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Resumen

The designer of a model to solve decision
making problems usually have to face differ-
ent aspects to finally be able to obtain the
solution for a problem. Many of this aspects
directly depend on the representation format
and semantics of the information provided by
the experts. In many occasions experts can
not easily represent their preferences using
artificial preference structures as fuzzy pref-
erence relations, but they can express those
preferences by means of linguistic terms.

In this work we present four different fuzzy
linguistic modelling techniques that allow
the representation of experts’ preferences by
means of linguistic preference relations. The
linguistic preference relations will be used to
solve the group decision making problem by
applying a resolution process capable of ag-
gregating the linguistic information from all
the experts to laterly exploit that informa-
tion to find the best solution(s) for the prob-
lem.

Keywords: Preference Modelling, Fuzzy
Linguistic Modelling, Group Decision Mak-
ing

1 Introduction

Group Decision Making (GDM) is used to obtain the
best solution(s) for a problem according to the infor-
mation provided by some experts. Concretely, in a
GDM problem we have a set of different alternatives to
solve the problem and a set of experts which give their
preferences about the alternatives in order to choose
the best one(s). There exist many different models

to solve GDM problems, and all of them to deal with
some common issues, as how to reach a global solu-
tion according to all the information available, or how
to manage that information. Concretely, the question
of how can the experts express their preferences is a
major issue to be faced.

There exist many different representation formats that
can be used in each model, i.e., preference orderings,
utility values, multiplicative preference relations, fuzzy
preference relations and so on. Every representation
format has its own advantages and disadvatages, like
precision or easiness of use and understanding. Many
of these preference formats use numerical data to rep-
resent experts preferences. For example, a fuzzy pref-
erence relation consists on a set of numerical evalua-
tions over pairs of alternatives on the problem. The
greater a number is, the most preferred an alterna-
tive is over another. It is almost clear that there are
experts that do not find this kind of numerical rep-
resentation formats easy to understand, and they can
even find them difficult to use. An expert can be able
to say that an option over the set of alternatives is bet-
ter than anotherm whilst he is not capable to give an
exact quantity on how better is that preference over
the other.

There are tools that have been developed to solve this
kind of issues. Concretely, the fuzzy linguistic mod-
elling is a tool based on the concept of linguistic vari-
able [16] that is capable to deal with qualitative assess-
ments in problems, that is, assessments which are not
precise ones, but contain a certain amount of vague-
ness.

In this work, we revise four different approaches of
the fuzzy linguistic modelling: Ordinal fuzzy linguis-
tic modelling [2, 3], 2-tuple fuzzy linguistic modelling
[4, 7], Multi-granular fuzzy linguistic modelling [5, 6],
and Unbalanced fuzzy linguistic modelling. Those four
approaches can be used by the experts to express lin-
guistic preference relations about a particular GDM



problem.

We will also introduce a resolution process that will
act over the those linguistic preference relations, in
order to identify the best alternative(s), and thus, to
solve the GDM problem can be solved. The resolution
process consist on two different steps:

1. Aggregation Step, in which all linguistic preference
relations are aggregated into a collective one, and

2. Exploitation Step, where the best alternative(s)
will be chosen from the collective preference rela-
tion by means of the application of a two quanti-
fier guided choice degrees of alternatives.

In order to do this, the paper is set as follows. In
Section 2 we present four different approaches to the
fuzzy linguistic modelling. In Section 3 the resolution
process for GDM problems with linguistic preference
relations is presented. We also give an example of
the resolution process for a particular GDM problem.
Finally, in Section 4 some conclusions are pointed out.

2 Fuzzy Linguistic Modelling

There are situations in which the information cannot
be assessed precisely in a quantitative form but may
be in a qualitative one. For example, when attempting
to qualify phenomena related to human perception, we
are often led to use words in natural language instead
of numerical values, e.g. when evaluating the comfort
or design of a car, terms like good, medium or bad can
be used. In other cases, precise quantitative informa-
tion cannot be stated because either it is unavailable
or the cost for its computation is too high and an ”ap-
proximate value” can be applicable, eg. when evaluat-
ing the speed of a car, linguistic terms like fast, very
fast or slow can be used instead of numeric values.

