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ABSTRACT

Motivation: A critical challenge of the post-genomic era is to under-

standhowgenesaredifferentially regulatedevenwhen they belong to a

given network. Because the fundamental mechanism controlling gene

expressionoperatesat the levelof transcription initiation,computational

techniques have been developed that identify cis regulatory features

and map such features into expression patterns to classify genes into

distinct networks. However, these methods are not focused on distin-

guishing between differentially regulated genes within a given network.

Here we describe an unsupervised machine learning method, termed

GPS for gene promoter scan, that discriminates among co-regulated

promoters by simultaneously considering both cis-acting regulatory

features and gene expression. GPS is particularly useful for knowledge

discovery in environments with reduced datasets and high levels of

uncertainty.

Results: Application of this method to the enteric bacteria Escherichia

coli and Salmonella enterica uncovered novel members, as well as

regulatory interactions in the regulon controlled by the PhoP protein

that were not discovered using previous approaches. The predictions

made by GPSwere experimentally validated to establish that the PhoP

protein usesmultiplemechanisms to control gene transcription, and is a

central element in a highly connected network.

Availability:The scripts and programs used in thiswork are accessible

from the gps-tools.wustl.edu website. Data and predictions are avail-

able by request.

Contact: groisman@borcim.wustl.edu

Supplementary information: http://gps-tools.wustl.edu/BIOINF-

2005-1246R1-Supplemental.pdf

INTRODUCTION

Genetic and genomic approaches have been successfully used to

assign genes to distinct regulatory networks both in prokaryotes and

eukaryotes. However, little is known about the differential expres-

sion of genes within a regulon. At its simplest, genes within a

regulon are controlled by a common transcriptional regulator in

response to the same inducing signal. The fact that such

co-regulated genes may be differentially regulated suggests that

subtle differences in the shared cis-acting regulatory elements

are probably significant. However, it is not yet possible to predict

the critical differences that govern the differential gene expression.

Furthermore, while genes could in principle be differentiated by

incorporating into the analysis quantitative and kinetic measure-

ments of gene expression (Ronen et al., 2002) and/or the participa-
tion of other transcription factors (Bar-Joseph et al., 2003; Beer and
Tavazoie, 2004; Conlon et al., 2003), there are constraints in such

analyses due to systematic errors in microarray experiments, the

extra work required to obtain kinetic data and the missing informa-

tion about additional signals impacting on gene expression. These

constraints hitherto only allow a relatively crude classification of

gene expression patterns into a limited number of classes [e.g.

upregulated and downregulated genes (Oshima et al., 2002;

Tucker et al., 2002)].
Here we describe a machine learning method (Cheeseman and

Oldford, 1994; Cook et al., 2001; Cooper and Herskovits, 1992),

termed GPS for Gene Promoter Scan, that identifies, differentiates

and groups sets of co-regulated promoters by simultaneously con-

sidering multiple cis-acting regulatory features and gene expression.
GPS carries out an exhaustive description of cis-acting regulatory

features, including the orientation, location and number of binding

sites for a regulatory protein, the presence of binding site submotifs,

and the class and number of RNA polymerase sites. Moreover, it

treats each of these promoter features with equal weight because it is

not known beforehand which features are important. It further cap-

tures variability in the control of biological systems by treating the

cis-acting features as fuzzy (i.e. not precisely defined) instead of

categorical entities (Bezdek, 1998; Gasch and Eisen, 2002; Ruspini,

2001). To circumvent limitations imposed by back-correlating relat-

ively few classes of gene expression measurements to cis-acting
features, the GPS method treats gene expression data as one feature

among many. The features are analyzed concurrently, and recurrent

relations are recognized to generate profiles, which are groups of

promoters sharing common features. GPS uses an unsupervised

strategy, where pre-existing examples are not required, as well

as multiobjective optimization techniques that recover all optimal

feature associations rather than potentially biased subsets (Deb,

2001; Ruspini, 2001). The resulting profiles group promoters that

may share underlying biological properties.�To whom correspondence should be addressed.
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Basis for GPS: conceptual clustering

and machine learning

Cluster analysis—or simply clustering—is a data mining technique

often used to identify various groupings or taxonomies in databases.

Most existing methods for clustering are designed for linear feature-

value data. However, sometimes we need to represent and learn

structural data that not only contains descriptions of individual

observations in databases, but also relationships among these obser-

vations. Therefore, mining into structural databases entails address-

ing both the uncertainty of which observations should be placed

together, and also which distinct relationships among features best

characterize different sets of observations. Typical clustering tech-

niques (Everitt and Der, 1996) are not designed to do this, even

when combined with global filter feature selection methods such

as principal component analysis or stepwise descendent methods

(Kohavi and John, 1997; Yeung and Ruzzo, 2001). In contrast,

conceptual clustering techniques have been successfully applied

to structural databases to uncover concepts that are embedded in

subsets of structural data or substructures (Cheeseman and

Oldford, 1994; Cook et al., 2001; Cooper and Herskovits, 1992).

Consequently, conceptual learning can be formulated as the prob-

lem of searching through a predefined space of potential hypotheses

(i.e. substructures or associations of features and observations) for

those observations that best fit the training examples.

While most machine learning techniques applied directly or indir-

ectly to structural databases exhibit methodological differences,

they do share the same framework even though they employ distinct

metrics, heuristics or probability interpretations (Cheeseman and

Oldford, 1994; Cook et al., 2001; Cooper and Herskovits, 1992) as

follows:

Structure representation. Structural data can be viewed as a

graph containing nodes representing objects, which have features

linked to other nodes by edges corresponding to their relations.

A substructure consists of a subgraph of structural data (Cook

et al., 2001). These data can be efficiently organized by taking

advantage of a naturally occurring structure over feature space,

which consists of a general to specific ordering of possible sub-

structures (i.e. a lattice).

Structure learning. This process consist of searching through the

lattice space for potential substructures, and returning either the best

one found or an optimal sample of them. If the number of substruc-

tures is super-exponential in the number of nodes, different heuristic

methods can be used [e.g. greedy (Cooper and Herskovits, 1992);

hill climbing (Chickering, 2003); genetic algorithms (Larranaga,

1996)].

