Mathware & Soft Computing 7 (2000) 309-322

A GA-P Algorithm to Automatically Formulate
Extended Boolean Queries for a Fuzzy Information
Retrieval System

O. Cordén!, F. de Moya?, C. Zarco®

'Dept. of Computer Science and A.I. E.T.S. de Ingenieria Informatica
University of Granada. 18071 - Granada (Spain)

2Dept. of Librarianship. Faculty of Librarianship and Documentation
University of Granada. 18071 - Granada (Spain)

SPULEVA Salud S.A.
Camino de Purchil, 66. 18004 - Granada (Spain)
ocordon@decsai.ugr.es, felit@ugr.es, czarco@puleva.es

Abstract

Although the fuzzy retrieval model constitutes a powerful extension of
the boolean one, being able to deal with the imprecision and subjectivity
existing in the Information Retrieval process, users are not usually able to
express their query requirements in the form of an extended boolean query
including weights. To solve this problem, different tools to assist the user in
the query formulation have been proposed.

In this paper, the genetic algorithm-programming technique is considered
to build an algorithm of this kind that will be able to automatically learn
weighted queries —modeling the user’s needs— for a fuzzy information re-
trieval system by applying an off-line adaptive process starting from a set of
relevant documents.

Keywords: Fuzzy information retrieval, GA-P algorithms, weighted queries,
automatic query learning.

1 Introduction

Information retrieval (IR) may be defined, in general, as the problem of the selection
of documentary information from storage in response to search questions provided
by an user [15]. Information retrieval systems (IRSs) are a kind of information
system that deal with data bases composed of information items —documents that
may consist of textual, pictorial or vocal information— and process user queries

309

310 O. Cordén, F. de Moya & C. Zarco

trying to allow the user to access to relevant information in an appropiate time
interval.

Most of the commercial IRSs are based on the Boolean IR model [18], which
presents some limitations. Due to this fact, some paradigms have been designed in
the last few years to extend this retrieval model and overcome its problems without
a need of a complete redesign. One of the main drawbacks is that Boolean IRSs lack
the ability to deal with imprecision and subjectivity, both of which are inherently
present in the IR process. This is the reason why fuzzy information retrieval (FIR)
[2, 4] has emerged as an active research area in the past decade.

FIRSs present a query language that allows the user to build queries composed
of statements of numericaly or linguisticaly weighted terms (that can be negated by
means of the operator NOT) joined by the Boolean operators AND and OR. This
query structure —and other aspects that will be reviewed in the next section—
allow the system to improve the retrieval activity solving the problems associated
with the Boolean model.

Nevertheless, the use of weights requires a clear knowledge of the semantics of
the query in order to translate a fuzzy concept into a crisp numeric value in [0,1].
On the other hand, both in Boolean and FIRSs, it is difficult for non-expert users
to express their retrieval needs in the form of a query involving different statements
joined by the logical operators AND and OR. To solve these problems in different
kinds of IRSs, several approaches have been applied to assist the user in the query
formulation process [3]. One of them is based on automatically generating the
query best describing the user’s needs —represented in the form of an initial set of
relevant (and optionally non relevant) documents— by means of an off-line process
in which no user interaction is required. This operation mode is included in the
usual machine learning paradigm and has been called inductive query by example
(IQBE) by Chen [3].

Genetic algorithms (GAs) [14] have been succesfully applied to formulate queries
for different IR models (see [6] for a review including this and other different ap-
plications of GAs to IR). Focusing on the FIR model, one of the most known
approaches to learn fuzzy queries is Kraft et al.’s proposal [13], which is an IQBE
algorithm based on genetic programming.

In this paper, an automatic learning process based on the genetic algorithm-
programming (GA-P) paradigm [11], which is an extension of the previous proposal,
will be introduced. To do so, the paper is structured as follows. Section 2 is devoted
to introduce the preliminaries, including the basis of boolean IRSs and of FIRSs.
Kraft et al.’s proposal is reviewed in Section 3. Section 4 presents the composition
of the new algorithm proposed while the different experiments developed to test
it are shown in Section 5. Finally, several concluding remarks and suggerences for
future work are pointed out in Section 6.

