
An Empirical Analysis of Multiple Objective
Ant Colony Optimization Algorithms for the

Bi-criteria TSP?

C. Garćıa-Mart́ınez, O. Cordón, F. Herrera

Dept. of Computer Science and Artificial Intelligence
University of Granada. 18071 - Granada. Spain

gcarlos@fedro.ugr.es, {ocordon, herrera}@decsai.ugr.es

Abstract. The difficulty to solve multiple objective combinatorial op-
timization problems with traditional techniques has urged researchers
to look for alternative, better performing approaches for them. Recently,
several algorithms have been proposed which are based on the Ant Colony
Optimization metaheuristic. In this contribution, the existing algorithms
of this kind are reviewed and experimentally tested in several instances
of the bi-objective traveling salesman problem, comparing their perfor-
mance with that of two well-known multi-objective genetic algorithms.

1 Introduction

Multi-criteria optimization problems are characterized by the fact that several
objectives have to be simultaneously optimized, thus making especially difficult
their solving. The existence of many multi-objective problems in the real world,
their intrinsic complexity and the advantages of metaheuristic procedures to deal
with them has strongly developed this research area in the last few years [11].

Ant colony optimization (ACO) is a metaheuristic inspired by the shortest
path searching behavior of various ant species. Since the initial work of Dorigo,
Maniezzo, and Colorni on the first ACO algorithm, the Ant System, several
researchers have developed different ACO algorithms that performed succesfully
when solving many different combinatorial problems [6].

Recently, some researchers have designed ACO algorithms to deal with multi-
objective problems (MOACO algorithms) [1, 2, 4, 5, 7, 8, 10]. The most of them
are specific proposals to solve a concrete multicriteria problem such as schedul-
ing, vehicle routing, or portfolio selection, among others. The aim of the current
contribution is to analyze the application of these proposals to the same bench-
mark problem, the multi-objective traveling salesman problem (TSP), and to
compare their performance to two second generation, elitist multi-objective ge-
netic algorithms (MOGAs) that currently represent the state-of-the-art of multi-
objective evolutionary optimization: SPEA2 and NSGA-II [3].
? This work was partially supported by the Spanish Ministerio de Ciencia y Tec-

noloǵıa under project TIC2003-00877 (including FEDER fundings) and under Net-
work HEUR TIC2002-10866-E.



2

This paper is structured as follows. In Section 2, some basics of multi-
objective optimization are reviewed. In Section 3, the existing MOACO algo-
rithms are introduced, reporting their key characteristics. In Section 4, the per-
formance of most of these algorithms is analyzed by applying them to the bi-
objective TSP. Finally, some concluding remarks and proposals for future work
are showed in Section 5.

2 Multi-objective Optimization

Multi-criteria optimization problems are characterized by the fact that several
objectives have to by simultaneously optimized. Hence, there is not usually a
single best solution solving the problem, but a set of solutions that are supe-
rior to the remainder when all the objectives are considered, the Pareto set.
These solutions are known as Pareto-optimal or non-dominated solutions, while
the remainder are known as dominated solutions. All of the former are equally
acceptable as regards the satisfaction of all the objectives.

This way, the formal definition of the dominance concept is as follows. Let
us consider, without loss of generality, a multiobjective minimization problem
with m parameters (decision variables) and K objectives:

Min f(x) = (f1(x), f2(x), . . . , fK(x)), with x = (x1, x2, . . . , xm) ∈ X .

A decision vector a ∈ X dominates another b ∈ X (a � b) if, and only if:

∀i ∈ 1, 2, . . . ,K | fi(a) ≤ fi(b) ∧ ∃j ∈ 1, 2, , . . . ,K | fj(a) < fj(b) .

3 Multiple Objective Ant Colony Optimization
Algorithms

In this section, the different existing proposals for Pareto-based MOACO algo-
rithms that aim at obtaining set of non-dominated solutions for the problem
being solved are reviewed.

