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Abstract: Evolutionary algorithms are adaptive methods based on natural 
evolution that may be used for search and optimization. As instance selection 
can be viewed as a search problem, it could be solved using evolutionary 
algorithms. 

In this chapter, we have carried out an empirical study of the performance 
of CHC as representative evolutionary algorithm model. This study includes a 
comparison between this algorithm and other non-evolutionary instance se- 
lection algorithms applied in different size data sets to evaluate the scaling up 
problem. The results show that the stratified evolutionary instance selection 
algorithms consistently outperform the non-evolutionary ones. The main ad- 
vantages are: better instance reduction rates, higher classification accuracy 
and reduction in resources consumption. 

2.1 Introduction 

Advances in digital and computer technology that have led to the huge ex- 
pansion of the Internet means that massive amounts of information and col- 
lection of data have to be processed. Due to the enormous amounts of data, 
much of the current research is based on scaling up [2.5] Data Mining (DM) 
([2.1, 2.20, 2.221) algorithms. Other research has also tackled scaling down 
data. The main problem of scaling down data is how to select the relevant 
data. This task is carried out in the data preprocessing phase in a Knowledge 
Discovery in Databases (KDD) process. 

Our attention is focused on Data Reduction (DR) [2.16] as preprocessing 
task, which can be achieved in many ways: by selecting features [2.15], by 
making the feature-values discrete [2.8], and by selecting instances([2.13]). We 
led our study to Instance Selection (IS) as DR mechanism ([2.3, 2.17, 2.18]), 
where we reduce the number of rows in a data set (each row represents and 
instance). IS can follow different strategies (see Fig. 2.1): sampling, boosting, 
prototype selection (PS), and active learning. We are going to study the IS 
from the PS perspective. 
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Fig. 2.1. Data reduction strategies 
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IS mechanisms have been proposed to choose the most suitable points in 
the data set to become instances for the training data set used by a learning 
algorithm. IS has been studied previously in the literature using different 
approaches, in particular by means of Genetic Algorithms (GA) ([2.11]) as 
PS approach. For example, in [2.14], a GA is used for carry out a k-nearest 
neighbor edition. 

Evolutionary Algorithms (EAs) ([2.2]) are general-purpose search alge 
rithms that use principles inspired by natural genetic populations to evolve 
solutions to problems. The basic idea is to maintain a population of chro- 
mosomes, which represent plausible solutions to the problem, which evolves 
over time through a process of competition and controlled variation. EAs in 
general and GAS in particular have been used to solve the IS problem, with 
promising results ([2.14]). 

The issue of scalability and the effect of increasing the size of data sets are 
always present in the algorithm behavior. This scaling up drawback appears 
in EAs due to the increasing of the chromosome's size, which reduces the EAs 
convergence capabilities. 

To avoid this drawback we offer a combination of EAs and a stratified 
strategy. In large size we can't evaluate the algorithms over the complete 
data set so the stratification is a way to carry out the executions. Combining 
the subsets selected from the strata we can obtain the subset selected for the 
whole initial data set. The stratification reduces the data set size, while EAs 
select the most representative prototype per stratus. 

The aim of this chapter is to study the application of a representative and 
efficient EA model for data reduction, the CHC algorithm in IS ([2.6, 2.4]), and 
to compare it with non-evolutionary instance selection algorithms (hereafter 
referred to as classical ones) following a stratified strategy. 

To address this, we have carried out a number of experiments increasing 
the complexity and the data set size. 
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In order to do that, this chapter is set up as follows. In Section 2.2, we 
introduce the main ideas about IS, describing the processes which IS algo- 
rithms take part, and we also summarize the classical IS algorithms used in 
this study. In Section 2.3, we introduce the foundations of EAs and summa- 
rize the main features of them, giving details of how EAs can be applied to 
the IS problem in large size data sets. Section 2.4 is dedicated to the Scaling 
Up problem and we present our proposal solution. In Section 2.5, we explain 
the methodology used in the experiments. Section 2.6 deals with the results 
and the analysis of medium and large size data sets. Finally, in Section 2.7, 
we point out our conclusion. 