A GA-P Algorithm to Automatically Formulate Extended Boolean Queries... 311

2 Preliminaries: Boolean and Fuzzy Information
Retrieval Systems

2.1 Boolean Information Retrieval Systems

An IRS is basically constituted of three main components:

1. A documentary data base, which stores the documents and the representation
of their information contents. It is associated with the indezer module, which
automatically generates a representation for each document by extracting
the document contents. Textual document representation is typically based
on index terms (that can be either single terms or sequences) which are the
content identifiers of the documents.

2. A query subsystem, which allows the users to formulate their queries and
presents the relevant documents retrieved by the system to them. To do so,
it includes a query language, that collects the rules to generate legitimate
queries and procedures to select the relevant documents.

3. A matching or evaluation mechanism, which evaluates the degree to which
the document representations satisfy the requirements expressed in the query
and retrieves those documents that are judged to be relevant to it.

In the Boolean retrieval model, the indexer module performs a binary indexing
in the sense that a term in a document representation is either significant (appears
at least once in it) or not (it does not appear in it at all). On the other hand, user
queries in this model are expressed using a query language that is based on these
terms and allows combinations of simple user requirements with logical operators
AND, OR and NOT [15, 18]. The result obtained from the processing of a query
is a set of documents that totally match with it, i.e., only two possibilities are
considered for each document: to be or not to be relevant for the user’s needs,
represented by the user query.

Thus, the Boolean model presents several problems that are located in the
different Boolean IRS components such us:

e It does not provide the user with tools to express the degree of relevance of
the index terms to the documents (indexer module).

e It has no method to express a user’s judgement of the importance of the
terms in the query (query language).

e There are no partial degrees of relevance of documents to queries possibly

useful in ranking (matching mechanism).

2.2 Fuzzy Information Retrieval Systems

Trying to solve the problems of the Boolean IR model introduced at the end of the
previous subsection, FIR mainly extends it in three aspects:

312 O. Cordén, F. de Moya & C. Zarco

1. Document representations become fuzzy sets defined in the universe of terms,
and terms become fuzzy sets defined in the universe of discourse of documents,
thus introducing a degree of relevance (aboutness) between a document and
a term.

2. Numeric weights (and in recenty proposals, linguistic terms [2, 10]) are con-
sidered in the query with different semantics (a review of them all is to be
found in [2]), thus allowing the user to quantify the “subjective importance”
of the selection requirements.

3. Since the evaluation of the relevance of a document to a query is also an
imprecise process, a degree of document relevance is introduced, the so called
retrieval status value (RSV). To do so, the classical complete matching ap-
proach and Boolean set operators are modeled by means of fuzzy operators
appropriately performing the matching of queries to documents in a way that
preserves the semantics of the former.

Thus, the operation mode of the three components of an FIRS is shown as
follows.

Indexer Module: Let D be a set of documents and T be a set of unique and
significant terms existing in them. The indexer module of the FIRS defines an
indexing function:

F:DxT—10,1]

It can be seen that F is the membership function of a two-dimensional fuzzy
set (a fuzzy relation) mapping the degree to which document d belongs to the set
of documents “about” the concept(s) represented by term ¢. By projecting it, a
fuzzy set can be associated to each document and term:

G = {< topa() > |1 €T) 5 pat) = F(ds,)
ti={<d,p,(d) >de D} ; ju,;(d) =F(dt))

There are different ways to define the indexing function F. In this paper, we
will work with the normalized inverted document frequency [15]:

Wy, ¢

wa, = fa,t - log(N/Ny) ; Fd,t) = m

where fq, is the frequency of term ¢ in document d, N is the number of documents
in the collection and Ny is the number of documents where term ¢ appears at least
once.

Matching mechanism: It operates in a different way depending on the inter-
pretation associated to the numeric weights included in the query (the interested
reader can refer to [2, 4] to get knowledge about the three existing approaches). In

A GA-P Algorithm to Automatically Formulate Extended Boolean Queries... 313

this paper, we consider the importance interpretation, where the weights represent
the relative importance of each term in the query.

