occasionally detect
it. The controller must also significantly reduce velocity at cor-
ners. In spite of these difficulties, the obtained average velocity
has been quite high, and the distance at which the robot should
follow the wall is near the desired reference distance. The dif-
ference between both distances is caused by the high number
of corners, in which the orientation of the robot is very bad (at
concave corners the robot is detecting two perpendicular walls,
and sometimes at convex corners it detects no wall), and a fast
turning is prioritized over a correct distance.

During learning, the reference distance to the wall (dya;) and
the maximum linear velocity (vmax) must have a fixed value (51
cm and 61 cm/s, respectively, in this case). It is interesting to
discuss how the accuracy is affected when these parameters are
changed in the learned controller. Table IIT shows the accuracy
of the learned controller for different values of the reference
distance and the maximum velocity for environment A.

The knowledge base should be learnt using the values for the
two parameters that represent the worst conditions (low refer-
ence distances and high velocities). If the value of the reference
distance is increased or the maximum velocity is reduced, the
accuracy of the controller is not affected, as can be seen for the
first row of Table III. If the maximum velocity is maintained

644

Movement
direction

Movement
direction

©

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

Movement
direction

®)

Movement
direction

BTy N e

S XA

Fig. 6. Path of the robot along some of the different simulated environments for the wall-following behavior. (a) Environment F, (b) Environment A, (c) Environ-

ment C, and (d) Environment B.

TABLE II
RESULTS (Z & o) FOR THE WALL-FOLLOWING BEHAVIOR (52 LINGUISTIC
Fuzzy RULES)

Env. Dist. (cm) Vel. (cm/s) Vel. ch. (cm/s) Time (s)
A 5347 £ 0.69 | 50.63 £ 0.62 | 10.39 £ 0.94 | 106.60 £ 1.90
B | 53.47 £ 0.67 | 51.47 £ 091 | 10.17 £ 1.57 65.60 + 1.26
C | 49.88 4+ 0.65 | 49.02 + 0.63 9.40 + 0.78 | 80.50 + 1.27
D | 5335+ 0.63 |51.71 £0.71 | 10.08 £ 1.04 | 116.00 £ 2.00
E | 53454+ 0.59 | 51.03 £ 0.76 | 1029 + 1.65 | 103.50 + 1.43
F | 4929 + 056 | 46.12 + 0.38 | 11.22 4+ 0.70 | 122.80 4+ 1.55
TABLE III

RESULTS (Z £ &) FOR DIFFERENT VALUES OF THE REFERENCE DISTANCE (CM)
AND THE MAXIMUM VELOCITY (CM/S) FOR ENVIRONMENT A

dwair / Dist. (cm) Vel. (cm/s) V. ch. (cm/s) Time (s)
Umazx

75761 | 74.60 + 0.62 | 48.08 + 0.41 | 12.33 + 0.69 | 113.20 £+ 1.03
51761 |53.47 £ 0.69 | 50.63 + 0.62 | 10.39 4+ 0.94 | 106.60 £+ 1.90
40 /61 | 41.97 & 0.62 | 49.96 £ 0.37 | 10.62 + 1.18 | 108.00 &+ 1.15
30 /50 | 30.83 4+ 0.39 | 40.45 + 0.31 | 11.33 &+ 1.22 | 131.90 £ 2.08

and the reference distance is reduced by 20% (row 3), the be-
havior still has a high accuracy. Finally, if the reference distance
is drastically reduced to 30 cm (a 40% reduction), the controller
is not able to implement the wall-following behavior. To follow
the wall for this reference distance, the maximum velocity has
to be reduced to 50 cm/s (row 4).

The accuracy of the obtained controller is, obviously, very
dependent on the definition of the scoring function (11). As has
been explained, the idea of the SF is to measure the deviation
of each variable from the desired value. Equations (12)—(14)
show these deviations for the different variables. Each «; has an
associated weight to indicate how important the deviation in the
value of a variable is with respect to the other variables. Table IV
shows a comparison of the learned controller (first row) with
other learned controllers using different weights in the scoring
function. The tests have been done in environment A. Results
show very similar values for the average velocity and quite close
values also for the average right distance (the difference between
the best and the worst is lower than 7%). The number of rules

MUCIENTES AND CASILLAS: QUICK DESIGN OF FUZZY CONTROLLERS WITH GOOD INTERPRETABILITY IN MOBILE ROBOTICS 645

TABLE IV
RESULTS (Z & o) FOR DIFFERENT VALUES OF THE WEIGHTS IN THE SCORING
FUNCTION (11)—(14) FOR ENVIRONMENT A

Weights |#R| Dist. (cm) vel. (cm/s) | V. ch. (cm/s) Time (s)
100, 10, 1]52(53.47 & 0.69[50.63 £ 0.62{10.39 £ 0.94|106.60 + 1.90
4,2,1 |66(57.08 4 0.68(49.96 £ 0.44| 1.74 £ 0.17|111.50 + 0.97
10, 10, 1 [62[57.15 £ 1.59(49.56 &+ 0.70| 3.87 £ 0.85|112.70 £ 1.77
225,15, 1]52(56.65 + 0.31|47.99 + 0.28| 6.49 £+ 0.37(110.20 £+ 0.63
TABLE V

RESULTS (Z & o) FOR THE WALL-FOLLOWING BEHAVIOR WITH v = 0.5 (40
LINGUISTIC Fuzzy RULES)

Env. Dist. (cm) Vel. (cm/s) Vel. ch. (cm/s) Time (s)
A | 62.00 £0.90 | 51.02 + 0.69 | 2.10 £ 0.18 | 110.20 &+ 1.81
B | 54.80 + 1.13 | 46.23 + 1.10 | 5.02 + 0.46 74.40 + 1.90
C | 5871 £ 1.63|49.83 &+ 1.51 | 2.88 £ 0.31 81.20 £ 2.53
D | 60.01 &£ 1.45 | 51.58 £ 1.19 | 2.05 £ 0.21 119.10 4+ 3.21
E | 53.11 £ 121 | 4419 £ 096 | 4.08 & 0.13 | 122.50 + 2.64
F 50.62 £ 0.96 | 41.50 £ 1.00 | 5.62 + 0.27 | 136.90 + 4.82

decreases as the difference in the weights increases, because one
or two variables dominate the scoring function and, then, more
general rules are learnt.