The use of Fuzzy Sets Theory has given very good re-
sults for modelling qualitative information [16]. The
fuzzy linguistic modelling is a tool based on the con-
cept of linguistic variable [16] to deal with qualita-
tive assessments in the problems. It has proven its
useful in many problems, e.g., in decision making [2],
quality evaluation [12], models of information retrieval
[10, 11], etc.

In this section, we revise four different approaches of
the fuzzy linguistic modelling which can provide a dif-
ferent support to represent the linguistic information
managed in decision making models:

1. Ordinal fuzzy linguistic modelling [2, 3], which is
defined to eliminate the excessive complexity of
the traditional fuzzy linguistic modelling [16].

2. 2-tuple fuzzy linguistic modelling [4, 7], which is is
defined to improve the performance of the ordinal
fuzzy linguistic approach.

3. Multi-granular fuzzy linguistic modelling [5, 6],
which is defined to deal with situations in which
the linguistic information is assessed on different
label sets.

4. Unbalanced fuzzy linguistic modelling [8, 9], which
is defined to deal with situations in which the lin-
guistic information is assessed on an unbalanced
label set, that is, a non-symmetrical and non-
uniform label set.

2.1 The Ordinal Fuzzy Linguistic Modelling

The ordinal fuzzy linguistic modelling [2, 3] is a very
useful kind of fuzzy linguistic approach proposed as an
alternative tool to the traditional fuzzy linguistic mod-
elling [16] which simplifies the computing with words
process as well as linguistic aspects of problems. It
is defined by considering a finite and totally ordered
label set S = {si}, i ∈ {0, . . . , g} in the usual sense,
i.e., si ≥ sj if i ≥ j, and with odd cardinality (7 or
9 labels). The mid term represents an assessment of
”approximately 0.5”, and the rest of the terms being
placed symmetrically around it. The semantics of the
label set is established from the ordered structure of
the label set by considering that each label for the pair
(si, s}−i) is equally informative. For example, we can
use the following set of seven labels to represent the
linguistic information:

S = {s0 = N, s1 = V L, S2 = L, s3 = M, s4 =
H, s5 = V H, s6 = P}.
Additionally, a fuzzy number defined in the [0, 1] inter-
val can be associated with each linguistic term. A way
to characterize a fuzzy number is to use a representa-
tion based on parameters of its membership function.
The linguistic assessments given by the users are just
approximate ones, some authors consider that linear
trapezoidal membership functions are good enough to
capture the vagueness of such linguistic assessments.
The parametric representation is achieved by the 4-
tuple (a, b, c, d), where b and d indicate the interval in
which the membership value is 1, with a and c indicat-
ing the left and right limits of the definition domain
of the trapezoidal membership function. A particular
case of this type of representation are the linguistic as-
sessments whose membership functions are triangular,
i.e., b = d, then we represent this type of membership
functions by a 3-tuple (a, b, c). An example may be



N VL L M H VH P

0 0.17 0.33 0.5 0.67 0.83 1

Figura 1: A set of seven linguistic terms with its se-
mantics

the following set of seven terms (Figure 1):

s0 = Null(N) = (0, 0, .17)
s1 = V eryLow(V L) = (0, .17, .33)
s2 = Low(L) = (.17, .33, .5)
s3 = Medium(M) = (.33, .5, .67)
s4 = High(H) = (.5, .67, .83)
s5 = V eryHigh(V H) = (.67, .83, 1)
s6 = Perfect(P ) = (.83, 1, 1).