In this case, the RSV of each document to a fuzzy query ¢ is computed as
follows [16]. When a single term query is logically connected to another by means
of the AND or OR operators, the relative importance of the single term in the
compound query is taken into account by associating a weight to it. To maintain
the semantics of the query, this weighting has to take a different form according
as the single term queries are ANDed or ORed. Therefore, assuming that A is a
fuzzy term with assigned weight w, the following expressions are applied to obtain
the fuzzy set associated to the weighted single term queries A,, (in the case of
disjunctive queries) and A* (for conjunctive ones):

Aw={<dpa,(d)>]deD} 5 pa,(d) = Min (w, pa(d))

AV = {<dpae(d)>|deD} 5 paw(d) = Maz (1 - w, pa(d))

On the other hand, if the term is negated in the query, a negation function is
applied to obtain the corresponding fuzzy set:

A—{<duz(d)>]deD} ; pxld)=1—pa(d)

Once all the single weighted terms involved in the compound query have been
evaluated, the fuzzy set representing the RSV of the compound query is obtained
by combining them into a single fuzzy set by means of the following operators:

A AND B={<d,pua anp B(d) >|d € D} ; pa anp B(d) = Min(pa(d), pp(d))

AOR B={<d,ua or g(d) >|de D}) pa or B(d) = Maz(pa(d), pp(d))

We should note that all the previous expressions can be generalized to work
with any other t-norm, t-conorm and negation function different from the usual
minimum, maximum and one-minus function. In this contribution, we will consider
these ones.

Query Subsystem: It affords a fuzzy set ¢ defined on the document domain
specifying the degree of relevance of each document in the data base with respect
to the processed query:

g={<dpug(d)>|de D} ; puy(d)=RSVy(d)

Thus, one of the advantages of the FIRSs is that documents can be ranked
in order to the membership degrees of relevance —as IRSs based on the vector
space model [15]— before being presented to the user as query response. The final
relevant document set can be specified by him in two different ways: providing an
upper bound for the number of retrieved documents or defining a threshold ¢ for
the relevance degree (as can be seen, the latter involves obtaining the o-cut of the
query respouse fuzzy set q).

314 O. Cordén, F. de Moya & C. Zarco

3 The Kraft et al.’s Genetic Programming-based
Fuzzy Query Learning Algorithm

In [13], Kraft et al. proposed an IQBE process to learn the whole composition
of extended Boolean queries (terms, weights and logical operators) for an FIRS.
It is based on a variant of GAs, genetic programming (GP) [12], which evolves
structures encoding programs such as expression trees. The algorithm components
are described next!.

Coding Scheme: The fuzzy queries are encoded in expression trees, whose ter-
minal nodes are query terms with their respective weights and whose inner nodes
are the Boolean operators AND, OR or NOT.

Selection Scheme: It is based on the classical generational scheme, where an
intermediate population is created from the current one by means of Baker’s sto-
chastic universal sampling [1], together with the elitist selection.

Genetic Operators: The usual GP crossover is considered [12], which is based
on randomly selecting one edge in each parent and exchanging both subtrees from
these edges between the both parents.

On the other hand, the following three possibilities are randomly selected —
with the shown probability— for the GP mutation:

a) Random selection of an edge and random generation of a new subtree that
substitutes the old one located in that edge (p=0.4).

b) Random change of a query term for another one, not present in the encoded
query, but belonging to any relevant document (p=0.1).

¢) Random change of the weight of a query term (p=0.5).

For the latter case, Michalewicz’s non-uniform mutation operator [14] is con-
sidered. It is based on making a uniform search in the initial space in the early
generations, and a very local one in later stages. Let C' = (¢1,...,¢k,--.,cH) be
the parent and ¢ be the gene selected for mutation (the domain of ¢ is [cri, cir]),
the new value for this gene is

R + At cpr —) ifa=0,
L Ck—A(t,Ck—CM) ifa=1

where a € {0,1} is a random number and the function A(¢,y) returns a value in
the range [0, y] such that the probability of A(¢, y) being close to 0 increases as the
number of generations increases.

1 Notice that the composition of several components is not the original one proposed by Kraft
et al. but they have been changed in order to improve the algorithm performance. Of course, the
basis of the algorithm have been maintained.

A GA-P Algorithm to Automatically Formulate Extended Boolean Queries... 315

Generation of the Initial Population: A first individual is obtained by gen-
erating a random tree representing a query with a maximum predefined length and
composed of randomly selected terms existing in the initial relevant documents pro-
vided by the user, and with all the term weights set to 1. The remaining individuals
are generated in the same way but with random weights in [0,1].

