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Scatter search is a population-based method that has recently been shown to yield promising outcomes forsolving combinatorial and nonlinear optimization problems. Based on formulations originally proposed in
the 1960s for combining decision rules and problem constraints, such as the surrogate constraint method, scatter
search uses strategies for combining solution vectors that have proved effective in a variety of problem settings.
We present a scatter-search implementation designed to find high-quality solutions for the 3D image-

registration problem, which has many practical applications. This problem arises in computer vision applica-
tions when finding a correspondence or transformation between two computer images obtained under different
conditions. Our implementation goes beyond a simple exercise on applying scatter search, by incorporating
innovative mechanisms to combine and improve solutions and to create a balance between intensification and
diversification in the reference set. Furthermore, heuristic information taken from a preprocessing of the images
is incorporated into the algorithm to improve its performance. Our computational experimentation tackling two
different medical registration applications establishes the effectiveness of scatter search in relation to different
approaches usually applied to solving the problem. We have considered both simulated magnetic resonance
images and real-world computerized tomography images as data sets. To measure the robustness of our pro-
posal, the image data sets are intentionally selected for addressing registration environments with the presence
of noise, anatomical lesions, and occlusions between images.
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1. Introduction
The purpose of this paper is to develop a heuristic
method for solving an important combinatorial opti-
mization problem. Specifically, we tackle the 3D
image-registration (IR) problem in the context of com-
puter vision systems (Brown 1992). The practical
applications of IR are numerous and they include 3D
model construction (Eisert et al. 2000), autoradio-
graph alignment in neuroscience (Rangarajan et al.
1997), or statistical physics (Yuille and Kosowsky
1994). The main contribution of our work is the devel-
opment of a procedure based on scatter-search (SS)
methodology (Glover 1977, 1998), which is used for

searching the solution space of the optimization prob-
lem that appears in the IR process. The proposed
SS-based IR algorithm is a significantly improved ver-
sion of that in Cordón et al. (2004), which allows
us to deal with more complex IR problems prop-
erly (see §4). In particular, innovative mechanisms
to exploit the knowledge of the problem and to cre-
ate a trade-off between intensification and diversi-
fication for an efficient search are incorporated (a
restricted version of this method can be found in
Cordón et al. 2005).
IR can be simply defined as finding a mapping

between two images: I1 named scene, and I2 named
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model. The objective is to find the mathematical trans-
formation f that, applied to I1, obtains I2. Generally
speaking, an image is stored in a huge number of
pixels, so most IR methods usually apply preprocess-
ing to extract the most relevant geometric primitives
(points, lines, etc.) that, in a certain way, define the
objects contained in the image. Therefore, in these
feature-based methods, the problem is reduced to find-
ing the transformation between two sets of geometric
primitives. In this paper, we restrict our attention to
the case of two sets of primitives P1 and P2, consist-
ing uniquely of points (P1 ⊆ I1, P2 ⊆ I2�. Hence, this IR
problem can be defined in two different search spaces
(both with the same final goal of achieving the best
alignment between the scene and model images): the
space of parameters that define f , or the space of
permutations of P1 (to match P2�. While the former
approach to solving the problem is based on directly
searching for the best parameters defining the trans-
formation f (see, for example, Yamany et al. 1999),
the latter, called point matching, is probably the most
classical method in feature-based registration.
Point matching can be described in mathemati-

cal terms as follows. Given two set of points P1 =
�x1�x2� � � � � xn
 and P2 = �y1�y2� � � � � ym
, the problem
is to find a transformation f such that yi = f �x��i�� for
i= 1� � � � � r , where r =min�n�m� and � is a permuta-
tion of size l (with l being the maximum between n
and m). The IR problem is then naturally divided into
two phases. In the first phase, a permutation � of l
elements defines the matching between the points in
P1 and P2. In the second phase, from this matching
of points and using a numerical optimization method
(usually a least-squares estimation), the parameters
defining the transformation f� are computed. The
objective is to find the transformation minimizing
the distances between the model points and the cor-
responding transformed scene points. Therefore, in
optimization terms, the value associated with permu-
tation � is given by

g���=
∑r
i=1 �f��x��i��− yi�2

r
� (1)

The point-matching problem can be simply stated
as minimizing g��) for any permutation � of l
elements and its corresponding transformation f� .
We face the IR problem within this point-matching
approach, as do previous methods like the well-
known iterative closest point algorithm (Besl and
McKay 1992, Feldmar and Ayache 1996, Liu 2004),
the technique usually applied in computer vision. We
propose an SS implementation to find high-quality
solutions for this combinatorial optimization problem.
Our solution method presents contributions in both

optimization and IR. Evolutionary methods have been
widely applied to solving IR problems and typically

use genetic operators for combination (Matsopoulos
et al. 1999, Yamany et al. 1999, Rouet et al. 2000, He
and Narayana 2002, Chow et al. 2004, Wachowiak
et al. 2004). On the other hand, SS (Glover 1977,
Laguna and Martí 2003) is based on a systematic com-
bination between solutions (instead of a randomized
one like that usually employed in genetic algorithms
(GAs)) taken from a considerably reduced evolved
pool of solutions called the reference set (between five
and 10 times lower than the usual GA population
sizes). In this way, an efficient and accurate search
process is encouraged for the IR problem in this paper
thanks to the latter and to other innovative compo-
nents that will be described later. Likewise, we test the
effectiveness of other combination mechanisms that
do not rely on randomization in the context of point
matching. Moreover, we design problem-dependent
search mechanisms based on image-specific informa-
tion, which have been proved to return good-quality
solutions (Cordón and Damas 2006). This information
is a priori extracted from the shapes of the objects
existing in the images and results in the association of
heuristic values to each image point. This information
is used in a twofold way: On the one hand, the dif-
ferences between the heuristic values of the matched
points in the current solution are incorporated into the
solution evaluation better to guide the search from a
global perspective. On the other hand, they are taken
into account in the neighborhood operator of the local
search mechanism to intensify the search properly, as
well as in the diversification-generation method to
create an initial set of high-quality solutions with a
large degree of diversity among them. In this way, we
implement candidate-list strategies in which permu-
tations assigning feature points with similar heuris-
tic values are ranked first, because they seem more
promising than do those with relatively different val-
ues. The consideration of this additional information
in the point-matching process allows the SS algorithm
to obtain high-quality solutions more quickly than do
other previous approaches.
We first briefly describe SS methodology and

then, in §3, we present our implementation to
solve the point-matching problem. The paper ends
with the computational experiments and associated
conclusions.