Parameter ~ lets the designer adjust the desired tradeoff be-
tween accuracy and the size of the rule base: a higher value of
~ means lower accuracy, but also a lower number of rules. As
an example, a controller has been learnt for v = 0.5, obtaining
only 40 rules. The mean values of some parameters for the test
environments are presented in Table V. Due to the lower number
of rules, the accuracy of the controller is worse than that learned
for v = 0.20; the values of the average velocity are much lower
in three of the environments, and the average distance is worse
in four of the environments. Finally, the average velocity change
is much lower because, due to the lower number of rules, few
rules are fired (there is less interaction among rules) or no rule
is fired in some control cycles (the robot maintains its velocity
and steering).

4) Comparison With the Method Proposed in [6]: We have
tried to compare the obtained controller with another one learnt
using genetic algorithms [6]. The design in [6] consisted of two
stages: learning of the data base and a general rule base (Pitts-
burgh-style genetic algorithm) and reduction of the generated
rule base merging adjacent membership functions. This reduc-
tion produces loss of interpretability in the final knowledge base
since a different fuzzy set is built for each fuzzy rule, thus losing
the legibility provided by the use of linguistic variables with
global semantics. Apart from the different methodologies, the
method proposed in [6] and the COR-based approach also differ
in the following ways.

o Size of the training set: 23 085 examples were used for
training in [6]. This number arises when using a lower
value for the precision (p,,) of the different variables. In the
COR-based approach we have only used 5070 examples.

* Generation of the data base: in both approaches, the
designer has to select the universe of discourse and the
number of labels for each variable. The difference is that in
[6], taking these parameters into account, the data base is
learnt using a genetic algorithm, while in the COR-based,
approach the data base is automatically generated using
uniformly distributed fuzzy sets.

* The output variables for [6] are the objective velocity
(Vobj) and the objective orientation (ORqpj)—tenths of
degree—but they can be easily transformed in LA and AV,
and the performance of the system is not affected.

The COR-based approach has been compared with different

modified versions of the controller introduced in [6]:

1) training set with 5070 examples;

2) training set with 5070 examples and COR-based approach
data base (the first stage of [6] is suppressed);

3) training set with 23085 examples and COR-based ap-
proach data base (the first stage of [6] is suppressed);

4) training set with 23 085 examples (original [6] approach).

For the first approach, the obtained knowledge base has too
few rules, and the controller is not able to complete the path in
any of the environments. The second and third approaches point
out the same problem: the rules have been learnt individually,
so there is a lack of cooperation between the rules and the con-
troller fails in some of the environments, leading the robot to a
crash or to a halt.

Finally, for the fourth approach, the obtained controller has
46 fuzzy rules (the knowledge base is shown in Fig. 7), and
the mean values of some parameters for the test environments
are presented in Table VI. The time spent to learn the system is
very high (about 8 h) compared with 4 m 5 s for the controller
presented in this paper.

The controller described in this paper has a higher number of
rules (52 versus 46) but clearly improves the results of the con-
troller presented in [6]. The average velocity is higher in all the
environments, reducing the time spent by the robot in the cir-
cuit. This improvement ranges from the 9% of increase in the
average velocity in environment F to 36% in C. Our proposed
controller not only reaches higher velocity compared to [6] but
also obtains slightly better values of the average right-hand dis-
tance in four of the environments and clearly outperforms the
method of [6] in another one (B). Finally, the average velocity
change shows higher values in our case because the controller
described in this paper has to implement many changes in ve-
locity due to the shape of these environments to get such high
average velocity values.

5) Analysis on Interpretability: Fig. 8§ shows the data and
rule bases of the learned controller. As can be noticed, the inter-
pretability of the obtained rules is very high, as opposed to [6]
(see Fig. 7). This makes it easier to understand the actions taken
by the robot.

For a better understanding of the fuzzy controller (Fig. 8),
rules have been grouped taking into account the labels for the
right-hand distance (RD) and the distances quotient (DQ). Blank
lines represent rules corresponding to that group that have been
eliminated during the learning process.

1) The first group of rules (RD = low, DQ = low) is fired in
those situations when both of the walls are quite close to
the robot. The controller tries to get the robot parallel to the
walls and reduce the velocity, except in those cases when it
is already parallel and the velocity is low, so the robot can
maintain its speed.