Subtructure evaluation. The formulation of the clustering prob-

lem in a lattice or graph-based structure would result in the gen-

eration of many substructures with small extent, as it is easier to

explain or substructure-match smaller data subsets than those that

constitute a significant portion of the dataset. For this reason, any

successful methodology should also consider additional criteria to

extract broader or more comprehensive substructures based on their

size, the number of retrieved substructures, and their diversity and

extent of overlap (Cook et al., 2001; Ruspini, 2001). These are

conflicting criteria that can be formulated as a multiobjective optim-

ization problem, analogous to minimum description-length methods

(Rissanen, 1989), based on the combination of the individual cri-

teria or objectives into a global measure of cluster quality. The basic

challenge with this approach, however, is its potential bias and

inflexibility caused by weighting of the objectives (Ruspini, 2001).

Inference. New observations can be predicted from previously

learned substructures by using classifiers that optimize their match-

ing based on distance (Bezdek, 1998) or probabilistic metrics

(Cooper and Herskovits, 1992; Mitchell, 1997). When designed

for labeled data, the approach is referred to as supervised learning

(as opposed to unsupervised learning).

SYSTEMS AND METHODS

Regulatory networks constitute a typical case of structural data, where genes

can be viewed as objects described by several features, including expression

patterns and particular cis-acting promoter elements. Promoters are inher-

ently complex combinations of objects that, in turn, are described by a

number of features. For example, binding sites for one or more transcrip-

tional regulators are characterized by their match to the binding motif of the

regulators, and their locations relative to each other and to that of the RNA

polymerase binding site(s). The purpose of GPS is to identify interesting

substructures or profiles (i.e. groups of promoters sharing a common set of

features), within a regulatory network, thus to suggest possible mechanisms

by which the respective genes are controlled, which can further be used to

classify additional (e.g. newly identified) promoters.

GPS represents, learns and infers from structural data by following three

main phases (Fig. 1a):

Structure representation. Model the features of promoters (Zwir et al.,

2005) by several steps, including constructing models of microarray expres-

sion data and cis-features (Bar-Joseph et al., 2003; Beer and Tavazoie, 2004)

from available databases and describing promoters according to the detected

features, allowing multiple occurrences of a feature and missing values

(Bezdek, 1998; Gasch and Eisen, 2002).

Structure learning. (1) Initialize the profiles by grouping them into pre-

liminary profiles by using clustering techniques. (2) Group the profiles by

navigating into a hierarchical lattice structure (Fig. 1b) corresponding to the

feature space and systematically use profile intersection to create compound

profiles. The profiles are encoded as fuzzy models (Bezdek, 1998; Gasch and

Eisen, 2002; Ruspini, 2001), which allows imprecise match of promoters

with one or more profiles, and thus, promoter migrations are allowed even

among sibling profiles in the lattice structure [i.e. optimization clustering

(Falkenauer, 1998)]. GPS uses an exhaustive search in the cis-features and

the expression feature space. In addition, we have successfully applied

genetic algorithms (Cordon et al., 2002; Zwir et al., 2002) in more complex

problems (data not shown). (3) Prototype the profiles by obtaining the

centroid that best represents a group of promoters. (4) Search the profiles

in a frontier of optimal solutions according to two opposing criteria or

objectives, the probability of different sets of promoters to belong to a

common profile, and the similarity between profile members. The GPS

approach is less biased than weighting the objectives [e.g. minimum descrip-

tion length (Rissanen, 1989)] because it identifies all the profiles lying in the

Pareto optimal frontier (Deb, 2001; Ruspini, 2001), which is the collection of

local multiobjective optima in the sense that its members are not worse

than (i.e. dominated by) the other profiles in any of the objectives being

considered.

Inference. Predict new members of the profiles by searching genomes to

discover new promoters that match the profiles, using an unsupervised clas-

sifier (Bezdek, 1998), which allows descriptions of new examples from

multiple substructures or profiles by using fuzzy clustering techniques.

Dataset: Escherichia coli and Salmonella
enterica promoters

We built models based on 33 genes whose microarray expression differed

statistically between wild-type and phoP E.coli strains experiencing indu-

cing conditions for the PhoP/PhoQ regulatory system (Zwir et al., 2005), and

I.Zwir et al.
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22 additional S.enterica promoters known to be regulated by the PhoP

protein. This set of promoters constitutes 70% of the training partition.

The remaining 30% constitutes the test partition dataset and contains

genes known/assumed to be PhoP regulated (Zwir et al., 2005), compiled

from the literature and our own lab information (Supplementary Table 1).

Even if most of these genes were known to be PhoP-regulated, the mech-

anism by which the genes were regulated was not known in detail, and could

differ from gene to gene. Missing expression values in the Salmonella

genome were inherited from the E.coli orthologs.

Structure representation: modeling promoter features

To describe promoters controlled by the PhoP/PhoQ regulatory system of

E.coli and S.enterica serovar Typhimurium, we built model-based features

that encode many promoter properties. The data include observations from

RegulonDB, our microarray experiments and a survey of the promoter

regions of the E.coli and S.enterica genomes. For each feature, we

assigned/calculated the degree of matching (in a scale to the unit-

interval) between an observation and a model, or a family of models.

This approach allows an observation to be described by multiple features,

and the models are allowed to combine different individual features, reflect-

ing the fact that promoters may harbor multiple features.

We focused on six types of features (Bar-Joseph et al., 2003; Beer and

Tavazoie, 2004; Li et al., 2002; Zwir et al., 2005) for describing our training

set of promoters (Supplementary Table 2), which are briefly described here,

and more in detail in the study by I. Zwir, R. Romero-Zaliz, H. Huang and

E. A. Groisman (in preparation):

‘Submotifs’. We modeled the PhoP box motifs by using position weight

matrices (Stormo, 2000). Then, we used these preliminary models to

describe promoters by using low thresholds. We grouped the retrieved

observations into subsets and rebuilt matrix models for each of them,

thus obtaining several more refined models and increasing the sensitivity

to departures from the consensus and the specificity of submotif recognition.

‘Orientation’. We classified PhoP boxes as either in direct or opposite

orientation relative to the open reading frame.