2. Scatter Search
Scatter search was first introduced in Glover (1977)
as a heuristic for integer programming. SS ori-
ents its explorations systematically relative to a set
of reference points that typically consist of good
solutions obtained by prior problem-solving efforts.
The SS template (Glover 1998) has served as the
main reference for most of the SS implementations
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to date. SS methodology is very flexible because
each of its components can be implemented in
a variety of ways and degrees of sophistication.
In the Online Supplement to this paper (available
at http://joc.pubs.informs.org/ecompanion.html), we
give a description to implement SS based on the
well-known five-method template (Laguna and Martí
2003). The advanced features of SS are related to the
way these five methods are implemented. That is,
the sophistication comes from the implementation of
the SS methods instead of the decision to include or
exclude certain elements (as in the case of tabu search
or other metaheuristics).

3. The Point-Matching Search Method
As described on the supplement, SS methodology
basically consists of five elements (and their associ-
ated strategies). Three of them, the diversification-
generation, the improvement and the combination
methods, are problem-dependent and should be de-
signed specifically for the problem at hand (although
it is possible to design generic procedures, it is more
effective to base the design on the specific condi-
tions of the problem setting). The other two, the
reference-set-update and the subset-generation meth-
ods are context-independent, and usually have a stan-
dard implementation. We consider the same design
of the preliminary version (Cordón et al. 2004) for
the two context-independent components. However,
the implementation of two of the three specific ele-
ments (the diversification-generation method and the
improvement method) has been changed to improve
the performance of our SS-based IR technique, allow-
ing it to deal with significantly more complex problem
instances.
We have implemented an advanced design of the

reference set that complements the RefSet creation
mechanism introduced in the supplement by an
updating process that proactively injects diversifica-
tion into the search. This strategy is called a 2-tier
design (Laguna and Martí 2003) and is based on par-
titioning the RefSet into two tiers. The first tier, RefSet1
(Quality RefSet), consists of b1 high-quality solutions
�S1� � � � � Sb1
, while the second tier, RefSet2 (Diver-
sity RefSet), consists of b2 = b − b1 diverse solutions
�Sb1+1� � � � � Sb2
. The solutions in RefSet1 are ordered
according to their objective function and a new solu-
tion S replaces the worst solution Sb1 if the quality of
the former is better than that of the latter. RefSet2 is
ordered according to the diversity value of the solu-
tions, so a new solution S replaces the worst solu-
tion Sb2 if d�S� > d�Sb2�, where the diversity value d is
computed with the point-matching distance defined
in §3.2.
Following the guidelines given in Laguna and

Martí (2003), we implement the combination and the

subset-generation methods with all pairs (2-element
subsets) in the RefSet with a static updating. As our
reference set is composed of a quality and a diversity
part, solution subsets of three different kinds are gen-
erated. On the one hand, subsets with the b1�b1 − 1)
possible pairs of solutions in the quality RefSet are cre-
ated to intensify the search by combining high-quality
solutions. On the other hand, each of the b2�b2 − 1)
pairs of solutions in the diversity part are also con-
sidered to generate combined solutions for diversifi-
cation purposes. Finally, a third group of b1b2 subsets
is created by pairing each solution of the quality part
with each one in the diversity part, thus getting com-
bined solutions with an intermediate search behavior.
Every new trial solution generated in the combina-
tion and improvement steps is inserted into a pool of
solutions, Pool, and decreasingly ordered according to
their objective-function value. Those worst solutions
in RefSet1 will be replaced by the corresponding better
solutions in Pool. Subsequently, the remaining solu-
tions in Pool (all of them with a lower quality than
those in RefSet1� will be considered to update RefSet2.
The next four subsections are respectively devoted

to describing the coding scheme and the use of
image-curvature information in our search method,
and the three specific SS elements mentioned above:
the diversification-generation method, improvement
method, and solution combination method.

3.1. Image-Curvature Information and
Coding Scheme

Our proposal is based on solving the IR problem
by searching in the feature-based matching space, so
a coding scheme specifying the matching between
model and scene image primitives (points, in our
case) has to be defined. First, a preprocessing step
(a 3D crest lines edge detector (Monga et al. 1991))
is applied to extract the most relevant feature points
for each image, P1 = �x1�x2� � � � � xn
 for the scene and
P2 = �y1�y2� � � � � ym
 for the model.
We first compute the iso-surface of the 3D image

(i.e., the surface that separates regions of the space
when considering a given intensity value known as
the iso-value). The goal is to obtain the boundary
of the object under study (brain, liver, skull, etc.),
from an image that typically stores different shapes.
This surface defines, for any point x in the image, a
set of curvatures C�x� reflecting the variation from x
in each direction with respect to the tangent plane
at this point. Hence, iso-surfaces allow us to reduce
the huge amount of data with which we are deal-
ing. If we focus our attention on the zero-crossings
of the curvature function C�x�, such points (known
as crest-line points) correspond to ridges and valleys
of the iso-surface and represent its most important
features. Thanks to this preprocessing, instead of fac-
ing the point-matching problem from a million-size
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Points of P2

