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Summary. Persistent queries are a specific kind of queries used in information
retrieval systems to represent a user’s long-term standing information need. These
queries can present many different structures, being the “bag of words” that most
commonly used. They can be sometimes formulated by the user, although this task
is usually difficult for him and the persistent query is then automatically derived
from a set of sample documents he provides.

In this work we aim at getting persistent queries with a more representative
structure for text retrieval issues. To do so, we make use of soft computing tools:
linguistic information is considered for weighting the terms of Boolean queries by
means of ordinal linguistic values (linguistic queries), and multiobjective evolution-
ary algorithms are applied to build the linguistic persistent query. Experimental re-
sults will show how using an expressive linguistic information-based query structure
and a proper learning process to derive it, we can get more flexible, comprehensible
and expressive user profiles.

26.1 Introduction

Persistent queries (PQs) are useful tools for information retrieval system (IRS)
users having a relatively specific information need remaining fixed during a
certain time period [23, 38]. By the definition of these kinds of queries, the
information filtering process can be put into effect by delivering interesting
information to a user, thus getting the her or him permanently updated on
topics the user is interested [26].
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Although different structures can be used to represent a PQ, it is usually
difficult for a user to formulate the query independent of its structure [23,
24, 38]. Therefore, explicit PQs automatically learned from a training set of
documents by means of user’s relevance feedback are normally considered in
information routing systems.

Soft computing tools have demonstrated to be useful in the personalization
of IRSs, providing them with flexibility and some kind of “intelligence”. The
latter is viewed as the capability of automatically adapting to a context or
service based on implicit behavior and learning instead of explicit solicitation
from users [14, 22, 39].

One of the ways to add flexibility to an IRS is to make it tolerant to
uncertainty and imprecision — both inherent to the user-system interaction
— which can be achieved by allowing a more natural expression of users’
needs [39]. For example, some flexible query languages based on the applica-
tion of fuzzy set theory have been proposed which make possible simple and
approximate expressions of subjective information needs [6]. In this contri-
bution, we will deal with linguistic queries, considering them to improve the
representative power of classic Boolean ones when used as PQ structures.

On the other hand, the IRS self-adaptativeness can be tackled by the
machine learning perspective of soft computing, put into effect by evolution-
ary algorithms [1], neural networks and Bayesian networks, among others.
These techniques can be hybridized with the representative power of flexi-
ble query languages to get “intelligent” IRSs [14]. In particular, evolutionary
algorithms has obtained promising results in IR [15]. We will consider the use
of multiobjective evolutionary algorithms [13] to automatically derive several
linguistic PQs representing the user’s information needs in a single run.

The aim of this contribution is to propose the use of a new, more flexible
query structure —the linguistic query— to appropriately represent PQs for
text retrieval and to introduce an evolutionary learning process to explicitly
derive PQs of this composition. The latter will be based on a multiobjective
technique able to automatically generate several PQs with a different trade-off
between precision and recall in a single run.

The proposed method will be validated in a simulated text retrieval
environment considering seven different information needs extracted from the
classic Cranfield collection. Its efficacy will be compared with user profiles
derived by one of the state-of-the-art algorithms [23, 24].

This chapter is structured as follows. Section 26.2 is devoted to introduce
the preliminaries, including the PQ framework as well as the main aspects of
linguistic IRSs and multigranular linguistic information. Then, Section 26.3
presents an IRS based on multigranular linguistic information that accepts
linguistic weighted queries. The multiobjective GA algorithm to construct
linguistic PQs is described in Section 26.4. Section 26.5 presents the experi-
ments developed to test it and the analysis of results, while the conclusions
are pointed out in Section 26.6.
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26.2 Preliminaries

26.2.1 Construction of Persistent Queries

A) Information Filtering and Persistent Queries

Information filtering refers to an information seeking process where the user
is assumed to be searching for information addressing a specific long-term
interest [26, 38].

In an information filtering system, the user’s permanent information need
is represented in the form of a “profile”. The most common profile structure
is the “bag of words”, which is based on a set of keywords representing the
user’s interest. Many systems assume an implicit definition of the profile by
the user, although this comes with the traditional human-computer interaction
“vocabulary problem”, involving the difficulty for the user to select the right
words to communicate with the system. This is specially important in this
case as the profile can neither be too broad —as in that case the information
filtering system would retrieve so many non relevant documents— nor too
specific —as much valuable information can be lost.

Due to this reason, machine learning techniques have been applied to con-
struct “implicit profiles” [24, 38]. In this case, the profile is automatically
learned by the system from a training set of documents provided by the user.

Belkin and Croft suggested that IR techniques can be successfully applied
to information filtering [3]. This way, the profile can be represented as a query
formulated by using any IR retrieval model [2], the so called PQ [23]. Besides,
IR query formulation techniques such as relevance feedback [2] or inductive
query by example [12] can be applied in information filtering.

B) Flexible Persistent Queries

As different query structures from different IR retrieval models can be used
to represent a PQ, the obtaining of effective retrieval results depends on the
user’s ability to express his information needs in the form of a query both in
information filtering and in IR. It has been shown that the user often does
not have a clear picture of what he is looking for and can only represent his
information need in vague and imprecise terms, which results in a situation
known as fuzzy-querying [37].

Flexible query languages can help to solve this problem due to their capa-
bility of personalization. A flexible query language is a language that enables
a simple and approximate expression of subjective information needs [39]. For
example, different linguistic IR models that use a fuzzy linguistic approach
[45] to model the weights of queries and the retrieval status value of docu-
ments have been proposed in the literature [7, 8, 9, 29, 30, 31, 33], as we will
see in Section 26.2.2.
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Therefore, the modeling of user profiles in the form of flexible PQs (in par-
ticular, of linguistic PQs) can help us to improve both the comprehensibility
and the retrieval efficacy of the obtained PQs.

C) Inductive Query by Example of Persistent Queries

Inductive Query by Example (IQBE) [12] was proposed as “a process in which
searchers provide sample documents and the algorithms induce the key con-
cepts in order to find other relevant documents”. It works by taking a set of
relevant (and optionally, non relevant documents) provided by a user and ap-
plying an off-line machine learning process to automatically generate a query
describing the user’s needs from that set. The obtained query can then be run
in other IRSs to obtain more relevant documents.

