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Abstract

Image registration has been a very active research area in the computer vision community. In the last few years, there is an increasing interest on

the application of evolutionary computation in this field and several evolutionary approaches have been proposed obtaining promising results. In

this contribution we introduce the use of an advanced evolutionary algorithm, CHC, to solve the 3D image registration problem. The new proposal

will be validated using different shapes (both synthetic and magnetic resonance images, and with several of the latter affected by noise and

occlusion), considering four different transformations for each of them, and comparing the results with those from ICP, from the usually applied

binary-coded genetic algorithms, and from real-coded genetic algorithms.

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Image registration (IR) [4] is a fundamental task in image

processing used to finding a correspondence (or transform-

ation) among two or more pictures taken under different

conditions: at different times, using different sensors, from

different viewpoints, or a combination of them. On the other

hand, evolutionary computation (EC) [1] uses computational

models of evolutionary processes as key elements in the design

and implementation of computer-based problem solving

systems. Genetic algorithms (GAs) [18,20] are maybe the

most known evolutionary algorithms.

In the last few years, there is an increasing interest on

applying EC fundamentals to IR. Unfortunately, we can find a

lack of accuracy when facing this problem and different

contributions fall into simplifications of the problem or, even

worse, do not apply EC concepts in the more suitable way. In

this contribution we propose the use of an advanced

evolutionary algorithm, CHC [10], to solve the 3D IR problem.
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To do so, in Section 2 we give some IR basics. Next, we make a

critical review of the different approaches to the IR problem

from the perspective of EC in Section 3. Section 4 describes

our proposal, which is tested in Section 5 over different images

and transformations, considering also a number of noise and

occluded instances. Finally, in Section 6 we present some

conclusions and new open lines for future works.
2. Image registration

IR can be defined as a mapping between two images (I1 and

I2) both spatially and with respect to intensity: I2(x,y,z,t)Z
g(I1(f(x,y,z,t))). We can usually find situations where intensity

difference is inherent to scene changes, and thus intensity

transformation estimation given by g is not necessary. That is

the scenario considered by feature-based registration methods,

which focus their attention on relevant geometric primitives

invariant to the f function. That will be the case of the current

contribution. Besides, we will consider f represents a similarity

transformation, i.e. rotation, translation and uniform scaling.

Although the final registration problem solution consists of

the right values for the parameters which determine f, two

different approaches arise, each of them working in a different

solution space: (i) to search for the optimal geometric

primitives correspondence in the matching space and then

identify the appropriate transformation parameters to overlay

the scene and the model images (I1 and I2, respectively)
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considering such matching [2,3,7,6,12], and (ii) to directly

search in the parameter space, computing the matching

between scene and model geometric primitives to validate

the estimated transformation once it has been applied, as we

shall see in the following section [25]. While the former

involves determining which of the scene primitives match each

model one, the latter deals with the estimation of the

registration transformation causing this model-scene

overlapping.

One of the most known feature-based algorithms for IR is

the iterative closest point (ICP), proposed by Besl and McKay

[3] based on the former approach (matching space search), and

extended in different papers [26]:

† A point set P is given with Np points pi from the data of

the scene. The model X is defined by Nx supporting

geometric primitives: points, lines, or triangles.

† The iteration is initialized by setting P0ZP, the registration

transformation by q0Z[1,0,0,0,0,0,0]t, and kZ0. The next

four steps are applied until convergence within a tolerance

threshold tO0:

1. Compute the matching (Yk) between the current scene (Pk)

and the model points (X) by the closest point assignment

rule: YkZC(Pk,X)

2. Compute the registration transformation: fk(P0,Yk)

3. Apply the registration transformation: PkC1Zfk(P0)

4. Terminate iteration when the change in mean square error

falls below t.

The algorithm has important drawbacks [3]: (i) it is sensitive

to outlier presence; (ii) the initial states for global matching

play a basic role for the method success when dealing with

important deformations between model and scene points; (iii)

the estimation of the initial states is not a trivial task, and (iv)

the cost of a local adjustment can be important if a low

percentage of occlusion is present.