Points of P1

σ= 1 2 3 r –1 l –1 l = nr +1r = m

Figure 1 Implementation Details of the Point-Matching Permutation �
with Size n

permutation, we take advantage of curvature infor-
mation to extract the most relevant points in the
image and face a hundred-size permutation problem.
The point matching between both images is rep-

resented as a permutation � = ��1��2� � � � ��l� of
size l = max�n�m), which associates the r points
�r =min�n�m�� of the smaller size point set to the
first r points of the permutation, selected from the
larger one. Without loss of generality, and to simplify
the notation, we consider that P1 is larger than or
equal to P2 �n≥m�. We have implemented our solu-
tion method in such a way that the first r elements of
the permutation (r =m in our case) are the P1 points
associated to each of the m points in P2. Figure 1 illus-
trates these implementation details in which we can
see that the P1 points located between positions m+1
and n are not assigned to any point in P2. Meanwhile,
the first m points of the permutation define a match-
ing between the smaller point set P2 (of size m) and
the larger one P1 (of size n); i.e., ��20�= 45, defines a
matching between the 20th point of P2 and the 45th
of P1 (with 20≤m and 45≤ n).
Then, we are able to infer the parameters of the

implicit registration transformation f existing be-
tween the two 3D images, f� , from the point matching
� by means of simple numerical methods such as the
closed-form solution based on unit quaternion (Horn
1987) solving a least-squares problem. We consider
f to be a similarity transformation, thus being com-
posed of a rotation R= ��� 	�x��y��z
), a translation
t = �tx� ty� tz), and a uniform scaling s. Such a trans-
formation can be used to register aerial and satellite
images, bony structures in medical images, and mul-
timodal brain images (Goshtasby 2005).
Once we know the expression of f� , i.e., the �R� t� s�

parameters defining the similarity transformation, we
can estimate the registration error existing between the
scene image points xi and the model image points yi,
measured by the g� � function as proposed by Arun
et al. (1987). We estimate the registration error by
simply computing the Euclidean distance from each
transformed point in P1 (using the aforementioned

f� parameters) to its corresponding matching (consid-
ering �), as shown in (2):

g��� =
∑r
i=1 �f��x��i��− yi�2

r
�

where f��x��i��= s ·R�x��i��+ t� (2)
Note that g��� computes only the geometric infor-

mation of both scene and model feature points.
Some authors (Yamany et al. 1999, Luck et al. 2000,
Robertson and Fisher 2002) have proposed several
metaheuristic approaches that are aimed only at min-
imizing the previous g��� error function. However,
by considering only this objective evaluation function,
search algorithms suffer from several problems such
as their inability to handle large initial misalignments
between the two images, and those situations where
the images have rotational or translational symme-
tries, both due to the fact of dealing only with the
object geometry (Gagnon et al. 1994, Weik 1997).
The latter aspects usually make the given IR algo-
rithm more likely to become trapped in local optima.
A good explanation of such undesirable behavior is
found in Luck et al. (2000), who use a simulated
annealing method to address these problems.
To overcome the latter problems in our SS-based

IR procedure, we make use of problem-dependent
(context) information in the search method. To do so,
we again take into account the curvature information
C�x� extracted by the 3D crest lines edge detector.
For each point x, we consider the two values of the
first and second principal curvatures, k1�x� and k2�x�
in C�x�, associated with the two principal orthogonal
directions (which locally characterize the iso-surface).
An interesting quality of this feature is that curvature
values represent an invariant source of information
with respect to the similarity transformation f� with
which we are dealing, i.e., for each point x, we have
that k1�x�= k1�f��x�� and k2�x�= k2�f��x��. The curva-
ture attributes remain unchanged although a differ-
ent f� is applied.
Therefore, given a scene point xi and a model

point yj (each described by two curvature values), the
closer every pair of curvature values, the higher the
probability of a good matching between xi and yj .
Therefore, we introduce the matrix D = �dij �n×m to
store all the Euclidean distances between the curva-
ture values of each scene and model point. In mathe-
matical terms,

dij =
√
�k1�xi�− k1�yj��2+ �k2�xi�− k2�yj��2�

∀xi ∈ P1� yj ∈ P2� (3)
We will use these distances between curvature val-

ues in both a diversification generation method and
an improvement method of our SS procedure. In the
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former, they will be considered for an alternative
solution evaluation, while in the latter they restrict
the size of the neighborhood of a given solution for
an efficient search. In both cases, this curvature infor-
mation avoids the aforementioned problems, as will
be shown in §4.

3.2. Diversification Generation and Reference-Set
Construction

Instead of considering a completely random genera-
tion of the initial solutions as in Cordón et al. (2004),
we use the heuristic information related to image cur-
vature described in §3.1 to establish a preference for
good assignments between the scene image points
and the model image ones. Hence, a point xi from
the scene image is more likely to be assigned to those
model points yj presenting the same or similar curva-
ture (heuristic) values k1 and k2, i.e., having the lower
distances dij .
We can make use of this information to generate

the initial set P of diverse solutions for our SS pro-
cedure, thus obtaining solutions of both good qual-
ity and high diversity. Specifically, instead of fixing
a selection order for the scene points xi and then
assigning the closest model point yj (with regard to
the curvature values) not yet considered to each of
them (which would result in a deterministic, greedy
heuristic), we introduce randomness into both pro-
cesses, allowing each decision to be randomly taken
among the best candidates. In this way, our diversifi-
cation generation behaves similarly to a GRASP con-
struction phase (Resende and Ribeiro 2001). The most
important element in this kind of construction is that
the selection in each step must be guided by a greedy
function that adapts according to the pseudo-random
selections made in the previous steps.
Our method starts by creating two candidate lists

of unassigned points �CL1 and CL2� that, at the begin-
ning, consist of all the points in the scene and the
model (i.e., initially CL1 = P1 and CL2 = P2�. For each
element xi in CL1, we compute its potential distance di
to CL2 as the minimum value of the distances from xi
to all the elements in CL2. Then, we construct the
restricted candidate list RCL1 with a percentage " of
the elements in CL1 with the lowest di-values, and
we randomly select one element (say xk� from RCL1
for the matching assignment. To find an appropriate
point in the model to match with xk, we construct
the restricted candidate list RCL2 with a percentage "
of the elements in CL2 whose curvature values are
closer to those of xk, i.e., those elements present-
ing the lowest distance values to xk. Finally, we ran-
domly select a point (say yk� in RCL2 and match it
with xk. We update CL1 and CL2 �CL1 = CL1 − �xk
,
CL2 =CL2− �yk
) and perform a new iteration. The
algorithm finishes when r = min�n�m� points have

been matched, i.e., when either CL1 or CL2 (the one
corresponding to the image with the fewest points
associated) becomes empty, and the remaining l − r
points of the permutation are taken from the points
still stored in the nonempty candidate list in a ran-
dom order.
We repeat the application of this pseudo-random