Fitness function: Two different possibilities are considered based on the classi-
cal precision and recall measures (to get more information about them, see [18]):

—M . _ .Zdrd'fd _Zdrd‘fd
= Y 7a ;i =« S T + 3 S ra

with r4 € {0,1} being the relevance of document d for the user and fq € {0,1}
being the retrieval of document d in the processing of the current query. Hence,
F1 only considers the recall value obtained by the query, while F5 also takes its
precision into account.

Although the algorithm proposed by Kraft et al. obtains good results, it suffers
from one of the main limitations of the GP paradigm: while it performs really well
in the generation of structures, adapting them both by crossover and mutation, the
learning of the numeric values of the constants considered in the encoded structure
—which are generated by the implementation program when the GP starts— can
only be altered by mutation. Hence, in the problem of weighted query learning, the
GP algorithm is able to find the positive, or negative, terms expressing the user’s
needs and to appropriately combine them by means of the logical operators AND
and OR. However, it is very difficult for the algorithm to obtain the term weights,
which constitutes an important drawback due to their importance in the query. In
the next section, we will propose an extension of Kraft et al.’s proposal to solve
this problem and improve the query formulation process.

4 A GA-P Algorithm to Learn Fuzzy Queries

The problem introduced in the previous section can be solved by means of another
evolutionary algorithm, the GA-P [11]. This paradigm is based on combining
traditional GAs with the GP technique to evolve complex expressions capable of
handling numeric and symbolic data. Each population member will involve both
a value string and an expression. While the GP part of the GA-P evolves the
expressions, the GA part concurrently evolves the coefficients used in them.

Most of the GA-P’s elements are the same as in either of the traditional genetic
techniques. The GA-P and GP make selection and child generation similarly, ex-
cept that the GA-P’s structure requires separate crossover and mutation operators
for the expression and coeflicient string components. Mutation and crossover rates
for the coeflicient string (using traditional GA methods) are independent from the
rates for the expression part (using standard GP methods).

The different components of the proposed algorithm are shown as follows.

316 O. Cordén, F. de Moya & C. Zarco

Coding Scheme: When considering a GA-P to learn fuzzy queries?, the ex-
pressional part (GP part) encodes the query composition —terms and logical
operators— and the coeflicient string (GA part) represents the term weights, as
shown in Figure 1. In our case, a real coding scheme is considered for the GA part.

Figure 1: GA-P individual representing the fuzzy query
0.5 t; AND (0.7 tsOR 0.25 t4). Aditionally, the last string coeflicient can
be used to learn the retrieval threshold (¢ = 0.3)

An important extension to Kraft et al.’s algorithm is that we also allow the
system to automatically learn the relevance threshold for the retrieved documents,
which is usually a difficult choice for the user. This value is encoded in the last
string coeflicient in case the user decides to consider this capability.

Selection, Niching and Replacement Scheme: In our algorithm, as opposed
to Kraft et al.’s, the selection is based on the steady-state approach [14]. Hence,
no intermediate population is needed and each generation involves selecting two
parents, crossing and mutating them, and introducing the two offsprings in the
current population only if they improve the individuals they are substituting.

On the other hand, although the GA-P is a powerful technique to learn the
coefficients in the expression, the strong relationship existing between the value
string and the expressional part make it perform better if the individuals involved
in the crossover have a similar GP part. A previous version of the algorithm
proposed in this paper did not consider this fact, thus obtaining fuzzy queries of
medium quality [7].

In [17], it is shown that the said behaviour can be obtained by inducing niches
in the GA-P population. The niche concept [8] was introduced to avoid having the
GA converge to a single space zone when dealing with multimodal fitness functions
— a phenomenon known as genetic drift—. The key idea is the formation of stable

2 For other applications of the GA-P paradigm to the field of fuzzy systems, refer to [5, 17].

A GA-P Algorithm to Automatically Formulate Extended Boolean Queries... 317

subpopulations of similar individuals —that evolve in parallel— in different space
zones. This way, the GA has more chances to obtain the optimal solution to the
problem.

As in [17], every individual having the same expressional part in our algorithm
belong to the same niche. Thus, all the individuals in a subpopulation share the
same query composition, and we only encode different weights for the query terms
involved in it.

