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Abstract

In the resolution of a Multiperson Decision Mak-
ing (MPDM) problem is usually important to as-
sure that there is at least a certain level of agree-
ment between the experts on the final solution. In
this paper we present a Consensus Reaching Pro-
cess for MPDM where the information given by
the experts is based on incomplete fuzzy prefer-
ence relations. In this process we define a method
to generate advice by means of easy rules about
how experts should change their opinions to reach
a solution with a high consensus degree and with a
high consistency level on the experts preferences.
These rules are based on consistency and consen-
sus measures.

Keywords: Incomplete Information, Consen-
sus, Additive Transitivity, Fuzzy Preference Re-
lations.

1 Introduction

Multiperson Decision Making (MPDM) problems
involve choosing a solution set of alternatives
over a feasible set X = {x1, ..., xn} according
to the preferences provided by different experts
E = {e1, ..., em}. We assume that experts ex-
press their preferences about the alternatives us-
ing fuzzy preference relations. The resolution of
a MPDM problem usually involves two different
processes: a Consensus Reaching Process (CRP),
where the experts should change their preferences
in order to achieve a certain degree of consensus
and a Selection Process where the best options are
derived from the previously consensued experts’
preferences.

One of the problems that is present in real MPDM
problems is the lack of information. Sometimes,
experts are not able to provide enough informa-
tion about their preferences, i.e., they may not be
able to measure their preference degrees over some
alternatives, or they don’t have enough knowledge
about part of the problem presented, so they pre-
fer not to guess it and not to give part of the
information required to solve the problem.

In this paper, we present a CRP where the in-
formation given by the experts is based on in-
complete fuzzy preference relations (IFPR). This
process uses a feedback mechanism to give rec-
ommendations (expressed as easy rules) that will
help the experts to reach a solution that fulfills
two different criterions. The first criterion (a
global one) is to obtain a solution with a high
consensus degree between experts. The second
one (individual criterion) is to obtain a high level
of consistency on the experts preferences. An-
other feature of the process is that it is able to
give advice on how to complete the missing infor-
mation on the IFPRs. To do that, it uses both
consistency and consensus measures.

The paper is set as follows. In Section 2 we
present our preliminaries, that is, the basic tools
used in the design of the CRP. In Section 3 we
show the CRP and finally, in Section 4 we point
out some conclusions and future works.

2 Preliminaries

In this section, we present the tools to design the
CRP, that is, the concept of IFPR, consistency
measures, and the IOWA operator.
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2.1 Incomplete Fuzzy Preference
Relations

There exist several representation formats in
which the experts can express their opinions. One
of the most used are fuzzy preference relations
[2, 7, 9, 10] because of their effectiveness as a tool
for modelling decision processes and their utility
and easiness of use when we want to aggregate ex-
perts’ preferences into group preferences [4, 7, 11].

Definition 1. A Fuzzy Preference Relation
(FPR) P on a set of alternatives X is a fuzzy set
on the product set X ×X, i.e., it is characterized
by a membership function µP :X ×X −→ [0, 1].

When cardinality of X is small, the prefer-
ence relation may be conveniently represented
by the n × n matrix P = (pik), being pik =
µP (xi, xk) (∀i, k ∈ {1, . . . , n}) interpreted as the
preference degree or intensity of the alternative xi
over xk: pik = 1/2 indicates indifference between
xi and xk (xi ∼ xk), pik = 1 indicates that xi
is absolutely preferred to xk, and pik > 1/2 indi-
cates that xi is preferred to xk (xi � xk). Based
on this interpretation we have that pii = 1/2 ∀i ∈
{1, . . . , n} (xi ∼ xi).
Usual models to solve MPDM problems assume
that experts are always able to provide all the
preferences required, that is, to provide all pik
values. This situation is not always possible to
achieve. Experts could have some difficulties in
giving their preferences due to lack of knowledge
about part of the problem, or due to that expert
not being able to quantify his/her degree of pref-
erence.

In order to model such situations, we define the
concept of an incomplete fuzzy preference relation:

Definition 2. A function f :X −→ Y is partial
when not every element in the set X necessarily
maps onto an element in the set Y . When every
element from the set X maps onto one element of
the set Y then we have a total function.

Definition 3. [6] An Incomplete Fuzzy Prefer-
ence Relation P on a set of alternatives X is a
fuzzy set on the product set X ×X that is char-
acterized by a partial membership function.