construction algorithm until we obtain �P � different
solutions. We then apply the improvement method
below to the solutions generated. Because two differ-
ent solutions can produce the same improved solu-
tion, we apply the construction step a number of extra
times, if necessary, until �P � different improved solu-
tions are obtained. Let P be the set of these improved
solutions.
As mentioned above, the reference set, RefSet, is

a collection of b solutions (reference points) that are
used to generate new solutions. The construction of
the initial reference set starts with the selection of the
best b1 < b improved solutions from P . These solu-
tions are added to RefSet and deleted from P . The
remaining b2 = b − b1 RefSet solutions are selected
from P , taking into account the diversity. To do so,
there is a need to define a distance metric between
the solution vectors, i.e., between permutations. We
consider the distance between two permutations � =
��1��2� � � � ��l� and $= �$1�$2� � � � � $l� as the number
of times �i differs from $i for i = 1� � � � � r . Addition-
ally, to favor the inclusion of quality solutions, as
measured by the objective function, we bias the dis-
tance measure and divide this quantity by the sum
of the evaluations of both solutions modified accord-
ing to the curvature values. We call this metric the
point-matching distance (PMD) to differentiate it from
the point-curvature distance d and its definition in
mathematical terms is

PMD���$�=
∑r
i=1 min�1� ��i−$i��
F ���+ F �$� � (4)

In this expression, we use an alternative solution
evaluation F ��� that incorporates the distance be-
tween curvature values to overcome the limitations of
the objective-function evaluation shown in the §3.1.
Specifically, the value of F ��� is given by

F ��� = wg · g���+wnerror ·merror���

with merror���=
r∑
i=1
d2i��i�� (5)

where the error function merror��� measures the good-
ness of the matching � by using the extra curvature-
information attributes associated with each feature
point, and the weights wg and wnerror define the rela-
tive importance of each term. With such a function,
we will have a more suitable similarity measure to
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make a better search in the solution space, address-
ing the drawbacks of the previous IR methods. Fur-
thermore, this definition of the merror��� function is
a specific case based on just two curvature values.
Depending on the nature of the images considered,
different attributes extracted in the IR pre-processing
step can be considered for easy redefinition of the
merror��� function as a reusability mechanism for other
IR environments.
Finally, the minimum PMD from each improved

solution in P −RefSet to the current solutions in RefSet
is computed. The solution with the maximum of these
minimum distances is then selected. This solution is
added to RefSet and deleted from P , and the minimum
distances are updated. This process is repeated b2
times. As a result of the previous procedure, the refer-
ence set obtained has b1 high-quality solutions and b2
diverse solutions.

3.3. Improvement Method
Swaps are used as the primary mechanism to
move from one solution to another in our improve-
ment method. We define move(�i��j�, i ∈ �1� � � � � r =
min�n�m�
, j ∈ �1� � � � � l = max�n�m�
, j �= i, as con-
sisting of exchanging �i and �j in the current solu-
tion � . This operation results in the ordering � ′ =
��1� � � � ��i−1��j��i+1� � � � ��j−1��i��j+1� � � � ��l� when
i < j (and symmetrically when j < i).
An important difference with other combinatorial

optimization problems is that we cannot efficiently
compute the move value associated with a trial move.
In other words, to evaluate the quality of a move,
we need to evaluate the final solution � ′ when the
move is applied, and compare its value with that of
the initial solution � �move value= g���−g�� ′��. Note
that a modification in the solution (permutation �)
means a change in the matching and it implies a new
estimated transformation f . Unfortunately, the sim-
ple modification performed by the swapping of the
matching of two points can result in a completely
different registration transformation f� ′ . Therefore, all
the terms in the expression g��� can change and there
is no way of calculating g�� ′) without computing the
new transformation f� ′ and the corresponding trans-
formed scene points.
In Cordón et al. (2004), two improvements were

considered to speed up the local search procedure.
On the one hand, a primary strategy was applied
in the neighborhood generation by considering only
promising swapping moves that take the curvature
information as a base. On the other hand, a selective
application of the local optimizer was also considered.
Both are explained in detail in the remainder of this
section.
A solution � represents the matching �x��i�� yi�, for

i = 1� � � � � r . It is then to be expected that, in a good

matching, points x��i� and yi will have similar cur-
vature values. In mathematical terms, d��i�i should
be relatively low for i = 1� � � � � r . Because the move
evaluation is a relatively time-consuming operation,
we reduce the neighborhood of a solution to include
only promising moves. Specifically, the neighborhood
of a solution � , N���, is restricted to those moves,
move��i��j�, in which this difference of curvatures
decreases for x��i� or x��j�:

N���= �move��i��j�/d��j�i ≤ d��i�i or d��i�j ≤ d��j�j �
1≤ i≤ r� 1≤ j ≤ l� j �= i
� (6)

Given a solution � and its associated transforma-
tion f� , each element �i in the solution contributes to
the solution evaluation g��� in )i, where

)i = �f��x��i��− yi�2� (7)

This measure shows that points should not be
treated equally by a procedure that selects an index
for a local search (i.e., for search intensification). We
consider that ) is a measure of influence and can
be used to guide an efficient search of N���. Specif-
ically, we order the elements in a solution according
to their ) value and select the element �i∗ with the
largest value for swapping. We then scan N��� (in the
order given by the curvature distance d��i∗�j � in search
of the first element �j whose swapping move��i∗��j�
results in a strictly positive move value (i.e., a move
such that g�� ′� ≤ g���). As documented in Laguna
et al. (1999), the first strategy does not necessarily
select the best available solution in the neighborhood
but after several iterations it can lead the search to a
better solution than a greedy strategy based on the
selection of the best solution at each iteration. If we
do not find any improvement move associated to ele-
ment �i∗ , we resort to the next one in the ordered list
and proceed in the same way. The local search method
terminates either when N��� does not contain any
improvement move or when a maximum number of
iterations is reached.
Computing the ) value, ordering the elements and