3.1 Multiple Objective Ant-Q Algorithm

Multiple objective Ant-Q algorithm (MOAQ) is an MOACO algorithm that was
proposed by Mariano and Morales in [10] to be applied to the design of water
distribution irrigation networks. It was based on a distributed reinforcement
learning algorithm called Ant-Q, a variant of the classical Ant Colony System
(ACS). In Ant-Q, several autonomous agents learn an optimal policy π : S → A,
that outputs an appropriate action a ∈ A, given the current state s ∈ S, where A
is the set of all possible actions in a state and S is the set of states. The available
information to the agent is the sequence of immediate rewards r(si, ai) for all
the possible actions and states i = 0, 1, 2, . . . , Q(s, a), and a domain dependent



3

heuristic value indicating how good is to select a particular action (a) being in
the actual state (s), HE(s, a). Each agent uses the following transition rule to
select the action a according with the actual state s:

a =

{
arg max

a∈A
(HEα(s, a) ·Qβ(s, a)), if q > q0

P, otherwise
,

where α and β are parameters that weight the relative importance of pheromone
trail and heuristic information, q is a random value in [0,1], and q0 (0 ≤ q0 ≤ 1)
is calculated in every iteration as follows:

q0 =
q0 · λ
qmax

,

where qmax ∈ [0, 1], and P is a random action selected according to the following
probability distribution:

p(a) =
HEα(s, a) ·Qβ(s, a)∑
b∈AHEα(s, b) ·Qβ(s, b)

,

with s being the current state.
The basic idea behind MOAQ is to perform an optimization algorithm with

a family of agents (ants) for each objective. Each family k tries to optimize
an objective considering the solutions found for the other objectives and its
corresponding function HEk. This way, all the agents from the different families
act in the same environment proposing actions and expecting a reward value r
which depends on how their actions helped to find trade-off solutions between the
rest of the agents. The delayed reinforcement is computed as follows: Q(s, a) =
(1− ρ) ·Q(s, a) + ρ · [r(s, a) + γ ·Q(s′, a′)], where ρ is the learning step, s′ and a′

are the state and action in the next algorithm step, and γ is a discount factor.
Finally, MOAQ presents other three distinguishing characteristics. First, the

j-th ant from the i-th family uses the solution found by the j-th ant of family
i-1 while constructing its solution. Second, when a solution found is not feasible,
the algorithm applies a punishment to its components on the Q values. And
third, along the process, non-dominated solutions are stored in a external set,
as usually done in elitist (second generation) MOGAs.

3.2 Ant Algorithm for Bi-criterion Optimization Problems

The so-called BicriterionAnt algorithm was designed by Iredi et al. in [8] to
specifically solve a bi-criteria vehicle routing problem. To do so, it uses two dif-
ferent pheromone trail matrices, τ and τ ′, one for each of the criteria considered.

In every generation, each of m ants in the colony generates a solution to
the problem. During its construction trip, the ant selects the next node j to be
visited by means of the following probability distribution:



4

p(j) =





τλαij ·τ ′
(1−λ)α
ij ·ηλαij ·η′

(1−λ)α
ij∑

h∈Ω τ
λα
ih
·τ ′(1−λ)α
ih

·ηλα
ih
·η′(1−λ)α
ij

, if j ∈ Ω
0, otherwise

,

where α and β are the usual weighting parameters, ηij and η′ij are the heuristic
values associated to edge (i, j) according to the first and the second objective,
respectively, Ω is the current feasible neighborhood of the ant, and λ is computed
for each ant t, t ∈ {1, . . . ,m}, as follows:

λt =
t− 1
m− 1

.

Once all the ants have generated their solutions, the pheromone trails are
evaporated by applying the usual rule on every edge (i, j): τij = (1 − ρ) · τij ,
with ρ ∈ [0, 1] being the pheromone evaporation rate.

Then, every ant that generated a solution in the non-dominated front at the
current iteration is allowed to update both pheromone matrices, τ and τ ′, by
laying down an amount equal to 1

l , with l being the number of ants currently
updating the pheromone trails. The non-dominated solutions generated along
the algorithm run are kept in an external set, as it happened in MOAQ.