‘RNA pol sites’. We studied (1) the RNA polymerase motif by using a

neural network method (Cotik et al., 2005), (2) the class of sigma 70

promoter by using an intelligent parser (Romero Zaliz et al., 2004) that

differentiates class I from class II promoters and (3) the distance distribu-

tions (close, medium and remote) between RNA polymerase and transcrip-

tion factor binding sites in activated and repressed promoters by using fuzzy

set representations (Ruspini, 2001) from information available in the

RegulonDB database (Salgado et al., 2004). We derived models to describe

Fig. 1. The GPS method. (a) GPS is a machine learning technique that models promoter features as well as relations between them, uses them to describe

promoters, combines such characterized promoters into groups termed profiles, evaluates the resulting profiles to select the most significant ones and performs

genome-wide predictions based on such profiles. To accomplish this task, GPS carries out three basic operations: grouping observations from the dataset;

prototyping such groups into theirmost representative elements (centroid); and searching in the set of optimal solutions (i.e. Pareto optimal frontier) to retrieve the

most relevant profiles, which are used to describe and identify new objects by similarity with the prototypes. (b) GPS navigates through the feature-space lattice

generating and evaluating profiles. For the analysis of promoters regulated by the PhoP protein, we identified up to fivemodels for each type of feature, which are

used to describe the promoters. Then,GPSgenerates profiles,which are groups of promoters sharing common sets of features. (The subscripts denote the different

profiles for each feature, the superscripts denote the level in the lattice of the profile). For example,E1
1 is a particular ‘expression’ profile that differs from E1

2 and

E1
3. These level-1 profiles of each feature are combined to identify level-2 profiles, and similarly, level-2 profiles are combined to create level-3 profiles. In

addition, because of the fuzzy formulation of the clustering, any promoter that was initially assigned to a specific profileEt
i, can participate in the profile of level-t

whereEt
j is involved (i.e. indicated as a double-headed arrow). Thus, observations canmigrate fromparental to offspring clusters (i.e. hierarchical clustering), and

among sibling clusters (i.e. optimization clustering). Here, we show a small part of the complete lattice, where the part that is highlighted in red is described in

detail in Figure 2.

Dissecting differential gene expression in a regulon
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putative relationships between PhoP and RNA polymerase binding sites by

using AND-connected fuzzy predicates. The equivalent probabilistic inter-

pretation of this is the posterior probability obtained by following Bayes’

rule [(e.g. p(class II/close) that, given a class II RNA polymerase site, it

interacts at close distance with the PhoP protein)].

‘Activated/repressed’. We learned activation and repression distributions

by compiling distances between RNA polymerase and transcription factor

binding sites from the RegulonDB database. We modeled and used them to

estimate whether the position of the PhoP box suggests that a promoter is

activated or repressed by PhoP, when gene expression data may be unavail-

able (Collado-Vides et al., 1991).

‘Interactions’. We built motifs for all transcription factor-binding

sites in the RegulonDB database. We also modeled the distance

distributions between motifs co-located in the same promoter regions.

Then, we connected them with models of the PhoP binding sites and

used them to describe putative relationships among the PhoP protein and

other 23 regulators.

‘Expression’. We clustered PhoP-regulated gene expression levels and

built models for each cluster by calculating its centroid (Li and Wong,

2001). Then, we described gene expression of each promoter in E.coli by

its similarity to each model.

Structure learning: grouping, prototyping and

searching profiles in the lattice space

Initializing profiles GPS independently clusters each type of feature to

build initial level-1 profiles based on the fuzzy C-means clustering

method (Fig. 2) and a validity index (see below) (Bezdek, 1998) to

estimate the number of clusters, as an unsupervized discretization of the

features (Kohavi and John, 1997; Mitchell, 1997; Ruspini, 2001). A dummy

variable representation of the nucleotides was used to cluster binding-site

motifs (Rosner, 1986). For example, we obtained five level-1 profiles for the

‘submotifs’ feature M1
0‚ . . .‚ M1

4

� �
(the superscript denotes the level, 1 in this

case. The subscript denotes the specific profile, with subscript 0 correspond-

ing to profiles containing promoters that do not have the corresponding type

of feature); three level-1 profiles for the ‘orientation’ feature O1
0‚ . . . ‚O

1
2

� �
;

four level-1 profiles for the ‘RNA pol sites’ feature P1
0‚ . . .‚ P1

3

� �
; three level-

1 profiles for the ‘activated/repressed’ feature A1
1‚ . . .‚ A1

3

� �
; five level-1

profiles for the ‘interactions’ feature I10‚ . . .‚ I14
� �

; and three level-1 profiles

for the ‘expression’ feature E1
1‚ . . .‚ E1

3

� �
.

Grouping profiles GPS groups profiles by navigating in a lattice cor-

responding to the feature searching space (Cheeseman and Oldford, 1994;

Cook et al., 2001; Cooper and Herskovits, 1992) (Fig. 1b and 2b) and

systematically creating compound higher level profiles (i.e. offspring pro-

files) V(i,j) based on combining parental profiles Vi and Vj, by taking the

intersection V(i,j) ¼ Vi \ Vj. For example, level-1: (E1
1, M1

2 and I13)! level-2:

(E2
1M2

2, M2
2I23 and E2

1I23) ! level-3: (E3
1M3

2I33), where level-3-profiles are

obtained from intersection of the promoter members of level-2- profiles

(e.g. E2
1M2

2, M2
2I23 and E2

1I23) and not between those belonging to the initial

profiles (E1
1, M1

2 and I13) (Fig. 2). This is because GPS locally re-discretizes

the original features at each level and allows re-assignations of observations

between sibling profiles (Fig. 2b, see below). In this hierarchical process,

each level of the lattice increases the number of features shared by a profile.

After searching through the whole lattice space, the most specific profiles

[i.e. the most specific hypothesis (Mitchell, 1997)] are found. Profiles com-

bined by GPS constitute local partitions of the datasets (Ruspini, 2001) that

are not constrained by an arbitrary fixed number of clusters and features (see

below), thus permitting a better characterization of the relationship between

promoters and clusters.

Prototyping profiles GPS learns profiles by using an extension of the

fuzzy C-means clustering method (Bezdek, 1998; Gasch and Eisen, 2002),

where promoters can belong to more than one cluster with different degrees

of membership, as it is done in the possibilistic clustering implementation

(Bezdek, 1998), and are not forced to belong to any particular cluster. This

consists of individually applying fuzzy C-means clustering to each type of

feature at each level in the lattice, and combining the results: the membership

of a promoter k with a feature value xk of a specific type of feature f from a

particular profile Vi, is calculated as

ui‚ k‚ f ¼ 1þ kxk‚ f�Vi‚ f k2A
wi

 !1=m�1
2
4

3
5
�1

8i 2 f1‚ . . .‚cg‚ 8k 2 f1‚ . . .‚ng‚ 8f 2 f1‚ . . . ‚ tg‚ 1<m � 1‚ ð1Þ

where ui,k,f is taken as the degree of membership of the value xk,f in the i-th

partitioning fuzzy subset of type of feature f; Vi‚ f is the profile prototype or

centroid of partition Vi,f (see below); m is the degree of fuzzification;

A determines the type of norm commonly used in pattern recognition

[e.g. A ¼ 2 is the Euclidean norm (Bezdek, 1998)]; and wi is a weight

for penalty initialized as 1 in the absence of prior information. Thus,

each level of the lattice is arrayed as (c · n · t) matrix U ¼ {u1,1,1, . . . ,
uc,1,t; . . . u1,n,1, . . . uc,n,t} containing the vector representation of matching

between c-profiles, n promoters and t features.