selecting the most influential one is a computation-
ally expensive calculation. To speed up our neighbor-
hood operator, these ) values are not updated after
the execution of a move at each local search itera-
tion but, on the contrary, we keep the order as it
stands and select the next element on the list for the
next iteration (and proceed in the same way for a
certain number of subsequent iterations). The notion
of not updating key values (e.g., move values) after
each iteration is based on the elite candidate list sug-
gested by Glover and Laguna (1997). The design con-
siders that it is not absolutely necessary to update
the value of the moves in a candidate list after an
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iteration has been completed (i.e., the selected move
has been executed) because most of these move val-
ues either remain the same or their relative merit
remains almost unchanged. Application of this strat-
egy is particularly useful when the updating of the
move values is computationally expensive, as in our
case. After k local search iterations, we update the
)-values and compute the new order. The parameter k
reflects the trade-off point between information accu-
racy and computational effort in the implementation,
and will be set after experimentation.
Finally, a selective application of the local optimizer

described above is also considered to speed up the
whole SS procedure. Previous studies have demon-
strated that a selective application of the local opti-
mizer, with a random choice based on a given, low
probability, has resulted in good performance in dif-
ferent memetic algorithms and, specifically, in some
SS implementations (Hart 1994, Lozano et al. 2004,
Herrera et al. 2006). In our case, this decision is deter-
ministically taken, as the combined solution is opti-
mized only when its evaluation F is better than that
of at least one of the two original solutions used to
generate it by the solution-combination method.

3.4. Solution-Combination Method
We have considered two types of combination meth-
ods, both of which generate a single combined solu-
tion from a subset composed of a pair of original
solutions. The first, called partially mapped crossover
(PMX), is based on random elements and is widely
used in the context of GAs. The second one, called
the voting method, is based on deterministic elements
and is widely used in the context of adaptive mem-
ory programming algorithms. We will compare both
types of combinations in our computational experi-
ments section.

3.4.1. Partially Mapped Crossover. This is an im-
plementation of the classical recombination operator
for order-based representations called PMX (Goldberg
and Lingle 1985). It is designed to preserve the abso-
lute position of some elements in the first solution.
The method randomly chooses two crossover points
in one reference solution and copies the partial per-
mutation between them into the new trial solution.
Both crossover points also define a mapping between
the elements in both reference solutions. The remain-
ing elements are copied in the positions in which they
appear in the second reference solution. If one posi-
tion is already occupied by an element copied from
the first parent, the element provided by the mapping
is copied. This process is iterated until the conflict is
solved. To limit the randomness of the method and to
insure the contribution of both reference solutions to
the new trial solution, we randomly generate the first
crossover point cp1 in �1�0�5l
 (assuming that 0.5l < r�

and set the second crossover point cp2 to cp2 = cp1 +
0�25l.
As stated by Cotta and Troya (1998), this is a respect-

ful operator because it transmits a relevant number
of features from the original solutions to the com-
bined solution. In genetic terms, we say that PMX
transmits a block forma (an equivalence class induced
by the relations identified as relevant). These authors
compare eight genetic operators in the context of
flowshop problems (based on a permutation represen-
tation) and conclude that the PMX is the best one for
them.

3.4.2. Voting Method. The method scans (from
left to right) both reference permutations, and uses
the rule that each reference permutation votes for
its first element that has still not been included in
the combined permutation (referred to as the “incip-
ient element”). The voting determines the next ele-
ment to enter the first still-unassigned position of the
combined permutation. This is a min-max rule in the
sense that if any element of the reference permutation
were chosen other than the incipient element, then
it would increase the deviation between the refer-
ence and the combined permutations. Similarly, if the
incipient element were placed later in the combined
permutation than its next available position, this devi-
ation would also increase. So the rule attempts to
minimize the maximum deviation of the combined
solution from the reference solution under considera-
tion, subject to the fact that the other reference solu-
tion is also competing to contribute. A bias factor
that gives more weight to the vote of the reference
permutation with higher quality is also implemented
for tie breaking. This rule is used when more than
one element receives the same number of votes. The
element with highest weighted vote is then selected,
where the weight of a vote is directly proportional
to the objective-function value of the corresponding
reference solution. Additional details concerning this
combination method can be found in Campos et al.
(2001).

4. Computational Experiments
In this section we present a number of experiments
developed to estimate several registration transfor-
mations for two different 3D medical image data
sets to study the performance of our proposal. These
tests have been carried out under the same condi-
tions because we wanted to extend our conclusions
to other possible situations. The most important chal-
lenge associated with the current experimentation is
that the goal of the IR process is to register two differ-
ent images of similar objects, instead of two images cor-
responding to the same object, thus reflecting a more
realistic situation in medical IR.
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On the one hand, we make use of a first data
set from the BrainWeb public repository. It contains
four simulated real-world magnetic resonance images
(MRIs) of four human brains with noise, anatomi-
cal lesions, and a certain degree of occlusion. The
main reason for choosing such an image simulator
is to ease the comparison of our results with those
from other previous or upcoming contributions. On
the other hand, this first set of four images will be
used as a benchmark to tune the parameters related
to the best SS variant.
The second one corresponds to a couple of images

recently used in Marai et al. (2006), kindly provided
by the Rhode Island Hospital. They are computerized
tomography (CT) images and correspond to two real
human wrists. In this case we want to highlight the
complexity of the problem to be tackled as described
in §4.1.
This experimental setup is significantly more com-

plex than those considered in Cordón et al. (2004,
2005). Of course, the registration of different objects is
much more complicated than that of different views
of the same object, and this motivated the extension of
our previous algorithm to obtain good performance
in the new IR scenario.
The results obtained by the SS algorithm proposed

in this contribution for the 3D feature-based IR prob-
lem (from now on noted by SS∗) will be compared
with the old version of the SS-based IR process
(noted simply by SS) (Cordón et al. 2004), and with
several IR techniques belonging to the two existing
approaches mentioned in §1, those searching in the
point-matching space and those directly searching in
the registration-transformation-parameter space.
From the former group, we will consider the recent

improvement of the classical ICP algorithm by Liu
(2004) (I-ICP), and the hybrid proposal by Luck
et al. (2000), combining the ICP algorithm with a
simulated-annealing technique in an iterative frame-
work (ICP+SA), with the aim of overcoming the ICP
problem of a likely fall in local optima. We should
note that, although these two variants of ICP work in
the point-matching space (as does our SS-based pro-
posal), they are based on assigning each transformed
scene point to the closest model image point. This
way, different scene points can be matched with the
same model point, thus resulting in the point match-
ing not being a permutation.
On the other hand, an evolutionary approach, the

fast real-coded dynamic GA (Dyn-GA) introduced by
Chow et al. (2004), will be used from the latter group.
Every algorithm maintains its original form and only
the fitness function of the GA has been adapted to
deal with the uniform scaling factor, not considered in
the original proposal (which used only a rigid trans-
formation f , i.e., only rotations and translations were
involved in the IR problem).