3.3 Multi Colony for Bi-criterion Optimization Problems

In the same contribution [8], Iredi et al. proposed another MOACO algorithm,
BicriterionMC, very similar to the previous BicriterionAnt. The main difference
between them is that each ant only updates one pheromone matrix in the new
proposal. The authors introduce a general definition for the algorithm with p
pheromone trail matrices and then make p = 2 to solve bi-criterion problems.
To do so, they consider two different methods for the pheromone trail update:

– Method 1 - Update by origin: an ant only updates the pheromone trails in
its own colony. This method enforces both colonies to search in different
regions of the non-dominated front. The algorithm using method 1 is called
UnsortBicriterion.

– Method 2 - Update by region: the sequence of solutions along the non-
dominated front is split into p parts of equal size. Ants that have found
solutions in the i-th part update the pheromone trails in colony i, i ∈ [1, p].
The aim is to explicitly guide the ant colonies to search in different regions
of the Pareto front, each of them in one region. The algorithm using method
2 is called BicriterionMC.

The other difference is the way to compute the value of the transition param-
eter λ for the ant t. The authors describe three different rules and propose to use
the third of them which gives better results. This rule overlaps the λ-interval of
colony i in a 50% with the λ-interval of colony i− 1 and colony i+ 1. Formally,
colony i has ants with λ-values in [ i−1

p+1 ,
i+1
p+1 ], with p being equal to the number

of colonies.



5

3.4 Pareto Ant Colony Optimization

Pareto Ant Colony Optimization (P-ACO), proposed by Doerner et al. in [5],
was originally applied to solve the multi-objective portfolio selection problem.
It considers the classical ACS as the underlying ACO algorithm but the global
pheromone update is performed by using two different ants, the best and the
second-best solutions generated in the current iteration for each objective k. In
P-ACO, several pheromone matrices τk are considered, one for each objective k.
At every algorithm iteration, each ant computes a set of weights p = (p1, . . . , pk),
and uses them to combine the pheromone trail and heuristic information. When
an ant has to select the next node to be visited, it uses the ACS transition rule
considering the k pheromone matrices:

j =

{
arg max

j∈Ω
([
∑K
k=1 pk · τkij ]α · ηβij , if q ≤ q0

î, otherwise
,

where K is the number of objectives, ηij is an aggregated value of attractiveness
of edge (i, j) used as heuristic information, and î is a node selected according to
the probability distribution given by:

p(j) =





[∑K

k=1
pk·τkij

]α·ηβ
ij∑

h∈Ω

[∑K

k=1
pk·τkih

]α·ηβ
ih

, if j ∈ Ω
0, otherwise

.

Every time an ant travels an edge (i, j), it performs the local pheromone
update in each pheromone trail matrix, i.e., for each objective k, as follows:
τkij = (1− ρ) · τkij + ρ · τ0, with ρ being the pheromone evaporation rate, and τ0
being the initial pheromone value.

The global pheromone trail information is updated once each ant of the
population has constructed its solution. The rule applied for each objective k is
as follows: τkij = (1− ρ) · τkij + ρ ·∆τkij , where ∆τkij has the following values:

∆τkij =





15, if edge (i, j) ∈ best and second-best solutions
10, if edge (i, j) ∈ best solution
5, if edge (i, j) ∈ second-best solution
0, otherwise

.

Along the process, the non-dominated solutions found are stored in an ex-
ternal set, as in the previous MOACO algorithms.

3.5 Multiple Ant Colony System

Multiple Ant Colony System (MACS) [1] was proposed as a variation of the
MACS-VRPTW introduced in [7]. So, it is also based in ACS but, contrary to
its predecessor, MACS uses a single pheromone matrix, τ , and several heuristic
information functions, ηk, initially two, η0 and η1. In this way, an ant moves
from node i to node j by applying the following rule:



6

j =

{
arg max

j∈Ω
(
τij · [η0

ij ]
λβ · [η1

ij ]
(1−λ)β

)
, if q ≤ q0

î, otherwise
,

where β weights the relative importance of the objectives with respect to the
pheromone trail, λ is computed for each ant t as λ = t

m , with m being the
number of ants, and î is a node selected according to the following probability
distribution:

p(j) =





τij ·[η0
ij ]
λβ ·[η1

ij ]
(1−λ)β∑

h∈Ω τih·[η
0
ih

]λβ ·[η1
ih

](1−λ)β , if j ∈ Ω
0, otherwise

.