Hence, the algorithm performance is not good with

important transformations. As stated in [26]: ‘we assume the

motion between the two frames is small or approximately

known’. This is a precondition of the algorithm to get

reasonable results.

Besides feature-based IR, there are other approaches to other

variants of the IR problem that search for the best f function in the

parameter space. A recent and interesting contribution is the one

proposed by Chen et al. [5] where the authors analyze a global

optimization technique to study the input images returned by two

sensors, which cover circular regions such that the two readings

overlap. Likewise, in [17] Hill and Taylor describe the application

of genetic algorithms in model-based image interpretation.

Nevertheless, that is not the assumption of the current

contribution since in our approach the registration is performed

taking as a base the information derived from the shape.
1 This contribution is slightly improved respect to Holland’s proposal as it

progressively adjusts the search space and the mutation probability.
3. Evolutionary computation and image registration

An exhaustive review of the different approaches to the IR

problem from the perspective of EC is out of the scope of our
study. Nevertheless, we will mention some of the most

important aspects of them in order to achieve a deep

understanding of our work. These registration contributions

usually solve the problem directly searching in the parameter

space instead of searching for the optimal matching in the

matching space.

The first attempts to solve IR using EC can be found in the

early 1980s. The size of data as well as the number of

parameters that are looked for, prevent from an exhaustive

search for the solutions. Such an approach based on a GA was

proposed in 1984 for the 2D case and applied to angiographic

images [13]. Since this initial contribution, different authors

solved the problem but we can still find important limitations in

their approaches:

† The use of a binary coding to solve an inherent real coding

problem, with the precision problem depending on a given

number of bits in the encoding [14,25].

† The kind of GA considered, usually Holland’s original

proposal [18]. This GA was proposed almost 30 years ago

and it suffers from several drawbacks later solved by other

genetic components and/or more advances evolutionary

algorithms. Contributions [14,25]1 follow this approach.

† Many approaches only handle images suffering a translation

and a rotation transformation [14,16,25], which is not the

case in many real situations where at least the consideration

of a uniform scaling is desirable. The resulting similarity

transformation suits the registration of aerial and satellite

images, bony structures in medical images, and brain

multimodal images, among others [15].

The use of the CHC algorithm (to be described in Section 4)

is found in [14]. In such a contribution, it is not a new proposal

but it is employed to compare the 2D rigid registration results

of the authors proposal to those from the CHC algorithm.

Nevertheless, as we shall see in Section 5, we will prove how

the good treatment of this algorithm allows us to obtain the best

results in the current 3D IR problem.

Notice that we are tackling with the specific IR problem

where the aim is to obtain the concrete f transformation

function achieving the best overlapping between the scene and

the model. A similar problem is the object shape alignment in

pattern recognition where the goal is to decide whether two

dissimilar images are originated from different items, or

belonged to the same object but viewed from different camera

positions [24]. However, we will not consider the latter

approach in the current contribution since it refers to a different

problem.
4. A CHC evolutionary algorithm for image registration

Two different evolutionary IR algorithms will be proposed

using the original binary CHC algorithm and a real-coded
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version in order to solve the different drawbacks introduced in

the previous section. Below, we describe their components.
4.1. The original binary-coded CHC

The key idea of the CHC binary-coded evolutionary

algorithm [10] involves the combination of a selection strategy

with a very high selective pressure, and several components

inducing a strong diversity. The four main components of the

algorithm are shown as follows:

† An elitist selection. The M members of the current

population are merged with the offspring population

obtained from it and the best M individuals are selected to

compose the new population. In case that a parent and an

offspring have the same fitness value, the former is

preferred to the latter.

† A highly disruptive crossover, HUX, which crosses over

exactly half of the non-matching alleles, where the bits to be

exchanged are chosen at random without replacement. This

way, it guarantees that the two offspring are always at the

maximum Hamming distance from their two parents, thus

proposing the introduction of a high diversity in the new

population and lessening the risk of premature convergence.