In any linguistic modelling we need management op-
erators of linguistic information. An advantage of the
ordinal fuzzy linguistic modelling is the simplicity and
quickness of its computational model. It is based on
the symbolic computation [2, 3] and acts by direct
computation on labels by taking into account the order
of such linguistic assessments in the ordered structure
of labels. Usually, the ordinal fuzzy linguistic model
for computing with words is defined by establishing
i) a negation operator, ii) comparison operators based
on the ordered structure of linguistic terms, and iii)
adequate aggregation operators of ordinal fuzzy lin-
guistic information. In most ordinal fuzzy linguistic
approaches the negation operator is defined from the
semantics associated to the linguistic terms as

NEG(si) = sj | j = g − i;

and there are defined two comparison operators of lin-
guistic terms:

1. Maximization operator: MAX(si, sj) = si if si ≥
sj ; and

2. Minimization operator, MIN(si, sj) = si if si ≤
sj .

Using these operators it is possible to define automatic
and symbolic aggregation operators of linguistic infor-
mation, as for example the LOWA operator [2] and
the LWA operator [3].

2.2 The 2-Tuple Fuzzy Linguistic Modelling

The 2-tuple fuzzy linguistic modelling [4, 7] is a kind
of fuzzy linguistic modelling that mainly allows to

reduce the loss of information typical of the ordinal
fuzzy linguistic modelling. Its main advantage is that
the linguistic computational model based on linguis-
tic 2-tuples can carry out processes of computing with
words easier and without loss of information. To de-
fine it we have to establish the 2-tuple representation
model and the 2-tuple computational model to repre-
sent and aggregate the linguistic information, respec-
tively.

Let S = {s0, ..., sg} be a linguistic term set with odd
cardinality (g + 1 is the cardinality of S), where the
mid term represents an assessment of approximately
0.5 and with the rest of the terms being placed sym-
metrically around it. We assume that the semantics
of labels is given by means of triangular membership
functions represented by a 3-tuple (a, b, c) and consider
all terms distributed on a scale on which a total order
is defined si ≤ sj ⇐⇒ i ≤ j. In this fuzzy linguis-
tic context, if a symbolic method [2, 3] aggregating
linguistic information obtains a value β ∈ [0, g], and
β /∈ {0, ..., g}, then an approximation function is used
to express the result in S.

Definition 1. [4] Let β be the result of an aggregation
of the indexes of a set of labels assessed in a linguistic
term set S, i.e., the result of a symbolic aggregation
operation, β ∈ [0, g]. Let i = round(β) and α = β − i
be two values, such that, i ∈ [0, g] and α ∈ [−.5, .5)
then α is called a Symbolic Translation.

The 2-tuple fuzzy linguistic approach is developed
from the concept of symbolic translation by repre-
senting the linguistic information by means of 2-tuples
(si, αi), si ∈ S and αi ∈ [−.5, .5):

• si represents the linguistic label of the informa-
tion, and

• αi is a numerical value expressing the value of the
translation from the original result β to the closest
index label, i, in the linguistic term set (si ∈ S).

This model defines a set of transformation functions
between numeric values and 2-tuples.

Definition 2. [4] Let S = {s0, ..., sg} be a linguistic
term set and β ∈ [0, g] a value representing the result of
a symbolic aggregation operation, then the 2-tuple that
expresses the equivalent information to β is obtained
with the following function:

∆ : [0, g] −→ S × [−0.5, 0.5)

∆(β) = (si, α), with

{
si i = round(β)

α = β − i α ∈ [−.5, .5)

where round(·) is the usual round operation, si has the
closest index label to ”β” and ”α” is the value of the
symbolic translation.



For all ∆ there exists ∆−1, defined as ∆−1(si, α) = i+
α. On the other hand, it is obvious that the conversion
of a linguistic term into a linguistic 2-tuple consists of
adding a symbolic translation value of 0: si ∈ S =⇒
(si, 0).

The 2-tuple linguistic computational model is defined
by presenting the comparison of 2-tuples, a negation
operator and aggregation operators of 2-tuples.