From an IFPR we define the following sets [6]:

- A = {(i, j) | i, j ∈ {1, . . . , n} ∧ i 6= j},
- MVh =

{
(i, j) ∈ A | phij is unknown

}
,

- EVh = A \MVh
- EV i

h = {(a, b) | (a, b) ∈ EVh ∧ (a = i ∨ b = i)}
where MVh is the set of pairs of alternatives for
which the preference degree of the first alternative
over the second one is not given by expert eh, EVh
is the set of pairs of alternatives for which the
expert eh provides preference values and EV i

h is
the set of preferences about pairs of alternatives
given by an expert eh involving alternative xi.

2.2 Consistency Measures

In real MPDM problems with fuzzy preference re-
lations some properties about the preferences ex-
pressed by the experts are usually assumed de-
sirable to avoid contradiction between their own
opinions (that is, to avoid to have low degree of
consistency). One of this properties is the tran-
sitivity property, which represents the idea that
the preference value obtained by directly compar-
ing two alternatives should be equal to or greater
than the preference value between those two al-
ternatives obtained using an indirect chain of al-
ternatives. There are several possible character-
izations for transitivity (see [4]). In this paper
we make use of the Additive Transitivity prop-
erty. The mathematical formulation of this prop-
erty was given by Tanino [11] and can be written
as [4, 6]:

pik = pij + pjk − 0.5 ∀i, j, k ∈ {1, . . . , n} (1)

A FPR will be considered additive consistent
when (1) is satisfied ∀pik, pij , pjk | i 6= j 6= k.
Moreover, (1) can be used to calculate an esti-
mated value cpik for every pik as:

cpik =
∑n
j=1;i6=k 6=j cp

j1
ik + cpj2ik + cpj3ik

3(n− 2)
(2)

where

cpj1ik = pij + pjk − 0.5,
cpj2ik = pjk − pji + 0.5,
cpj3ik = pij − pkj + 0.5

Note that the cpik and pik will not usually co-
incide unless the preference relation P fully sat-
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isfies additive consistency, and thus, we can de-
fine an error between pik and cpik [6] as εpik =
(2/3) · |cpik − pik|.
Definition 4. [6] The consistency measure for
every pair of alternatives in a FPR Ph is computed
as:

clhik = (1− αhik) · (1− εphik) + αhik ·
Cih + Ckh

2
(3)

where Cih =
#EV i

h

2(n− 1)
is the completeness level for

the alternative xi given by the expert eh and αhik ∈
[0, 1] is a parameter to control the influence of
completeness in the evaluation of the consistency
levels. We proposed a simple linear solution to
obtain that parameter: αik = 1− #EV ih+#EV kh

4(n−1) .

Definition 5. The consistency measure for a
given alternative xi is computed as:

clhi =
∑n
k=1;k 6=i(clhik + clhki)/(2 · (n− 1)),

Definition 6. The consistency measure for a
whole preference relation is computed as:

clh =
∑n
i=1(clhi )/n.

2.3 IOWA Operator

In [12] Yager defined the IOWA operator:

Definition 5. [12] An IOWA operator of di-
mension n is a function ΦW : (< × <)n → <, to
which a set of weights or weighting vector is as-
sociated, W = (w1, . . . , wn), with wi ∈ [0, 1],
Σiwi = 1, and it is defined to aggregate the
set of second arguments of a list of n 2-tuples
{〈u1, p1〉 , . . . , 〈un, pn〉} according to the following
expression,

ΦW (〈u1, p1〉 , . . . , 〈un, pn〉) =
∑n
i=1wi · pσ(i)

being σ a permutation of {1, . . . , n} such that
uσ(i) ≥ uσ(i+1), ∀i = 1, . . . , n−1, i.e.,

〈
uσ(i), pσ(i)

〉

is the 2-tuple with uσ(i) the highest value in the
set {u1, . . . , un}.

3 Consensus Reaching Process

In this section we present a CRP for MPDM
based on IFPR. Contrary to other previously

given CRPs in the literature [1, 3, 5, 8], the CRP
that we present is guided by two kinds of mea-
sures: consistency and consensus measures. We
design it trying to obtain the maximum possible
consensus level while trying to achieve a high level
of consistency among experts’ preferences. We
should point out that the consistency search often
leads to reduce the consensus level and viceversa.
Thus, we try to maintain a balance between both.
Moreover, not only the CRP is able to achieve a
solution with certain consensus and consistency
degrees simultaneously, but it is able to deal with
IFPR, giving advice to the experts on how to com-
plete them.