2.2 Instance Selection on Data Reduction 

In this section we describe the strategy which IS takes part in, as a DR 
mechanism, as well as a summary of classical IS algorithms. 

2.2.1 Instance Selection 

In IS we want to isolate the smallest set of instances which enable us to 
predict the class of a query instance with the same (or higher) accuracy as 
the original set [2.16]. By reducing the "useful" data set size, which can re- 
duce both space and time complexities of subsequent processing phases. One 
can also hope to reduce the size of formulas obtained by a subsequent induc- 
tion algorithm on the reduced and less noise data sets. This may facilitate 
interpretation tasks. 

IS raises the problem of defining relevance for a prototype subset. From 
the statistical viewpoint, relevance can be partly understood as the contri- 
bution to the overall accuracy, that would be e.g. obtained by a subsequent 
induction. We emphasize that removing instances does not necessarily lead 
to a degradation of the results: we have observed experimentally that a little 
number of instances can have performances comparable to those of the whole 
sample, and sometimes higher. Two reasons come to mind to explain such an 
observation: 

- First, some noises or repetitions in data could be deleted by removing 
instances. 

- Second, each instance can be viewed as a supplementary degree of freedom. 
If we reduce the number of instances, we can sometimes avoid over-fitting 
situations. 

2.2.2 Instance Selection for Prototype Selection 

There may be situations in which there is too much data and this data in 
most cases is not equally useful in the training phase of a learning algorithm. 
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Instance selection mechanisms have been proposed to choose the most suit- 
able points in the data set to become instances for the training data set used 
by a learning algorithm. 

Fig. 2.2 shows a general framework for the application of an IS algorithm 
for PS. Starting from the data set, D, the PS algorithm finds a suitable set, 
Prototype Subset Selected (PSS), then a learning or DM algorithm is applied 
to evaluate each subset selected (1-nearest neighbor in our case) to test the 
quality of the subset selected. This model is assessed using the test data set, 
TS. 

I Data Set (0) I 

Trarning set  (TR) 1-1 
PrototEpe Selection 

Prototype Subset Selected ( P S j  1 -Nearest Naghbour 

Fig. 2.2. Prototype selection strategy 

2.2.3 Overview of Instance Selection Algorithms 

Historically, IS has been mainly aimed at improving the efficiency of the 
Nearest Neighbor (NN) classifier. The NN algorithm is one of the most venera- 
ble algorithms in machine learning. This algorithm calculates the Euclidean 
distance (possibly weighted) between an instance to be classified and each 
training-neighboring instance. The new instance obtained is assigned to the 
class of the nearest neighboring one. More generally, the k-nearest neighbors 
(k-NN) are computed, and the new instance is assigned to the most frequent 
class among these k neighbors. The k-NN classifier was also widely used and 
encouraged by early theoretical results related to its Bayes error generaliza- 
tion. 

However, from a practical point of view, the k-NN algorithm is not suitable 
for dealing with very large sets of data due to the storage requirements it 
demands and the computational costs involved. In fact, this approach requires 
the storage of all the instances in memory. Early research in instance selection 
firstly tried to reduce storage size. Taking as reference our study in [2.4] we 
select the most effective classic algorithms to evaluate them. 

The algorithms used in this study will be: 
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Methods based on nearest neighbor rules. 

- Cnn [2.12] - It tries to find a consistent subset, which correctly classifies all 
of the remaining points in the sample set. However, this algorithm will not 
find a minimal consistent subset. 

- Ib2 [2.13] - It is similar to Cnn but using a different selection strategy. 
- Ib3 [2.13] - It outperforms Ib2 introducing the acceptable instance concept 

to carry out the selection. 

Methods based on ordered removal. 

- Drop1 [2.21] - Essentially, this rule tests to see if removing an instance 
would degrade leave-one-out cross-validation generalization accuracy, which 
is an estimate of the true generalization ability of the resulting classifier. 

