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Abstract

Consistency of preference relations
is associated with the study of the
transitivity property. In this pa-
per, we analyze the properties to be
verified by a function, T , in order
to obtain the value of preference of
the alternative xi over the alterna-
tive xk when we already have the
values of the preference of xi over
xj , and of xj over xk. As a conse-
quence, we define T -additive tran-
sitivity property as the consistency
property for fuzzy preference rela-
tions and T -multiplicative transitiv-
ity property for the case of multi-
plicative preference relations.
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1 Introduction

In decision making contexts, preference judge-
ments are usually modelled by using prefer-
ence relations: fuzzy preference relations or
multiplicative preference relations. In order
to make consistent choices when dealing with
preference relations a set of properties or re-
strictions to be satisfied by such preference
relations have been suggested. In the mul-
tiplicative model, a multiplicative preference
relation is consistent when it verifies the so
called multiplicative consistency property [7],

while in the fuzzy model, restricted max-max
transitivity is considered as the minimum con-
dition to be satisfied by a fuzzy preference re-
lation to be considered as consistent [11]. The
results obtained in [1] imply that a fuzzy pref-
erence relation is consistent if and only if the
corresponding multiplicative preference rela-
tion is. Therefore, a fuzzy preference relation
is considered consistent when it verifies the so
called additive consistency property [10, 11],
which is equivalent to the multiplicative con-
sistency one in the multiplicative model.

However, a conflict between the multiplica-
tive and additive consistency properties and
the scales used to assign preference values to
judgements exists. Some arguments support
that a change in the scales used in the multi-
plicative and fuzzy models seems unpractical.
Therefore, we focus on the other possible so-
lution to overcome the existing conflict, that
is, modifying the actual definition of multi-
plicative and additive consistency properties.

In this paper we address this problem and
study the properties to be verified for a pref-
erence relation to be considered a consistent
one. As a result, we introduce the concepts
of the T -additive consistency property in the
case of fuzzy preference relations and the T -
multiplicative consistency property for mul-
tiplicative preference relations, which consist
of a relaxation of the additive and multiplica-
tive consistency properties. We also provide
a particular expression of such T consistency
properties.

In order to do this, the rest of the paper is
organized as follows. In section 2, we present



an overview of the consistency properties de-
fined for preference relations. In section 3,
we show the existence of a conflict between
the consistency properties and the scales used
to provide preference relations. This conflict
means that a a modification of the actual con-
sistency properties for both multiplicative and
fuzzy preference relations is needed. In sec-
tion 4, we study properties to be verified by
a function, T , in order to obtain the value of
preference of the alternative xi over the alter-
native xk when we already have the values of
the preference of xi over xj , and of xj over
xk. As a result of this, in section 4 the con-
cepts of T-additive and T-multiplicative tran-
sitivity properties are introduced. Finally, in
section 6 we draw our conclusions.

2 Consistency Properties and
Preference Relations

In a preference relation an expert associates
to each pair of alternatives a real number that
reflects the preference degree, or the ratio of
preference intensity, of the first alternative
over, or to that of, the second one. Two ques-
tions immediately arise when doing this:

• Which scale should be used to associate
preference values to judgements?

• Which conditions have to be verified in
order to obtain consistent results?

The answer to the first question depends on
the selection model we are working with. The
most well-known selection models are:

1. Fuzzy model. In this case, preferences are
represented by a fuzzy preference relation
P on a set of alternatives X, i.e. a fuzzy
set on the product set X × X, which is
characterized by its membership function
µP : X × X −→ [0, 1] [3, 9, 13]. This
implies that the scale to use in the fuzzy
model is the closed interval [0, 1].

2. Multiplicative model. In this case, prefer-
ences are represented using a multiplica-
tive preference relation, A = (aij), on

a set of alternatives X, being aij inter-
preted as the ratio of the preference in-
tensity of alternative xi to that of xj . Ac-
cording to Miller’s study [6], Saaty sug-
gests measuring aij using as ratio scale,
and precisely the 1− 9 scale [7], or more
generally the closed interval [1/9, 9].

With respect to the second question, we agree
with Saaty [7] in the sense that lack of consis-
tency in decision making can lead to inconsis-
tent conclusions; that is why it is important
to study conditions under which consistency
is satisfied.