2) The second group of rules (RD = low, DQ = high) is very
similar to the previous one. But now, due to the left wall’s
being farther, the speed can be higher (if linear acceleration

646

Rule RD DQ Owall V Vob; ORopj
R, | | [V] |1 0.625 800
R2 | [1.000 800
R3 | \ 0.000 -100
Ry | | 0.000 150
Rs |\ 0375 -50
Rs I 0.625 -50
R~ B 1.000 100
Rs |[| B 0.250 0
Ro B \ 0.625 450
Rio |[} \ | 0250 -150
Ri1 A § 1.000 150
Ri2 A [B 1.000 350
Ris A . R 1.000 0
Rus |[) [] 0.125 0
Ris || [L A 1.000 50
Ris || A I 0.625 -200
Riz || A '} 1.000 -150
Rig B | 0.000 0
Rio || [L A 0.625 -50
Rao A | [B 0.625 0
Ro1 || A A 1.000 150
Roz || A [} 1.000 50
Ros [[0.250 0
Rog A) 1.000 200
Ros || [\ I} 0.625 750
Ry || A [0.000 0
Ror |[LA 0.625 50
Ros || [) 0.625 -50
Ry || [) 0.625 -100
Rao A I\ 1.000 350
Ra1 || A)\ 1.000 100
Raz || A A 1.000 -50
Rs3 A | |) 1.000 -50
Ras || | LA 1.000 -100
Ras A [1.000 150
Rss || A | [1.000 50
Rsr || l LA 0.625 100
Rag Al | i) 1.000 200
Rso || A \ [1.000 0
Rao || A | [l 1.000 50
Ry AR |) 1.000 200
Raz || A [[1.000 -200
Rus A | [B 0.625 0
Rus ||} l LA 1.000 0
Rys || 0 N\ 0.625 50
Rus || A [(R 1.000 150

Fig. 7. Fuzzy rule set generated by the method proposed in [6].

3)

was null, now it can be soft acceleration, etc.) and also a
higher turn to the left can be selected in order to go away
from the right wall.

These rules (RD = medium,DQ = low) are designed to
approach the robot softly to the right wall, because the left
wall is closer. The linear acceleration is selected taking into
account the current orientation and the angular velocity
that is going to be applied.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

TABLE VI
RESULTS (Z & o) OBTAINED BY THE METHOD PROPOSED IN [6] FOR THE
‘WALL-FOLLOWING BEHAVIOR (46 FUzZZY RULES)

Env. Dist. (cm) Vel. (cm/s) Vel. ch. (cm/s) Time (s)
A | 5448 +£1.26 | 4322 £ 0.83 | 9.70 £ 0.67 | 120.20 £ 2.04
B | 59.22 + 1.31 | 46.15 + 0.58 | 8.69 + 0.58 72.00 + 1.15
C | 53.79 +£ 1.44 | 36.05 & 0.60 | 7.75 + 0.61 113.80 £+ 2.30
D | 53.04 +2.14 | 41.28 +3.33 | 835 4 0.54 | 126.40 + 5.76
E | 5351 £ 1.13 | 46.83 £ 074 | 7.14 £ 0.59 | 125.80 &+ 2.35
F | 4789 + 1.11 | 38.47 + 0.82 | 9.99 + 0.47 | 133.00 £+ 2.98

4) This group of rules (RD = medium, DQ = high) is fired
in situations in which the distances take adequate values, so
the objective is to improve the orientation and accelerate,
except in those cases where the robot has a wrong orienta-
tion.

The rules of the fifth group (RD = high,DQ = low) try
to approach the robot to the right-hand wall. Control is not
as soft as for the rules in the third group, because distance
is higher.

The sixth group of rules (RD = high, DQ = high) is
similar to the previous one, but control is softer, due to a
higher distance to the left wall.

7) This group of rules (RD = very high, DQ = low) is fired
when the robot is quite far from the right-hand wall, so
the objective is to turn the robot to the wall and accelerate
(only if the previous orientation was not to the left and the
velocity high).

8) The last group of rules (RD = very high, DQ = high)
implements very similar control actions, but control is very
abrupt because the walls are far from the robot.

In summary, the objective is first to place the robot at
an adequate distance to the right-hand wall, then to select
a high velocity if possible, and finally to orient it parallel
to the wall.

5)

6)

B. Moving Object Following Behavior

We have tested the learned fuzzy controller for this behavior
using the Nomad 200 simulation software. The position, ve-
locity, and advance direction of the moving object were directly
obtained from the simulation software and passed to the con-
trol system in order to calculate the input variables. Tests have
been carefully chosen, trying the controller with a wide range
of situations of velocity and turning of the moving object. The
parameter values for the COR-based ACO algorithm have been
the same as in the previous behavior.

The learned controller (Table I, row 2) has 83 linguistic rules
(shown in Fig. 9) and has been learnt in only 7 m 19 s (with
an Intel Pentium 4 CPU 3.20 GHz processor) using a value of
~v = 0(28). If for any situation no rule is fired, then a null linear
acceleration and angular velocity are selected. The maximum
linear velocity the robot can reach is 61 cm/s, and the maximum
angular velocity is 45°/s.