Hence, IQBE techniques can be directly applied to construct PQs for in-
formation filtering, as they work in the same way as explicit profile learning
methods. In this contribution, we propose a new IQBE technique, based on a
multiobjective genetic algorithm, to derive several flexible PQs with different
retrieval efficacy trade-offs in a single run.

26.2.2 Linguistic Information Retrieval Systems

The main activity of an IRS is to gather pertinent archived documents that
best satisfy the user queries [2]. IRSs consists of three components:

1.- A Database: which stores the documents and the representation of their
information contents (index terms).

2.- A Query Subsystem: which allows users to formulate their queries by
means of a query language.

3.- An Evaluation Subsystem: which evaluates the documents for a user
query obtaining a Retrieval Status Value (RSV) for each document.

The query subsystem supports the user-IRS interaction, and therefore, it
should be able to account for the imprecision and vagueness typical of hu-
man communication. This aspect may be modeled by means of introducing
weights in the query language. Many authors have proposed weighted IRS
models using Fuzzy Set Theory [5, 8, 10, 11, 34, 42]. Usually, they assume nu-
meric weights (values in [0,1]). However, the use of query languages based on
numeric weights forces the user to quantify qualitative concepts (such as “im-
portance”), ignoring that many users are not able to provide their information
needs precisely in a quantitative form but in a qualitative one.

In fact, it seems more natural to characterize the contents of desired doc-
uments by explicitly associating a linguistic descriptor to a term in a query,
like “important” or “very important”, instead of a numerical value. To this
end, some fuzzy linguistic IRS models [7, 33] have been proposed using a fuzzy
linguistic approach [45] to model query weights and document scores.

A useful fuzzy linguistic approach which allows us to reduce the complexity
of the IRS design [30] is called the ordinal fuzzy linguistic approach [27]. In



26 A Multiobjective GA for Learning Linguistic PQs 605

this approach, the query weights and document scores are ordered linguistic
terms, as we will see in the next Section.

26.2.3 Multi-Granular Linguistic Information

An ordinal fuzzy linguistic approach is an approximate technique suited for
dealing with qualitative aspects of problems, defined by considering a finite
and totally ordered label set S = si, i ∈ {0, . . . , T } in the usual sense (si ≥ sj

if i ≥ j) and with odd cardinality (7 or 9 labels). The mid-term represent-
ing an assessment of “approximately 0.5” and the rest of the terms being
placed symmetrically around it [4]. The semantics of the label set is estab-
lished from its ordered structure by considering that each label for the pair
(si, sT −i) is equally informative. In some approaches [27, 29, 30], the semantics
is completed by assigning fuzzy numbers defined on the [0,1] interval to the
labels. These membership functions (µsi

) are described by linear trapezoidal
membership functions represented by the 4-tuple (ai, bi, αi, βi) (the first two
parameters indicate the interval in which the membership value is 1.0; the
third and fourth parameters indicate the left and right widths of the distrib-
ution). Furthermore, we require the following operators:

1) Negation: Neg(si) = sj , j = T − i.
2) Maximization: MAX(si, sj) = si if si ≥ sj .
3) Minimization: MIN(si, sj) = si if si ≤ sj .

In any linguistic approach, an important parameter to be determined is
the granularity of uncertainty, i.e., the cardinality of the label set S used to
express the linguistic information. The cardinality of S must be small enough
so as not to impose useless precision levels to the users, and it must be rich
enough in order to allow a discrimination of the assessments in a limited
number of degrees.

On the other hand, according to the uncertainty degree that a user qual-
ifying a phenomenon has on it, the label set chosen to provide the user’s
knowledge will have more or less terms. When different users have different
uncertainty degrees on the phenomenon, several label sets with a different
granularity of uncertainty are necessary. In the latter case, we need tools for
the management of multi-granular linguistic information to model these situ-
ations [28].

26.3 The Multi-Granular Linguistic IRS

In this section we review our previous work on an IRS model that accepts
linguistic weighted Boolean queries and provides linguistic RSVs expressed
using multi-granular linguistic information [31]. Thus, it uses multi-granular
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linguistic weighted queries and multi-granular linguistic RSVs. Other impor-
tant property of this IRS is that it models the Boolean operators in a flexible
way by means of the OWA operators [44].

Before presenting our algorithm, we provide the basic assumptions in this
work. We consider a set of documents D= {d1, . . . , dm} represented by means
of index terms T= {t1, . . . , tl}, which describe the subject content of the
documents. A numeric indexing function F : D × T → [0, 1] is defined, called
index term weighting. F maps a given document dj and a given index term
ti to a numeric weight between 0 and 1. Thus, F (dj , ti) is a numerical weight
that represents the degree of significance of ti in dj . F (dj , ti) = 0 implies that
the document dj is not at all about the concept(s) represented by the index
term ti and F (dj , ti) = 1 implies that the document dj is perfectly represented
by the concept(s) indicated by ti. Using the numeric values in (0,1), F can
weight index terms according to their significance in describing the content of
a document in order to improve the document retrieval.

26.3.1 Multi-Granular Linguistic Weighted Queries

We assume that each query is expressed as a combination of the weighted
index terms which are connected by the logical operators AND (∧), OR (∨),
and NOT (¬), and weighted with ordinal linguistic values. Each term in a
query can be simultaneously weighted by means of several weights [29, 30].
Particularly, a term of a query can be weighted by means of three weights as-
sociated with different semantics. In such a way, the system is able to support
the specification of user’s preferences.

Each term of a query can be weighted by means of three weights associated
to the following semantics:

1. Symmetrical threshold semantics [30]. By associating threshold weights
to terms in a query, the user is asking to retrieve all documents about
the topics represented by such terms. A symmetric threshold semantics
is a special threshold semantics which assumes that a user may employ
presence weights or absence weights in the formulation of weighted queries.
Then, it is symmetrical with respect to the mid threshold value, i.e., it
presents the usual behavior for the threshold values which are on the right
of the mid threshold value (presence weights), and the opposite behavior
for the values which are on the left (absence weights or presence weights
with low values).