If the interpretation of the partition U is probabilistic, ui,k,f is usually the

posterior probability p(Vi, f /xk,f) that, given xk,f, it comes from class Vi,f, by

following the Bayes’ rule (Bezdek, 1998; Bezdek et al., 1992; Everitt and

Der, 1996). If U is fuzzy, ui,k,f is taken as the membership of xk,f to one or

more fuzzy subsets Vi,f of X, which is calculated based on distances meas-

urements. Previous interpretations constrain the sum of memberships (or

probabilities, as the case may be) to be one. However, if the interpretation is

possibilistic (Bezdek, 1998), this constraint is relaxed, and thus, a more

realistic situation can be represented where we do not force each observation

to belong to a profile (Ruspini, 2001).

Fig. 2. Using GPS to build promoter profiles. GPS generation of the E3
i M3

2I33 profile is shown here. It corresponds to the highlighted substructure of the lattice

shown in Figure 1b. (a) GPS starts by using information fromdatabases andmicroarray data to construct a family ofmodels for each feature (e.g. expression levels

E1 to E3, PhoPbox submotifM1 toM4 and presence of binding sites fromother transcription factors I1 to I23) (Zwir et al., 2005). The promoters are described using

the modeled features, the degree of matching between features and promoters being encoded as a vector of independent values (Alon et al., 1999), where 1 (red

color) corresponds to maximum matching and 0 (green color) corresponds to the absence of the feature. For each feature, the promoters are then grouped into

subsets that share similar patterns, using fuzzy clustering. (b) Each subset shown in (a) is prototyped by locating the centroid that best represent the group, to

generate the initial, level-1 profiles (e.g. E1
1, M1

2 and I13). The centroids are encoded as a vector, and also visualized by graphical plots for the ‘expression’ and the

‘interactions’ features, and by a sequence logo (Crooks et al., 2004) for the ‘submotifs’ feature. These level-1 profiles are combined to generate level-2 profiles

[e.g. E2
1M2

2 and M2
2I22 (red circles)], by the intersection of the ancestor profiles, and then prototyped. (Blue circles represent profiles containing other subsets of

promoters. The absence of a circle signifies that no promoters are classified into these profiles.) Further navigation through the feature-space lattice generates the

level-3 profiles, e.g.E3
1M3

2I33. TheE3
1M3

2I33 profile thus encompasses promoters that share the same expression pattern, PhoP submotif and RNA polymerase sites.

Note that the vectors of the daughter profiles are built anew from the constituent promoters, and are slightly different from those of their ancestors, which is due to

the refinement that takes place during the profile learning process. The double-headed arrow indicates that observations can migrate among sibling clusters (i.e.

optimization clustering).

Dissecting differential gene expression in a regulon
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The profile prototype or centroid of partition Vi of type of feature f is

calculated as

Vi‚ f ¼
Pn

k¼1 ui‚ k‚ f

� �m
xk‚ fPn

k¼1 ui‚ k‚ f

� �m 8i‚ i 2 f1‚ . . .‚cg; 8f ‚ f 2 f1‚ . . .‚ tg: ð2Þ

(Supplementary Fig. 1). We note that each type of feature is locally

re-discretized in each profile of the lattice based on the original xk values

of the promoters included in that profile, thereby producing a dynamic

discretization of the dataset (Kohavi and John, 1997; Quinlan, 1993).

Then, a profile is represented as a set of prototypes, each corresponding

to a different type of feature included in the profile:

Vi ¼ fVi‚ 1 ‚ . . . ‚Vi‚ tg: ð3Þ

Therefore, the membership of xk to a profile Vi is calculated by linking the

individual memberships for each type of feature, by using fuzzy AND logic

operations (Bezdek, 1998):

ui‚ k ¼ OPANDfui‚k‚1‚ . . .‚ui‚k‚tg‚ ð4Þ

where OPAND represents fuzzy logic-based operations, such as Minimum or

Product (Bezdek, 1998) that link the degrees of matching between a pro-

moter (the observation) and the prototypes of different type of features

composing a profile. One promoter observation xk can contribute to more

than one profile Vi in the same or a different level of the lattice, with different

degrees of membership ui,k. This differentiates our approach from a hier-

archical clustering process where, once an observation is placed in a cluster,

it can only be re-assigned into offspring clusters. In contrast, our approach is

similar to optimization clustering methods (Falkenauer, 1998) in that it

allows tranfer among sibling clusters in the same level (Fig. 2b). Position

weight matrices are used for prototyping groups of binding site motifs

instead of Equation (2). The resulting scores are normalized by the maximum

information content of the matrix (Stormo, 2000) and incorporated in

Equations (3) and (4). Finally, only those promoters that exhibit a profile

membership >60% (i.e. ui,k> 0.6) are used in the generation of the next level
profiles.

Searching profiles in the Pareto optimal frontier Profile search and

evaluation is carried out as a multiobjective optimization problem (Deb,

2001; Rissanen, 1989; Ruspini, 2001), between the extent of the profile

and the quality of matching among its members and the corresponding

features. For computational convenience, both objectives are minimized.

The extent of a profile is calculated by using the hypergeometric distribution

that gives the chance probability (i.e. probability of intersection PI) of

observing at least p candidates from a profile Vi within another profile Vj

of size n:

PI V i‚ jð Þ
� �

¼ P Vi \ Vj

� �
¼ 1�

Xp�1

q¼0

h
q

� �
g� h
n� q

� �
g
h

� � ‚ ð5Þ

where h is the total number of elements within profile Vi and g is the total

number of candidates, such that the lower the p-value the better the size of

the profile association (Supplementary Fig. 1a and b) (Tavazoie et al., 1999).

The multivariate hypergeometric distribution is used to combine more than

two profiles (Requena and Ciudad, 2000). The quality of matching between

promoters and features of a profile (i.e. similarity of intersection SI) is

normalized by the number of features f considered in the profile, and

calculated using the following equation:

SI V i‚ jð Þ
� �

¼ 1

f
1�

Xn

k¼1
u i‚ jð Þ‚ k

n

 !
‚ ð6Þ

where n is the number of promoters in profile V(i,j). Good profiles in current

implementation are those that minimize both PI and SI (Supplementary

Fig. 1a and 1c).