Fig. 10 shows some trajectories of the robot when it is fol-
lowing different moving objects at a reference distance of 1.5 m
and with a reference deviation of 0°. The trajectories are repre-
sented by circular marks. In order to visualize adequately both
trajectories, in Fig. 10, the trajectory of the moving object has
been shifted in the y-axis direction. Thus, at the beginning

MUCIENTES AND CASILLAS: QUICK DESIGN OF FUZZY CONTROLLERS WITH GOOD INTERPRETABILITY IN MOBILE ROBOTICS

0.5 1

0.5 1

647

(@
RD DQ 0,van (degree)
low medium high very_high low high high_left low_left null low_right high_right
1 A A 1 4 14 A A A 1
N / \\ N\ / \ \ / A /
\ // \‘\ // \\\ / \\ \\ // \\ // \ //
\ / \ / \ / \ [\ / /o /
\ // / \ / \ \ \ / /
\ / \ / \ \ /o /NN
\/ \/ h \/ \/ \/ \/
X X 05 | P 051 X /:v(\
/’ \ / \ / \ / \\ / \ ’ \ /A
/N /N /N /NN S
/ \ / \\ / \ / \ /’/ \/ \ \
/ \ / \ \ / \ /
/'/ \/ \/ \\ // \/ \\/ \/ \
\ \ 0 04 y \/ y
0 1 2 3 0 1 2 -45 -22.5 0 22.5 45
Lv LA AV
low high VHB HB MB SB Z SA MA HA VHA VHR HR MR SR Z SL ML HL VH
\ a I
0.5 4
! : 0
0 0.25 0.5 0.75 1 1
(b)
Rule| RD DO Ouau LV LA AV Rule RD DO Ouau LV LA AV
Ry |low low high_left low |very_hard_brak. very_ hard right || Rog |high low high_left low |very_hard_brak. very_hard right
Ry |[low low low_left low |[null very_hard_right
Rz |low low low_left high | very_hard_brak. mdm_right R30 |high low low_left high | soft_braking very_hard_right
Ry |[low low null low | null soft_right Rs3p |high low null low | hard_accel. very_hard_right
Rs |[low low null high | hard_braking hard_right R32 |high low null high | soft_accel. very_hard_right
Ra3 | high low low._right low |hard_accel. soft_right
Re |[low low low.right high |hard_braking hard_left
R34 |high low high_right low |hard_accel. soft_left
Ras | high low high_right high | null very_hard_left
R7 |low high high_left low |very_hard_brak. very_hard_right || R3¢ |high high high_left low |very_hard_brak. very_hard_right
Rg |[low high low_left low [soft_accel. hard_right R37 |high high low_left low | mdm_accel. very_hard_right
Rg |low high low_left high | hard_braking mdm_right R3g | high high low_left high | soft_accel. very_hard_right
Rio |low high null low | soft_accel. mdm_left R3g |high high null low | hard_accel. very_hard_right
Ri1 |low high null high | hard_braking ~ mdm_left Ry4o |high high null high | soft_accel. very_hard_right
Ri2 [low high low_right low |null very_hard_left
Ri3 |low high low.right high|hard_braking hard_left Ry41 |high high low._right high | soft_accel. mdm_right
Rig |low high high_right low |very_hard_brak. very_hard_left || R4z |high high high_right low | mdm_accel. mdm_left
Ris |low high high_right high | very_hard_brak. very_hard_left || R43 |high high high_right high | soft_accel. very_hard_left
Rie | medium low high_left high | very_hard_brak. very_hard right
Raa | veryhigh low low_left low |hard_accel. very_hard_right
Ri7 | medium low low_left high | hard_braking very_hard_right || R45 | very_high low low_left high | soft_braking very_hard_right
Rig | medium low null low | mdm_accel. very_hard_right
R1g | medium low low_right low |null soft_left Rye | very_high low low_right low |hard_accel. very_hard_right
R2o | medium low low_right high | soft_braking mdm_left Ry47 | very_high low low_right high |soft_accel. very_hard_right
R2; |medium low high right low |null very_hard_left || R4g |very_high low high right low |hard_accel. hard_right
R22 | medium low high_right high | mdm_braking hard_left Ry4g | very_high low high_right high | soft_accel. hard_right
R23 | medium high high_left low |very_hard_brak. very_ hard right
Ro4 [medium high low_left low |hard_accel. very_hard_right
Ros | medium high null low | hard_accel. mdm_left Rso | very_high high null low | hard_accel. very_hard_right
Rog | medium high low_right low |hard_accel. very_hard_left ||Rs; |very-high high low_right low |hard_accel. very_hard_right
Ro7 | medium high low_right high | soft_braking very_hard_left
Rsg | very_high high high right low |hard_accel. very_hard_right
Rog | medium high high_right high | very_hard_brak. very_hard left

Fig. 8. Knowledge base generated by the COR-based algorithm for the wall-following behavior. (a) Data base and (b) rule base.

(points A,. for the robot and A,,, for the moving object), both the
robot and the object have the same y coordinate, and their = co-

ordinate is the one represented in the figure (the robot is placed
1.5 m to the left of the moving object). The labels that have been