2. Relative importance semantics. This semantics defines term weights as a
measure of the relative importance of each term of a query with respect to
the other ones. By associating relative importance weights to terms in a
query, the user is asking to see all documents whose content represents to
a higher degree the concepts associated to the most important terms than
to the less important ones. In practice, this means that the user requires
that the computation of the RSV of a document is dominated by the more
heavily weighted terms.
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3. Quantitative semantics. This semantics defines query weights as measures
of the quantity of documents that users want to consider in the computa-
tion of the final set of documents retrieved for each query term. By associ-
ating quantitative weights with the terms in a query, the user is asking to
see a set of retrieved documents in which the terms with a greater quan-
titative weight contribute with a higher number of pertinent documents.

As in [30], we use the linguistic variable “Importance” to model every se-
mantics, but with different interpretations. For example, a query term ti with
a threshold weight of value “High” means that the user requires documents
whose content ti should have at least a high importance value. However, the
same query term ti with a quantitative weight of value “High” means that
the user wants a set of documents in which the term ti contributes with a
higher number of pertinent documents; and the same query term ti with an
importance weight of value “High” means that the user requires that the
meaning of ti must have a high importance value in the computation of the
set of retrieved documents. Therefore, the problem in such a model [30] is that
different linguistic weights associated with a term are assessed on the same
label set, S. To solve this problem, we propose to represent the linguistic
weights using multi-granular linguistic information, i.e., assuming label sets
with different cardinality and/or semantics to assess the weights associated
with the three semantics, called S1, S2 and S3, respectively.

Then, we assume that a query is any legitimate Boolean expression whose
atomic components (atoms) are 4-tuples < ti, c

1
i , c

2
i , c

3
i > belonging to the set,

T ×S1×S2×S3; ti ∈ T , c1
i ∈ S1 is a value of the linguistic variable “Impor-

tance” modeling the symmetrical threshold semantics, c2
i ∈ S2 is a value of

the linguistic variable “Importance” modeling the quantitative semantics, and
c3
i ∈ S3 is a value of the linguistic variable “Importance” modeling the rela-

tive importance semantics. Therefore, the set of legitimate Boolean queries is
a set of multi-granular linguistic weighted queries Q which is defined by the
following syntactic rules:

1. ∀q =< ti, c
1
i , c

2
i , c

3
i > ∈ T× S1 × S2 × S3 → q ∈ Q.

These queries are called atoms.
2. ∀q, p ∈ Q→ q ∧ p ∈ Q.
3. ∀q, p ∈ Q→ q ∨ p ∈ Q.
4. ∀q ∈ Q→ ¬(q) ∈ Q.
5. Every legitimate Boolean query q ∈ Q can only be obtained by applying

rules 1-4.

26.3.2 Evaluating Multi-Granular Linguistic Weighted Queries

Usually, evaluation methods for Boolean queries work by means of a construc-
tive bottom-up process, i.e., in the query evaluation process, the atoms are
evaluated first, then the Boolean combinations of the atoms, and so forth,
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working in a bottom-up fashion until the whole query is evaluated. Simi-
larly, we propose a constructive bottom-up evaluation method to process the
multi-granular linguistic weighted queries. This method evaluates documents
in terms of their relevance to queries by supporting the three semantics as-
sociated with the query weights simultaneously and by managing the multi-
granular linguistic weights satisfactorily. Furthermore, given that the concept
of relevance is different from the concept of importance, we use a label set S′

to provide the relevance values of documents, which is different from those
used to express the queries (S1, S2 and S3).

To manage the multi-granular linguistic weights of queries, we develop
a procedure based on the multi-granular linguistic information management
tool defined in [28]. This procedure acts making uniform the multi-granular
linguistic information before processing queries. To do so, we have to choose
a label set as the uniform representation base, called basic linguistic term set
(BLTS), and then we have to transform (under a transformation function)
all multi-granular linguistic information into that unified label set BLTS. In
our case, the choice of the BLTS is easy to perform. It must be the label set
used to express the output of the IRS (relevance degrees of documents), i.e.,
BLTS=S′.

The method to evaluate a multi-granular linguistic weighted query is com-
posed of the following six steps:

1.- Preprocessing of the query.
The user query is preprocessed to put it into either conjunctive normal

form (CNF) or disjunctive normal form (DNF), in such a way that every
Boolean subexpression must have more than two atoms. Weighted single-term
queries are kept in their original forms.

2.- Evaluation of atoms with respect to the symmetrical threshold semantics.
According to a symmetrical threshold semantics, a user may search for

documents with a minimally acceptable presence of one term in their repre-
sentations, or documents with a maximally acceptable presence of one term
in their representations [29, 30]. Then, when a user asks for documents in
which the concept(s) represented by a term ti is (are) with the value High
Importance, he/she would not reject a document with an F value greater
than High. On the contrary, when a user asks for documents in which the
concept(s) represented by a term ti is (are) with the value Low Importance,
he/she would not reject a document with an F value less than Low. Given
a request < ti, c

1
i , c

2
i , c

3
i >, this means that the query weights that imply the

presence of a term in a document c1
i ≥ s1

T /2 (e.g. High, Very High) must be
treated differently to the query weights that imply the absence of one term in
a document c1

i < s1
T /2 (e.g. Low, Very Low). Then, if c1

i ≥ s1
T /2, the request

< ti, c
1
i , c

2
i , c

3
i > is synonymous with the request < ti, at least c1

i , c
2
i , c

3
i >,

which expresses the fact that the desired documents are those having F val-
ues as high as possible; and if c1

i < s1
T /2, the former request is synonymous

with the request < ti, at most c1
i , c

2
i , c

3
i >, which expresses the fact that the

desired documents are those having F values as low as possible. This inter-
pretation is defined by means of a parameterized linguistic matching function
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g1 : D× T ×S1 → S1 [29]. Given an atom < ti, c
1
i , c

2
i , c

3
i > and a document

dj ∈ D, g1 obtains the linguistic RSV of dj , called RSV i,1
j , by measuring

how well the index term weight F (dj , ti) satisfies the request expressed by the
linguistic weight c1

i according to the following expression:

RSV i,1
j = g1(dj , ti, c

1
i ) =




s1
min{a+B,T } if s1

T /2 ≤ s1
b ≤ s1

a

s1
max{0,a−B} if s1

T /2 ≤ s1
b and s1

a < s1
b

Neg(s1
Max{0,a−B}) if s1

a ≤ s1
b < s1

T /2

Neg(s1
Min{a+B,T }) if s1

b < s1
T /2 and s1

b < s1
a

(26.1)

such that, (i) s1
b = c1

i ; (ii) s1
a is the linguistic index term weight obtained as

s1
a = Label(F (dj , ti)), being Label : [0, 1]→ S1 a function that assigns a label

in S1 to a numeric value r ∈ [0, 1] according to the following expression:

Label(r) = Supq{s1
q ∈ S1 : µs1

q
(r) = Supv{µs1

v
(r)}}; (26.2)

and (iii) B is a bonus value that rewards/penalizes the value RSV i,1
j for the

satisfaction/dissatisfaction of request < ti, c
1
i , c

2
i , c

3
i >, which can be defined

in an independent way, for example as B = 1, or depending on the closeness
between Label(F (dj , ti)) and c1

i , for example as B = round( 2(|b−a|)
T ).