Two different kinds of crossover are considered, depending on whether the two
parents to be crossed belong or not to the same niche. Intra-niche crossovers
are performed between individuals in the same niche, and in this case only the
GA parts are crossed in order to look for better term weights for the fixed query
expression encoded in the GP part. In this sense, their function is to exploit the
GA search space zone where the niche is located. On the other hand, inter-niche
crossovers are performed between individuals belonging to different niches, and
thus both parts are crossed, creating individuals with a different GP parts (i.e.,
fuzzy queries with a different composition). Since new niches can be generated in
this way (when a new expressional part —query composition— different from the
ones in the existing niches appear), this crossover operator leads to an exploration
of the whole GA-P search space by the introduction of diversity in the population.

The algorithm operation mode is as follows. First, a single individual is selected
at random with a probability that grows with his adaption level —we consider the
proportional probability assigment scheme— by means of the universal stochastic
procedure —the usual roulete wheel— [14]. Then, the kind of crossover to be
performed is randomly selected according to a probability Pinira_cross:

e If an intra-niche crossover is to be done, another individual belonging to the
same niche and different from the previous one is selected in the same way.
The crossover in the GA part is then performed and both GA parts are also
mutated with probability PS4. Finally, a competition is established among
the two parents and the two offsprings, and the two best of them take the
place of both parents in the population. It is important to note that when
two individuals have the same fitness value, simpler queries are preferred.

o Otherwise, if an inter-niche crossover is chosen, another individual is selected
that belongs to a different niche. The crossover is then performed on both
parts (GA and GP) and later both GP parts and GA parts in the offsprings
are mutated with probilities PG¥ and PS4, respectively. In this case, the

two offsprings compete with the two worst individuals in the population for

the places of the latter two. Thus, they can create new niches and cause
existing niches to grow by incorporating new individuals or to decrease their

size if their individuals are not well adapted enough.

Genetic Operators: A real-coded crossover operator —the BLX-a [9]— is con-
sidered for the GA parts in the intra-niche crossover. This operator generates
an offspring, C = (¢1,...,¢n), from two parents, X = (z1,...,2,) and ¥ =

318 O. Cordén, F. de Moya & C. Zarco

(y1,---,Yn), with ¢; being a randomly (uniformly) chosen number from the in-
terval [min; — I - a, maz; + I -], where max; = max{z;,y; }, min; = min{z;, v;},
and I = maz; — min; ([min;, maz;] is the interval where the ¢ — th gene is defined.
In our case, [min;, maz;] = [0, 1], and the operator is applied twice to obtain two
offsprings.

On the other hand, Michalewicz’s non-uniform mutation operator, introduced
in the previous section, is considered to perform mutation in the GA part.

As regards the operators for the GP part, the usual GP crossover described in
the previous section is used to perform the inter-niche crossover, while the two first
GP mutation operators (a) and b)) considered by the Kraft et al.’s algorithm are
employed with probability 0.5 each.

Generation of the Initial Population and Fitness Function: These both
have the same definition as that in Kraft et al.’s proposal, introduced in the previous
section.

5 Experiments Developed and Analysis of Results

To test the performance of the proposed algorithm, we have followed a similar
experimental methodology as that in [13]. A documentary base, composed of 359
abstracts taken from the Library and Information Science Abstracts (LISA) data
base, has been automatically indexed, obtaining a total number of 2609 different
indexing terms. A user has selected two sets of 82 and 8 relevant documents,
query 1 and query 2, respectively, that have been provided to both Kraft et al.’s
and our system (noted by GAP-FIR), which have been run considering the second
fitness function F5. In order to make a fair comparison, both algorithms have been
provided with the same parameter values (see Table 1) and have been run three
times with different initializations till the same fixed number of fitness function
evaluations have been performed.

Table 1: Common parameter values considered

Parameter Decision
Population size 1600

Number of evaluations 100000

Kraft et al.’s GA Crossover and Mutation probability 0.8, 0.2

GAP-FIR GA and GP Mutation probability 0.2, 0.2
GAP-FIR Intra-niche Cross. probability 0.25

Expression part limited to 10 nodes
Retrieval threshold o (when not learned) 0.5

Weighting coefficientes «, 8 in Fy (0.8,1.2), (1,1), (1.2,0.8)

Since simple queries are desired, the expressional part has been limited to 10

A GA-P Algorithm to Automatically Formulate Extended Boolean Queries... 319

nodes in every case. For the sake of simplicity, only the experiments not considering
the use of the NOT operator are reported (as done in [13]). On the other hand,
different values for the parameters « and § weighting, respectively, the precision
and recall measures in the F, fitness functions, are considered. For simplicity, only
the best results are reported 3.