The tradeoff between the opposing objectives (i.e. PI and SI) is estimated

by selecting a set of solutions that are non-dominated, in the sense that there

is no other solution that is superior to them in all objectives [i.e. Pareto

optimal frontier (Deb, 2001; Ruspini, 2001); see Supplementary Fig. 1d].

The dominance relationship in a minimization problem is defined by

a� b if f 8iOi að Þ � Oi bð Þ9jOj að Þ <Oj bð Þ‚ ð7Þ

where the Oi and Oj are either PI or SI.

Another objective indirectly considered by GPS is the profile diversity,

which consists of maintaining a distributed set of solutions in the Pareto

frontier, and thus, identifying clusters that describe objects from different

angles. Therefore, our approach applies the non-dominance relationship

locally, that is, it identifies all non-dominated optimal profiles that have

no better solution in the local neighborhood (Supplementary Fig. 1d)

(Deb, 2001; Ruspini, 2001). This strategy, which combines multiobjective

and multimodal optimization concepts (Deb, 2001), relies on competition of

solutions for determining their search space ‘niches’ (i.e. to keep all import-

ant solutions without the need to be exhaustive).

GPS calculates niches (i.e. classes of equivalence) by using the hyper-

geometric metric between profiles:

PI Vi‚Vj

� �
< d‚ ð8Þ

where PI is calculated by using Equation (5), profiles Vi and Vj can be any

profile in the lattice and d is a small initialized value. PI is distinguished from

other metrics, such as the Jaccard coefficient (Saporta, 1996), in being an

adaptive measure that is sensitive to small sets of examples, while retaining

specificity with large datasets (Supplementary Fig. 2). Thus, GPS is designed

to identify profiles that might contain very few member promoters. It also

maintains diversity by constraining niches to members sharing the same type

of features, by not applying Equation (8) to profiles located in disjointed

branches of the hierarchical lattice searching space. For example, the profile

P2
2O2

1 (PI ¼ 0.37, SI ¼ 0.20) is dominated by E3
1I33O3

1 (PI ¼ 0.03, SI ¼ 0.18)

only if the niching strategy is solely based on the PI metric, but it is just

dominated by profile P4
2M4

1I43O4
1 (PI ¼ 0.36, SI ¼ 0.10) if the niches are

constrained to contain the same type of features (i.e. P2
2O2

1 � P4
2M4

1I43O4
1),

where the profiles are located in the same branches of the hierarchical lattice.

Inference: unsupervised fuzzy k-nearest-prototype

classifier

GPS uses a fuzzy k-nearest prototype classifier (FKN) to predict new

profile members using an unsupervised classification method (Bezdek,

1998; Ruspini, 2001) applied to annotated regulatory regions of genomes

(I. Zwir, R. Romero-Zaliz, H. Huang and E. A. Groisman, manuscript in

preparation). First, we determine the lower-boundary similarity threshold for

each profile finally selected by GPS. This threshold is calculated based on the

ability of each profile to retrieve its own promoters and to discard promoters

from other profiles (Benitez-Bellon et al., 2002) (see below). Second, we

calculate the membership of a query observation xq to a set of k profiles

previously identified and apply a fuzzy OR logic operation:

FKN xq‚ V1‚ . . . ‚Vk

� �
¼ i‚ i 2 f1‚ . . . ‚ kg‚ ð9Þ

where ui,q ¼ OPOR{u1,q, . . ., uk,q}, u is calculated based on Equation (4) in

which wi [Equation (1)] is initialized as

wi ¼
r1PI Við Þ þ r2 f=t0ð ÞSI Við Þ

r1 þ r2
‚ ð10Þ

with t0 being the number of distinct features observed in xq and Vi, and f is the
number of features in common between xq and Vi, which are combined to

obtain a measure of belief (Cooper and Herskovits, 1992; Mitchell, 1997) or

rule weight (Cordon et al., 2002); r1 and r2 are user-dependent parameters,

simply initialized as 1 if no preference exist between both objectives; and

OPOR is the Maximum fuzzy operator (Bezdek, 1998; Gasch and Eisen,

2002).
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Fuzzy C-means clustering method (Bezdek, 1998; Gasch and Eisen,

2002) (0) Initialize L0 ¼ f�V1V1‚ . . . ‚ �VcVcg, (1) while (s < S and kLs � Ls�1k >
«), where S is the maximum number of iterations, (2) calculate the mem-

bership of Us in Ls�1 as in Equation (1), (3) update Ls�1 to Ls with Us as in

Equation (2) and (4) iterate.

Xie-Beni validity index (Bezdek, 1998) The minimization of this index

through different number of clusters (i.e. c ¼ 2 to c ¼ ffiffiffi
n

p
) detects compact

representations of fuzzy C-means partitions:

XB U‚Lð Þ ¼

Xn

k¼1

Xc

i¼1
u2i‚ kkxk � �ViVik2

n min
i 6¼j

fk �ViVi � �VjVjk2g
� � : ð11Þ

Metrics for evaluating the Pareto optimal frontier The metric C in

Equation (12) (Zitzler and Thiele, 1999) measures the dominance relation

between a set of solutions X from one method over another set provided by

another method X0 in the unit interval, where C(X,X0) ¼ 1 means that all

points in X0 are dominated by solutions in X, and C(X,X0)¼ 0 represents the

situation where none of the X0 solutions are dominated by X.

C X‚X0ð Þ ¼
P

a2X jfa0 2 X0; a� a0gj
jX0jjfa 2 X; 9a0 : a� a0gj : ð12Þ

This metric is not symmetric, thus, both C(X,X0) and C(X,X0) have to be

measured.

Profile similarity thresholds We evaluated GPS performance in

retrieving desired and discarding undesired observations (see Results) by

determining a lower-boundary similarity threshold for each profile. These

values are calculated based on optimizing the overall performance meas-

urement (Benitez-Bellon et al., 2002) for each profile finally selected by

GPS: OP ¼ (AC + PPV)/2, where (positive predictive value) PPV ¼ TP/

(TP + FP) and (accuracy) AC ¼ (TP + TN)/(TP + TN + FP + FN) were

defined on the basis of specificity ¼ TN/(TN + FP) and sensitivity ¼ TP/

(TP + FN), where P ¼ positive examples for a specific profile, N ¼ negative

examples from another different profile, T ¼ true and F ¼ false. A final

constraint requires the sensitivity to be >60%, otherwise, the closest to this

constraint is used.