† An incestpreventionmechanism.Duringthereproductionstep,

each member of the parent (current) population is randomly

chosen without replacement and paired for mating. However,

not all these couples are allowed to cross over. Before mating,

the Hamming distance between the potential parents is

calculated and if half this distance does not exceed a difference

threshold d, they are not mated and no offspring coming from

them is included in the offspring population. The aforemen-

tioned threshold is usually initialized to L/4 (with L being the

chromosome length). If no offspring is obtained in one

generation, the difference threshold is decremented by one.

The effect of this mechanism is that only the more diverse

potential parents are mated, but the diversity required by the

difference threshold automatically decreases as the population

naturally converges.

† A restart process, substituting the usual GA mutation,

which is only applied when the population has converged.

The difference threshold is considered to measure the

stagnation of the search, which happens when it has

dropped to zero and several generations have been run

without introducing any new individual in the population.

Then, the population is reinitialized by considering the best

individual as the first chromosome of the new population

and generating the remainding MK1 by randomly flipping

a percentage (usually a 35%) of their bits.
4.2. The real-coded CHC extension

We have extended the binary-coded CHC to deal with real-

coded chromosomes, maintaining its basis as much as possible.
Real-coded CHC is based on the same four main components

than classical binary-coded CHC [11]. The elitist selection and

the restart are exactly the same in both cases. However, there is

a need to adapt the incest prevention mechanism (whose

operation is guided by the Hamming distance) and to work with

a different crossover operator (since HUX is specifically

designed for binary-coded chromosomes).

In order to be able to measure the similarity between two

parents using the Hamming metric, we consider a binary

conversion of both of them. The difference threshold d is then

proportionally set up imitating the classical CHC. It is

initialized to Dmax/4, where DmaxZ
PN

iZ1 parami$nbitsi (with

N being the number of parameters to be estimated in our IR

problem, and nbitsi being the number of bits used to code the

ith parameter). So, the crossover is avoided if the distance

between both parents is lesser than d. Hence, every time no

offspring is included in the population after a generation, the

difference threshold d is decremented by one and, as usual, the

restart is triggered when d%0.

On the other hand, the BLX-a crossover is considered to

substitute the HUX one [11]. Hence, the parameter a allows us

to make this crossover as disruptive as desired. This crossover

operator is based on obtaining one offspring HZ
(h1,.,hi,.,hn) from two parents C1Z ðc1

1;.; c1
nÞ and C2Z

ðc2
1;.; c2

nÞ by uniformly generating a random value for each

gene hi in the interval [cminKIa,cmaxCIa], with

cmaxZmaxðc1
i ; c

2
i Þ, cminZminðc1

i ; c
2
i Þ, and IZcmaxKcmin.

Two offspring are generated by applying twice the operator

on the two parents.

Despite the empirical performance of the binary-coded

CHC and the real-coded CHC (to be analyzed in Section 5),

note the minimum computational increase of this extension

resulting from: (i) a real to binary-coded conversion (in order to

compute the Hamming distance), and (ii) instead of crossing

over half of the non-matching alleles choosing the bits to be

exchanged at random (HUX), now a uniform random value is

generated for each gene (BLX-a). As we will show in Section

5, these changes will not have an impact neither in the speed of

the algorithm nor in its convergence rate.

4.3. Components of our CHC-based image registration

algorithm

4.3.1. Coding scheme

The 3D similarity transformation with uniform scaling

factor is determined fixing seven parameters, which will be the

ones we will look for. That is: (ax,ay,az,Dx,Dy,Dz,S), where ai
are the three Euler angles, Di are the three components of the

displacement vector and S is the uniform scaling factor. Hence,

these seven parameters are binary or real coded in the

chromosome depending on the algorithm variant applied.

4.3.2. Fitness function

In this contribution, we propose a fitness function to avoid

the influence of outliers and mismatching in the final solution.

To do so, we consider the use of a grid data structure in order to

improve the efficiency of the closest point assignment
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computation [25]. Since we are searching in the parameter

space and we work on a discrete grid, when defining our fitness

function we must prevent cases where scene points are

transformed to spatial locations outside the ranges where the

grid is defined [8]. Therefore, in such a situation we must

assign a low fitness value.