1. Comparison of 2-tuples. The comparison of lin-
guistic information represented by 2-tuples is carried
out according to an ordinary lexicographic order. Let
(sk, α1) and (sl, α2) be two 2-tuples, with each one
representing a counting of information:

• If k < l then (sk, α1) is smaller than (sl, α2).

• If k = l then

1. if α1 = α2 then (sk, α1) and (sl, α2) represent
the same information,

2. if α1 < α2 then (sk, α1) is smaller than
(sl, α2),

3. if α1 > α2 then (sk, α1) is bigger than
(sl, α2).

2. Negation operator of 2-tuples: Neg((si, α)) = ∆(g−
(∆−1(si, α))).

3. Aggregation operators of 2-tuples. The aggrega-
tion of information consists of obtaining a value that
summarizes a set of values, therefore, the result of the
aggregation of a set of 2-tuples must be a 2-tuple. In
the literature we can find many aggregation operators
which allow us to combine the information according
to different criteria. Using functions ∆ and ∆−1 that
transform without loss of information numerical val-
ues into linguistic 2-tuples and viceversa, any of the
existing aggregation operator can be easily extended
for dealing with linguistic 2-tuples. Some examples
are:

Definition 3. (Arithmetic Mean). Let x =
{(r1, α1), . . . , (rn, αn)} be a set of linguistic 2-tuples,
the 2-tuple arithmetic mean xe is computed as,

xe[(r1, α1), . . . , (rn, αn)] = ∆(
∑n

i=1
1
n∆−1(ri, αi)) =

∆( 1
n

∑n
i=1 βi).

Definition 4. (Weighted Average Operator). Let x =
{(r1, α1), . . . , (rn, αn)} be a set of linguistic 2-tuples
and W = {w1, ..., wn} be their associated weights. The
2-tuple weighted average xw is:

xw[(r1, α1), . . . , (rn, αn)] = ∆(
∑n

i=1
∆−1(ri,αi)·wi∑n

i=1
wi

) =

∆(
∑n

i=1
βi·wi∑n

i=1
wi

).

Definition 5. (Linguistic Weighted Average Opera-
tor). Let x = {(r1, α1), . . . , (rn, αn)} be a set of lin-
guistic 2-tuples and W = {(w1, α

w
1 ), ..., (wn, αw

n )} be
their linguistic 2-tuple associated weights. The 2-tuple
linguistic weighted average xw

l is:

xw
l [((r1, α1), (w1, α

w
1 ))...((rn, αn), (wn, αw

n ))] =

∆(
∑n

i=1
βi·βWi∑n

i=1
βWi

),

with βi = ∆−1(ri, αi) and βWi
= ∆−1(wi, α

w
i ).

2.3 The Multi-Granular Fuzzy Linguistic
Modelling

In any fuzzy linguistic approach, an important pa-
rameter to determinate is the ”granularity of uncer-
tainty”, i.e., the cardinality of the linguistic term set
S used to express the linguistic information. Accord-
ing to the uncertainty degree that an expert qualifying
a phenomenon has on it, the linguistic term set cho-
sen to provide his knowledge will have more or less
terms. When different experts have different uncer-
tainty degrees on the phenomenon, then several lin-
guistic term sets with a different granularity of un-
certainty are necessary (i.e. multi-granular linguistic
information) [5, 6, 14]. The use of different label sets
to assess information is also necessary when an expert
has to assess different concepts, as for example it hap-
pens in information retrieval problems, to evaluate the
importance of the query terms and the relevance of the
retrieved documents [13]. In such situations, we need
tools for the management of multi-granular linguistic
information, i.e., we need to define a multi-granular
fuzzy linguistic modelling. In [5] we define a proposal
of multi-granular fuzzy linguistic modelling based on
the ordinal fuzzy linguistic modelling and in [6] we
define other one based on the 2-tuple fuzzy linguistic
modelling. In this paper, we follow that defined in [6]
which uses the concept of the Linguistic Hierarchies
to manage the multi-granular linguistic information.