Table 1 Global Similarity Transformations Considered

� axisx axisy axisz tx ty tz s

T1 115.0 −0�863868 0�259161 0�431934 −26�0 15�50 −4�60 1.0
T2 168.0 0�676716 −0�290021 0�676716 6�0 5�50 −4�60 0.8
T3 235.0 −0�303046 −0�808122 0�505076 16�0 −5�50 −4�60 1.0
T4 276.9 −0�872872 0�436436 −0�218218 −12�0 5�50 −24�60 1.2

Section 4.1 provides a description of the experimen-
tal setup, detailing the 3D images, the IR problems
tackled, and the parameter settings. We then present
the experiments and the analysis of results in §4.2.

4.1. Experimental Setup
This section describes the experimental setup con-
sidered to estimate several registration transforma-
tions in the two different 3D medical image data sets
mentioned above. See the Online Supplement for a
description of the 3D data sets used to design the
different IR scenarios in our experimentation as well
as the parameter settings for the different IR algo-
rithms considered. We introduce here the IR prob-
lems considered by describing the pair of images to be
registered in each scenario and the four registration
transformations applied to each of them.
Our results correspond to a number of IR problem

instances for the different 3D images considered that
have suffered the same four global similarity transfor-
mations (noted as T1, T2, T3, and T4 in Table 1) to be
estimated by the different 3D IR algorithms applied.
These are ground truth transformations and they will
allow us to quantify the accuracy of the IR solution
returned by every algorithm. Hence, we will know
in advance the optimal (i.e., the exact) registration
transformation relating every scene and model input
in the two data sets, thus enabling us to compute
the objective-function value associated with the opti-
mal solution of the problem in the BrainWeb images
(see §4.2).
As mentioned in §3.1, similarity transformations

involve rotation, translation, and uniform scaling.
They can be represented by eight parameters: one
for the rotation magnitude (�), three for the rotation
axis (axisx� axisy� axisz), three for the translation vec-
tor �tx� ty� tz�, and one more for the uniform scaling
factor �s�. To achieve a good solution, every algorithm
must estimate these eight parameters accurately. Val-
ues in Table 1 have been selected within the appro-
priate ranges so that important transformations have
to be estimated. Both rotation and translation vec-
tors represent a strong change in the object location.
In fact, the lowest rotation angle is 115�. Meanwhile,
translation values are also high. Likewise, the scaling
factor ranges from 0.8 (in the second transformation)
to 1.2 (in the fourth one). In this way, complex IR
problem instances are likely to be generated.
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Table 2 From Top to Bottom: Increasing Complexity Ranking of the IR
Problem Scenarios

Scene image Model image

IR problem Lesion Noise (%) Lesion Noise (%)

I1 vs. Ti �I2� No No No 1
I1 vs. Ti �I3� No No Yes 1
I1 vs. Ti �I4� No No Yes 5
I2 vs. Ti �I4� No 1 Yes 5

Moreover, to deal with a set of problem instances
with different complexity levels in the human brain
MRI data set (see Table 2), we will consider the fol-
lowing scenarios (from lower to higher difficulty):
I1 versus Ti�I2�, I1 versus Ti�I3�, I1 versus Ti�I4�, and
I2 versus Ti�I4�. Therefore, every algorithm will face 16
different IR problem instances in this case, resulting
from the combination of the four scenarios and the
four different transformations Ti.
On the other hand, just four IR problems are

defined in the second CT data set because only two
images are available. We will consider the following
four IR problem instances: I6 versus T1�I5�, I6 versus
T2�I5�, I6 versus T3�I5�, and I6 versus T4�I5�. Therefore,
in this case, every algorithm will face four different IR
problem instances, resulting from the combination of
the I6 versus I5 scenario and the four different trans-
formations Ti, shown in Table 1.

4.2. Experiments and Analysis of Results
This section reports the results obtained in the exper-
iments. In §4.2.1, a preliminary experimental study is
made to analyze the performance of the different vari-
ants of our SS∗ proposal, where the two combination
operators implemented and several weight vectors in
the objective function (see §3.2) are tested. Note that
the weights in the objective function have been previ-
ously normalized as wg =wg ,

wnerror =wnerror
(
merror��0�

g��0�

)

with merror��0� and g��0� being, respectively, the match-
ing and registration errors of the initial solution, �0,
to get a uniform measure of both the matching error
(curvature-derived error) and the registration error
(g� �). Then, the best SS∗ variant is compared with
the previous SS proposal in Cordón et al. 2004 (noted
SS) and with the remaining state-of-the-art IR tech-
niques, I-ICP (Liu 2004), ICP+ SA (Luck et al. 2000),
and Dyn-GA (Chow et al. 2004), to measure the actual
performance of our proposal in the problem solving,
when considering both the BrainWeb images (§4.2.2)
and the real-world CT ones (§4.2.3).

4.2.1. SS-PMX vs. SS-Voting in the BrainWeb
Data Set. We have undertaken a detailed comparison
of the two combination methods considered, based on
the use of the PMX and voting operators, to make a
subsequent selection of the best one for inclusion in
our final proposal of a SS∗-based IR method.
For each of the 16 IR problem instances (speci-

fied by a given IR scenario and by one of the four
transformations, see Tables 1 and 2), the compari-
son between both combination methods is made by
considering five different values of the coefficients
in the F evaluation function. Each of these vari-
ants is denoted by WC�x�y�, where x and y corre-
spond to the wg and wnerror weighting coefficients in
the objective function (see §3.2). The weight vec-
tors range from (wg�wnerror �= �0�1�, where the search
process is guided only by the problem-dependent
(image-specific) information (measuring the point-
matching quality by the curvature information and
not taking into account the registration error g� ��,
to (wg�wnerror � = �1�0�, where the search is guided
only by the registration error, as is the usual prac-
tice. Three intermediate situations are also tested
((wg�wnerror �= ��0�2�0�8�� �0�5�0�5�� �0�8�0�2�
�, where a
different trade-off is established between both opti-
mization criteria.
From this analysis, we can conclude that using the