Every time an ant crosses the edge (i, j), it performs the local pheromone
update as follows: τij = (1− ρ) · τij + ρ · τ0.

Initially, τ0 is calculated from a set of heuristic solutions by taking their
average costs in each of the two objective functions, f0 and f1, and applying
the following expression:

τ0 =
1

f̂0 · f̂1
.

However, the value of τ0 is not fixed during the algorithm run, as usual in
ACS, but it undergoes adaptation. Every time an ant t builds a complete solu-
tion, it is compared to the Pareto set P generated till now to check if the former
is a non-dominated solution. At the end of each iteration, τ ′0 is calculated by
applying the previous formula with the average values of each objective function
taken from the solutions currently included in the Pareto set.

Then, if τ ′0 > τ0, the current initial pheromone value, the pheromone trails
are reinitialized to the new value τ0 ← τ ′0.

Otherwise, the global update is performed with each solution x of the current
Pareto optimal set P by applying the following rule on its composing edges (i, j):

τij = (1− ρ) · τij +
ρ

f0(x) · f1(x)
.

3.6 Multi-Objective Network ACO

Multi-objective Network ACO (MONACO) is quite different to the remaining
algorithms reviewed in this section as it was designed to be applied to a dynamic
problem, the optimization of the message traffic in a network [2]. Hence, the
policy of the network changes according to the algorithm’s steps, and it does not
wait till the algorithm ends up. In the following, we present an adaptation of the
original algorithm, developed by ourselves, to use MONACO in static problems.
It requires several modifications such as the fact that the ants have to wait the
cycle ends before updating the pheromone trails. The original algorithm takes



7

the classical AS as a base but uses several pheromone trail matrices, τk. Each
ant, which is defined as a message, uses the multi-pheromone trail and a single
heuristic information to choose the next node to visit, according to the following
probability distribution:

p(j) =





ηβ
ij
·
∏K

k=1
(τkij)

αk∑
h∈Ω η

β
ih
·
∏K

k=1
(τk
ih

)αk
, if j ∈ Ω

0, otherwise
.

In this formula, ηij is the heuristic information for the edge (i, j), both β and
the different αk’s weight the importance of each pheromone matrix value and
the heuristic information, K is the number of objective functions and Ω is the
feasible neighborhood of the ant at this step. After each cycle, the pheromone
trails associated to every edge visited by at least one ant in the current iteration
is evaporated in the usual way: τkij = (1− ρk) · τkij , with ρk being the pheromone
evaporation rate for objective k (notice that a different one is considered for each
pheromone trail matrix). Then, the pheromone trails of these edges are updated.
Every ant lays down the following amount of pheromone in each edge (i, j) used
by each ant and for every objective k:

∆τkij =
Q

fk(x)
,

where Q is a constant related to the amount of pheromone laid by the ants, fk is
the objective function k, and x is the solution built by the ant. As said, the aim
of the original algorithm is not to find a good set of non-dominated solutions
but to make the network work efficiently. To apply it to static optimization
problems, we have to store the non-dominated solutions generated in each run
in an external set.

3.7 COMPETants

Initially, Doerner et al. introduced COMPETants to deal with bi-objective trans-
portation problems [4]. The algorithm, based on the rankAS, used two ant
colonies, each with its own pheromone trail matrix, τ0 and τ1, and its heuristic
information, η0 and η1. An interesting point is that the number of ants in each
population is not fixed but undergoes adaptation. When every ant has built its
solution, the colony which has constructed better solutions gets more ants for the
next iteration. The ants walk through the edges using the following probability
distribution to select the next node to be visited (notice that it is adaptation
of the AS transition rule to the case of multiple heuristic and pheromone trail
values):

p(j) =





τk
α

ij ·ηk
β

ij∑
h∈Ω τ

kα

ih
·ηkβ
ih

, if j ∈ Ω
0, otherwise

.