3.- Evaluation of atoms with respect to the quantitative semantics.
In this step, documents is evaluated with regard to their relevance to

individual atoms of the query, the restrictions imposed by the quantitative
semantics are considered.

The linguistic quantitative weights are interpreted as follows: when a user
establishes a certain number of documents for a term in the query, expressed
by a linguistic quantitative weight, then the set of documents to be retrieved
must have the minimum number of documents that satisfies the compatibility
or the membership function associated with the meaning of the label used as
linguistic quantitative weight. Furthermore, these documents must be those
that better satisfy the threshold restrictions imposed on the term.

Therefore, given an atom < ti, c
1
i , c

2
i , c

3
i > and assuming that RSV i,1

j ∈ S1

represents the evaluation according to the symmetrical threshold semantics
for dj , we model the interpretation of a quantitative semantics by means of a
linguistic matching function, called g2, which is defined between the RSV i,1

j

and the linguistic quantitative weight c2
i ∈ S2. Then, the evaluation of the

atom < ti, c
1
i , c

2
i , c

3
i > with respect to the quantitative semantics associated

with c2
i for a document dj , called RSV i,1,2

j ∈ S1, is obtained by means of the
linguistic matching function g2 : D × S1 × S2 → S1 as follows

RSV i,1,2
j = g2(RSV i,1

j , c2
i , dj) =

{
s1
0 if dj /∈ BS

RSV i,1
j if dj ∈ BS (26.3)

where BS is the set of documents such that BS ⊆ Supp(M) where,

M = {(d1, RSV i,1
1 ), . . . , (dm, RSV i,1

m )} (26.4)
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is a fuzzy subset of documents obtained according to the following algorithm:

1. K = #Supp(M)
2. REPEAT

MK = {sq ∈ S : µsq
(K/m) = Supv{µsv

(K/m)}}.
sK = Supq{sq ∈MK}.
K = K − 1.

3. UNTIL ((c2
i ∈MK+1) OR (c2

i ≥ sK+1)).
4. BS = {dσ(1), . . . , dσ(K+1)}, such that RSV i,1

σ(h) ≤ RSV i,1
σ(l),∀l ≤ h.

According to g2, the application of the quantitative semantics consists of re-
ducing the number of documents to be considered by the evaluation subsystem
for ti in the later steps.

4.- Evaluation of subexpressions and modeling of the relative importance se-
mantics

We argue that the relative importance semantics in a single-term query
has no meaning. Then, in this step we have to evaluate the relevance of doc-
uments with respect to the subexpressions of queries composed of two atomic
components.

Given a subexpression qv with I ≥ 2 atoms, we know that each document
dj presents a partial RSV i,1,2

j ∈ S1 with respect to each atom < ti, c
1
i , c

2
i , c

3
i >

of qv. Then, the evaluation of the relevance of a document dj with respect to
the whole subexpression qv implies the aggregation of the partial relevance
degrees {RSV i,1,2

j , i = 1, . . . , I} weighted by means of the respective relative
importance degrees {c3

i ∈ S3, i = 1, . . . , I}. Therefore, as S1 �= S3, we have
to develop an aggregation procedure of multi-granular linguistic information.
As said, to do so, we first choose a label set BLTS to make linguistic informa-
tion uniform. In this case, BLTS=S′ which is used to assess RSVs (relevance
degrees of documents). Then, each linguistic information value is transformed
into S′ by means of the following transformation function:

Definition: Let A = {l0, . . . , lp} and S′ = {s′0, . . . , s′m} be two label sets,
such that m ≥ p. Then, a multi-granularity transformation function, τAS′ is
defined as τAS′ : A −→ F(S′)

τAST
(li) = {(s′k, αi

k) /k ∈ {0, . . . , m}},
∀li ∈ A, αi

k = max
y

min{µli(y), µs′
k
(y)}, (26.5)

where F(S′) is the set of fuzzy sets defined in S′, and µli(y) and µs′
k
(y) are

the membership functions of the fuzzy sets associated to the terms li and s′k,
respectively [28].

Therefore, the result of τAS′ for any linguistic value of A is a fuzzy set
defined in the BLTS, S′. Using the multi-granularity transformation func-
tions τS1S′ and τS3S′ , we transform the linguistic values {RSV i,1,2

j ∈ S1, i =
1, . . . , I} and {c3

i ∈ S3, i = 1, . . . , I} into S′, respectively. Therefore, the val-
ues RSV i,1,2

j and c3
i are represented as fuzzy sets defined on S′ characterized

by the following expressions:
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1. τS1S′(RSV i,1,2
j ) = [(s′0, α

ij
0 ), . . . , (s′m, αij

m)], and
2. τS2S′(c3

i ) = [(s′0, α
i
0), . . . , (s

′
m, αi

m)], respectively.