A linguistic hierarchy is a set of levels, where each
level is a linguistic term set with different granularity
from the remaining of levels of the hierarchy [1]. Each
level belonging to a linguistic hierarchy is denoted as
l(t,n(t)), being t a number that indicates the level of
the hierarchy and n(t) the granularity of the linguistic
term set of the level t.

Usually, linguistic hierarchies deal with linguistic



terms whose membership functions are triangular-
shaped, symmetrical and uniformly distributed in
[0,1]. In addition, the linguistic term sets have an odd
value of granularity representing the central label the
value of indifference.

The levels belonging to a linguistic hierarchy are or-
dered according to their granularity, i.e., for two con-
secutive levels t and t+1, n(t + 1) >n(t). Therefore,
each level t + 1 provides a linguistic refinement of the
previous level t.

A linguistic hierarchy, LH, is defined as the union of
all levels t: LH =

⋃
t l(t, n(t)). To build LH we must

keep in mind that the hierarchical order is given by
the increase of the granularity of the linguistic term
sets in each level. Let Sn(t) = {sn(t)

0 , ..., s
n(t)
n(t)−1} be

the linguistic term set defined in the level t with n(t)
terms, then the building of a linguistic hierarchy must
satisfy the following linguistic hierarchy basic rules [6]:

1. To preserve all former modal points of the mem-
bership functions of each linguistic term from one
level to the following one.

2. To make smooth transactions between successive
levels. The aim is to build a new linguistic term
set, Sn(t+1). A new linguistic term will be added
between each pair of terms belonging to the term
set of the previous level t. To carry out this inser-
tion, we shall reduce the support of the linguistic
labels in order to keep place for the new one lo-
cated in the middle of them.

Generically, we can say that the linguistic term set
of level t+1, Sn(t+1), is obtained from its predecessor
level t, Sn(t) as: l(t, n(t)) → l(t + 1, 2 ·n(t)− 1). Table
1 shows the granularity needed in each linguistic term
set of the level t depending on the value n(t) defined
in the first level (3 and 7 respectively).

Level 1 Level 2 Level 3
l(t,n(t)) l(1,3) l(2,5) l(3,9)
l(t,n(t)) l(1,7) l(2,13)

Table 1. Linguistic Hierarchies.

A graphical example of a linguistic hierarchy is shown
in figure 2:

In [6] was demonstrated that the linguistic hierarchies
are useful to represent the multi-granular linguistic in-
formation and allow to combine multi-granular linguis-
tic information without loss of information. To do this,
a family of transformation functions between labels
from different levels was defined:

Definition 6. Let LH =
⋃

t l(t, n(t)) be a linguis-

Figura 2: Linguistic Hierarchy of 3, 5 and 9 labels

tic hierarchy whose linguistic term sets are denoted as
Sn(t) = {sn(t)

0 , ..., s
n(t)
n(t)−1}. The transformation func-

tion between a 2-tuple that belongs to level t and an-
other 2-tuple in level t′ 6= t is defined as:

TF t
t′ : l(t, n(t)) −→ l(t′, n(t′))

TF t
t′(s

n(t)
i , αn(t)) = ∆(

∆−1(sn(t)
i , αn(t)) · (n(t′)− 1)

n(t)− 1
)

As it was pointed out in [6] this family of transforma-
tion functions is biyective.

2.4 The Unbalanced Fuzzy Linguistic
Modelling

In any problem that uses linguistic information the
first goal to satisfy is the choice of the linguistic terms
with their semantics, for establishing the label set to be
used in the problem. In the literature, we can find two
different possibilities for choosing the linguistic terms
and their semantics:

• We can assume that all the terms of the label set
are equally informative, i.e., symmetrically dis-
tributed as it happens in the above fuzzy linguis-
tic modelling.