The results obtained are shown in Tables 2 to 5, where Run stands for the
corresponding algorithm run (1 to 3), Sz for the generated query size, Fiit for the
fitness value, P and R for the precision and recall values, respectively, #rt for the
number of documents retrieved by the learned query, and #rr for the number of
relevant documents retrieved. In the tables associated to our GAP-FIR proposal (3
and 5), column Thr shows whether the automatic learning of the retrieval threshold
is considered (Y) or not (N).

Table 2: Results obtained by Kraft et al.’s method in query 1

Run | « 8 | Sz Fit P R Hrr /4t
1 1.2 (0.8 7 | 1.800000 | 1.000000 | 0.750000 6/6
2 1.2 1 0.8 9 | 1.800000 | 1.000000 | 0.750000 6/6
3 1.2 1 0.8 9 | 1.800000 | 1.000000 | 0.750000 6/6
1 1.0 | 1.0 [7 | 1.750000 | 1.000000 | 0.750000 6/6
2 1.0 | 1.0 [9 | 1.750000 | 1.000000 | 0.750000 6/6
3 1.0 | 1.0 [9 | 1.750000 | 1.000000 | 0.750000 6/6

Table 3: Results obtained by GAP-FIR method in query 1

Run | « 8 | Thr | Sz Fit P R #rr /4t
1 1.2 1 0.8 N 9 2.000000 | 1.000000 | 1.000000 8/8
2 1.2 1 0.8 N 9 2.000000 | 1.000000 | 1.000000 8/8
3 1.2 108 N 9 | 2.000000 | 1.000000 | 1.000000 8/8
1 1.2 1 0.8 Y 7 | 2.000000 | 1.000000 | 1.000000 8/8
2 1.2 1 0.8 Y 7 | 2.000000 | 1.000000 | 1.000000 8/8
3 1.2 1 0.8 Y 7 | 2.000000 | 1.000000 | 1.000000 8/8
1 1.0] 1.0 N 9 | 2.000000 | 1.000000 | 1.000000 8/8
2 1.0] 1.0 N 9 | 2.000000 | 1.000000 | 1.000000 8/8
3 1.0 | 1.0 N 9 2.000000 | 1.000000 | 1.000000 8/8
1 1.0] 1.0 Y 7 | 2.000000 | 1.000000 | 1.000000 8/8
2 1.0] 1.0 Y 7 | 2.000000 | 1.000000 | 1.000000 8/8
3 1.0 | 1.0 Y 7 | 2.000000 | 1.000000 | 1.000000 8/8

In view of these results, our proposal performs suitably, since it always obtains
better results than Kraft et al.’s. Moreover, it can be clearly seen that the au-

3For example, every experiment developed with a weight combination different from (a, 3) =
(1.2,0.8) always generates a query retrieving the whole document collection (359 documents).

320 O. Cordén, F. de Moya & C. Zarco
Table 4: Results obtained by Kraft et al.’s method in query 2
Run | o 8 | Sz Fit P R #rr /4t

1 1.2 (0.8 9 | 1.409214 | 0.962963 | 0.317073 26/27

2 1.2 1 08 | 7 | 1.395122 | 1.000000 | 0.243902 20/20

3 1.2 (0.8 9 | 1.414634 | 1.000000 | 0.268293 22/22

Table 5: Results obtained by GAP-FIR method in query 2
Run | « 8 | Thr | Sz it P R #rr /4t

1 12108 N 9 | 1.508130 | 0.972222 | 0.426829 35/36
2 12108 N 9 | 1.508130 | 0.972222 | 0.426829 35/36
3 1.2 108 N 9 | 1.508130 | 0.972222 | 0.426829 35/36
1 12108 Y 9 | 1.577094 | 0.956522 | 0.536585 44/46
2 12108 Y 9 | 1.544186 | 0.953488 | 0.500000 41/43
3 12108 Y 9 | 1.552781 | 0.920000 | 0.560976 46/50

tomatic learning of the retrieval threshold is a simple way to improve the system
performance, since simpler queries are obtained for query I and more accurate ones
for query 2 when this capability is considered. As regards the run time, both al-
gorithms last more or less the same, approximately three minutes for query 1 and
four in the case of query 2.