648 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

(@)
d dev (degree)
Near Medium Far HL SL

zZ
1 ‘ 19 A)) /
. N / AR A /
\\ / /\ \ / \\ ’ / \\ / / \\\ // \\
/ / \/

SR HR Slower Quicker

1

/
\ \ / \ // \ /
05 | % 05{ X S /(05
/O \ \
/N \ /N // \\ / \ /A
/ \\ / \\ /N \ / \ / \
/ / \ \ /
/ _ / \ \ / \ / \ / \ /
0 / / 0 \ \/ / ok
0 0.25 0.5 0.75 1 -180 -90 0 90 180 -1
AO (degree) LA
Left Right VHB HB MB SB Z SA MA HA VHA VHR HR MR SR Z SL ML HL VHL
1 4 p 1 4 o 14
N S \ \ Vo |
L e \ /A\ /,A\\ / \ / \ / \ /\\ / \ / \
\/\’\’\/\/\/\/\\ \/
\ / \\ / \ / \ | | |/
05 | 054 | | |] 051 |
N /| AN f\
/'/ o / \
0 T 0 0
-20 -10 0 10 20 -1 1 -1
Rule d dev Av NG LA Rule d dev Av A6 LA AV
R1 Near HL Slower Left MA MR Rus Medium Z Equal Right | HA SL
Ro Near HL Slower Right | HA ML Ruaa Medium Z Quicker Left SB SR
R3 Near HL Equal Left SB MR Rss | Medium Z Quicker Right | SB SL
Ry Near HL Equal Right | Z ML Rye Medium SR Slower Left MA HL
Rs Near HL Quicker Left VHB SR Ry7 Medium SR Slower Right | VHA VHL
Re Near HL Quicker Right | VHB HL R4g Medium SR Equal Left Z HL
R~ Near SL Slower Left MA SR Ryg Medium SR Equal Right | MA VHL
Rs Near SL Slower Right | HA ML Rso | Medium SR Quicker Left VHB HL
Rg Near SL Equal Left zZ HR Rs1 Medium SR Quicker Right | MB VHL
Rio Near SL Equal Right | Z SL Rs2 Medium HR Slower Left Z VHR
Ri1 Near SL Quicker Right | HB ML Rs3 Medium HR Slower Right | MA VHL
Rio Near V4 Slower Left HA SR Rs4 Medium HR Equal Left VHB VHL
R13 | Near Z Slower Right | HA SL Rs5 | Medium HR Equal Right | MB HL
Ria Near Z Equal Left VA MR Rse Medium HR Quicker Left VHB Z
Ri5 | Near Z Equal Right | Z ML Rs7 | Medium HR Quicker Right | VHB HL
Rie Near Z Quicker Left HB SR Rss Far HL Slower Right | SB HR
Ri7 Near VA Quicker Right | HB ML Rs9 Far HL Equal Left VHB SR
Ris Near SR Slower Left HA SR Reo Far HL Quicker Left VHB VHR
Rig Near SR Slower Right | HA SL Re1 Far HL Quicker Right | VHB VHL
R2o Near SR Equal Left V4 SR Rg2 Far SL Slower Left VHA VHR
Ro1 Near SR Equal Right | Z HL Res Far SL Equal Left VHA VHR
Roo Near SR Quicker Left VHB MR Re4 Far SL Equal Right | SA VHR
Ras Near SR Quicker Right | HB ML Res Far SL Quicker Left Z VHR
Rog Near HR Slower Left MA V4 Ree Far SL Quicker Right | VHB VHR
Ras Near HR Slower Right | HA ML Re7 Far Z Slower Left VHA SR
Rag Near HR Equal Left Z MR Res Far Z Equal Left VHA SR
Ror Near HR Equal Right | Z ML Reg Far Z Equal Right | VHA SL
Rog Near HR Quicker Right | VHB SL Rvo Far Z Quicker Left V4 SR
Rog Medium HL Slower Left SB HR R71 Far Z Quicker Right | Z ML
Ra3o Medium HL Slower Right | SA VHR R7o Far SR Slower Left VHA HL
Ra1 Medium HL Equal Right | HB VHL || R73 | Far SR Slower Right | VHA VHL
R3z Medium HL Quicker Left VHB MR R74 Far SR Equal Left SA VHL
R33 Medium HL Quicker Right | VHB SL R7s Far SR Equal Right | HA VHL
R34 Medium SL Slower Left VHA VHR R7e6 Far SR Quicker Left MB VHL
Rss Medium SL Slower Right | HA HR R77 Far SR Quicker Right | SA VHL
Rag | Medium SL Equal Left SA VHR || R7ys | Far HR Slower Left SB HL
R37 Medium SL Equal Right | SB HR R79 Far HR Slower Right | SB MR
Rasg Medium SL Quicker Left HB VHR Rso Far HR Equal Left VHB HL
R39 | Medium SL Quicker Right | VHB VHR || Rg; Far HR Equal Right | VHB MR
R0 Medium Z Slower Left VHA SR Rg2 Far HR Quicker Left VHB VHR
Ra1 Medium Z Slower Right | VHA ML Rss Far HR Quicker Right | VHB VHL
Ryo Medium Z Equal Left HA MR

Fig. 9. Knowledge base generated by the COR-based algorithm for the moving object following behavior. (a) Data base and (b) rule base.

placed along the trajectories represent a time gap between them Ten tests have been done for each one of the three analyzed
of 3.3 s (ten control cycles). types of trajectories (Fig. 10). The mean values measured

MUCIENTES AND CASILLAS: QUICK DESIGN OF FUZZY CONTROLLERS WITH GOOD INTERPRETABILITY IN MOBILE ROBOTICS 649

Y A A 88
R AR m*;;t-}ivlvﬁ
!ﬁ :{::#.‘v?ﬁt‘&"_’A'!‘l*"!'!’»!v %

7

I PP ELS
‘v'-‘v‘f""""""““"‘;‘L“;"!“""“' .
5‘ IR E T A

G, H, L

A K R R R YRR AR IR AN
W X TV R R TN A N AR
At + Bl‘ Cl Dr El‘

Mobile object

ATATATATAY,Y Fa¥ay, "“A’A’g"‘.““’j

'V"“‘“"" 'y

""""""""""' ¥ "'
-

AATATATAYATav v vy,

ATATAYAYLY. T,

""""«!ﬂ‘s’&h&ﬁvppﬁvxi SATATARLTAYY
-

I'...Y‘Ii
LY,

ﬁf#}-}% D,

Mobile object

(L?A'ﬂ'fi‘l'Lﬁ‘n‘h‘n‘h‘ﬂﬂn‘h&w.
SAAAADANNNANAAAL A

Robot

AP AT AT AV ATAYATATAVATAVAYAYAY, Faul i
LIS AN AA A A AR AT

A
- g

vars

o,
£

R

Ta¥a
FAYAY

‘I‘

W
A,

e

©

Fig. 10. Trajectories of the robot following different moving objects.