- Drop2 [2.21] - Drop2 changes the order of removal of instances. It initially 
sorts the instances in TR by the distance to their nearest enemy (nearest 
instance belonging to another class). Instances are then checked for removal 
beginning at the instance furthest from its nearest enemy. This tends to 
remove instances furthest from the decision boundary first, which in turn 
increases the chance of retaining border points. 

- Drop3 [2.21] - Drop3 uses a noise filtering pass before sorting the instances 
in TR. This is done using the rule: Any instance not classified by its k- 
nearest neighbors is removed. 

2.3 Evolutionary Instance Selection Algorithms 

EAs ([2.2]) are stochastic search methods that mimic the metaphor of natural 
biological evolution. All EAs rely on the concept of a population of individuals 
(representing search points in the space of potential solutions to a given 
problem), which undergo probabilistic operators such as mutation, selection, 
and (sometimes) recombination to evolve towards increasingly better fitness 
values of the individuals. 

Most of the success of EAs is due to their ability to exploit the informa- 
tion accumulated about an initially unknown search space. This is their key 
feature, particularly in large, complex, and poorly understood search spaces, 
where classical search tools (enumerative, heuristic, etc.) are inappropriate. 
In such cases they offer a valid approach to problems requiring efficient and 
effective search techniques. Recently EAs have been widely applied to KDD 
and DM ([2.9, 2.101). 

In this section we firstly present the key-points of their application to 
our problem as well as the representation and the fitness function, and then 
describe the EA (CHC [2.6]) used in this study, according to the best results 
obtained by CHC in the study presented in [2.4]. 

In the Section 2.3.2 we describe the model of EA that will be used in this 
chapter as evolutionary instance selection algorithm. CHC is a classical model 
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that introduces different features to obtain a trade-off between exploration 
and exploitation. 

2.3.1 Evolutionary Instance Selection: Key Points 

EAs may be applied to the IS problem, because it can be considered as a 
search problem. 

The application of EAs to IS is accomplished by tackling two important is- 
sues: the specification of the representation of the solutions and the definition 
of the fitness function. 

Representation. Let's assume a data set denoted TR with n instances. The 
search space associated with the instance selection is constituted by all the 
subsets of TR. Then, the chromosomes should represent subsets of TR. This 
is accomplished by using a binary representation. A chromosome consists of 
n genes (one for each instance in TR) with two possible states: 0 and 1. If 
the gene is 1, then its associated instance is included in the subset of TR 
represented by the chromosome. If it is 0, then this does not occur. 

Fitness function. Let PSS be a subset of instances of TR to evaluate and 
be coded by a chromosome. We define a fitness function that combines two 
values: the classification performance (clas-per) associated with PSS and 
the percentage of reduction (perc-red) of instances of PSS with regards to 
TR: 

Fitness(PSS) = a - clas-rat  + (1 - a )  . perc-red. (2-1) 

The 1-NN classifier (Section 2.2.3) is used for measuring the classification 
rate, clas-rat, associated with PSS. It denotes the percentage of correctly 
classified objects from TR using only PSS to find the nearest neighbor. For 
each object y in TR, the nearest neighbor is searched for amongst those in the 
set PSS \ {y). Whereas, perc-red is defined as: 

perc-red = 100. (ITRI - IPSSI)/ITRI. (2.2) 

The objective of the EAs is to maximize the fitness function defined, 
i.e., maximize the classification performance and minimize the number of 
instances obtained. In the experiments presented in this chapter, we have 
considered the value a = 0.5 in the fitness function, as per a previous exper- 
iment in which we found the best trade-off between precision and reduction 
with this value. 

2.3.2 The CHC Algorithm 

During each generation the CHC develops the following steps: 
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1. It uses a parent population of size n to generate an intermediate popula- 
tion of n individuals, which are randomly paired and used to generate n 
potential offspring. 