6 Concluding Remarks

An IQBE algorithm based on the GA-P paradigm has been proposed to assist the
user in the design of weighted queries for FIRSs. Its performance has been tested
by learning queries for two different document collections provided by an user and
the results obtained were significantly good, outperforming the previous proposal
by Kraft et al.

In the future, we are thinking of considering multi-objective evolutionary algo-
rithms to extend the process proposed by avoiding the need to weight both fitness
function criteria, precision and recall, thus generating different fuzzy queries with
an appropriate balance between both criteria in each run.

Acknowledgements

The authors would like to thank Dr. Luciano Sanchez from Oviedo University for
his valuable suggestions that have helped the proposed algorithm take its current
form.

A GA-P Algorithm to Automatically Formulate Extended Boolean Queries... 321

References

[1]

[11]

[12]

J.E. Baker, Reducing bias and inefficiency in the selection algorithm, Proc.
Second International Conference on Genetic Algorithms (ICGA’87), Hillsdale,
14-21 (1987).

G. Bordogna, P. Carrara, G. Pasi, Fuzzy approaches to extend Boolean in-
formation retrieval, in: P. Bosc, J. Kacprzyk (Eds.), Fuzziness in database
management systems 231-274 (1995).

H. Chen, A machine learning approach to inductive query by examples: an
experiment using relevance feedback, ID3, genetic algorithms, and simulated
annealing, Journal of the American Society for Information Science 49:8 693-
705 (1998).

V. Cross, Fuzzy information retrieval, Journal of Intelligent Information Sys-
tems 3 29-56 (1994).

0. Cordén, F. Herrera, L. Sanchez, Solving electrical distribution problems
using hybrid evolutionary data analysis techniques, Applied Intelligence 10:1
5-24 (1999).

0. Cordén, F. Moya, M.C. Zarco, A brief study on the application of ge-
netic algorithms to information retrieval (in spanish), Proc. Fourth Inter-
national Society for Knowledge Organization (ISKO) Conference (EOCON-
SID’99), Granada, Spain, 179-186 (April, 1999).

0. Cordén, F. Moya, M.C. Zarco, Learning queries for a fuzzy information
retrieval system by means of GA-P techniques, Proc. EUSFLAT-ESTYLF
Joint Conference, Palma de Mallorca, Spain, 335-338 (September, 1999).

K. Deb, D.E. Goldberg, An investigation of niche and species formation in ge-
netic function optimization, Proc. Second International Conference on Genetic
Algorithms (ICGA), Hillsdale, EEUU, 42-50 (1989).

L.J. Eshelman, J.D. Schaffer, Real-coded genetic algorithms and interval-
schemata, in: L.D. Whitley (Ed.), Foundations of Genetic Algorithms 2, Mor-
gan Kaufmann 187-202 (1993).

E. Herrera-Viedma, Modelling the retrieval process of an information retrieval
system using an ordinal fuzzy linguistic approach, Journal of the American
Society for Information Science 52:6 460-475 (2001).

L. Howard, D. D’Angelo, The GA-P: a genetic algorithm and genetic program-
ming hybrid, IEEE Expert, 11-15 (1995).

J. Koza, Genetic programming. On the programming of computers by means
of natural selection, The MIT Press (1992).

322 O. Cordén, F. de Moya & C. Zarco

[13] D.H. Kraft, F.E. Petry, B.P. Buckles, T. Sadasivan, Genetic algorithms
for query optimization in information retrieval: relevance feedback, in: E.
Sanchez, T. Shibata, L.A. Zadeh, Genetic algorithms and fuzzy logic systems,
155-173 (1997).

[14] Z. Michalewicz, Genetic algorithms + data structures = evolution programs,
Springer-Verlag (1996).

[15] G. Salton, M.J. McGill, Introduction to modern information retrieval,
McGraw-Hill (1989).

[16] E. Sanchez, Importance in knowledge systems, Information Systems 14:6 455-
464 (1989).

[17] L. Sénchez, J.A. Corrales, A niching scheme for steady state GA-P and its
application to fuzzy rule based classifiers induction, Mathware & Soft Com-
puting, this issue.

[18] C.J. van Rijsbergen, Information Retrieval (2nd edition), Butterworth (1979).