650

TABLE VII
RESULTS (Z & 0) FOR THE MOVING OBJECT FOLLOWING BEHAVIOR
Figure o error odev (degrees) Rvce
Fig. 10(a) 9.56 + 0.18 423 +£0.15 7.28 + 0.19
Fig. 10(b) | 19.36 £+ 0.43 9.27 £ 0.20 7.03 + 047
Fig. 10(c) | 21.97 + 1.57 20.39 £+ 0.67 6.12 + 0.31

for some parameters that reflect the controller performance are
shown in Table VII. These parameters are the average distance

error (6d = |d — d,.f|), the average deviation error deypor =
d - dyef, and the average relative velocity change, defined as
ver + 1
Rye=— 32
Ve + 1 (32)

where vc, and wve,, are the average velocity changes for the
robot and the moving object, respectively.

In order to show the accuracy of the controller, the three tra-

jectories of Fig. 10 are going to be described.

* Fig. 10(a): this is the easiest example, as there are few
turns of the moving object. The object moves with a high
velocity (51 cm/s) except between points B,,, — C},, and
G, — H,,, where velocity is decreased to 25 cm/s in order
to test the controller. Moreover, turnings are implemented
with an angular velocity of 30°/s. With these conditions,
the errors in distance and deviation are low.

* Fig. 10(b): the second type of trajectory is quite difficult
because the moving object is changing its movement
direction for a long time. Between points A,,-C,, and
Gn-Ly,, the object moves straight and at 38 cm/s, but
between C,,,-G,,, the speed is increased to 51 cm/s, and
a continuous turning at 20°/s is implemented. Due to this
continuous change in the heading of the moving object,
errors (Table VII) take a value higher than the previous
type of trajectory.

* Fig. 10(c): this example shows a behavior of the moving
object that makes very difficult to implement the moving
object following task. At the beginning the robot is placed
at A, and the object is placed at A,,, (remember that really
the y coordinate is the same for both points). The moving
object has a linear velocity of 38 cm/s along all the path
and implements turnings with the maximum angular ve-
locity (45°/s). These sudden and very sharp changes in di-
rection make it very difficult for the robot to be at the right
reference distance and with the adequate reference devia-
tion in the next control cycles. As aresult, the errors are the
highest ones of the three types of trajectories (Table VII).

To sum up, the accuracy of the controller is good, but when

the moving object implements continuous or sharp changes in
direction, the controller needs a few control cycles to reach the
reference distance and deviation. On the other hand, the inter-
pretability of the obtained rules is good, as all the linguistic la-
bels have the same shape (triangular), are uniformly distributed
along the universes of discourse, and have the same meaning for
all the rules.

V. CONCLUSION

A methodology for the design of behaviors in mobile robotics
has been presented. It consists of both a strategy to formulate the

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

problem as a data-driven learning process and an efficient algo-
rithm to accurately learn interpretable fuzzy rules from them.
The learning algorithm is based on COR methodology and ex-
tended using an ACO algorithm.

The main characteristics of the approach are as follows. First,
the designer only needs to define the universe of discourse,
number of labels, and precision of each variable, together with
the scoring function. Secondly, learning is done using a set
of training examples that have been automatically generated
covering the whole universe of discourse of each one of the
variables. This makes the learned behavior very general, so
the robot will be capable of facing any situation. Thirdly, the
learning process is very fast compared with other methodolo-
gies (genetic algorithms, neural networks, etc.). Finally, the
obtained knowledge bases have a good interpretability, which
makes it easy to detect possible errors during the design or the
learning process.

This methodology has been applied to the design of two be-
haviors: wall-following and moving object following. For the
first behavior, a controller with 52 linguistic rules has been ob-
tained very quickly (4 m 5 s). It has been tested in a number
of simulated environments showing good results in the mean
values of some parameters that reflect the quality of the be-
havior. The system has also been compared with a previous de-
sign based on genetic algorithms, increasing the accuracy and
interpretability of it. For the moving object following behavior,
the obtained controller has 83 rules and has been obtained also
quite quickly (7 m 19 s). The knowledge base was tested with
three different types of trajectories for the moving object, ob-
taining good values for the parameters that measure the quality
of the behavior.

REFERENCES

[1] R. R. Murphy, Introduction to Al Robotics.
Press, 2000.

[2] A. Saffiotti, “The uses of fuzzy logic in autonomous robot navigation,”
Soft Comput., vol. 1, no. 4, pp. 180-197, 1997.

[3] F. Hoffmann, “An overview on soft computing in behavior based
robotics,” in Proc. IFSA 2003 World Congr., 2003, pp. 544-551.

[4] M. Mucientes, R. Iglesias, C. V. Regueiro, A. Bugarini, and S. Barro,
“A fuzzy temporal rule-based velocity controller for mobile robotics,”
Fuzzy Sets Syst., vol. 134, pp. 83-99, 2003.

[5] A. Bonarini, “Evolutionary learning of fuzzy rules: Competition
and cooperation,” in Fuzzy Modelling: Paradigms and Practice, W.
Pedrycz, Ed. Norwell, MA: Kluwer Academic, 1996, pp. 265-284.

[6] M. Mucientes, D. L. Moreno, C. V. Regueiro, A. Bugarini, and S.

Barro, “Design of a fuzzy controller for the wall-following behavior in

mobile robotics with evolutionary algorithms,” in Proc. Int. Conf. Inf.