2. Then, a survival competition is held where the best n chromosomes from 
the parent and offspring populations are selected to form the next gen- 
eration. 

CHC also implements a form of heterogeneous recombination using HUX, 
a special recombination operator. HUX exchanges half of the bits that differ 
between parents, where the bit position to be exchanged is randomly deter- 
mined. CHC also employs a method of incest prevention. Before applying HUX 
to two parents, the Hamming distance between them is measured. Only those 
parents who differ from each other by some number of bits (mating thresh- 
old) are mated. The initial threshold is set at L/4, where L is the length of 
the chromosomes. If no offspring are inserted into the new population then 
the threshold is reduced by 1. 

No mutation is applied during the recombination phase. Instead, when 
the population converges or the search stops making progress (i.e., the differ- 
ence threshold has dropped to zero and no new offspring are being generated 
which are better than any members of the parent population) the population 
is re-initialized to introduce new diversity to the search. The chromosome 
representing the best solution found over the course of the search is used as 
a template to re-seed the population. Re-seeding of the population is accom- 
plished by randomly changing 35% of the bits in the template chromosome 
to form each of the other n-1 new chromosomes in the population. The search 
is then resumed. 

2.4 The Scaling up Problem. The Stratified Approach 

In this section we point our attention in the Scaling Up problem and finally 
we describe our proposal, the combination of the stratified strategy with the 
evolutionary instance selection. 

2.4.1 Scaling up and Stratification 

The algorithms we have studied, both classical and evolutionary, are affected 
when the size of the data set increases. The main difficulties they have to 
face are as follows: 

- Efficiency. The efficiency "of IS  algorithms is at least O(n2), where n is the 
size of the data set. Most of them present an efficiency order greater than 
O(n2). When the size increases, the time needed by each algorithm also 
increases. 
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- Resources. Most of the algorithms assessed need to have the complete data 
set stored in memory to carry out their execution. If the size of the problem 
is too big, the computer would need to use the disk as swap memory. This 
loss of resources has an adverse effect on efficiency due to the increased 
access to the disk. 

- Representation. EAs are also affected by representation, due to the size of 
their chromosomes. When the size of these chromosomes is too big, then 
it increases the algorithm convergence difficulties. 

To avoid these drawback we led our experiments towards a stratified strat- 
egy. This strategy divides the initial data set in strata. The strata are disjoints 
sets with equal class distribution. We evaluate the algorithm over each stra- 
tus to carry out the data selection and finally we reunite the partial subsets 
to conform the final one. 

In the following section (Fig. 2.3) we describe the use of the stratified 
strategy combined with EA. 

2.4.2 Evolutive Algorithms and Stratification Strategy 

Following the stratified strategy, initial data set D is divided into t disjoint 
sets Dj  , strata of equal size, Dl, D2, ..., and Dt. We maintain class distribu- 
tion within each set in the partitioning process. 

Prototype selection algorithms (classical or evolutionary) are applied to 
each Dj  obtaining a subset selected DSj, as we can see in Fig. 2.3. 

I Data Set (Dl 1 

PSA: Pmtotype Selectian Algcoitlun 

Fig. 2.3. Combination of prototype selection algorithms and stratified strategy 

In Fig. 2.2, the PSS is obtained by the PS algorithm, applied on TR. In 
the stratified strategy, the PS algorithm is applied in each Dj  to obtain its 
DSj associated. PSS in stratified strategy is obtained using the DSj (see Eq. 
(2.3)) and it is called Stratified Prototype Subset Selected (SPSS). 
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The test set TS will be the TR complementary one in D. 

TS=D\TR 

Our specific model will be described in Section 2.5.2. 

2.5 Experimental Methodology 

We have carried out our study of IS  problem using two size problems: medium 
and large. We intend to study the behavior of the algorithms when the size 
of the problem increases. Section 2.5.1 describes the data sets used and intro- 
duces the parameters associated with the algorithms, Section 2.5.2 introduces 
the stratification and partition of the data sets that were considered for apply- 
ing the algorithms, and finally, in Section 2.5.3 we describe the table contents 
that show the results. 