8

Each ant uses the τ and η values of its colony k. Besides, some ants in every
population, called spies, use another rule combining the information of both
pheromone trails:

p(j) =





[0.5·τij+0.5·τ ′ij ]α·ηk
β

ij∑
h∈Ω [0.5·τih+0.5·τ ′

ih
]α·ηkβ

ih

, if j ∈ Ω
0, otherwise

.

In this new rule, τ is the ant’s pheromone trail and τ ′ the pheromone trail
of the other colony. ηk is the ant’s heuristic information.

When every ant has built its solution, the pheromone trails of each edge (i, j)
are evaporated: τkij = (1− ρ) · τkij .

Then, the Γ best ants of each population deposit pheromone on the edges
visited using its own pheromone trail matrix and the following rule:

∆τλij = 1− λ− 1
Γ

,

where λ is the position of the ant in the sorted list of the Γ best ants.
Before the end of the cycle, every ant is assigned to the first colony with the

following probability:

f̂1

f̂0 + f̂1
,

with f̂1 being the average of the costs of the solutions in the second colony (that
associated to the second objective function), and f̂0 being the average of the
costs of the first colony (that corresponding to the first objective function). The
remaining ants will be assigned to the second colony.

Finally, the number of spies in both colonies is randomly calculated with the
following probability:

f(best)
4 · f ′(best′) + f(best)

,

where f is the objective function of the current colony, f ′ is the objective function
associated to the other colony, best is the best ant of the current colony according
to f and best′ is the best ant of the other according to f ′.

4 Experimental Results

4.1 Experimental Setup

In our case, the K-objective symmetric TSP instances considered have been
obtained from Jaszkiewicz’s web page: http://www-idss.cs.put.poznan.pl/∼
jaszkiewicz/, where several instances usually tackled in evolutionary multi-
objective optimization are collected. Each of these instances was constructed



9

from K = 2 different single objective TSP instances having the same number of
towns. The interested reader can refer to [9] for more information on them. In
this first study, we will use four bi-criteria TSP instances: Kroab50, Krocd50,
Krobc100, and Kroad100.

To perform the experimental comparison, besides the eight MOACO algo-
rithms reviewed in Section 3, two of the most known, Pareto-based second gener-
ation MOGAs (which represent the state-of-the-art in multi-objective evolution-
ary optimization, see [3]) are considered as baselines for the MOACO algorithms
performance. Hence, ten different algorithms will be run on the four bi-criteria
TSP instances selected.

We have followed the same comparison methodology that Zitzler et al. in [12].
The comparison metric is thus based on comparing a pair of non-dominated sets
by computing the fraction of each set that is covered by the other:

C(X ′, X ′′) =
|{a′′ ∈ X ′′ ; ∃a′ ∈ X ′ : a′ � a′′|

|X ′′| ,

where a′ � a′′ indicates that the solution a′ dominates the solution a′′.
Hence, the value C(X ′, X ′′) = 1 means that all the solutions in X ′′ are dom-

inated by or equal to solutions in X ′. The opposite, C(X ′, X ′′) = 0, represents
the situation where none of the solutions in X ′′ are covered by the set X ′. Note
that both C(X ′, X ′′) and C(X ′′, X ′) have to be considered, since C(X ′, X ′′) is
not necessarily equal to 1− C(X ′′, X ′).

In addition, we will compare the number of iterations and evaluations needed
by each algorithm to generate its Pareto front.

As seen in Section 3, the eight MOACO algorithms considered are charac-
terized by tackling very diverse applications. Hence, several changes have been
done in our implementations to adapt them to solve the multi-objective TSP,
moreover than making them manage an appropriate problem representation, the
usual permutation. These changes are not reported due to the lack of space.