In a crisp context, where an expert provides
his/her opinion on the set of alternatives,
X = {x1, x2, . . . , xn;n ≥ 2}, by means of
a binary preference relation, R, the concept
of consistency has traditionally been defined
in terms of acyclicity [8], that is the absence
of sequences such as x1, x2, . . . , xk(xk+1 = x1)
with xjRxj+1∀j = 1, . . . , k in the binary rela-
tions, or absence of cycles.

In a fuzzy context, a traditional requirement
to characterize consistency is using transitiv-
ity, in the sense that if an alternative xi is
preferred to alternative xj and this one to xk

then alternative xi should be preferred to xk

[12], although stronger conditions have been
given to define consistency [5, 10, 11, 13].

In the multiplicative model, what Saaty
means by consistency is what he calls car-
dinal transitivity in the strength of prefer-
ences, which is a stronger condition than the
traditional requirement of the transitivity of
preferences. Thereby, the definition of consis-
tency proposed by Saaty is the following [7]

Definition 2.1. A reciprocal multiplicative
preference relation A = (aij) is consistent if

aij · ajk = aik ∀i, j, k = 1, . . . , n.

Inconsistency for Saaty is a violation of pro-
portionality which may nor entail violation of
transitivity [7].

Some of the suggested properties in the case
of fuzzy preference relations are:



1. Triangle condition [5]: pij + pjk ≥
pik ∀i, j, k.

2. Weak transitivity [11]: pij ≥ 0.5, pjk ≥
0.5 ⇒ pik ≥ 0.5 ∀i, j, k.

3. Max-min transitivity [2, 13]: pik ≥
min(pij , pjk) ∀i, j, k.

4. Max-max transitivity [2, 13]: pik ≥
max(pij , pjk) ∀i, j, k.

5. Restricted max-min transitivity [2, 11]:
pij ≥ 0.5, pjk ≥ 0.5 ⇒ pik ≥
min(pij , pjk) ∀i, j, k.

6. Restricted max-max transitivity [11]:
pij ≥ 0.5, pjk ≥ 0.5 ⇒ pik ≥
max(pij , pjk) ∀i, j, k.

7. Multiplicative transitivity [11]: pji

pij
· pkj

pjk
=

pki
pik

∀i, j, k.

8. Additive transitivity [4, 10, 11]: (pij −
0.5)+ (pjk− 0.5) = (pik− 0.5) ∀i, j, k, or
equivalently pij + pjk + pki = 3

2 ∀i, j, k.

In [1] we obtained the transformation func-
tion between multiplicative and fuzzy prefer-
ence relations, which is given in the following
result:

Proposition 2.1. Suppose that we have a set
of alternatives, X = {x1, . . . , xn}, and asso-
ciated with it a multiplicative reciprocal pref-
erence relation A = (aij), with aij ∈ [1/9, 9]
and aij · aji = 1, ∀i, j. Then the correspond-
ing fuzzy reciprocal preference relation, P =
(pij), associated to A, with pij ∈ [0, 1] and
pij + pji = 1, ∀i, j, is given as follows:

pij = f(aij) =
1
2

(1 + log9 aij) .

The above transformation function is bijec-
tive and, therefore, allows us to transpose con-
cepts that have been defined for fuzzy prefer-
ence relations to multiplicative preference re-
lations. Indeed, applying the above function
we show that additive transitivity property
for fuzzy preference relation can be seen as
the parallel concept of Saaty’s multiplicative
consistency property:

Proposition 2.2. Suppose that A = (aij) is
a multiplicative consistent preference relation.
Then, the corresponding reciprocal fuzzy pref-
erence relation, P = f(A), associated with A,
being pij = f(aij) = 1

2 · (1 + log9 aij) verifies
additive transitivity property.

All this lead us to define the concept of con-
sistent fuzzy preference relation as in the fol-
lowing definition [4]:

Definition 2.2. A fuzzy reciprocal preference
relation P = (pij) is consistent if

pij + pjk + pki =
3
2
∀i, j, k = 1, . . . , n.

In what follows, we will use the term additive
consistency property to refer to this consis-
tency for fuzzy preference relations.

3 Consistency Properties and
Scales Conflict

Let us suppose a set of three alternatives
{x1, x2, x3} of which we have the following
information: alternative x1 is strongly more
important than alternative x2 and this one is
demonstrably or very strongly more impor-
tant than alternative x3. The application of
Saaty’s 1-9 scale in this case gives us the val-
ues a12 = 5 and a23 = 7 respectively.

On the one hand, to maintain the multiplica-
tive consistency property a13 = a12 · a23 = 35
and thus the consistent reciprocal multiplica-
tive preference relation should be

A =




1 5 35
1/3 1 7
1/35 1/5 1


 .