Otherwise, we will try to estimate the parameters of the

transformation, which transform the scene points and lead us to

the maximization of function F in

F Z EðNinsidegrid=NsÞ 1=1C
XNs

iZ0

sGCPðTðyiÞÞs
2

 !"

CðNinsidegrid=NsÞ
�

where, E is the floor function, Ninsidegrid is the number of scene

points inside the grid when the registration transformation T

encoded in the chromosome is applied to the scene, Ns is the

number of scene points, and GCP(T(yi)) is the GCP function

[25] (returning the model closest point to every cell center)

applied to the result of transforming the yi scene point.

It can be seen that F2[0,2], so that an individual with a

fitness value lesser than 1 encodes a bad transformation putting

some of the points out from the working grid, while those

individuals with FR1 correspond to transformations being

able to keep the set of scene points inside the grid. Hence, the

larger the F value, the better (since this means that the distance

between the scene and the model set of points is closer to zero).

5. Experiments

We present a number of experiments to study the

performance of our proposals. These tests have been carried

out under the same conditions since we wanted to extend our

conclusions to other possible situations. The results obtained

by our two CHC variants, binary BinCHC and real-coded

RealCHC, will be compared against those obtained by ICP [26]

(see Section 2), by a binary-coded GA2 (BinGA) and by a real-

coded GA3 (RealGA). We will also study the behavior of the

previously mentioned algorithms in a noisy scenario, where

occlusion is present as well.

5.1. Model and scene images

Our results correspond to a number of registration problems

with synthetic and 3D medical images. All of them have

suffered the same four global similarity transformations, which

must be estimated by the different evolutionary algorithms

applied. In order to properly evaluate every IR method, these

‘ground-truth’ transformation are previously known (see

Section 5.3).

Vertices defining the 3D mesh related to the first synthetic

shape have been chosen as feature points (4623 vertices). We
2 This is the proposal of Yamany et al. [25] using the fitness function

described in Section 4.3.2.
3 This is the proposal of He and Narayana [16] adapted to solve the 3D IR

problem.
will refer to this first image as ‘Dragon’ (upper left image in

Fig. 1). The first registration scenario is the easiest one: the

scene and the model images are the same (the synthetic

‘Dragon’ image) and they differ on the four similarity

transformations to be estimated.

Because of the amount of data to be managed when tackling

real images, it is necessary to develop a preprocessing step in

order to extract a set of feature points to describe the surfaces.

Feature points are obtained applying a 3D crest lines edge

detector [21] to a brain isosurface from a magnetic resonance

image (MRI), returning 1052 points. We will refer to it as the

‘Brain1’ image (upper right image in Fig. 1), which is

presented in [23] (a similar one is used in [22], and considered

in our previous works [8,6]). The second registration scenario

considers the four transformations to be applied to this real

MRI, hence the scene and model again only differ on their

pose, but now they both are real images.

A similar feature selection process has been carried out

in the next two realistic T1 MRIs of a normal brain from

the BrainWeb database at McGill University [19]. The first

one, named as ‘Brain2’ (bottom left image in Fig. 1) was

originally composed of more than thirty thousands data

points but subsequently reduced in order to accelerate the

algorithmic convergence of every IR method. The resulting

MRI scene is comprised by 583 feature points. Besides, in

order to test the performance of our proposal when facing

difficult noisy and occluded environments, the second MRI

(model image) is a different one, named ‘Brain3’ (bottom

right image in Fig. 1). After the aforementioned preproces-

sing step, 284 feature points have been selected from

‘Brain3’. This image inherently presents a multiple sclerosis

lesion (see circle in Fig. 1), as well as a 5% of Gaussian

noise. The noise percentage is relative to the average real

and imaginary values of the overall brightest tissue class

and it represents the percent ratio of the standard deviation

of the white Gaussian noise versus the signal for a reference

tissue [19]. Therefore, the third registration scenario not

only considers real MRIs with different geometric orien-

tation, but the scene and the model do not correspond to the

same image.
5.2. Parameter settings

All the parameter settings are shown in Table 1. Every

method is run for the same fixed time of 20 s on a 2200 MHz.