The steps of the CRP are the following:

1. Computing Missing Information
2. Computing Consistency Measures
3. Computing Consensus Measures
4. Controlling the Consensus/Consistency State
5. Feedback Process

3.1 Computing Missing Information

In [6] we presented an iterative procedure capable
of completing every IFPR based on the additive
consistency of the self preference relation and us-
ing equations derived from (2). In this step, we
compute every phik ∈ MVh and thus, we obtain
a reconstructed preference relation P ′h for every
IFPR Ph.

3.2 Computing Consistency Measures

In this step, for every expert eh we compute
their respective consistent matrices CPh =

(
cphik

)

according to (2). From every P ′h and CPh
we are able to compute the different consis-
tency measures presented in section 2.2, i.e.,
clhik, cl

h
i , cl

h ∀i, k ∈ {1, ..., n}. Then, we define a
global consistency measure among all experts to
control the global consistency status:

CL =
∑m
h=1 cl

h

m
.

3.3 Computing Consensus Measures

The CRP also needs some consensus and proxim-
ity measures about the experts’ preferences. In
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[5] these measures were given on three different
levels of a FPR: pairs of alternatives, alternatives
and relations. We use this measure structure on
the CRP.

Firstly, for each pair of experts eh, el (h < l)
we define a similarity matrix SMhl =

(
smhl

ik

)

where smhl
ik = 1 − |ph′ik − pl

′
ik|. A consensus ma-

trix, CM = (cmik) is obtained by aggregating all
the similarity matrices using the arithmetic mean
as the aggregation function φ:

cmik = φ(smhl
ik) ; ∀h, l = 1, ...,m | h < l.

We can now compute the consensus degrees in the
different levels:

1. Level 1. Consensus on pairs of alterna-
tives. The consensus degree on a pair of
alternatives (xi, xk), called copik is defined
to measure the consensus degree amongst
all the experts on that pair of alternatives:
copik = cmik.

2. Level 2. Consensus on alternatives. The
consensus degree on an alternative (xi),
called cai is defined to measure the consen-
sus degree amongst all the experts on that
alternative:

cai =
∑n
k=1;k 6=i(copik + copki)

2n− 2
.

3. Level 3. Consensus on the relation. The
consensus degree on the relation, called CR
is defined to measure the global consensus
degree amongst all the experts’ opinions:

CR =
∑n
i=1 cai
n

.

Similarly, as we did with the consensus degrees,
we have to define some proximity measures for
each expert. To do so, we need a collective FPR,
P c that summarizes the preferences given by all
the experts. We will use an IOWA operator (pre-
sented in section 2.3):

pcik = ΦW (
〈
z1
ik, p

1′
ik

〉
, · · · ,

〈
zmik , p

m′
ik

〉
)

where the set of inducing variables {z1
ik, . . . , z

m
ik}

will be computed as zhik = (1− δ) · clhik + δ · smh
ik,

being smh
ik a similarity measure between the ex-

pert eh and the rest of experts assessed for the
pair of alternatives xi and xk and computed as

smh
ik =

∑n
l=h+1 sm

hl
ik +

∑h−1
l=1 sm

lh
ik

n− 1
,

and being δ ∈ [0, 1] a parameter to control the
weight of both the consistency and consensus in
the decision process. As it has been previously
said, in usual CRPs the consensus measure is the
most important criterion to consider, and so, we
recommend to apply values δ > 0.5.

The proximity measures are computed as follows:

1. Level 1. Proximity on pairs of alternatives.
The proximity of an expert eh on a pair of
alternatives (xi, xk) to the group one, called
pphik, is calculated as pphik = 1− |ph′ik − pcik|.

2. Level 2. Proximity on alternatives. The
proximity of an expert eh on an alternative
xi to the group one, called pahi , is calculated
as:

pai =
∑n
k=1;k 6=i(ppik + ppki)

2n− 2
.

3. Level 3. Proximity on the relation. The
proximity of an expert eh on his/her prefer-
ence relation to the group one, called prh, is
calculated as:

prh =
∑n
i=1 pa

h
i

n
.