PMX operator in the SS∗-based IR method achieves
significantly better results than does the voting
method. The SS∗-PMX algorithm obtains both the best
minimum and mean results in each of the 16 IR
instances. With regard to the influence of the weight
vector values in the behavior of the two SS∗ algorithm
variants, it can be concluded that the weight combi-
nation WC�0��5�0�5� allows us to obtain the best mean
value in 13 of the 16 cases overall.
We will include only a summarized, representative

set of results from the broad experimentation devel-
oped. For the complete study, see Santamaria (2006).
Figure 2 shows the average results for the minimum

and mean values obtained by each weight combina-
tion along the 16 IR problem instances for the PMX
combination method. It is easy to observe how the
intermediate weight combinations result in the best
performance for both indices. Therefore, the worst
results are obtained when considering a single term of
the objective function, reinforcing our initial intention
of making use of additional information (the curva-
ture information in our case) as an additional term to
guide the search process in a better way.

4.2.2. Comparison Between SS∗ and Previous
Methods in the BrainWeb Data Set. In this section
we compare our SS∗ proposal (considering the PMX
combination operator and the WC0�5−0�5 weight val-
ues) with SS (the previous version of SS∗) and with
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Note. A good trade-off between both terms of the objective function results
in a more suitable result.

the best state-of-the-art IR algorithms in the litera-
ture: I-ICP (Liu 2004), ICP + SA (Luck et al. 2000),
and Dyn-GA (Chow et al. 2004). We compare the
quality of the solution obtained with these five meth-
ods when solving the 16 instances under considera-
tion. We report the MSE (mean squared error) value
of each method on each instance. The MSE value
is more adequate for comparing general IR methods
than the g� � value described in §1, which restricts
its application to permutation-based approaches. It is
also a well-known metric in the feature-based IR com-
munity (Besl and McKay 1992, Feldmar and Ayache
1996, Yamany et al. 1999, etc.). Moreover, the MSE has
recently been proposed as a standard performance
measure to prevent unfair comparisons between IR
algorithms and motivate statistically accurate analysis
(Robinson and Milanfar 2004).
The MSE, in which each transformed scene point is

assigned to the closest model image point (regardless
of whether the latter had been previously assigned to
another scene point), is

MSE=
∑r
i=1 �f �xi�− yi�2

r
� (8)

where yi is the closest model point to the transformed
scene point xi.
We provide the minimum, maximum, average, and

standard deviation of the MSE values on 15 indepen-
dent runs. Table 3 reports these values for the Brain-
Web data set experiments obtained by the five IR
algorithms. Another advantage of using the BrainWeb
data set is that we know in advance the ground-truth
solution of every IR problem instance. This value
is shown in brackets together with the name of the
transformation, so that we can compare it with the
outcomes of every algorithm. Note that each number
in this table is rounded up or down.

First, we observe that the MSE values obtained are
progressively further from the optimal ones when
increasing the complexity of the IR scenario. On the
other hand, it can be seen how our SS∗-based IR
method achieves the best mean performance in 15 of
the 16 cases, as well as the best minimum MSE value
in 13 of them. Moreover, we should note that the
results obtained by our approach in those instances
where it does not achieve the best mean and min-
imum values of performance can be improved by
choosing a different configuration for the wg and the
wnerror weights instead of fixing them to a single value
for all the instances. However, we preferred to keep
them unchanged for all instances to provide a robust
method (as we did by selecting the same SS∗ variant
for every case).
The poor results of the previous scatter search ver-

sion, SS, related to the new one, SS∗, show that SS
does not use that image-derived information prop-
erly. At the same time, the low standard deviations
show the robustness of SS∗. In particular, we achieve
one of our goals with respect to our previous work
(Cordón et al. 2004), which is to design a competitive
IR method even in a complex scenario of inter-subject
medical IR.
Table 3 is split into four subtables considering every

IR problem scenario. The best mean and minimum
values are shown using the underlined bold font. The
results obtained by each method can be compared
with the optimal solution (in brackets) for every IR
problem instance.
To show clearly the actual performance of each IR

technique when tackling the previously introduced
BrainWeb IR problems, Figure 3 collects the graphi-
cal representations of the real overlapping achieved
by each IR algorithm in four of the 16 instances con-
sidered, one from each IR scenario. The first column
of this figure shows the original IR problem instance
to be solved by every method, while the next five
columns correspond to the best registration estima-
tions achieved by each IR algorithm (from left to right:
I-ICP, ICP+ SA, Dyn-GA, SS, and SS∗). It can be seen
how SS∗ always obtains the best registration (see the
little resemblance of the images in the four central
columns of the figure with regard to those in the right-
most column). It must be noted that the performance
improvement regarding the remaining algorithms is
much more remarkable as the IR scenario complexity
increases, and that the Dyn-GA approach is the only
other IR technique that is able to solve the IR problem
properly for the complex scenarios considered in the
experimentation developed. The first column in Fig-
ure 3 corresponds to the original pose of the brains
of four of the 16 IR instances, from top to bottom:
I1 versus T1�I2�, I1 versus T2�I3�, I1 versus T3�I4�, and
I2 versus T4�I4�. The next five columns correspond to
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Table 3 MSE Values Obtained by the Three State-of-the-Art IR Algorithms, Our Previous SS Contribution (Cordón et al. 2004), and Our Current
SS∗ IR Method

I1 vs. Ti �I2)

T1 [32] T2 [21]

I-ICP ICP+SA Dyn-GA SS SS∗ I-ICP ICP+SA Dyn-GA SS SS∗

m 344 247 101 45 35 131 131 44 40 37
M — 344 264 202 40 — 131 284 155 50
� — 307 195 142 37 — 131 108 98 43
� — 38 51 40 2 — 0 52 30 4

T3 [32] T4 [47]

m 894 457 87 69 57 632 283 139 85 49
M — 711 678 192 67 — 611 600 344 59
� — 559 211 139 63 — 465 302 210 54
� — 81 137 32 3 — 101 121 58 3

I1 vs. Ti �I3)