Pentium IV processor. In order to avoid execution dependence,

15 different runs of each algorithm are performed. In the

binary-coded evolutionary algorithms (BinGA and BinCHC),

large individuals have been considered as we aim at getting

precise solutions for each transformation parameter. This leads

us to define our binary chromosome as a 105 bits structure (15

bits for each of the seven parameters). Crossover and mutation

probabilities in both BinGA and RealGA are PcZ0.6 and PmZ
0.1, while aZ0.5 in RealGA and RealCHC. Finally, the

population size is MZ100 individuals in every case.



Fig. 1. Input images. The two first problem scenarios (first row, ‘Dragon’ and ‘Brain1’ images) consider there is a geometric transformation to be estimated between

the scene and the model, both comprised by the same image. Despite the complexity of the previous IR problems, the third scenario considers the same geometric

transformations in a noisy environment with the original MRI scene ‘Brain2’ (bottom left) and the MRI model ‘Brain3’ (bottom right) including a multiple sclerosis

lesion (see circle) and an 5% of Gaussian noise.
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5.3. Transformations to be estimated

The four ‘ground-truth’ transformations considered are

stored in Table 2. In such table all the 3D rotations have been

expressed in terms of rotation angle (RAngle8) and rotation axis

(RAxisx, RAxisy, RAxisz) to achieve a better understanding of

the geometric transformation involved. If we analyze these

parameters, we can see the important transformations to be

estimated: both rotation and translation vectors represent a

strong change in the object location. In fact, the lowest rotation

angle is 958. Meanwhile, translation values are also high.

Likewise the scale factor ranges from 0.7 (in the first

transformation) to 2 (in the fourth one). These transformations

can be appreciated from the four IR instances of the ‘Dragon’

image, depicted in Fig. 2, which shows different views of the
Table 1

Parameter settings of the different algorithims

Common settings

Population size: 100 individuals

Run time: 20 s

Number of runs: 15 runs

Binary-coded EAs Real-coded EAs

Genes per chromosome: 105 a value (BLX-a): 0.5

Gas

Crossover probability: PcZ0.6

Mutation probability: PmZ0.1
initial pose of both the transformed scene, in blue (dark gray),

and the model, in yellow (light gray), images.
5.4. Results

Notice that all the statistics in this section are based on a

usual error measure in the IR field, the mean square error

(MSE): MSEZ
PN

iZ1 sf ðxiÞKy0is
2=N; where, f is the estimated

registration function, xi is a scene point, with y0i being its closest

point in the model, and N is the number of features in the scene.

Tables 3–5 show the performance of the ICP estimation, the

classical binary-coded GA, the real-coded GA and the two

versions of our CHC-based proposal, respect to the three test IR

scenarios. As said, all the statistics presented correspond to

fifteen different runs of every evolutionary algorithm and

transformation with a different seed. Fig. 3 graphically shows

the best absolute estimations (xbest values in Table 3) of the
Table 2

Applied transformations to every 3D image

Tr.1 Tr. 2 Tr.3 Tr.4

Rot angle8 122.699997 95 180.6 202.5

Rot axisx 0.727393 0 K0.11547 K0.536895

Rot axisy 0.363696 1 0.80829 0.59655

Rot axisz K0.581914 0 K0.57735 0.59655

Dx 7.568 K1.5 K7.5 24

Dy K15.97 19.969999 K12 10.6

Dz K23.879999 2.8 10.8 5.2

S 0.7 1 1.5 2



Fig. 2. Different views of the four transformations to be estimated (see Table 2).