Process. Manage. Uncertainty Knowledge-Based Syst. (IPMU’2004),

Perugia, Italy, 2004, pp. 175-182.

H. Hagras, V. Callaghan, and M. Collin, “Learning and adaptation of

an intelligent mobile robot navigator operating in unstructured environ-

ment based on a novel online fuzzy-genetic system,” Fuzzy Sets Syst.,
vol. 141, pp. 107-160, 2004.
[8] K. Izumi, K. Watanabe, and S.-H. Jin, “Obstacle avoidance of mobile
robot using fuzzy behavior-based control with module learning,” in
Proc. 1999 IEEE/RSJ Int. Conf. Intell. Robots Syst., 1999, pp. 454-459.
[9] D. Gu, H. Hu, J. Reynolds, and E. Tsang, “GA-based learning in be-
haviour based robotics,” in Proc. 2003 IEEE Int. Symp. Comp. Intell.
Robot. Automat., Kobe, Japan, 2003, pp. 1521-1526.
[10] D. Katagami and S. Yamada, “Interactive classifier system for real
robot learning,” in Proc. IEEE Int. Workshop Robot-Human Interac-
tion (ROMAN-2000), Osaka, Japan, 2000, pp. 258-263.

[11] S. Yamada, “Evolutionary behavior learning for action-based environ-
ment modeling by a mobile robot,” Appl. Soft Computat., pp. 245-257,
2005.

Cambridge, MA: MIT

[7

—

MUCIENTES AND CASILLAS: QUICK DESIGN OF FUZZY CONTROLLERS WITH GOOD INTERPRETABILITY IN MOBILE ROBOTICS 651

(12]

[13]

[14]

[15

[16]
[17]

(18]

[19]

[20

[21]

[22]

[23]

[24]

[25]

[26]

[27

[28

[29]

[30]

[31]

[32]

[33]

C. K. Oh and G. J. Barlow, “Autonomous controller design for un-
manned aerial vehicles using multi-objective genetic programming,”
in Proc. Congr. Evol. Computat., Portland, OR, 2004, pp. 1538-1545.
T. Dahl and C. Giraud-Carrier, “Evolution-inspired incremental devel-
opment of complex autonomous intelligence,” in Proc. 8th Int. Conf.
Intell. Auton. Syst. (IAS’04), Amsterdam, The Netherlands, 2004, pp.
395-402.

D. Floreano and F. Mondada, “Evolutionary neurocontrollers for au-
tonomous mobile robots,” Neural Netw., vol. 11, pp. 1461-1478, 1998.
A. Berlanga, A. Sanchis, P. Isasi, and J. M. Molina, “A general learning
co-evolution method to generalize autonomous robot navigation be-
havior,” in Proc. 2000 Congr. Evol. Computat., La Jolla, CA, 2000,
pp. 769-776.

C. K. Lin, “A reinforcement learning adaptative fuzzy controller for
robots,” Fuzzy Sets Syst., vol. 137, pp. 339-352, 2003.

C. Zhou, “Robot learning with Ga-based fuzzy reinforcement learning
agents,” Inform. Sci., vol. 145, pp. 45-68, 2002.

D. Gu, H. Hu, and L. Spacek, “Learning fuzzy logic controller for re-
active robot behaviours,” in Proc. 2003 IEEE/ASME Int. Conf. Adv.
Intell. Mechatron. (AIM 2003), 2003, pp. 46-51.

H. R. Beom and H. S. Cho, “A sensor-based navigation for a mobile
robot using fuzzy logic and reinforcement learning,” IEEE Trans. Syst.,
Man, Cybern., vol. 25, no. 3, pp. 464477, 1995.

Z. Kalmar, C. Szepesvdri, and A. Lorincz, “Module-based reinforce-
ment learning: Experiments with a real robot,” Machine Learn., vol.
31, pp. 55-85, 1998.

S. Thongchai, “Behavior-based learning fuzzy rules for mobile robots,”
in Proc. Amer. Contr. Conf., Anchorage, AK, 2002, pp. 995-1000.

Y. Takahashi and M. Asada, “Multi-layered learning systems for vi-
sion-based behavior acquisition of a real mobile robot,” in Proc. SICE
Annu. Conf. 2003, 2003, pp. 2937-2942.

Y. Wang, M. Huber, V. Papudesi, and D. Cook, “User-guided rein-
forcement learning of robot assistive tasks for an intelligent environ-
ment,” in Proc. IEEE/RJS Int. Conf. Intell. Robots Syst., Las Vegas,
NV, 2003, pp. 424-429.

E. Tuci, M. Quinn, and 1. Harvey, “An evolutionary ecological ap-
proach to the study of learning behaviour using a robot based model,”
Adapt. Behav., vol. 10, no. 3/4, pp. 201-221, 2003.

0. Miglino, H. H. Lund, and S. Nolfi, “Evolving mobile robots in sim-
ulated and real environments,” Artif. Life, vol. 2, no. 4, pp. 417-434,
199s.

A. L. Nelson, E. Grant, G. Barlow, and M. White, “Evolution of com-
plex autonomous robot behaviors using competitive fitness,” in Proc.
IEEE Int. Conf. Integr. Knowl. Intensive Multi-Agent Syst., Boston,
MA, 2003, pp. 145-150.

K. J. Lee and B. T. Zhang, “Learning robot behaviors by evolving ge-
netic programs,” in Proc. 26th Int. Conf. Ind. Electron., Contr. Instrum.
(IECON-2000), 2000, vol. 4, pp. 2867-2872.