• We can assume that all the terms of the label set
are not equally informative, i.e., not symmetri-
cally distributed. In this case, we need an unbal-
anced fuzzy linguistic modelling [8, 9] to manage
the linguistic term sets with different discrimina-
tion levels on both sides of the mid term (see Fig-
ure 3). As was known in [8], in the information
retrieval systems the use of unbalanced linguistic
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Figura 3: Unbalanced Linguistic Term Set of 7 Labels

term sets seems more appropriate than the use of
symmetrical linguistic term sets, as to express the
importance weights in the queries as to represent
the relevance degrees of the documents.

To manage unbalanced linguistic term sets we propose
a method based on the 2-tuple fuzzy linguistic mod-
elling. Basically, this method consists of representing
unbalanced linguistic terms from different levels of an
LH, carrying out computational operations of unbal-
anced linguistic information using the 2-tuple compu-
tational model. The method consists of the following
steps:

1. Represent the unbalanced linguistic term set S by
means of a linguistic hierarchy, LH.

1.1. Chose a level t− with an adequate granular-
ity to represent using the 2-tuple representation
model the subset of linguistic terms of S on the
left of the mid linguistic term.

1.2. Chose a level t+ with an adequate granular-
ity to represent using the 2-tuple representation
model the subset of linguistic terms of S on the
right of the mid linguistic term.

2. Define an unbalanced linguistic computational
model.

2.1. Choose a level t′ ∈ {t−, t+}, such that n(t′) =
max{n(t−), n(t+)}.
2.2. Define the comparison of two 2-tuples
(sn(t)

k , α1), t ∈ {t−, t+}, and (sn(t)
l , α2), t ∈

{t−, t+}, with each one representing a counting of
unbalanced information. Its expression is similar
to the usual comparison of two 2-tuples but acting
on the values TF t

t′(s
n(t)
k , α1) and TF t

t′(s
n(t)
l , α2).

We should point out that using the comparison
of 2-tuples we can easily define the comparison
operators Max and Min.

2.3. Define the negation operator of unbalanced
linguistic information. Let (sn(t)

k , α), t ∈ {t−, t+}
be an unbalanced 2-tuple then:

NEG(sn(t)
k , α) = Neg(TF t

t′′(s
n(t)
k , α)), t 6= t′′,

t′′ ∈ {t−, t+}.

2.4. Define aggregation operators of unbalanced
linguistic information. This is done using the ag-
gregation processes designed in the 2-tuple com-
putational model but acting on the unbalanced

N L M H TQH VH

N L TQHH VHM

Figura 4: Unbalanced Linguistic Term Set of 7 Labels

linguistic values transformed by means of TF t
t′ .

Then, once it is obtained a result, it is trans-
formed to the correspondent level t by means of
TF t

t′ to express the result in the unbalanced lin-
guistic term set.

Assuming the unbalanced linguistic term set shown in
Figure 3 and the linguistic hierarchy shown in Figure
2, in Figure 4 we show how to select the different levels
to represent the unbalanced linguistic term set.

3 GDM with Linguistic Preference
Relations

A GDM problem consists on choosing the best alter-
native(s) among a finite set, X = {x1, ..., xn}, (n ≥ 2).
The alternatives will be classified from best to worst,
using the information known according to a set of ex-
perts, i.e., E = {e1, ..., em}(m ≥ 2).

As we have said before, experts’ preferences can be
given in many different formats, and concretely, in
this work we will make use of the 2-tuple fuzzy lin-
guistic modelling approach to represent the experts’
preferences (although any of the other fuzzy linguistic
modelling approaches can be easily used).

Thus, to express their opinions about the alternatives,
each expert ek ∈ E, will provide his preferences by
means of a linguistic preference relation P k.

Definition: Let S be a set of labels which represents



the linguistic domain where experts can express their
preferences as it is defined in Section 2.2. A linguistic
preference relation P on a set of alternatives X is a set
of 2-tuples on the product set X ×X, i.e., it is char-
acterized by a membership function µP : X × X −→
S × [−0.5, 0.5).

When cardinality of X is small, the preference relation
may be conveniently represented by the n× n matrix
P = (pij) being pij = µP (xi, xj) ∀i, j ∈ {1, . . . , n}
interpreted as the preference degree or intensity of the
alternative xi over xj . Note that every pij value is a 2-
tuple in the form (s, α) with s ∈ S and α ∈ [−0.5, 0.5).