2.5.1 Data Sets and Parameters 

The data sets used are shown in Table 2.1 and 2.2. They can be found in the 
UCI Repository (http://kdd.ics.uci.edu/). 

Table 2.1. Medium size data sets 

Data Set Num. Instances Num. Features Num. Classes 

Pen-Based Recognition 10992 16 10 
Satimage 6435 36 6 
Thyroid 7200 2 1 3 

Table 2.2. Large size data set 

Data Set Num. Instances Num. Features Num. Classes 

Adult 30132 14 2 

The parameters used are shown in Table 2.3. 
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Table 2.3. Parameters 

Algorithm Parameters 

Ib3 Acept. Level=0.9, Drop Level=O.7 
CHC Population=50, Evaluations=10000 

2.5.2 Partitions and Stratification: A Specific Model 

We have evaluated each algorithm in a ten fold cross validation process. In the 
validation process TRi, i=l, ..., 10 is a 90% of D and TSi its complementary 
10% of D. 

In our experiments we have evaluated the PS algorithms following two 
perspectives for the ten fold cross validation process. 

In the first one, we have executed the PS algorithms as we can see in Fig. 
2.4. We call it Ten fold cross validation classic (Tf cv c l a s s i c ) .  The idea is 
use this result as baseline versus the stratification ones. 

Data Sa (D) 1 

Prototype Subset Selected (Pa) 

Fig. 2.4. Prototype selection strategy in Tfcv classic 

In Tfcv c l a s s i c  the subsets TRi and TSi, i=l, ..., 10 are obtained as 
the Eqs. (2.6) and (2.7) indicate: 

where t is the number of strata, and b is the number of strata grouped 
(b = t/10). 

Each PSSi is obtained by the PS algorithm applied to TRi subset. 



2. Scaling Up Evolutionary Instance Reduction in Data Mining 31 

The second way is to execute the PS algorithms in a stratified process as 
the Fig. 2.5 shows. We call it Ten fold cross validation strat (Tf cv s t r a t ) .  

I Data Set (D) 1 

PSA Prototype Selection Algorithm 

Fig. 2.5. Prototype selection strategy in Tfcv strat 

In Tf cv strat each T R ,  is defined as we can see in Eq. (2.6), by means 
of the union of Dj subsets (see Fig. 2.5). 

In Tf cv s t r a t  (see Fig. 2.5) SPSSi is generated using the DSj (see Eq. 
(2.8)). 

SPSSi = U D S ~  J =  {jll 5 j 5 b.(i-1) and ( i . b )+ l  5 j 5 t)(2.8) 
j€  J 

SPSSi contains the instances selected by PS algorithms in TRi following 
the stratified strategy. 

The subset TSi is defined by means the Eq. (2.7). Both, T R ,  and TSi are 
generated in the same way in Tf cv c l a s s i c  and Tf cv s t r a t .  

For each data set we have employed the following partitions and number 
of strata: 

Table 2.4. Stratification in medium size data sets 

Pen-Based Recognition Satimage Thyroid 

10 Strata 
30 Strata 

10 Strata 10 Strata 
30 Strata 30 Strata 
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Table 2.5. Stratification in large size data set 

Adult 

10 Strata 
50 Strata 
100 Strata 

2.5.3 Table of Results 

In the following section we will present the structure of tables where we 
present the results. 

Our table shows the results obtained by the classical and evolutionary 
instance selection algorithms, respectively. In order to observe the level of 
robustness achieved by all algorithms, the table presents the average in the 
ten fold cross validation process of the results offered by each algorithm in 
the data sets evaluated. Each column shows: 

- The first column shows the name of the algorithm. In this column the name 
is followed by the sort of validation process (Tf cv s t r a t  and the number of 
strata, or Tf cv c lass ic  meaning ten fold cross-validation process classic). 