In each subexpression qv, we find that the atoms can be combined using the
AND or OR Boolean connectives, depending on the normal form of the user
query. The restrictions imposed by the relative importance weights must be
applied in the aggregation operators used to model both connectives. These
aggregation operators should guarantee that the more important the query
terms, the more influential they are in the determination of the RSVs. To do
so, these aggregation operators must carry out two activities [27]: i) the trans-
formation of the weighted information under the importance degrees by means
of a transformation function h; and ii) the aggregation of the transformed
weighted information by means of an aggregation operator of non-weighted
information f . As it is known, the choice of h depends upon f . In [43], Yager
discussed the effect of the importance degrees on the MAX (used to model
the connective OR) and MIN (used to model the connective AND) types of
aggregation and suggested a class of functions for importance transformation
in both types of aggregation. For the MIN aggregation, he suggested a fam-
ily of t-conorms acting on the weighted information and the negation of the
importance degree, which presents the non-increasing monotonic property in
these importance degrees. For the MAX aggregation, he suggested a family
of t-norms acting on weighted information and the importance degree, which
presents the non-decreasing monotonic property in these importance degrees.

Following the ideas shown above, we use the OWA operators φ1 (with
orness(W)≤ 0.5) and φ2 (with orness(W)> 0.5) to model the AND and OR
connectives, respectively. Hence, when h = φ1, f = max(Neg(weight), value),
and when h = φ2, f = min(weight, value).

Then, given a document dj , we evaluate its relevance with respect to a
subexpression qv, called RSV v

j , as RSV v
j = [(s′0, α

v
0), . . . , (s

′
m, αv

m)], where

1. if qv is a conjunctive subexpression then

αv
k = φ1(max((1− α1

k), α1j
k ), . . . , max((1− αI

k ), αIj
k )) (26.6)

2. if qv is a disjunctive subexpression then

αv
k = φ2(min(α1

k, α1j
k ), . . . ,min(αI

k , αIj
k )). (26.7)

5.- Evaluation of the whole query. In this step, the final evaluation of each
document is achieved by combining their evaluations with respect to all the
subexpressions using, again, the OWA operators φ1 and φ2 to model the AND
and OR connectives, respectively.

Then, given a document dj , we evaluate its relevance with respect to a
query q as RSVj = {(s′0, β

j
0), . . . , (s

′
m, βj

m)}, where βj
k = φ1(α1

k, . . . , αV
k ), if q

is in CNF, and βj
k = φ2(α1

k, . . . , αV
k ), if q is in DNF, with V standing for the

number of subexpressions in q.
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Remark: On the NOT Operator. We should note that, if a query is in CNF or
DNF form, we have to define the negation operator only at the level of single
atoms. This simplifies the definition of the NOT operator. As was done in [30],
the evaluation of document dj for a negated weighted atom < ¬(ti), c1

i , c
2
i , c

3
i >

is obtained from the negation of the index term weight F (ti, dj). This means
to calculate g1 from the linguistic value Label(1− F (ti, dj)).

6.- Presenting the output of the IRS
At the end of the evaluation of a user query q, each document dj is char-

acterized by RSVj which is a fuzzy set defined on S′. Of course, an answer
of an IRS where the relevance of each document is expressed by means of
a fuzzy set is not easy to understand, and neither to manage. To overcome
this problem, we present the output of our IRS by means of ordered linguis-
tic relevance classes, as in [29, 30]. Furthermore, in each relevance class we
establish a ranking of the documents using a confidence degree associated to
each document.

To do so, we calculate a label sj ∈ S′ for each document dj , which rep-
resents its linguistic relevance class. We design an easy linguistic approxi-
mation process in S′ using a similarity measure, e.g., the Euclidean dis-
tance. Each label s′k ∈ S′ is represented as a fuzzy set defined in S′, i.e.,
{(s′0, 0), . . . , (s′k, 1), . . . , (s′m, 0)}. Then, we calculate sj as

sj = MAX{s′l|Conf(s′l, RSVj) = mink{Conf(s′k, RSVj)}}, (26.8)

where Conf(s′k, RSVj) ∈ [0, 1] is the confidence degree associated to dj defined
as

Conf(s′k, RSVj) =

√√√√k−1∑
i=0

(βj
i )2 + (βj

k − 1)2 +
m∑

i=k+1

(βj
i )2. (26.9)

26.4 A Multiobjective Genetic Algorithm to
Automatically Learn Linguistic Persistent Queries

In this section we present a multiobjective Genetic Algorithm (GA) for lin-
guistic PQ learning. The queries to be derived are legitimate queries of the
multigranular linguistic information-based IRS defined in Section 26.3, thus
allowing us to design expressive user profiles. The next subsections are devoted
to the description of the algorithm.

26.4.1 Coding Scheme

It can be seen how the linguistic query structure considered could be repre-
sented as an expression tree, whose terminal nodes are query terms and whose
inner nodes are the Boolean operators AND, OR or NOT . Besides, each ter-
minal node has associated three ordinal linguistic values corresponding to the
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Fig. 26.1. Weighted Boolean query with linguistic weights

three semantics shown in the previous section. Figure 26.1 shows a graphical
example of this kind of queries.

Hence, the natural representation would be to encode the query within
a tree and to work with a Genetic Programming algorithm [32] to evolve it,
as done by previous approaches devoted to the derivation of Boolean queries
[16, 17, 40] or extended Boolean queries (fuzzy queries with numerical weights)
[18, 19, 20, 21, 35].

However, the special characteristics of our linguistic queries allow us to
deal with a much simpler representation. As seen in the previous section, the
queries of our Multi-Granular Linguistic IRS are always on DNF or CNF.
Hence, the query structure is not completely free but it is restricted to a
disjunction of several conjunctions, or to a conjunction of several disjunctions,
i.e., a fixed three-level tree structure with an OR (respectively, an AND) node
in the root, several AND (respectively, OR) nodes in the second level, and
the different (positive or negative) terms involved in each subexpression in
the third level.

Thanks to this, we are able to design a coding scheme that represents
linguistic expression trees as integers vectors, which can be represented using
a usual GA chromosome. We should notice that a method of a similar coding
scheme for a simpler Boolean query tree structure that does not consider term
weights can be found in [25].

In our case, a chromosome C encoding a candidate linguistic PQ will be
composed of two different parts, C1 and C2, which respectively encode the
query composition (the AND-ed or OR-ed subexpressions), and the term
weights. This structure presents the next features:

1. As said, every query is in CNF or DNF, so that the chromosome only
encodes the subexpressions of the query (the operators are the same and
there is no need to keep them in the query representation).

2. The query tree is encoded as an integer vector, where the number 0 acts a
separator between subexpressions while the rest of numbers represent the
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different index terms in the documentary database. Negative numbers are
associated to negated terms in the query (for example, to represent the
atomic expression NOT t17, the number −17 is used).