3.1 Resolution Process for GDM Problems
with Linguistic Preference Relations

Once the experts have provided their preferences by
means of linguistic preference relations, a resolution
process can be applied to obtain a final solution to the
problem. The resolution process consist mainly in two
different substeps:

1. Aggregation phase. The information provided by
the different experts is aggregated into a collec-
tive linguistic preference relation. This collective
preference relation summarizes all the information
provided by the different experts.

2. Exploitation phase. Two different choice degrees
of alternatives are applied to the collective pref-
erence relation to supply the set of best alterna-
tives for the problem: the quantifier guided dom-
inance degree (QGDD) and the quantifier guided
non dominance degree (QGNDD).

3.1.1 Aggregation Phase

This phase consist on aggregating all the information
provided by the experts, that is, to obtain a collective
linguistic preference relation (CP ) from the experts’
individual linguistic preference relations (P k). As it
have been presented in Section 2.2 there are several dif-
ferent aggregation operators that easily operate with
linguistic terms expressed by the 2-tuple fuzzy linguis-
tic model. For simplicity we will use the arithmetic
mean aggregation operator (it gives equal preference
to every expert):

CP =
m∑

k=1

1
n

P k = (cpij)

where

cpij = xe[p1
ij , . . . , p

m
ij ]

3.1.2 Exploitation Phase

At this point, in order to select the alternative(s)
”best” acceptable to the group of individuals as a
whole, we will use two quantifier guided choice of de-
grees of alternatives, both based on the OWA operator.

Definition [15]. An OWA operator of dimension n
is a function φ : <n → <, that has associated a set
of weights or weighting vector W = (w1, ..., wn) to it,
so that wi ∈ [0, 1] and

∑n
i=1 wi = 1, and is defined to

aggregate a list of values {p1, ..., pn} according to the
following expression,

φW (p1, ..., pn) =
n∑

i=1

wi · pσ(i) (1)

being σ : {1, ..., n} → {1, ..., n} a permutation such
that that pσ(i) ≥ pσ(i+1), ∀i = 1, ..., n− 1, i.e., pσ(i) is
the i-highest value in the set {p1, ..., pn}.
Concretely, we use the following quantifier guided
choice degrees:

1. Quantifier guided dominance degree. For the alter-
native xi we compute the quantifier-guided dominance
degree QGDDi used to quantify the dominance that
one alternative has over all the others in a fuzzy ma-
jority sense as follows:

QGDDi = φQ(∆−1(cpij), j = 1, ..., n, j 6= i). (2)

2. Quantifier guided non-dominance degree. We also
compute the quantifier guided non-dominance degree
QGNDDi according to the following expression:

QGNDDi = φQ(g − spji, j = 1, ..., n, j 6= i), (3)

where spji = max{∆−1(cpji) − ∆−1(cpij), 0}, repre-
sents the degree to which xi is strictly dominated by
xj . In our context, QGNDDi gives the degree in
which each alternative is not dominated by a fuzzy
majority of the remaining alternatives.

The application of the above choice degrees of alter-
natives over X may be carried out according to a se-
quential policy: Selecting and applying one of them
according to the preference of the experts, and thus
obtaining a selection set of alternatives. If there is
more than one alternative in that selection set, then
the other choice degree may be applied to select the
alternative of the above set with the best second choice
degree. This policy defines a sequential selection pro-
cess.



3.2 Example

In this section we will give an example of the resolu-
tion process for a GDM problem using 2-tuple fuzzy
linguistic modelling of the experts’ preferences.

We have a GDM problem where three experts E =
{e1, e2, e3} have to choose among 4 different alter-
natives, that is, X = {x1, x2, x3, x4}. They are
asked to give their preferences using linguistic pref-
erence relations, with the following set of labels: S =
{N, V L,L, E,H, V H,C} (Null preference, Very Low
preference, Low preference, Equal preference, High
preference, Very High preference and Complete pref-
erence).