- The second column contains the average execution time associated to each 
algorithm. The algorithms have been run in a Pentium 4, 2.4 Ghz, 256 
RAM, 40 Gb HD. 

- The third column shows the average reduction percentage from the initial 
training sets. 

- The fourth column contains the training accuracy associated to the proto- 
type subset selected. 

- The fifth column contains the test accuracy of the PS algorithms selection. 

2.6 Experimental Study 

In this section we present the results obtained in the evaluation of medium 
and large data sets and their analysis. 

2.6.1 Medium Size Data Sets 

The following conclusions about the IS algorithms for PS can be made study- 
ing Table 2.6: 

- In Table 2.6 we can see that the stratification strategy reduces significantly 
the execution time. 

- Stratified strategy affects in different manner to the accuracy rates associ- 
ated to the classic algorithms. Some of them, like Ib2, Ib3 or Cnn, increase 
their accuracy, but other group (Dropl, Drop2 and Drop) reduces it. 
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Table 2.6. Prototype selection for pen-based recognition data set 

Cnn Tfcv classic 
Cnn Tfcv strat 10 
Cnn Tfcv strat 30 
Dropl Tfcv classic 
Dropl Tfcv strat 10 
Dropl Tfcv strat 30 
Drop2 Tfcv classic 
Drop2 Tfcv strat 10 
Drop2 Tfcv strat 30 
Drop3 Tfcv classic 
Drop3 Tfcv strat 10 
Drop3 Tfcv strat 30 
Ib2 Tfcv classic 
Ib2 Tfcv strat 10 
Ib2 Tfcv strat 30 
Ib3 Tfcv classic 
Ib3 Tfcv strat 10 
Ib3 Tfcv strat 30 
CHC Tfcv classic 
CHC Tfcv strat 10 
CHC Tfcv strat 30 

Exec. Time(sec) % Reduction 1-NN 1-NN 
%Ac.Trn %Ac.Test 

1-NN 66 99.36% 99.39% 
4 98.04% 84.85% 85.69% 
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- CHC and its stratified version have not been improved in their test accuracy 
by classic methods which offer small reduction rates. They offer the best 
balance between reduction and accuracy rates. 

- The Stratified CHC is the one which presents the best behavior among time 
and resources consumption, and reduction and accuracy rates. The classic 
algorithm which can face to Stratified CHC is Ib3 following a Tf cv classic, 
which can be hard to use when the size of the problem is huge due to its 
resources necessities. 

Table 2.7. Prototype selection for Satimage data set 

Exec. Time(sec) % Reduction 1-NN 1-NN 
%Ac.Trn %Ac.Test 

1-NN 
Cnn Tfcv classic 
Cnn Tfcv strat 10 
Cnn Tfcv strat 30 
Dropl Tfcv classic 
Dropl Tfcv strat 10 
Dropl Tfcv strat 30 
Drop2 Tfcv classic 
Drop2 Tfcv strat 10 
Drop2 Tfcv strat 30 
Drop3 Tfcv classic 
Drop3 Tfcv strat 10 
Drop3 Tfcv strat 30 
Ib2 Tfcv classic 
Ib2 Tfcv strat 10 
Ib2 Tfcv strat 30 
Ib3 Tfcv classic 
Ib3 Tfcv strat 10 
Ib3 Tfcv strat 30 
CHC Tfcv classic 
CHC Tfcv strat 10 
CHC Tfcv strat 30 

The following conclusions can be made studying Table 2.7: 

- Execution time is decreased by the stratified strategy in the same way that 
we saw it in Table 2.6. We can see that the stratification strategy reduces 
significantly the execution time. 

- Stratified strategy affects in different manner to the accuracy rates asso- 
ciated to the classic algorithms. We can see the group conformed by the 
Drop family algorithms and other group with the rest of classic algorithms. 
The first group reduces its accuracy associated when they are evaluated 
following a stratification strategy while the second group increase it. 
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- In Satimage, CHC and its stratified version offer the best balance between 
reduction and accuracy rates. They have not been improved in their test 
accuracy by classic methods which offer small reduction rates. 