Programming resources The scripts and programs used in this work are

accessible at the website gps-tools.wustl.edu, were based on Perl, Matlab 6.1

and C++ interpreters/languages, and the visualization routines were per-

formed on the Spotfire DecisionSite 8 software.

RESULTS

We investigated the utility of GPS by exploring the regulatory

targets of the PhoP protein in E.coli K-12 and S.enterica serovar

Typhimurium, which is at the top of a highly connected network that

controls transcription of dozens of genes mediating virulence and

the adaptation to low Mg2+ environments (Groisman, 2001). For

PhoP analysis, we identified six types of features: gene expression

levels (‘expression’), PhoP box submotifs (‘submotifs’), the pres-

ence of potential binding sites for 23 transcription factors (‘inter-

actions’), the orientation of the PhoP box (‘orientation’), the

distance of the PhoP box relative to the RNA polymerase site

and the class of sigma 70 promoter (‘RNA pol sites’), and whether

the position of the PhoP box suggests that a promoter is activated or

repressed (‘activated/repressed’) (I. Zwir, R. Romero-Zaliz,

H. Huang and E. A. Groisman, manuscript in preparation) (Zwir

et al., 2005). A detailed description of the profile generation process

performed by GPS is presented in Supplementary Figure 3, and a

comprehensive list of profiles predicted for PhoP-regulated genes is

presented in Supplementary Table 3.

We demonstrated that GPS makes predictions at three levels

(Zwir et al., 2005): (1) it recovers the canonical PhoP-regulated

promoters; (2) it detects new candidate promoters for a regulatory

protein; and (3) it indicates possible mechanisms by which genes

previously known to be controlled by a regulator are expressed.

Profiles with canonical PhoP-regulated promoters

One of the profiles, P4
1E4

1M4
2I43 (PI ¼ 0.39, SI ¼ 0.07), encompasses

promoters (e.g. those of the phoP, mgtA, ybcU and yhiW genes of

E.coli and the slyB gene of Salmonella) that share the same type of

RNA polymerase sites, expression patterns, PhoP box submotif and

the same pattern for other transcription factor binding sites. This

profile includes not only the prototypical phoP and mgtA promoters

(Minagawa et al., 2003), but also the promoters of the yhiW gene,

which was not known to be under PhoP control. Another profile,

P3
1M3

r O3
2 (PI ¼ 0.23, SI ¼ 0.13), includes promoters (e.g. those of

the hdeD, ompX, rstA, slyB and yiaG genes of E.coli, and the nmpC,
ompX and pagP genes of Salmonella) with a similar PhoP box

orientation and type of RNA polymerase sites as the profile

described above. These two profiles differ in the number of features

because GPS uses a multivariate environment, where feature selec-

tion is locally performed for each profile, as not every feature is

relevant for all profiles. The two profiles are also distinguished by

the values of two of the features: they have distinct PhoP box

submotifs and different distances of the PhoP box to the RNA

polymerase sites. Thus, the canonical PhoP-regulated promoters

consist of at least two distinct subsets.

Profiles with PhoP boxes in the opposite orientation

of the canonical PhoP-regulated promoters

One profile, P4
2E4

1I43O4
1 (PI ¼ 0.40, SI ¼ 0.12), includes promoters

(e.g. those of the ompT gene of E.coli and the pipD, ugtL and ybjX
genes of Salmonella) that share the type of RNA polymerase sites,

expression patterns and other transcription factor binding site pat-

terns. Strikingly, the PhoP box in these promoters is in the opposite

orientation relative to that found in the prototypical phoP and mgtA
promoters. A second profile, P2

3O2
1 (PI ¼ 0.07, SI ¼ 0.17), includes

promoters also with the PhoP box in the opposite orientation (e.g.

those of the slyB and yhiW genes of E.coli and the ybjX, mig-14,
virK, mgtC and pagC genes of Salmonella) but differs from the

former profile in that the PhoP box is located further upstream from

the RNA polymerase site than the typical PhoP-regulated gene.

Both of these profiles were preserved and distinguished from

each other because GPS uses a multiobjective optimization method

that considers non-dominance relationships between PI (e.g. PI ¼
0.40 versus PI ¼ 0.07, respectively) and SI (e.g. SI ¼ 0.12 versus

SI ¼ 0.17, respectively).

Notably, the promoters of the latter profile could be assigned to a

profile even in the absence of expression data. By virtue of being an

unsupervised method, GPS is not constrained by a dependent vari-

able (Beer and Tavazoie, 2004; Mitchell, 1997), such as expression

data, which would condition the classification to the available num-

ber of expression classes. Despite the unusual orientation of the

PhoP box in the promoters of the genes belonging to profiles

P4
2E4

1I43O4
1 and P2

3O2
1, the identified PhoP boxes are bona fide

PhoP-binding sites (Shi et al., 2004; Shin and Groisman, 2005;

Zwir et al., 2005).
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Profiles revealing interactions with other

regulatory proteins

One profile, P3
1I34O3

2 (PI¼ 0.21, SI¼ 0.17), includes promoters (e.g.

those of the yeaF and yrbL genes of E.coli and the pmrD, udg and

yrbL genes of Salmonella) that share the type of RNA polymerase

sites, PhoP-box orientation and the presence of potential binding

sites for the regulatory protein PmrA (Kato and Groisman, 2004).

Interestingly, promoters of the Salmonella pmrD and yrbL genes

and the E.coli yrbL gene have similarly arranged binding sites for

the PhoP and PmrA proteins, suggesting that the pmrD and yrbL
genes may be regulated in a similar fashion, which has been verified

experimentally (Kato et al., 2003; Zwir et al., 2005). This profile
was recovered by GPS, despite its potential domination by another

profile [i.e. P3
1I34O3

2 (PI ¼ 0.21, SI ¼ 0.17) versus P2
3O2

1 (PI ¼ 0.07,

SI ¼ 0.17)] because GPS uses a multimodal optimization strategy

(i.e. niching) that retrieves local optimal profiles that describe the

system from different points of view.