Table 3

MSE of the four transformations in Table 2, applied to the ‘Dragon’ image

(statistics from 15 different runs)

Dragon vs Tri(Dragon)

Method Tr. 1 Tr. 2 Tr. 3 Tr. 4

ICP 0.7034 1.09 3.21 4.07

Binary-coded EAs

GAbin xbest 0.3365 0.6689 1.6088 3.0736

�x 0.3769 0.7036 1.6886 3.2204

s 0.0362 0.0265 0.0704 0.1507

CHCbin xbest 0.3365 0.6746 1.6687 2.9895

�x 0.3613 0.7257 1.6762 2.9990

s 0.0132 0.0488 0.0059 0.0050

Real-coded EAs

GAreal xbest 0.1612 0.6625 1.5946 2.8362

�x 0.3385 0.7653 1.6540 3.0786

s 0.0968 0.0732 0.0313 0.1779

CHCreal xbest 0.0001 0.0000 1.4834 0.0003

�x 0.2672 0.3973 1.6413 1.7826

s 0.1344 0.3244 0.0789 1.4553

Best binary and real-coded algorithm estimations are highlighted using bold

font.

Table 4

MSE of the four transformations in Table 2, applied to the ‘brain1’image

(statistics from 15 different runs)

Brain vs Tri (Brain 1)

Method Tr. 1 Tr. 2 Tr. 3 Tr. 4

ICP 324.16 0.00 1024.77 931.14

Binary-coded EAs

GAbin xbest 0.0007 0.0023 0.0301 0.0040

�x 1.9440 3.7900 2.4979 5.1755

s 2.2249 3.2141 30.1295 1.5301

CHCbin xbest 0.0035 0.0029 0.0054 0.0272

�x 0.0053 0.0450 0.2795 0.2436

s 0.0017 0.0817 0.2916 0.2019

Real-coded EAs

GAreal xbest 0.1526 0.0609 0.4718 1.2787

�x 0.2205 0.1059 0.7797 2.0297
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‘Dragon’ image achieved by our real-coded CHC proposal.

Meanwhile, Fig. 4 shows the four ICP estimations for the

mentioned image. We can see the overlapping of the original

and transformed images is almost perfect in every real-coded

CHC scenario4 but in the third transformation (Fig. 3) where

neither ICP nor the EAs solve the IR problem properly. All of

them get stuck in a local optimum.

Likewise, Fig. 5 shows the best absolute estimations (xbest in

Table 4) of the ‘Brain1’ image achieved by our real-coded

CHC proposal. Fig. 6 shows the ICP results for the

aforementioned image. It depicts that the only acceptable

ICP solution is the estimation of the second transformation.

Finally, Fig. 7 shows the best absolute estimations (xbest in

Table 5) of the Brain2 vs. Tri(Brain3) scenario achieved by our

real-coded CHC proposal. Fig. 8 shows the ICP results for the

aforementioned scenario. Again, the registrations obtained by

the former clearly outperform those from the latter.

We can see that the GAs outperform ICP in seven of the eight

noise-free experiments developed. ICP only achieves a good

solution for the second transformation applied to the ‘Brain1’

image (see Table 4). Figs. 4 and 6 show the four ICP estimations

for the ‘Dragon’ and ‘Brain1’ images, respectively, when they

are applied to the original image (in blue -dark gray-). Such

results only overlap these images and the transformed ones

using the Table 2 parameters (in yellow -light gray-) in the case

of the second transformation of the ‘Brain1’ image (Fig. 6). This

behavior would have been desirable if the results had been

precise enough. It is specially important to notice the good and

stable performance of our real-coded CHC proposal in the noise-

free experimentation, with the best mean MSE value in all the

eight experiments developed. Besides, the binary-coded CHC

still achieves better results than both Yamany et al. binary-coded

GA and He and Narayana’s real-coded GA in half of the

experiments (it outperforms them in every experiment

developed in the ‘Brain1’ image and achieves very similar

results in the ‘Dragon’ image).

Meanwhile, the different tests considering noise and

occlusion show again the robustness of our proposal (specially

remarkable when compared to ICP). Therefore, it is shown the

good behavior of the fitness function proposed in this paper

(Section 4.3.2) to face the first drawback of ICP enumerated in

s 0.0557 0.0273 0.4042 0.6397

CHCreal xbest 0.0001 0.0026 0.0039 0.0047

�x 0.0034 0.0050 0.0061 0.0444

s 0.0007 0.0006 0.0007 0.0040

Best Binary and real-coded algorithm estimations are highlighted using bold

font.