- Like in Pen-Based Recognition data set, the Stratified CHC presents the 
best behavior among time and resources consumption, and reduction and 
accuracy rates. 

Table 2.8. Prototype selection for thyroid data set 

Exec. Time(sec) % Reduction 1-NN 1-NN 
%Ac.Trn %Ac.Test 

1-NN 
Cnn Tfcv classic 
Cnn Tfcv strat 10 
Cnn Tfcv strat 30 
Dropl Tfcv classic 
Dropl Tfcv strat 10 
Dropl Tfcv strat 30 
Drop2 Tfcv classic 
Drop2 Tfcv strat 10 
Drop2 Tfcv strat 30 
Drop3 Tfcv classic 
Drop3 Tfcv strat 10 
Drop3 Tfcv strat 30 
Ib2 Tfcv classic 
Ib2 Tfcv strat 10 
Ib2 Tfcv strat 30 
Ib3 Tfcv classic 
Ib3 Tfcv strat 10 
Ib3 Tfcv strat 30 
CHC Tfcv classic 
CHC Tfcv strat 10 
CHC Tfcv strat 30 

The following conclusions can be made studying Table 2.8: 

- Execution time is reduced by the stratified strategy as in the Tables 2.6 
and 2.7. 

- In Thyroid data set, CHC and its stratified version have not been improved 
in their test accuracy by classic methods which offer small reduction rates. 
They offer the best balance between reduction and accuracy rates. 

- The Stratified CHC is the one which present the best behavior among time 
and resources consumption, and reduction and accuracy rates. 

The main conclusion that can be drawn when using medium size data 
sets is that Stratified CHC is the best algorithm for data reduction having 
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both high reduction rates and accuracy, and decreasing execution time and 
resources consumption. 

2.6.2 Large Size Data Set 

Table 2.9. Prototype selection for adult data set 

1-NN 
Cnn Tfcv classic 
Cnn Tfcv strat 10 
Cnn Tfcv strat 50 
Cnn Tfcv strat 100 
Dropl Tfcv strat 10 
Dropl Tfcv strat 50 
Dropl Tfcv strat 100 
Drop2 Tfcv strat 10 
Drop2 Tfcv strat 50 
Drop2 Tfcv strat 100 
Drop3 Tfcv strat 10 
Drop3 Tfcv strat 50 
Drop3 Tfcv strat 100 
Ib2 Tfcv classic 
Ib2 Tfcv strat 10 
Ib2 Tfcv strat 50 
Ib2 Tfcv strat 100 
Ib3 Tfcv classic 
Ib3 Tfcv strat 10 
Ib3 Tfcv strat 50 
Ib3 Tfcv strat 100 
CHC Tfcv strat 10 
CHC Tfcv strat 50 
CHC Tfcv strat 100 

Exec. Time(sec) % Reduction 1-NN 1-NN 
%Ac.Tm %Ac.Test 

24 79.34% 79.24% 
4 99.21% 26.40% 26.56% 
1 97.34% 35.37% 32.02% 
0.20 93.69% 66.51% 57.42% 
0.02 90.09% 64.42% 58.27% 
44 95.09% 100.00% 25.64% 
1.2 94.59% 100.00% 24.96% 
0.15 94.49% 100.00% 24.83% 
48 70.33% 27.71% 61.30% 
0.7 68.03% 56.90% 70.27% 
0.13 66.96% 59.31% 71.85% 
41 95.57% 48.98% 63.46% 
0.8 95.34% 64.83% 71.19% 
0.11 93.71% 65.82% 70.19% 
2 99.94% 25.20% 25.14% 
1 99.57% 52.33% 26.89% 
0.1 98.66% 74.72% 45.68% 
0.03 94.33% 67.66% 54.30% 
210 79.42% 72.61% 74.09% 
3 76.69% 33.98% 70.96% 
0.4 73.48% 63.93% 74.36% 
0.05 71.21% 68.12% 71.52% 
20172 99.38% 97.02% 81.92% 
48 98.34% 93.66% 80.17% 
14 97.03% 94.28% 77.81% 

We point out the following conclusions: 

- If we pay attention to Table 2.9 we can see that only Cnn, Ib2 and Ib3 
have been evaluated in a Tf cv classic validation. This is due to the size 
of the data set makes too hard to evaluate the rest of algorithms. This 
is one of the reason to advice the use of a stratified strategy like the one 
proposed by us. 