Each of the considered multi-objective algorithms (both MOACO and MO-
GAs) has been run ten times for each of the four bi-criteria TSP instances during
300 seconds (small instances) and 900 seconds (large ones) in an Intel CeleronTM

1200MHz computer with 256 MB of RAM. The generic parameter values con-
sidered are the usual ones when applying MOACO and MOGAs to the TSP
problem: 20 ants, (α, β) = (1, 2), ρ = 0.2, q0 = 0.98 (0.99 for MOAQ). To choose
the initial pheromone trail value τ0, we have employed the same method used
by each algorithm to update the pheromone trails, obtaining it from the greedy
solution of each of the K single-objective problems.

On the other hand, the values of the specific parameters, such as λ in MOAQ,
have been obtained from the papers where the algorithms using them were de-
fined (λ = 0.9, γ = 0.4). As regards the MOGAs, the population include 100
individuals (80 plus 20 in the elite population in SPEA2), and the crossover and
mutation probabilities are respectively 0.8 and 0.1.



10

Fig. 1. Number of iterations and evaluations in the Kroab50 and Krocd50 runs

P
−

A
C

O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−

an
ts

S
P

E
A

2

N
S

G
A

II

50
00

10
00

0
15

00
0

P
−

A
C

O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−

an
ts

S
P

E
A

2

N
S

G
A

II5e
+

04
1e

+
05

2e
+

05
5e

+
05

1e
+

06

Fig. 2. Number of iterations and evaluations in the Krobc100 and Kroad100 runs

P
−

A
C

O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−

an
ts

S
P

E
A

2

N
S

G
A

II

10
00

0
30

00
0

P
−

A
C

O

M
O

N
A

C

B
IA

N
T

B
IM

C

U
N

B
I

M
O

A
Q

M
A

C
S

C
−

an
ts

S
P

E
A

2

N
S

G
A

II2e
+

04
1e

+
05

5e
+

05
2e

+
06

4.2 Results Obtained and Analysis of Results

All the experimental data are reported in the form of box-plots, where the min-
imum, maximum and median values as well as the upper and lower quartiles
(upper and lower ends of the box) are graphically represented. Figures 1 and
2 show the statistics of the ten runs of each algorithm in each bi-criteria TSP
instances (in a logarithmic scale and grouped in a single box-plot for each pair
of instances of the same size) . In view of these graphics, we can see that the
MOGAs, NSGA-II and SPEA2, can perform much more iterations and evalua-
tions than the MOACO algorithms considered in the same fixed run time. Hence,
this shows how MOACO algorithms are “slower” than MOGAs in the current
problem. Notice also that MACS is the algorithm which performs less iterations
and evaluations while COMPETants is the quickest of the MOACO algorithms.

The graphics in Figure 3 are box-plots based on the C metric. Each rectangle
contains four box-plots (from left to right, Kroab50, Krocd50, Krobc100, and
Kroad100) representing the distribution of the C values for a certain ordered pair
of algorithms. Each box refers to algorithm A associated with the corresponding
row and algorithm B associated with the corresponding column and gives the
fraction of B covered by A (C(A,B)). Consider, for instance, the top right
box, which represents the fraction of solutions of SPEA2 covered by the non-
dominated sets produced by the P-ACO algorithm.



11

P−ACO

MONACO

BicriterionAnt

BicriterionMC

UnsortBicriterion

MOAQ

MACS

COMPETants

SPEA2

NSGAII

Fig. 3. Box-plots of the results obtained in the C metric

In view of the box-plots of metric C, we can draw the conclusion that the
MOACO algorithms considered are very competitive against the MOGAs im-
plemented. The former offer good sets of non-dominated solutions which almost
always dominate the solutions returned by NSGA-II and SPEA2. In addition,
the Pareto fronts derived by the MOGAs do not dominate any of the fronts given
by MOACO algorithms.