3. The weights are represented as another integer vector, where each weight
is encoded as its position in its label set. This way, the labels are numbered
from 1 to the granularity of the label set, and the number corresponding
to the selected label for the term weight is stored in the current vector.

To illustrate the coding scheme considered, the query of Figure 26.1 is
encoded in a chromosome with the structure shown in Figure 26.2.

55 77 00 66 22 33

#w
55
11 #w

55
22 #w

55
33 #w

77
11 #w

77
22 #w

77
33 #w

66
11 #w

66
22 #w

66
33 #w

22
11 #w

22
22 #w

22
33 #w

33
11 #w

33
22 #w

33
33

CC
11

CC
22

Fig. 26.2. Chromosome structure

26.4.2 Initial Gene Pool

All the individuals in the first population are randomly created, generating
separately both parts of chromosomes:

1. Queries (C1) will be composed of terms selected among those included in
the set of relevant documents provided by the user, having those present
in more documents a higher probability of being selected.

2. Weights (C2) are randomly calculated, varying each gene in its respective
definition interval: {1, ..., label set granularity}.

26.4.3 Fitness Function

The classical precision and recall criteria [2] —computed as shown in equation
26.10— are jointly maximized.

P =
∑

d rd · fd∑
d fd

; R =
∑

d rd · fd∑
d rd

(26.10)

where rd ∈ {0, 1} is the relevance of document d for the user, and fd ∈ {0, 1}
is the retrieval of document d in the processing of the current query. Notice
that both measures are defined in [0,1], where 1 is the best value that can be
reached.
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26.4.4 Pareto-based Multiobjective Selection Scheme

As said, the objective of our method is to automatically generate several
linguistic PQs with a different trade-off between precision and recall in a
single run. For this purpose, the SPEA scheme [47] has been employed as the
multiobjective GA.

This algorithm introduces the elitism concept, explicitly maintaining an
external population Pe. This population stores a fixed number of nondom-
inated solutions which have been found since the start of the run. In each
generation, the new nondominated solutions found are compared with the
solutions in the existing external population, storing the resulting nondomi-
nated solutions on the latter. Furthermore, SPEA uses these elitist solutions,
together with those in the current population, in the genetic operations, in
the hope to lead the population to good areas in the search space.

The selection scheme involves the following steps:

1. The intermediate population is created from both the current popula-
tion P and the external population (Pe) by means of binary tournament
selection.

2. Genetic operators are used over the new individuals to get a new popula-
tion (P ).

3. Nondominated solutions existing in the new population are copied to the
elitist population Pe.

4. The dominated and duplicated solutions are removed.

Therefore, the new elitist population is composed of the best nondomi-
nated solutions found so far, including new and old elitist solutions. To limit
the growth of the elitist population, the size is restricted to a maximum num-
ber of solutions using clustering techniques (see [47] for details).

26.4.5 Genetic Operators

Due to the special nature of the chromosomes involved in this generation
process (comprised by two different information levels), the design of genetic
operators that is able to deal with it becomes a main task. As there exists
a strong relationship between the two chromosome parts, operators working
cooperatively in C1 and C2 are required in order to make best use of the repre-
sentation considered. It can be clearly observed that the existing relationship
will present several problems if not handled adequately. For example, modifi-
cations in the first chromosome part have to be automatically reflected in the
second one. It makes no sense to modify the query structure, adding, deleting
or changing terms and subexpressions, but continue working with the same
weights. On the other hand, there is a need to develop the recombination in
a correct way in order to obtain meaningful offsprings.

Taking into account these aspects, the following operators are going to be
considered:
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Crossover

Two different crossover operators are employed depending of the two parents’
scope:

• Crossover when both parents encode the same query (same C1 part): If
this is the case, then the genetic search has located a promising space zone
that has to be adequately exploited. This task is developed by applying
a two-point crossover in C2 (term weights), and obviously by maintaining
the parent C1 values in the offsprings.

• Crossover when the parents encode different queries (different C1 part):
This second case highly recommends the use of the information encoded
by the parents for exploring the search space in order to discover new
promising zones. In this way, an standard crossover operator is applied
over both parts of the chromosomes. This operator performs as follows: a
crossover point cp is randomly generated in C1 for each parent and then,
the genes between point cp and the end of C1 are interchanged. In C2, the
crossover is developed in the same way, using the corresponding crossover
points. The feasible points of crossover are the separators between subex-
pressions. Figure 26.3 shows an example of the crossover operator.

Mutation

Seven different operators are used, six of them acting on C1 and one on C2.

• Mutation on C1: The mutation operators in C1 are as follows:

Fig. 26.3. Explorative crossover
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1. Replace selected term by a random one.
2. Negation of a term.
3. Deletion of a randomly selected separator.
4. Addition of a new separator in a valid random position.
5. Displacement of a separator.
6. Replace a subexpression by a randomly generated one with more or

less terms (C2 is automatically updated).
• Mutation on C2: The mutation operator selected for C2 is similar to the

one proposed by Thrift in [41] for fuzzy rule base learning with GAs. When
a mutation on a gene belonging to the second part of the chromosome is
going to be performed, a local modification is developed by changing the
current label to the immediately preceding or subsequent one (the decision
is made at random). When the label to be changed is the first or last one
in the label set, the only possible change is developed.

26.5 Experiments and Analysis of Results

26.5.1 Experiments Developed

This section is devoted to test the performance of the proposed MOGA-LPQ
IQBE algorithm that automatically derives profiles represented as linguistic
PQs. Since the most common profile structure is the “bag of words”, which is
based on a set of weighted keywords representing the user’s interest, we must
compare our algorithm with classical methods of profile construction, in order
to verify the performance. As comparison method, we have chosen one of the
state-of-the-art algorithms (RSV-OKAPI) [23, 24], based on the vector space
model and the probability theory [2]. We consider Robertson Selection Value
(RSV) as the approach for profile learning and OKAPI BM25 as similarity
function to match profiles and documents.