O. Fuentes, R. Rao, and M. V. Wie, “Hierarchical learning of reactive
behaviors in an autonomous mobile robot,” in IEEE Int. Conf. Syst.,
Man, Cybern., 1995, pp. 4691-4695.

K. Ward, “Rapid simultaneous learning of multiple behaviours with a
mobile robot,” in Proc. 2001 Austral. Conf. Robot. Automat., Sydney,
Australia, 2001, pp. 1-6.

M. Hiilse, B. Lara, F. Pasemann, and U. Steinmetz, G. Dorffner, H.
Bischof, and K. Hornik, Eds., “Evolving neural behavior control for au-
tonomous robots,” Proc. Int. Conf. Artif. Neural Netw. 2001, ser. Lec-
ture Notes in Computer Science, vol. 2130, pp. 957-962, 2001.

J. Casillas, O. Cordodn, and F. Herrera, “COR: A methodology to im-
prove ad hoc data-driven linguistic rule learning methods by inducing
cooperation among rules,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 32, no. 4, pp. 526-537, 2002.

——, “COR methodology: A simple way to obtain linguistic fuzzy
models with good interpretability and accuracy,” in Accuracy Improve-
ments in Linguistic Fuzzy Modeling, J. Casillas, O. Cordon, F. Herrera,
and L. Magdalena, Eds. Heidelberg, Germany: Springer, 2003.

J. Casillas, O. Cordén, I. F. de Viana, and F. Herrera, “Learning cooper-
ative linguistic fuzzy rules using the best-worst ant system algorithm,”
Int. J. Intell. Syst., vol. 20, pp. 433-452, 2005.

[34] M. Dorigo and T. Stiitzle, Ant Colony Optimization. Cambridge, MA:
MIT Press, 2004.

[35] J. Urzelai, J. P. Uribe, and M. Ezkerra, “Fuzzy controller for wall-
following with a non-holonomous mobile robot,” in Proc. 6th IEEE
Int. Conf. Fuzzy Syst. (Fuzz-IEEE’97), Barcelona, Spain, 1997, pp.
1361-1368.

[36] L.-X. Wang and J. Mendel, “Generating fuzzy rules by learning

from examples,” IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6, pp.

1414-1427, 1992.

P. Thrift, “Fuzzy logic synthesis with genetic algorithms,” in Proc.

4th Int. Conf. Genetic Algorithms, R. Belew and L. Booker, Eds., San

Mateo, CA, 1991, pp. 509-513, Morgan Kaufmann.

J. Casillas, O. Cordén, M. del Jesus, and F. Herrera, “Genetic tuning of

fuzzy rule deep structures preserving interpretability and its interaction

with fuzzy rule set reduction,” IEEE Trans. Fuzzy Syst., vol. 13, no. 1,

pp- 13-29, 2005.

[39] N. Pal and K. Pal, “Handling of inconsistent rules with an extended
model of fuzzy reasoning,” J. Intell. Fuzzy Syst., vol. 7, pp. 55-73,
1999.

[40] A. Gonzélez and R. Pérez, “A study about the inclusion of linguistic
hedges in a fuzzy rule learning algorithm,” Int. J. Uncertain., Fuzziness
Knowl.-Based Syst., vol. 7, no. 3, pp. 257-266, 1999.

[41] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting
fuzzy if-then rules for classification problems using genetic algo-
rithms,” IEEE Trans. Fuzzy Syst., vol. 3, no. 3, pp. 260-270, 1995.

[42] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Optimiza-
tion by a colony of cooperating agents,” IEEE Trans. Syst., Man, Cy-
bern. B, Cybern., vol. 26, no. 1, pp. 2941, 1996.

[43] J. Casillas, O. Cordén, and F. Herrera, “Learning fuzzy rules using
ant colony optimization algorithms,” in Proc. 2nd Int. Workshop Ant
Algorithms, Brussels, Belgium, 2000, pp. 13-21.

[44] M. Dorigo and L. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE Trans.
Evol. Computat., vol. 1, no. 1, pp. 53-66, 1997.

[45] O. Cordén, F. Herrera, 1. F. de Viana, and L. Moreno, “A new AGO
model integrating evolutionary computation concepts: The best-worst
ant system,” in Proc. 2nd Int. Workshop Ant Algorithms, Brussels, Bel-
gium, 2000, pp. 22-29.

[37

[38

Manuel Mucientes received the M.Sc. and Ph.D. de-
grees in physics from the University of Santiago de
Compostela, Santiago de Compostela, Spain, in 1997
and 2002, respectively.

He is currently an Assistant Professor with the De-
partment of Electronics and Computer Science, Uni-
versity of Santiago de Compostela. His research in-
terests include autonomous mobile robotics, machine
learning, evolving fuzzy systems, and pattern recog-
nition.

Jorge Casillas received the B.Sc., M.Sc., and Ph.D.
graduate degrees in computer science from the Uni-
versity of Granada, Granada, Spain, in 1996, 1998,
and 2001, respectively.

He is an Associate Professor with the Department
of Computer Science and Artificial Intelligence,
University of Granada, where he is a member of
the Soft Computing and Intelligent Information
Systems research group. He has worked on several
research projects supported by the Spanish gov-
ernment and the European Union. He has coedited
two international books and an international special issue. He has organized
several special sessions in international conferences. He is coauthor of more
than 50 publications in journals, book chapters, and conferences. His research
interests include fuzzy modeling, intelligent robotics, knowledge discovery,
and metaheuristics.