It is not easy to say which MOACO algorithm performs best, as all of them
derive Pareto sets of similar quality. Maybe P-ACO could be considered as the
algorithm with the best global performance as its Pareto fronts are few dom-
inated by the remainder of the MOACO algorithms (see the box-plots in the
first column), while they dominate the remainder to some degree (see those in
the first row). However, it is easier to identify the algorithms which usually
return Pareto sets of bad quality for the problem. This is the case of SPEA2,
NSGA-II, COMPETants, and MOAQ. Besides, we should notice that all of these
non-dominated solution sets are very well dominated by those got by MACS.

5 Concluding Remarks and Future Works

In the current contribution, we have developed a experimental study comparing
the performance of the different existing proposals for Pareto-based MOACO
algorithms when applied to several classical instances of the bi-criteria TSP.



12

From the results obtained, we have drawn the conclusion that the MOACO
algorithms considered are more competitive in the current problem than two of
the state-of-the-art MOGAs, SPEA-II and NSGA2.

Several ideas for future developments arise from this preliminary study: to
analyze (i) the performance of the considered MOACO algorithms in other,
larger instances of the multi-objective TSP; (ii) the influence of adding local
search optimizers to the MOACO algorithms and to compare the performance of
the resulting techniques against that of memetic algorithms such as Jaszkiewicz’s
MOGLS [9]; (iii) the performance of MOACO algorithms in other complex multi-
objective combinatorial optimization problems.

References

1. B. Barán, M. Schaerer, A Multiobjective Ant Colony System for Vehicle Routing
Problem with Time Windows, Proc. Twenty first IASTED International Confer-
ence on Applied Informatics, Insbruck, Austria, February 10-13, 2003, pp. 97-102.

2. P. Cardoso, M. Jesús, A. Márquez, MONACO - Multi-Objective Network Opti-
misation Based on an ACO, Proc. X Encuentros de Geometŕıa Computacional,
Seville, Spain, June 16-17, 2003.

3. C.A. Coello, D.A. Van Veldhuizen, G.B. Lamant, Evolutionary Algorithms for
Solving Multi-objective Problems, Kluwer, 2002.

4. K. Doerner, R.F. Hartl, M. Teimann, Are COMPETants More Competent for
Problem Solving? - The Case of Full Truckload Transportation, Central European
Journal of Operations Research (CEJOR), 11:2, 2003, pp. 115-141.

5. K. Doerner, W.J. Gutjahr, R.F. Hartl, C. Strauss, C. Stummer, Pareto Ant Colony
Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection, An-
nals of Operations Research, 2004, to appear.

6. M. Dorigo, T. Stützle, The Ant Colony Optimization Metaheuristic: Algorithms,
Applications, and Advances, In: F. Glover, G.A. Kochenberger (Eds.), Handbook
of Metaheuristics, Kluwer, 2003.

7. L. Gambardella, E. Taillard, G. Agazzi, MACS-VRPTW: A Multiple ACS for
Vehicle Routing Problems with Time Windows, In: D. Corne, M. Dorigo, F. Glover
(Eds.), New Ideas in Optimization, McGraw-Hill, 1999, pp. 73-76.

8. S. Iredi, D. Merkle, M. Middendorf, Bi-Criterion Optimization with Multi Colony
Ant Algorithms, Proc. First International Conference on Evolutionary Multi-
criterion Optimization (EMO’01), LNCS 1993, 2001, pp. 359-372.

9. A. Jaszkiewicz. Genetic Local Search for Multi-objective Combinatorial Optimiza-
tion, European Journal of Operational Research, 137:1, 2002, pp. 50-71.

10. C.E. Mariano, E. Morales, A Multiple Objective Ant-Q Algorithm for the Design
of Water Distribution Irrigation Networks, Technical Report HC-9904, Instituto
Mexicano de Tecnoloǵıa del Agua, June 1999.

11. E.L. Ulungu, J. Teghem, Multi-objective Combinatorial Optimization: A Survey,
Journal of Multi-Criteria Decision Analysis, 3, 1994, pp. 83-104.

12. E. Zitzler, K. Deb, L. Thiele, Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results, Evolutionary Computation, 8:2, 2000, pp. 173-195.