4 If a perfect matching between the original and the transformed image is

achieved, the visualization software shows either yellow -light gray- pixels

(representing the transformed object) or blue -dark gray- ones (depicting the

method’s estimation).



Table 5

MSE of the four transformations in Table 2, applied to the ‘Brain 2’ to be aligned with ‘Brain 3’ image (statistics from 15 different runs)

Brain vs Tri (Brain 3)

Method Tr.1 Tr.2 Tr.3 Tr.4

ICP 417.66 449.59 2415.25 7115.64

Binary-coded EAs

GAbin xbest 23.93 48.48 109.21 196.22

�x 48.18 71.9 220.24 446.15

s 17.73 28.32 95.75 130.08

CHCbin xbest 23.87 48.38 108.77 194.53

�x 31.41 60.58 316.91 291.15

s 21.37 23.70 304.62 105.34

Real-coded EAs

GAreal xbest 23.86 48.71 112.23 198.76

�x 24.64 49.44 123.77 220.29

s 0.72 0.65 7.97 14.39

CHCreal xbest 23.84 48.39 108.50 194.47

�x 23.88 48.52 116.78 194.59

s 0.08 0.11 28.85 0.12

Best binary and real-coded algorithm estimations are highlighted using bold fonts.

Fig. 3. RealCHC estimations corresponding to the four transformations considered for the ‘Dragon’ image.

Fig. 4. ICP estimations corresponding to the four transformations considered for the ‘Dragon’ image.
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Section 2. That is, the influence of outlier presence in the final

solution. Real-coded CHC achieves the best mean estimations

in all the four noisy IR tests. Moreover, the lowest standard

deviation values related to real-coded CHC show the

robustness of the algorithm.
Fig. 5. RealCHC estimations corresponding to the four
As we mentioned in Section 4.2, despite the overall better

empirical performance of the real-coded CHC, there are no

hidden costs associated to this extension. On the one hand, for

each generation, a real to binary number conversion must be

performed for every chromosome in the real-coded CHC
transformations considered for the ‘Brain1’ image.



Fig. 6. ICP estimations corresponding to the four transformations considered for the ‘Brain1’ image.

Fig. 7. RealCHC estimations corresponding to the four transformations considered for the Brain2 vs. Tri(Brain3) scenario.

Fig. 8. ICP estimations corresponding to the four transformations considered for the Brain2 vs. Tri(Brain3) scenario.
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population. Nevertheless, such conversion allows a faster

convergence to solutions of better quality, since the algorithm

reaches more promising areas in the search space. This

behavior is shown in Fig. 9, with the MSE averaged

convergence curve of the fifteen runs of every evolutionary

algorithm when solving one of the four most complicated IR

instances, i.e. Brain2 vs. Tr4(Brain3).
Fig. 9. Averaged convergence curves of the 15 runs of every EA when tackling

the Brain2 vs. Tr4(Brain3) IR problem.
6. Concluding remarks and future works

In this contribution, we have faced the feature-based 3D IR

problem using an advanced evolutionary algorithm, CHC.

First, we have presented different drawbacks of previous

evolutionary approaches to the problem. In order to avoid these

restrictions, we have proposed two different IR algorithms

from the original CHC considering a new fitness function,

which allows us to avoid the negative effect of bad matching

due to the presence of noise and occlusion in the images. A

number of experiments have been applied to validate our

contribution. To do so, different previous proposals of feature-

based IR algorithms have been considered as baselines: ICP [3]

(one of the most known feature-based IR algorithms), as well

as two state of the art evolutionary proposals [16,25]. Three

different IR scenarios and four different similarity transform-

ations for each of them have been considered, resulting in a

total number of twelve IR problems (eight without noise and

another four affected by noise and occlusion). It has been

shown how CHC solutions outperform those obtained by the

other approaches when considering both noisy and noise-free

scenarios.

There is a number of new open lines to be done after this

proposal: there is a need to develop a deep study of the



O. Cordón et al. / Image and Vision Computing 24 (2006) 525–533 533
behavior of different EC-based algorithms when dealing with

the IR problem. Moreover, new advanced diversity induction

mechanisms should be tested in order to study their

performance in that problem.
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