However, we should notice that this comparison is not fair to our algo-
rithm due to two reasons. On the one hand, we are designing more expressive
user profiles, what usually comes with a retrieval efficacy decrease (the usual
interpretability-accuracy trade-off problem). On the other hand, our algorithm
is able to derive several linguistic PQs (user profiles) with a different trade-off
between precision and recall in a single run, thus giving more chances to the
user to retrieve much/less relevant information with a larger/lesser retrieval
noise at his own choice. So, the selection of a single PQ to compare it against
the user profile derived by RSV-OKAPI will restrict the capabilities of our
method.

The documentary database considered to design our experimental setup
has been the popular Cranfield collection, composed of 1398 documents about
Aeronautics [2]. It has been automatically indexed by first extracting the non-
stop words, applying a stemming algorithm, thus obtaining a total number
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of 3857 different indexing terms, and then using a usual TFIDF indexing to
generate the term weights in the document representations.

Among the 225 queries associated to the Cranfield collection, we have
selected those presenting 20 or more relevant documents (queries 1, 2, 23, 73,
157, 220 and 225). The number of relevant documents associated to each of
these seven queries are 29, 25, 33, 21, 40, 20 and 25, respectively. The relevance
judgments associated to each of these selected queries have been considered
to play the role of seven different user’s information needs.

For each one of these queries, the documentary base has been randomly
divided into two different, non overlapped, document sets, training and test,
each of them composed of a fifty percent of the (previously known) relevant
and irrelevant documents for the query.

MOGA-LPQ has been run five times with different initializations for each
selected query during 50000 fitness function evaluations in a 2.4GHz Pentium
IV computer with 1Gb of RAM. The parameter values considered are a popu-
lation size of 100 individuals, an elitist population size of 25, a maximum of 10
terms by query, and 0.8 and 0.2 for the crossover and mutation probabilities
(in both the C1 and the C2 parts). The retrieval threshold has been set to the
third label of the label set.

The Pareto sets obtained in the five runs performed for each query have
been put together, and the dominated solutions removed from the unified set.
Then, five PQs well distributed on the Pareto front has been selected from
each of the seven unified Pareto sets.

On the other hand, RSV-OKAPI has been run only one time, since it has
no random components, with a profile size of 10 terms and with QTW (the
term weights) equal to the RSV value.

Every selected linguistic PQ has been run on the corresponding test set
once preprocessed3 in order to evaluate their capability to retrieve relevant
information for the user. The same has been done for the profile derived by
RSV-OKAPI.

26.5.2 Analysis of the Pareto Sets Derived

Several quantitative metrics have been proposed in the literature to measure
the quality of Pareto sets derived by multiobjective algorithms [46]. Specifi-

3 As the index terms of the training and test documentary bases can be different,
there is a need to translate training queries into test ones, removing those terms
without a correspondence in the test set. Notice that, this is another source of
retrieval efficacy loss for our method as two-term subexpressions where one of the
terms is not present in the test document set are completely removed due to the
restriction imposed on the linguistic query structure of not having single-term
subexpressions (see Section 26.3). In the future, we aim at solving this problem,
what would significantly improve the performance of our algorithm on the test
set.
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cally, we have used three different metrics; M∗
2 and M∗

3 and the number of
nondominated solutions in the Pareto set.

Table 26.1 collects several data about the composition of the five Pareto
sets generated for each query, where both the averaged value and its standard
deviation are shown. From left to right, the columns contain the query num-
ber (#q), the number of different non-dominated solutions obtained (#d),
corresponding to the number of different objective vectors (i.e., precision-
recall pairs) existing among them, and the values of the two multiobjective
EA metrics selected, M∗

2 and M∗
3, each of which is followed by their respec-

tive standard deviation values. Regarding the two later metrics,M∗
2 ∈ [0,#d]

measures the diversity of the solutions found, while M∗
3 measures the range

to which the Pareto front spreads out in the objective values (in our case, the
maximum possible value is

√
2 = 1.4142). In both cases, the higher the value,

the better the quality of the obtained Pareto set.

Table 26.1. Statistics of the Pareto sets obtained by the MOGA-LPQ algorithm

#q #d σ#d M∗
2 σM∗

2
M∗

3 σM∗
3

1 7.600 0.669 3.573 0.311 1.209 0.021
2 6.200 0.522 2.836 0.251 1.175 0.031
23 10.400 0.607 4.701 0.277 1.276 0.008
73 5.800 0.522 2.900 0.261 1.137 0.043
157 12.200 0.716 5.581 0.307 1.229 0.020
220 5.000 0.283 2.500 0.141 1.127 0.034
225 7.000 0.566 3.163 0.244 1.201 0.016

In view of the values shown in Table 26.1, the Pareto fronts obtained are
of good quality. We can see how all runs generate a number of linguistic PQs
with different precision-recall trade-offs proportional to the number of relevant
documents associated with the original query (for those cases where a larger
number of relevant documents are provided, a larger number of different PQs
are obtained in the Pareto sets); and that standard deviation values are around
0.6. The values of theM∗

2 andM∗
3 metrics are appropriate as well, showing a

very good distribution of the Pareto fronts. We should emphasize the values
of the latter, very close to 1.4142, the maximum possible value. This shows
that the generated Pareto fronts cover a wide area in the space. To illustrate
this fact, Figure 26.4 depicts the unified Pareto front obtained for query 157
as an example.

26.5.3 MOGA-LPQ versus RSV-OKAPI

To compare the considered algorithms, the average precision over eleven recall
levels (Pavg) [2] has been taken as comparison measure as both can return the
documents ordered according to their relevance. When this measure is used,
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Fig. 26.4. Unified Pareto front generated for query 157

the retrieved document set is descendently ordered according to the RSV
values so that the most relevant documents are at the top of the document
set.

As said in Section 26.5.1, the five Pareto sets obtained by our method in
the five runs performed for each of the seven queries are first unified, and then
five different linguistic PQs well distributed on the resulting Pareto front are
selected for each query. However, RSV-OKAPI only derives a solution per
query as it is run a single time (it has no random components) and generates
only one solution per run. In order to ease the comparison, we have consid-
ered the following two different performance values for each query for our
algorithm:

1. Averaged results: For each Pareto set, we have chosen the PQ with the
greater value of Pavg on the training document set and the five Pavg values
obtained have been averaged.

2. Best result on the test set: Of the five selected PQs, we have chosen that
with the greater value of Pavg on the test document set.