We observe that the application of the mul-
tiplicative consistency property results in ob-
taining values outside the scale [1/9, 9].

On the other hand, if we restrict the possi-
ble values of a13 to be in [1/9, 9], then from
the above information it is clear that alterna-
tive x1 has to be considered at least as very
strongly more important than alternative x3,
and thus a13 should be greater or equal to
7. The consistency ratio (CR) was defined



by Saaty for measuring inconsistency, with a
threshold of 0.10 to accept a reciprocal multi-
plicative preference relation as consistent. In
our example, if a13 = 7 we get a C.R. value of
0.25412, if a13 = 8 the C.R. value is 0.212892
while a C.R. value of 0.179714 is obtained
with a13 = 9. In any case, the application
of the scale results in the impossibility of ob-
taining a consistent reciprocal multiplicative
preference relation for this particular situa-
tion, which should not be the case.

In order to avoid such a type of conflict, we
could proceed by choosing a different scale
for providing judgements or by modifying the
above definition. With respect to the first
question, the use of any other scale of the form
[1/a, a], a ∈ R+, would not make this conflict
to disappear, what means that the only pos-
sible solution to overcome this conflict would
consists of using the scale of pairwise com-
parison from 0 to +∞. However, as Saaty
points out in [7], this assumes that the hu-
man judgement is capable of comparing the
relative dominance of any two objets, which
is not the case. All these considerations mean
that if we do not change the scale to be used
to associate preference values to judgements
then the above definition of consistency prop-
erty should be modified.

Obviously, a similar analysis in the case of
working with the fuzzy model can be carried
out concluding that the same conflict also ex-
ists. In the next section, we will study the
general conditions to be verified by a function
T : [0, 1] × [0, 1] −→ [0, 1] so that it can be
used to obtain the preference value of the al-
ternative xi over the alternative xk, pik, from
the preference values of xi over xj and of xj

over xk, {pij , pjk}.

4 The value of pij with known
(pik, pkj)

Suppose that the pair of alternatives xi and
xk, can not be compared directly but have
an alternative xj of which we know the exact
values of pij and pkj . In such a case, a broad
comparison between alternatives xi and xk on
the basis of the values pij and pkj can be es-

tablished. Indeed, we can distinguish the fol-
lowing cases:

1. pij = 0.5 (pjk = 0.5) what means that
xi ∼ xj (xj ∼ xk) and as a consequence
the strength of preference between xi and
xk should be the same as the one between
xj and xk. We then have that : pik = pjk

(pik = pjk).

2. pij > 0.5 and pjk > 0.5. In this case,
alternative xi is preferred to alternative
xj (xi Â xj) and alternative xj is pre-
ferred to alternative xk (xj Â xk). We
then have that xi Â xj Â xk what im-
plies xi Â xk and therefore pik > 0.5.
Furthermore, in these cases restricted
max-max transitivity should be imposed,
what means that xi should be preferred
to xk with a degree of intensity at least
equal to the maximum of the intensities
pij and pjk: pik ≥ max{pij , pjk}, where
the equality holds only when there ex-
ist indifference between at least one of
the alternatives and xj , i.e., pij = 0.5 or
pjk = 0.5, as we have said in case 1. As
a result, in this case it should be verified:
pik > max{pij , pjk}.

3. pij > 0.5 and pjk < 0.5 which is equiva-
lent to pij > 0.5 and pkj = 1− pjk > 0.5,
that is: xi Â xj and xk Â xj . The com-
parison of alternatives xi and xk has to
done by comparing the intensities of pref-
erences of them both over the alternative
xj . An indifference situation between xi

and xk would exist when the preference
degree of both alternatives are preferred
over xj with the same intensity, while
the alternative with greatest intensity of
preference over alternative xj should be
preferred to the other one. This is sum-
marized in the following:

pik = 0.5 ⇔ pij = pkj ⇔ pij + pjk = 1
pik > 0.5 ⇔ pij > pkj ⇔ pij + pjk > 1
pik < 0.5 ⇔ pij < pkj ⇔ pij + pjk < 1

Moreover, it is obvious that the greater
the value |pij + pjk− 1| the greater |pik−
0.5|.