- There is an important reduction in execution time due to the stratified 
strategy. In Stratified CHC we have reduced its execution time associated 
from 40.391 seconds using 3 strata to 14 seconds using 100 strata. 
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- Stratified CHC offers the best behavior. It presents the best reduction rates 
and accuracy rates, combined with a lower execution time. The fifth column 
in Table 2.9 shows that stratified CHC is the best algorithm offering the 
highest accuracy and reduction rates. 

- The classical algorithms which present higher accuracy rate, offer smaller 
reduction rates. Those which present higher reduction rates, show minimal 
accuracy rates. 

Clearly, when we manage large size data sets, the stratified CHC algorithm 
improves the behavior of the classic ones, giving the best results for scaling 
down data. 

If we take note of Table 2.9, the initial data set which needs 24 seconds 
to be evaluated using 1-NN, is reduced (in 14 seconds) in 97.03% by the 
stratified CHC, losing less than 1.5% in accuracy rate. This situation shows 
that our proposal is an effective data reduction alternative to  be applied in 
large size data sets. 

Taking Table 2.9 as reference, and more concretely the Stratified CHC as 
the best algorithm evaluated, we can study the effect of the number of strata 
over the algorithm's behavior. 

I ,,,,ccuracy Rate 

I Reduction Rate 
10 50 rm 

Number of Stratus 

Fig. 2.6. Stratus effect on accuracy and reduction rates in Adult data set 

As we can see in Fig. 2.6, when the number of strata increases, both the 
accuracy and reduction rate decrease. This situation is due to the selection 
carried out in each stratus. When the number of strata increases, the num- 
ber of equivalent selected instances in different subsets also increases. This 
situation produces that the size of the final subset selected is bigger. 



38 References 

2.7 Concluding Remarks 

This chapter addressed the analysis of the evolutionary instance selection 
by means of CHC and their use in data reduction for large data sets in KDD. 
We have studied the effect of the stratified strategy in the scaling up of the 
algorithms. 

The main conclusions reached are the following: 

- The Stratified Strategy reduces significantly the execution time and the 
resources consumed by classic and CHC algorithm. This situation offers two 
principal advantages: First, the evaluation of large data sets which needs 
too much resources is feasible, and second, the reduction in time associated 
to its execution. 

- Stratified CHC outperform the classical algorithms, simultaneously offering 
two main advantages: better data reduction percentages and higher classi- 
fication accuracy. 

- In medium and large size data sets, classical algorithms do not present 
balanced behavior. If the algorithm reduces the size then its accuracy rate 
is poor. When accuracy increases there is no reduction. 

- The increase in the number of strata can produce a small degradation in 
the algorithm behavior as we indicated in Fig. 2.6. The adequate number 
of them has to be chosen to produce a balance between time and resources 
consumption in one side, and reduction and accuracy rates by the other 
side. 

Therefore, as a final concluding remark, we consider the stratified strategy 
combined with CHC to be a good mechanism for data reduction, facing to 
the problem of Scaling Up. It has become a powerful tool to obtain small 
selected training sets and therefore scaling down data. CHC can select the most 
representative instances, satisfying both the objectives of high accuracy and 
reduction rates. Stratified strategy permits a reduction of the search space so 
we can carry out the evaluation of the algorithms with acceptable execution 
time, and decreasing the resources necessities. 

Finally, we point out that future research could be directed towards the 
study of hybrid strategies between classical and evolutionary instance selec- 
tion algorithms. 
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