The experts provide the following linguistic preference
relations:

P1 =




− (V L, 0) (L, 0) (E, 0)
(V H, 0) − (H, 0) (V H, 0)
(H, 0) (L, 0) − (H, 0)
(E, 0) (V L, 0) (L, 0) −




P2 =




− (L, 0) (H, 0) (V H, 0)
(H, 0) − (V H, 0) (V H, 0)
(L, 0) (V L, 0) − (E, 0)

(V L, 0) (V L, 0) (E, 0) −




P3 =




− (V L, 0) (V L, 0) (L, 0)
(V H, 0) − (E, 0) (H, 0)
(V H, 0) (E, 0) − (H, 0)
(H, 0) (L, 0) (L, 0) −




It is interesting to remark that experts usually give
their linguistic preference relations using only the lin-
guistic element in the 2-tuple, and asuming that α =
0 ∀pij . This happens because they are not able to dis-
criminate with a high level of precision the preference
that they have over the alternatives (this vagueness
is precisely the reason to use fuzzy linguistic models
instead of numerical ones).

Once we have the linguistic preference relations we
have to apply the aggregation operator, in our exam-
ple is the arithmetic mean one. Note that to apply
the operator we have to use the ∆−1 and ∆ functions
to transform every 2-tuple into a numerical value and
vice-versa:

∆−1(P1) =




− 1.0 2.0 3.0
5.0 − 4.0 5.0
4.0 2.0 − 4.0
3.0 1.0 2.0 −




∆−1(P2) =




− 2.0 4.0 5.0
4.0 − 5.0 5.0
2.0 1.0 − 3.0
1.0 1.0 3.0 −




∆−1(P3) =




− 1.0 1.0 2.0
5.0 − 3.0 4.0
5.0 3.0 − 4.0
4.0 2.0 2.0 −




Aggregation
=⇒

∆−1(CP ) =




− 1.3 2.3 3.3
4.7 − 4.0 4.7
3.7 2.0 − 3.7
2.7 1.3 2.3 −




∆
=⇒

CP =




− (V L, 0.3) (L, 0.3) (E, 0.3)
(V H,−0.3) − (H, 0) (V H,−0.3)
(H,−0.3) (L, 0) − (H,−0.3)
(E,−0.3) (V L, 0.3) (L, 0.3) −




Finally we have to apply the exploitation process
making use again of the fuzzy quantifier ”most”,
whose weighting vector (for four alternatives) is W =
[0.5, 0.21, 0.16, 0.13]. The quantifier guided dominance
degree of alternatives acting over the collective fuzzy
preference relation supply the following values:

x1 x2 x3 x4

QGDDi 2.8 4.4 3.4 2.6

Clearly the x2 alternative is much better than the oth-
ers, and as there is no other alternative with the same
dominance degree, the process stops (there is no need
to calculate the quantifier guided non-dominance de-
grees) giving Sol = {x2} as the solution of the prob-
lem.

4 Concluding Remarks

In this work we have presented four different ap-
proaches of the fuzzy linguistic modelling that can
be used to solve GDM problems: Ordinal fuzzy lin-
guistic modelling, 2-tuple fuzzy linguistic modelling,
Multi-granular fuzzy linguistic modelling, and Unbal-
anced fuzzy linguistic modelling.



We have also presented a resolution process for GDM
problems where information given by the experts are
expressed in a linguistic domain. This resolution pro-
cess is carried out in two main steps: an aggrega-
tion phase where a collective linguistic preference rela-
tion is calculated and an exploitation phase where the
best alternative(s) from the feasible set are calculated
by means of the application of two quantifier guided
choice of degrees of alternatives.

Finally we have provided an example of the application
of the resolution process to a GDM problem where
the experts expressed their preferences by means of
linguistic preference relations, using the 2-tuple fuzzy
linguistic model.
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