Figure 26.5 illustrates the process to obtain the best results on the test set.
Tables 26.2 and 26.3 show the retrieval efficacy for each query for MOGA-

LPQ and RSV-OKAPI, respectively. In those tables, #rel stands for the num-
ber of relevant documents associated with that query, and #top for the number
of relevant documents located in the #rel first positions of the document set
(ordered by their RSV value).

The left side of Table 26.2 shows the average results. In view of them, we
should notice the good results obtained by our method on the training docu-
ment set: the average precision values are around 0.5, whereas the proportion
of relevant documents in the first positions is around half the number of rel-
evant documents for the query. However, on the test set, results are rather
low compared to training results (we can talk about overlearning, that can be
due to the preprocessing made to adapt the derived PQ to the test document
collection, as mentioned before), with the Pavg values being around 0.1. This
way, the access to new documents relevant for the user is not easy, since the
user would need to examine a lot of documents before finding a useful one.
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Fig. 26.5. Process to obtain the best results on the test set

Table 26.2. Retrieval Efficacy of MOGA-LPQ Linguistic PQs

Average Results Best Results

Training set Test set Training set Test set

#q Pavg #rel #top Pavg #rel #top #q Pavg #rel #top Pavg #rel #top

1 0.528 14 7.8 0.070 15 0.75 1 0.467 14 8 0.201 15 2

2 0.615 12 7.2 0.143 13 2.75 2 0.725 12 7 0.289 13 4

23 0.461 16 8.0 0.113 17 2.4 23 0.426 16 8 0.213 17 5

73 0.627 10 5.6 0.057 11 0.75 73 0.748 10 7 0.080 11 1

157 0.464 20 9.4 0.112 20 2.2 157 0.454 20 11 0.422 20 7

220 0.677 10 6.2 0.173 10 1.2 220 0.647 10 5 0.349 10 3

225 0.515 12 6.2 0.078 13 0.75 225 0.484 12 5 0.126 13 1

Table 26.3. Retrieval Efficacy of RSV-OKAPI Profiles

Training set Test set
#q Pavg #rel #top Pavg #rel #top
1 0.510 14 6 0.484 15 6
2 0.522 12 5 0.789 13 9
23 0.475 16 7 0.357 17 7
73 0.616 10 5 0.268 11 2
157 0.532 20 10 0.298 20 7
220 0.725 10 6 0.544 10 5
225 0.370 12 5 0.099 13 2
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If we concentrate on the best results (the right half of Table 26.2), the
training results are usually not better than those in the left side (but in
queries 2 and 73). Since the selected query is the best on the test set, this
does not mean that it must be the case on the training set as well. Of course,
the best results fully outperforms the average results on the test set, generally
around the double, making easy the user access to new information.

On the other hand, the state-of-the-art method for user profile generation
shows an appropriate behavior, as can be seen in Table 26.3. Pavg values on
the training set are over 0.4, whereas the test results are around 0.4.

Fig. 26.6. Comparison between the mean Pavg values of MOGA-LPQ and RSV-
OKAPI on the training document set

Figure 26.6 shows a comparative bar chart of the Pavg values got by each
algorithm on the training document set (the MOGA-LPQ values correspond
to the average results). Graphically, we can observe that our method out-
performs RSV-OKAPI in four of the seven queries, apart from generating
more expressive profiles as we shall see later. In fact, the global mean of the
MOGA-LPQ Pavg values for the seven queries is slightly higher than that
of RSV-OKAPI (0.56 in front of 0.54). Furthermore, the number of relevant
documents in the first positions of the retrieved document set is very similar,
as can be seen in Tables 26.2 and 26.3. However, notice again that, in each
case, we are comparing the averaged results of five linguistic PQs derived by
our MOGA-LPQ with that of the single user profile derived by RSV-OKAPI.
Hence, if we would have chosen only the best of the five PQs in the training
set performance for the comparison, it would have been much more positive
for us.

Similarly, Figure 26.7 shows a comparative bar chart of the Pavg values
got by each algorithm on the test document set (the MOGA-LPQ reported
values correspond to the linguistic PQ with the best test results). In view of
it, we should notice that RSV-OKAPI outperforms our IQBE method in five
of the seven queries, and the differences is rather big, especially for query 2
(around 0.5). Numerically, the global mean of Pavg for both algorithms is 0.24
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Fig. 26.7. Comparison between MOGA-LPQ (Best Pavg) and RSV-OKAPI on test
document set

and 0.41 for MOGA-LPQ and RSV-OKAPI, respectively. With regards to the
position of the relevant documents at the top of the document set, there is no
meaningful difference between them. Therefore, the reason of the differences
in the Pavg values is the position of the rest of the relevant documents.

Fig. 26.8. User profiles generated by MOGA-LPQ and RSV-OKAPI for query 2

Nevertheless, although our algorithm achieves worse results than RSV-
OKAPI on the test set, the modeling of user profiles as PQs clearly improves
the expressivity of the user profiles when learning both the terms which is
composed of the profile and its structure, instead of learning only the set of
terms. As an example, Figure 26.8 shows the profiles derived by both algo-
rithms for query 2.



624 M. Luque et al.

26.6 Concluding Remarks

The use of soft computing tools to design PQs for text retrieval has been
analyzed by constructing linguistic queries from sets of training documents
extracted from the Cranfield collection by means of a multiobjective GA. As
shown, our method is competitive with the classical method on the training
set, behaving both algorithms in a similar way, and with ours having the
advantage of a higher profile comprehensibility; whereas the classic state-of-
the-art method gets better results on the test set. Nevertheless, our method is
promising since it learns both the terms and the profile structure, instead of
learning only the set of terms, as well as it derives a set of PQs with different
precision-recall trade-off in a single run, although we must refine it with the
aim of improving its capability to find new relevant information for the user.

In our opinion, many different future works arise from the present con-
tribution. Firstly, we will search for new functions to measure the similarity
between expression trees with the purpose of being able to work in the decision
space4. On the other hand, we will try to improve our test set performance,
either by designing a new preprocessing algorithm with a less aggressive way
to adapt the linguistic PQs for the test document collection, or by modifying
the validation process by using a division of the data set in training, validation
and test document sets, as done in the last contributions proposed in the field
[23, 24], instead of using the classic division in training and test sets.
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