By using gene expression as one feature among many, GPS could

distinguish between promoters of the acid resistance genes (Masuda

and Church, 2003; Tucker et al., 2002) that, otherwise, would have

stayed undifferentiated within the same expression group. These

promoters were found to belong to one of the three distinct profiles:

E3
2M3

0I31 (PI ¼ 0.11, SI ¼ 0.03), includes promoters for acid resist-

ance structural genes lacking a recognizable PhoP box (e.g. those of

the dps and gadA genes of E.coli); E2
2M2

4 (PI ¼ 0.25, SI ¼ 0.10),

comprises promoters of a different set of structural genes that

include hdeD and hdeAB; and E2
2P2

3 (PI ¼ 0.419, SI ¼ 0.185),

harbors promoters of the acid resistance regulatory genes yhiE
and yhiW (also termed gadE and gadW, respectively (Tucker et al.,
2002; Zwir et al., 2005). The promoters in the latter two profiles

harbor PhoP boxes but these profiles differ in the type of RNA

polymerase sites and their distance to the PhoP box.

Three attributes of GPS enabled the classification of the acid

resistance promoters into the three profiles. First, GPS encodes

features in a flexible format, thus, it can capture promoters that

would be discarded otherwise. For example, GPS found that the

promoter of the E.coli hdeA gene has an atypical PhoP box submotif

that does get footprinted by the PhoP protein (Zwir et al., 2005), but
would have been discarded by consensus approaches (Martinez-

Antonio and Collado-Vides, 2003; McCue et al., 2001). Second,
GPS allows individual promoters (e.g. those of the yhiW and hdeD
genes that were also assigned to other profiles) to belong to more

than one profile, by using the fuzzy method instead of crisp clus-

tering. Third, GPS detects cohesion even in small groups of pro-

moters (e.g. the group that includes yhiE and yhiW genes) by

evaluating profiles based on both the PI and SI instead of by the

number of promoters or features. Moreover, initial assignments of

features and profiles are continuously revisited by GPS due to the

refinement performed during the profile learning process (e.g. the

level-2 profile E2
2M2

4 is built anew from its constituent promoters,

and differs slightly than those of its ancestors E1
2 and M1

4. See Fig. 2).

For example, GPS was able to capture promoters that were initially

left out: the E.coli hemL promoter was not considered initially

because its expression level did not surpass a statistical threshold

typically used in microarray experiments (Li and Wong, 2001).

However, it was retrieved by its similarity with the profile com-

prising promoters with ‘expression’ E1 and PhoP box ‘submotif’ M3

(Supplementary Fig. 3), and shown to bind the PhoP protein in vitro

(Eguchi et al., 2004). Moreover, GPS could also recover promoters

that had been identified as PhoP-regulated using different inducing

conditions than those considered in the experiments that provided

the original dataset (Zwir et al., 2005). This allows GPS to improve

upon initial decisions, based on the subsequent analysis.

GPS performance

To evaluate the ability of GPS to retrieve PhoP-regulated promoters,

we analyzed the statistical significance of GPS predictions in com-

parison with random classifications, and then, we evaluated the

ability of GPS to discriminate between promoters regulated by

PhoP and by other transcription factors. First, we compared GPS

prediction of the test set with a typical statistical approach consist-

ing of randomly assigning two classes to 100 000 sets of observa-

tions with the same size of the test partition (Beer and Tavazoie,

2004). This experiment retrieved an expected ca. 50% of ‘correct’

classifications, following a distribution close to normal and provid-

ing a standard deviation of 9.76%. Therefore, GPS prediction of

92% for the test set is 4.3 standard deviations away from the mean

obtained by random assignment, which corresponds to a P-value
<10�5, determined by using paired t-test with Bonferroni correction
(Matlab statistical toolbox). These results are in agreement with a

sample size >23, a power of 92% and significance level given by the

stated P-value (Rosner, 1986). Second, we extended the test set by

including 487 promoters from the RegulonDB database (Salgado

et al., 2004) that are regulated by transcription factors other than

PhoP, by selecting the promoter region corresponding to the

respective transcription factor binding site ±10 bp, its corresponding

RNA polymerase site ±10 bp and expression levels from our own

experiments. GPS had a false positive rate of 5.3% and a 93.92% of

overall performance measurement (Benitez-Bellon et al., 2002) as a
particular correlation coefficient implementation, with a 94 and

92% specificity and sensitivity on the extended set, respectively

(Supplementary Table 4).

Comparison of GPS with other methods

We evaluated the performance of GPS by comparing the set of

solutions retrieved by three other well known machine learning

techniques that have been used for data mining of structural data-

bases: Bayesian Network (BN) (Cooper and Herskovits, 1992),

Association Rules (AR) (Agrawal and Shafer, 1996) and Decision

Trees (DT) (Quinlan, 1993) (Supplementary Text). The comparison

criteria is the Pareto optimal frontier, which essentially measures the

quality of the profiles in terms of their extent (PI), quality of descrip-

tions (SI) and diversity (niches). We have illustrated this compar-

ison between GPS and BN in Supplementary Figure 4 (similar

results were obtained for comparisons with the other methods).

We summarized the comparison results between profiles

retrieved by GPS, BN, AR, and DT, given in Supplementary

Table 5 using a quantitative metric [see Equation (12)] [given in

System and Methods] that measures the quality of the solutions

selected by each method in the Pareto (Deb, 2001). According to

this criterion GPS produces a better distribution of the identified

profiles along the Pareto optimal frontier than the implementation

used for the BN, AR and DT methods (e.g. it dominates 71% of the

ones obtained by BN, while BN dominates 6% of the solutions

provided by GPS; see Supplementary Information). Thus, this
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avoids the convergence to solutions corresponding to a single or

limited regions of the search space. The diversity of these profiles

provides descriptions of the PhoP regulatory network from different

points of view, being mostly influenced by the presence of cohesive

profiles, even those containing small sets of promoters.

Although quantitative metrics provide one estimation of the

performance of the methods, the qualitative evaluation of these

methods provides a more realistic assessment of their usefulness.

Consequently, we use some of those profiles predicted by GPS and

experimentally validated (Zwir et al., 2005) as a seed to evaluate the
specificity and sensitivity of each method to group together pro-

moters and features with demonstrated biological significance

(Supplementary Fig. 5; Supplementary Table 6).

First, we considered the set of promoters included in the profile

P2
3O2

1. The AR and BN methods grouped these promoters together,

however, BN included additional promoters in its retrieved group,

exhibiting downregulated values for the ‘expression’ feature. (The

group slightly differs from the profile detected by GPS because the

latter locally re-discretizes the features.) The DT method could not

group together all promoters included in the profile, and also

included additional promoters with PhoP boxes in the opposite

orientation without discriminating between the type of RNA poly-

merase sites. This happens because it re-discretizes the ‘RNA pol

sites’ into an excessively general feature (Supplementary Fig. 5a).