4. pij < 0.5 and pjk > 0.5 which is equiva-
lent to pji > 0.5 and pjk > 0.5. In this
case, if alternative xj is preferred to both
alternatives xi and xk with the same in-
tensity then there would be an indiffer-
ence situation between them, otherwise
the alternative with the lowest value of
intensity of preference of alternative xj

over it would be preferred. As a conse-
quence:

pik = 0.5 ⇔ pji = pjk ⇔ pij + pjk = 1
pik > 0.5 ⇔ pji < pjk ⇔ pij + pjk > 1
pik < 0.5 ⇔ pji > pjk ⇔ pij + pjk < 1

Again, the greater the value |pij +pjk−1|
the greater |pik − 0.5|.

5. pij < 0.5 and pjk < 0.5. In this case
alternative xj is preferred to alternative
xi (xj Â xi) and alternative xk is pre-
ferred to alternative xj (xk Â xj). So
we have that xk Â xj Â xi what implies
xk Â xi and therefore pik < 0.5. In this
case, as we already said, it should be ver-
ified that pki > max{pkj , pji} and there-
fore pik < min{pij , pjk}.

Cases 1 to 5 suggest that the value pik is re-
lated to the value pij + pjk, and therefore we
can assume that there exists function

T : [0, 1]2 → [0, 1],

such that
pik = T (pij , pjk).

The above considerations mean that function
T must verify:

1. T (0.5, y) = y ∀y
2. T is increasing in the interval

[0.5, 1]× [0.5, 1] with respect to the value
max{x, y} and T (x, y) ≥ max{x, y}
being equal only in the case
min{x, y} = 0.5.

3. T is increasing in the interval
[0, 0.5]× [0, 0.5] with respect to the value
min{x, y} and T (x, y) ≤ min{x, y} being
equal only in the case max{x, y} = 0.5.

4. T is increasing in the sets [0, 0.5)×(0.5, 1]
and (0.5, 1] × [0, 0.5) with respect to the
value x + y − 1 and takes the value 0.5
when x + y − 1 = 0.

5. T is symmetric, T (x, y) = T (y, x). Be-
cause pij + pjk = 1 ∀i, j, then symmetry
of T is equivalent to T (1 − x, 1 − y) =
1− T (x, y).

Another desirable property to be verified by
function T should be that of continuity as it
is expected that a slight change of the values
of (pij , pjk) should produce a slight change of
the value pik.

In order to know more about function T , we
start assuming that T (x, y) = f(x + y), with
f : [0, 2] → [0, 1] a continuous and increasing
such that f(1) = 0.5. The linear solutions
verifying this last properties take the form
f1(z) = z/2 and f2(z) = z − 0.5.

The first linear solution gives pik =
T (pij , pjk) = pij+pjk

2 , which fails to ver-
ify property restricted max-max transitiv-

ity, because min{pij , pjk} ≤ pij + pjk

2
≤

max{pij , pjk} and in the case of pij → 0.5 ∧
pjk → 1 (pij → 1 ∧ pjk → 0.5) we get that
pik → 0.75 instead of pik → pjk = 1 (pik →
pij = 1).

With the second linear solution we get pik =
T (pij , pjk) = pij + pjk − 1

2 , which coincides
with additive transitivity. In this case T ver-
ifies restricted max-max transitivity but fails
to verify pij → 0 ∧ pjk → 0 (pij → 1 ∧ pjk →
1) ⇒ pik → 0 (pik → 1)

In fact, if x, y ≤ 0.5 and x + y ≤ 0.5 then the
above function gives negative values of pik,
while in the case of x, y ≥ 0.5 and x+ y ≥ 1.5
we obtain values of pik greater than 1. We
can overcome this problem by defining T as a
piecewise function, with different expressions
in these regions. A possible function T would
be the following:

T (x, y) =





min{x, y} x + y ≤ 0.5
max{x, y} x + y ≥ 0.5
x + y − 0.5 otherwise



A drawback of this function is that an in-
finite number of different cases are equally
treated. For example when pij = 0.9 and
pjk ∈ [0.6, 0.9] this function gives the value
pij = 0.9. However, when pjk = 0.9 alterna-
tive xi should be preferred to xk with a de-
gree of intensity greater than when pjk = 0.6.
Furthermore, this function it is not contin-
uous because limx+y→1.5− T (x, y) = 1 and
limx+y→1.5+ T (x, y) = max{x, y} (the same
happens when x + y → 0.5).