T1 [43] T2 [30]

m 518 305 132 132 90 330 237 56 99 50
M — 432 741 278 132 — 297 534 180 66
� — 343 299 201 112 — 261 154 133 57
� — 32 144 45 12 — 18 114 23 4

T3 [43] T4 [62]

m 438 279 139 71 43 478 336 221 119 112
M — 389 839 264 235 — 429 841 431 143
� — 347 326 188 64 — 382 354 315 123
� — 33 174 59 46 — 24 147 86 8

I1 vs. Ti �I4)

T1 [46] T2 [30]

m 704 236 124 89 149 1�493 314 48 88 51
M — 466 1�083 317 269 — 388 299 179 167
� — 385 255 231 184 — 359 163 136 89
� — 61 228 50 33 — 22 58 31 41

T3 [46] T4 [67]

m 951 312 158 67 52 416 342 207 134 95
M — 433 468 298 227 — 413 1�222 407 375
� — 381 225 207 82 — 367 415 301 154
� — 43 87 68 45 — 17 258 77 86

I2 vs. Ti �I4)

T1 [29] T2 [18]

m 237 230 108 112 128 341 142 58 59 52
M — 237 348 347 298 — 341 270 209 188
� — 236 178 231 193 — 268 106 142 75
� — 2 60 64 62 — 71 51 49 41

T3 [29] T4 [45]

m 609 399 110 96 70 1�588 962 164 119 105
M — 439 611 309 278 — 1�533 751 414 362
� — 407 192 213 104 — 1�247 298 256 150
� — 10 116 67 67 — 209 145 95 78
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Figure 3 Registration of Brain Images

the best registration estimations achieved by each IR
algorithm (from left to right: I-ICP, ICP+SA, Dyn-GA,
SS, and SS∗).

4.2.3. SS∗ vs. Previous Methods in the CT
Human Wrist Data Set. Once the performance of our
proposal has been validated against the simulated
MRI data set and compared with the IR techniques
considered, the final goal of our work regarding the
consideration of nonsimulated and more complex
anatomical medical images will be addressed in this
subsection by using the second CT data set.
In Table 4 and Figure 4 the quantitative and qualita-

tive performance obtained by each of the IR methods
considered in the four IR instances (see §4.1) are
shown. In view of the statistics shown in Table 4, our
SS∗ proposal exhibits more robust behavior accord-
ing to the MSE mean and standard deviation values.
This difference is especially important when com-
paring the MSE mean value of SS∗ and the rest of
the algorithms. Specifically, the SS∗ method obtains
a mean MSE value of 18, 17, 18, and 19 for T1, T2,
T3, and T4, respectively, while ICP_SA obtains 51, 40,
49, and 28, and Dyn_GA obtains 53, 52, 58, and 51.
This fact, together with the low standard deviation
values, shows that SS∗ behaves regularly and accu-
rately in the 15 runs performed. Table 4 is split into
four subtables considering every IR problem instance.
The best mean and minimum values are shown using

the underlined bold font. Nevertheless, the Dyn-GA
method achieves the best individual estimation as
revealed by the minimum MSE value. This is due
to the fact that the objective function of the original
proposal of Dyn-GA takes into account the median
square error, favoring better performance in severe
occluding IR instances, as in the CT data set. This sug-
gests developing new extensions for the current SS
proposal with the intention of achieving more accu-
rate estimations by considering more robust mecha-
nisms that are able to deal with these kinds of IR

Table 4 MSE Values Obtained by the Three State-of-the-Art IR
Algorithms and Our Current SS∗ IR Method

I6 vs. Ti �I5)

T1 T2

I-ICP ICP+SA Dyn-GA SS∗ I-ICP ICP+SA Dyn-GA SS∗

m 52 51 6 12 42 36 6 12
M — 52 92 49 — 41 87 30
� — 51 53 18 — 40 52 17
� — 0 25 9 — 2 26 6

T3 T4

m 55 45 6 12 37 23 6 10
M — 52 90 49 — 37 86 49
� — 49 58 18 — 28 51 19
� — 2 25 9 — 5 24 11
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Figure 4 Original Pose and Best Registration Estimations of IR Problem T1

instances. In Figure 4, from left to right, the first image
corresponds to the original pose of the first IR prob-
lem considering T1. The next four images correspond
to the best registration estimations achieved by each
IR algorithm (I-ICP, ICP+ SA, Dyn-GA, and SS∗).

5. Concluding Remarks
We have described the development and implemen-
tation of a metaheuristic procedure for the optimiza-
tion of IR. Our procedure extends the application of
SS in an innovative way with respect to our previ-
ous proposal in Cordón et al. (2004) by implementing
advanced reference-set designs as well as by strategi-
cally including context information derived from the
images’ features. This heuristic information is incor-
porated into an improved solution evaluation, candi-
date list strategies within the local search method, and
into the diversification-generation method, so that we
can deal with significantly more complex problem
instances. Indeed, one of the main goals of our effort
has been to test the proposed procedure by employ-
ing real-world data in realistic scenarios. To make
a valid comparison with competing procedures, we
have used the well-established MSE metric as well as
graphical outputs.
Our computational experiments showed that SS∗ is

of merit when compared with IR procedures previ-
ously identified as being the best. More specifically,
when dealing with the realistic scenarios, we have
seen how our SS∗ IR method achieves the best mean
performance in 15 of the 16 cases, as well as the best
minimum MSE value in 13 of them. The poor results
of the old SS version showed that it did not make
a suitable use of image-derived information. On the
other hand, when tackling the real-world CT images,
our proposal is the most robust method. This out-
come can even be improved to obtain more accurate
results by means of more suitable mechanisms for
this specific class of IR instances (i.e., new objective
functions, more complex transformations, hierarchical
approaches, etc.).
We are planning to tackle the IR problem of 3D

range images under the point-matching approach for
the 3D model reconstruction of real-life objects, which

is an emerging topic in computer graphics. We also
want to extend our work to medical scenarios where
real-time registration is a major concern. To do so, we
will compare the outcomes of the present matching-
space SS∗ contribution, as well as other previous pro-
posals in the transformation-parameter space (Cordón
et al. 2006a, b). These latter approaches could be
redesigned to become more competitive in terms of
computation time.
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