Second, we considered the set of promoters included in the profile

P3
1I34O3

2. BN retrieved the promoters of this profile, however, it was

unable to describe them by the ‘interactions’ feature, even though

this feature was crucial for identifying promoters regulated by both

PhoP and PmrA proteins. As a consequence, BN retrieved a large

list of other promoters that do not specifically address the biological

mechanism described by the P3
1I34O3

2 profile. AR retrieved the pro-

moters in the P3
1I34O3

2 profile, but only via the ‘interaction’ feature.

Thus, by missing the ‘RNA pol sites’ and ‘orientation’ features in

the group, AR produced an unspecific group that is less informative

about the regulatory mechanism. DT did not group these promoters

when its default parameters were used; however, it did so after

customizing them (see below and Supplementary Fig. 5b).

Third, we considered the set of promoters included in the profile

E3
2M3

0I31. BN specifically identified together the set of promoters

included in this profile. AR and DT combined the promoters in

the profile with those in E2
2M2

0 profile, because neither methods

were able to distinguish between the two sets of promoters by

the ‘interactions’ feature, which identifies the acid resistance regu-

latory genes that regulate the promoters in the E3
2M3

0I31 but not those
in the E2

2M2
0 profile (Supplementary Fig. 5c and Supplementary

Table 6).

Fourth, we considered the set of promoters included in the

profile E2
2M2

4. Only GPS characterized them by both their ‘expres-

sion’ and ‘submotifs’ features, which are the most relevant feat-

ures distinguishing these promoters from other acid resistance genes,

as their expression only slightly differs from that of the canonical

PhoP regulated genes, and they are directly regulated by PhoP, by

the presence of PhoP binding site motifs (Supplementary Fig. 5d).

Fifth, we considered the set of promoters included in the profile

E2
2P2

3. Neither BN nor AR identified the promoters included in

the profile, which are crucial for inferring the architecture of the

regulatory network that control acid resistance genes. DT did not

group these promoter using its default parameters (see below,

Supplementary Fig. 5e).

Examination of the results obtained by BN, AR and DT suggests

that their deficiencies can be attributed to (1) the constrained archi-

tecture of BN, which only retrieved profiles based on their parents

(i.e. profiles that only include features immediately linked in its

learned structure) instead of a wider set of features, as well as their

need for a sufficiently large amount of data to apply conditional

probabilities successfully; (2) the thresholds used in AR, which

discard profiles with few members, without considering the features

that they do share; and (3) the strict dependence on output classes

(e.g. ‘expression’) of DT, which evaluate feature partitions solely

based on their ability to create distinguishable output classes, thus,

producing additional partitions when a more general description is

in fact more informative. DT can be customized to identify more

general groups of promoters by pruning the trees at lower levels than

the default implementation. However, this improvement for some

groups would degrade the performance of other groups. Moreover,

even if some promoters can be finally grouped together, they cannot

avoid the inconsistencies caused by the forced inclusion of the

‘expression’ feature predicted by the method, which often differ

from their original values (Quinlan, 1993).

DISCUSSION

We showed that GPS can make precise mechanistic predictions

even with incomplete input dataset and high levels of uncertainty.

For example, it had been suggested that PhoP regulates the mig-14,
virK, mgtC and pagC genes of Salmonella indirectly, because a

PhoP binding site could not be identified at a location typical of

other PhoP-activated genes (Lejona et al., 2003). However, GPS
grouped the promoters of these genes into a profile that shared an

atypical orientation and distance of the PhoP box to the RNA poly-

merase site (Supplementary Figs 1 and 3). Likewise, GPS separated

the PhoP-regulated acid resistance genes into three distinct profiles,

allowing us to infer that the PhoP protein controls transcription of

acid resistance genes, using both a feedforward loop and a classical

transcriptional cascade (Zwir et al., 2005). The experimental veri-

fication of these predictions (Zwir et al., 2005) illustrates the utility
of the GPS method, and demonstrates that PhoP uses multiple

mechanisms for the differential regulation of genes within a

regulon.

Several characteristics of GPS contribute to its power. First, it

considers gene expression as one feature among many, thereby

allowing classification of promoters even in its absence (Beer

and Tavazoie, 2004; Conlon et al., 2003). Particularly, GPS differs

from supervised learning methods (Mitchell, 1997) that group fea-

tures and observations based on explicitly defined dependent vari-

ables (Beer and Tavazoie, 2004; Conlon et al., 2003; Quinlan,

1993). Second, GPS performs a local feature selection for each

profile because not every feature is relevant for all profiles

(Kohavi and John, 1997), and, a priori, we do not know which

feature is biologically meaningful for a given promoter. This is

in contrast to approaches that filter or reduce features for all possible

clusters (Yeung and Ruzzo, 2001). Third, GPS finds all optimal

solutions among multiple criteria (Pareto optimality) (Deb, 2001),

which avoids the biases that might result from using any specific

weighing scheme (Rissanen, 1989). This can detect cohesion within

a small number of promoters that would remain undetected by

methods that emphasize the number of promoters in a profile

(Agrawal and Shafer, 1996). Fourth, GPS has a multimodal nature
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that allows alternative descriptions of a system by providing several

adequate solutions (Deb, 2001; Ruspini, 2001), thus recovering

locally optimal solutions, which have been shown to be biologically

meaningful (Azevedo et al., 2005; Zwir et al., 2005). This differ-
entiates GPS from methods that focus on a single optimum

(Gutierrez-Rios et al., 2003; Martinez-Antonio and Collado-

Vides, 2003). And fifth, GPS allows promoters to be members of

more than one profile by using fuzzy clustering (Bezdek, 1998;

Cordon et al., 2002; Gasch and Eisen, 2002), thus explicitly

treating the profiles as hypotheses, which are tested and refined

during the analysis (Mitchell, 1997). This distinguishes GPS

from clustering approaches that prematurely force promoters into

disjointed groups (Qin et al., 2003). In addition, GPS recognizes that
not every profile is meaningful (Bezdek, 1998), which avoids the

constraints of methods that force membership even to uninteresting

groups because the sum of membership is required to be one

(Cooper and Herskovits, 1992).

Finally, the GPS method, termed gene promoter scan here, can be

generalized to a method for Grouping, Prototyping and Searching in

the lattice space of hypotheses, which can be used in different

structural domains. For example, it is being applied to mine the

Gene Ontology database (Ashburner et al., 2000) to discover and

annotate profiles across biological processes, cellular components

and molecular functions, to identify molecular pathways that pro-

vide insight into the host response over time to systemic inflam-

matory insults.
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