5 T -additive transitivity and
T -multiplicative transitivity

A possible solution for making function T con-
tinuous would be narrowing the application
of additive transitivity to the case of being
(pij , pjk) ∈ [0, 0.5)× (0.5, 1]∪ (0.5, 1]× [0, 0.5).
By doing that, we obtain a continuous func-
tion T although the same value is returned
for different pairs of values [T (0.6, 0.9) =
T (0.9, 0.9) = 0.9]. To overcome this, we pro-
pose to incorporate some kind of strength
with respect to the maximum (minimum) in
function T , that is:

T (x,y)=





min{x,y}−h1(x,y) x,y≤0.5

max{x,y}+h2(x,y) x,y≥0.5

x+y−0.5 otherwise

where h1 : [0, 0.5]2 −→ [0, min{x, y}] ⊆
[0, 0.5] and h2 : [0.5, 1]2 −→ [0, 1 −
max{x, y}] ⊆ [0, 0.5] are continuous and
increasing functions verifying min{x, y} →
0.5 ⇒ h1(x, y) → 0 and max{x, y} → 0.5 ⇒
h2(x, y) → 0 respectively.

All these considerations allow us to define a
new transitivity condition, that we name T -
additive transitivity:

Definition 5.1. A fuzzy preference relation
P is T -additive transitive if

pik = T (pij , pjk)

being T : [0, 1] × [0, 1] −→ [0, 1] a function
verifying:

1. T (x, y) ≥ max{x, y} ∀x, y ∈ [0.5, 1]

2. T (x, y) ≤ min{x, y} ∀x, y ∈ [0, 0.5]

3. T (x, y) = x + y − 0.5 otherwise

It is obvious that T -additive transitivity im-
plies restricted max-max transitivity:

Proposition 5.1. T -additive transitivity im-
plies restricted max-max transitivity, re-
stricted max-min transitivity and weak tran-
sitivity.

In the case of working with multiplicative
preference relations, T -multiplicative transi-
tivity can be defined by using the definition of
T -additive transitivity for fuzzy preference re-
lations and the bijective transformation func-
tion that relates both preference structures.
By doing that, we have:

Definition 5.2. A multiplicative preference
relation A = (aij) is T -multiplicative transi-
tive if the fuzzy preference relation P = (pij)
is T -additive transitive, with pij = f(aij) =
1
2

(1 + log9 aij) .

This definition implies:

Definition 5.3. A multiplicative preference
relation A is T -multiplicative transitive if

aik = T(aij , ajk)

being T : [1/9, 9]× [1/9, 9] −→ [1/9, 9] a func-
tion verifying:

1. T(x, y) ≥ max{x, y} ∀x, y ∈ [1, 9]

2. T(x, y) ≤ min{x, y} ∀x, y ∈ [1/9, 1]

3. T(x, y) = xy otherwise

6 Conclusions

In order to make consistent choices when deal-
ing with preference relations a set of proper-
ties or restrictions to be satisfied by such pref-
erence relations have been suggested. In the
multiplicative model, a multiplicative prefer-
ence relation is consistent when it verifies the
so called multiplicative consistency property.
In the additive model, a fuzzy preference re-
lation is considered consistent when it verifies
the so called additive consistency property.



However, there exists a conflict between the
multiplicative and additive consistency prop-
erties and the scales used to assign preference
values to judgements. There exist many argu-
ments to support that a change in the scales
used in the multiplicative and fuzzy models
seems unpractical and unrealistic. Therefore,
the only possible solution to overcome the ex-
isting conflict seems to be a change of the def-
inition of the consistency properties.

In this paper we have addressed this problem
and have studied the properties to be verified
for a preference relation to be considered a
consistent one. We have introduced the con-
cepts of T -additive consistency property in
the case of fuzzy preference relations and T -
multiplicative consistency property for multi-
plicative preference relations which consist of
a relaxation of the additive and multiplicative
consistency properties.
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[9] R. SÃlowiński, Fuzzy Sets in Deci-
sion Analysis, Operations Research ans
Statistics (Kluwer, Dordrecht, 1998).

[10] T. Tanino, Fuzzy Preference Orderings in
Group Decision Making, Fuzzy Sets and
Systems, 12 (1984) 117-131.

[11] T. Tanino, Fuzzy Preference Relations in
Group Decision Making. In: J. Kacprzyk,
M. Roubens (Eds.), Non-Conventional
Preference Relations in decision making
(Springer-Verlag, Berlin, 1988) 54-71.

[12] L. A. Zadeh, Similarity Relations and
Fuzzy Orderings, Information Science, 3
(1971) 177-200.

[13] H.-J. Zimmermann, Fuzzy Set Theory
and Its Applications (Kluwer, Dordrecht,
1991).