3.4 Controlling Consensus/Consistency
State

The Consensus/Consistency State Control pro-
cess involves to decide when the feedback mecha-
nism should be applied to give advice to the ex-
perts or to redirect the process to the selection
phase. It takes into account both the consensus
and consistency measures. To do that, we de-
fine a new measure or level of satisfaction (Con-
sensus/Consistency Level, CCL) that we use as a
control parameter:

CCL = (1− δ) · CL+ δ · CR
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When the CCL is above a certain minimum satis-
faction threshold, γ ∈ [0, 1] then the CRP should
end towards a selection process to obtain the final
solution for the problem.

Additionally, the system should avoid stagnation,
that is, the consensus and consistency measures
never reaching an appropiate value. To do so, a
maximum number of iterations maxIter should
be fixed and compared to the actual number of
iterations of the process (numIter).

The consensus/consistency control routine pseu-
docode is shown:

1. If CCL > γ or numIter > maxIter then
2. Go to Selection Process
3. else
5. numIter + +
6. Advice the experts (feedback process)

3.5 Feedback Process

The feedback process consists on two substeps:
Identification of the preference values that have
to be changed and Generation of advice

3.5.1 Identification of the Preference
Values

We must identify which experts and preference
values are contributing less to reach a high con-
sensus/consistency state. We call the Advice Pref-
erences Set (APS) to the set of (h, i, k) whose phik
values should be changed because they are neg-
ativelly contributing to that state. To calculate
APS, we apply a three step identification process
that uses proximity and consistency measures pre-
viously defined.

Step 1. We identify the set of experts EXPCH
that should recieve advice on how to change
some of their preference values. The experts that
should change their opinions are those whose sat-
isfaction degree on the relation is lower than the
satisfaction threshold γ, i.e.,

EXPCH = {h | (1− δ) · clh + δ · prh < γ}.

Step 2. We identify the alternatives that the
above experts should consider to change. This set
of alternatives is denoted as ALT . To do this, we

select the alternatives whose satisfaction degree is
lower than the satisfaction threshold γ, i.e.,

ALT = {(h, i) | (1− δ) · clhi + δ · cahi < γ and
eh ∈ EXPCH}.

Step 3. Finally, we identify which of the pref-
erence values for every alternative and expert
(xi ; eh | (h, i) ∈ ALT ) should be changed accord-
ing to their proximity and consistency measures
on the pairs of alternatives. Then we have

APS = {(h, i, k) | (h, i) ∈ ALT and
(1− δ) · clhik + δ · pphik < γ}.

Additionally the feedback process must provide
rules missing preference values. To do so, it has
to add to the APS all missing values that were
not provided by the experts, i.e.

APS′ = APS ∪ {(h, i, k) | phik ∈MVh}.

3.5.2 Generation of Advice

In this last step, recomendations are generated
to the experts based on easy rules that the CRP
provides.

The rules not only tell experts which preference
values should they change, but they propose par-
ticular values for each preference to reach a solu-
tion of high consensus/consistency.

To calculate these particular values we use a
weighed mean between the cphik value previously
computed and the pcik value:

rphik = (1− δ) · cphik + δ · pcik,

where rphik will be the value that will be used in
the rule to the expert eh to change the preference
value about alternatives xi and xk. As previously
mentioned, with δ > 0.5 the CRP directs the ex-
perts towards a consensus solution more than to
increase their own consistency levels.

Finally, we should only differenciate two cases: if
the rule has to be given because a preference value
is far from the consensus/consistency state or be-
cause the expert did not provide the preference
value. Therefore there are two kinds of recom-
mendation rules:
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1. If phik ∈ EVh the rule generated for the expert
eh is: “You should change your preference
value (i, k) to a value close to rphik.”

2. If phik ∈ MVh the rule generated for the ex-
pert eh is: “You should provide a value for
(i, k) close to rphik.”

Once experts receive the recommendations the
CRP should begin again, with the experts giving
their new IFPRs which should be closer to a con-
sensus solution with higher level of consistency on
the individual experts’ preferences (if they have
followed the provided rules).

4 Conclusions and Future Works

In this paper we have presented a new Consensus
Reaching Process capable of handling Incomplete
Fuzzy Preference Relations. It uses some consis-
tency, consensus and proximity measures to give
advice to the experts by means of easy rules that
would direct them towards a more consensued so-
lution, and also achieving a high consistency de-
gree on the experts’ preferences. It is even able to
give recommendations to reconstruct the missing
information on the IFPRs in a consistent way.

In the future, we will refine and extend this CRP
to accept different kinds of preference relations.
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