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Abstract

The Inductive Query By Example (IQBE) paradigm allows a system to automatically derive queries for a specific
Information Retrieval System (IRS). Classic IRSs based on this paradigm [Smith, M., & Smith, M. (1997). The use
of genetic programming to build Boolean queries for text retrieval through relevance feedback. Journal of Information

Science, 23(6), 423–431] generate a single solution (Boolean query) in each run, that with the best fitness value, which is
usually based on a weighted combination of the basic performance criteria, precision and recall.
A desirable aspect of IRSs, especially of those based on the IQBE paradigm, is to be able to get more than one query

for the same information needs, with high precision arid recall values or with different trade-offs between both.
In this contribution, a new IQBE process is proposed combining a previous basic algorithm to automatically derive

Boolean queries for Boolean IRSs [Smith, M., & Smith, M. (1997). The use of genetic programming to build Boolean
queries for text retrieval through relevance feedback. Journal of Information Science, 23(6), 423–431] and an advanced
evolutionary multiobjective approach [Coello, C. A., Van Veldhuizen, D. A., & Lamant, G. B. (2002). Evolutionary
algorithms for solving multiobjective problems. Kluwer Academic Publishers], which obtains several queries with a dif-
ferent precision–recall trade-off in a single run. The performance of the new proposal will be tested on the Cranfield and
CACM collections and compared to the well-known Smith and Smith�s algorithm, showing how it improves the learn-
ing of queries and thus it could better assist the user in the query formulation process.
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1. Introduction

Information retrieval (IR) may be defined, in general, as the problem of the selection of documentary
information from storage in response to search questions provided by a user (Baeza-Yates & Ribeiro-Neto,
1999; Salton &McGill, 1983). Information retrieval systems (IRSs) are a kind of information systems that deal
withdatabases composed of information items—documents thatmay consist of textual, pictorial or vocal infor-
mation—and process user queries trying to allow the user to access to relevant information in an appropriate
time interval. Nowadays, the development of theWWW has increased the interest on the study of IRSs.
Many IRSs still consider the Boolean IR model (Van Rijsbergen, 1979), based on the use of Boolean

queries where the query terms are joined by the logical operators AND and OR. This way, the user needs
to have a clear knowledge on how to connect the query terms together using the Boolean operators in order
to build a query defining his information needs. The difficulty found by nonexpert users to formulate these
kinds of queries sometimes makes necessary the design of automatic methods for this task. The paradigm of
Inductive Query by Example (IQBE) (Chen, Shankaranarayanan, She, & lyer, 1998), where a query
describing the information contents of a set of documents provided by a user is automatically derived,
can be useful to assist the user in the query formulation process. Focusing on the Boolean IR model,
the most known existing approach is that of Smith and Smith (1997), which is based on a kind of evolu-
tionary algorithm (EA) (Bäck, Fogel, & Michalewicz, 1997), genetic programming (GP) (Koza, 1992).
As usual in the topic (Cordón, Herrera-Viedma, López-Pujalte, Luque, & Zarco, 2003), this approach is
guided by a weighted fitness function combining two retrieval accuracy criteria, precision and recall. The
main characteristic of this approach is that it provides a single query in each run.
Given the retrieval performance of an IRS is usually measured in terms of these two criteria, precision and

recall (Van Rijsbergen, 1979), the optimization of any of its components, and concretely the automatic learn-
ing of Boolean queries, is thus a clear example of a multiobjective problem. EAs have been commonly used
for IQBE purposes and their application in the area has been usually based on combining both criteria in a
single scalar fitness function bymeans of a weighting scheme (Cordón, Herrera-Viedma, López-Pujalte, et al.,
2003). However, there is a kind of EA specially designed formultiobjective problems,multiobjective evolution-

ary algorithms, which are able to obtain different nondominated solutions to the problem in a single run
(Coello, Van Veldhuizen, & Lamant, 2002; Deb, 2001). In IR, specifically in the IQBE paradigm, they would
allow us to derive a number of queries with a different precision–recall trade-off in a single run of the IQBE
algorithm, and in such a way to improve the aid possibilities to the users in the formulation of their queries.
In this paper, we present a new evolutionary tool to learn Boolean queries that improves the Smith and

Smith�s (1997) approach, called multiobjective IQBE EA. We define it by extending the Smith and Smith�s
approach incorporating Pareto-based evolutionary multiobjective components into GP. To do so, we con-
sider one of the most known and well performing Pareto-based multiobjective EAs, SPEA (Zitzler & Thiele,
1999). The main feature of this EA is the maintenance of the elitism concept in a multiobjective evolution-
ary algorithm. This improves the performance of our multiobjective GP algorithm. In order to represent a
real-world text retrieval IQBE environment where a user provides a relatively small number of relevant and
irrelevant documents, the experimental testbed will be based on two of the most known small size IR bench-
marks, the Cranfield and CACM document collections (Baeza-Yates & Ribeiro-Neto, 1999; Salton &
McGill, 1983). With our proposal we improve and increase the user assistance possibilities in the formula-
tion of queries by means of evolutionary computation tools.
With this aim, this contribution is structured as follows. Section 2 is devoted to introduce the prelimi-

naries, including the basis of Boolean IRSs, the definition of both precision and recall criteria, the main
aspects of IQBE techniques, a review on EAs and on their application to IR, tasks, arid finally, the main
aspects of multiobjective EAs. Section 3 is devoted to introduce the main aspects of the Smith and Smith�s
proposal and to extend the latter algorithm to deal with the multiobjective problem of simultaneously
optimizing both precision and recall by means of the SPEA Pareto-based approach while the experiments



O. Cordón et al. / Information Processing and Management 42 (2006) 615–632 617
developed to test the new proposal and the results obtained are shown in Sections 4 and 5, respectively.
Finally, several concluding remarks are pointed out in Section 6.
2. Preliminaries

2.1. Boolean IRS

An IRS is basically constituted by three main components, as shown in Fig. 1.
The documentary data base. This component stores the documents and the representation of their infor-

mation contents. It is associated with the indexer module, which automatically generates a representation for
each document by extracting the document contents. Textual document representation is typically based on
index terms (that can be either single terms or sequences) which are the content identifiers of the documents.
In the Boolean retrieval model, the indexer module performs a binary indexing in the sense that a term in

a document representation is either significant (appears at least once in it) or not (it does not appear in it at
all). Let D be a set of documents and T be a set of unique and significant terms existing in them. The indexer
module of the Boolean IRS defines an indexing function: F : D · T ! {0,1}, where F(d, t) takes value 1 if
term t appears in document d and 0 otherwise.

The query subsystem. It allows the users to formulate their queries and presents the relevant documents
retrieved by the system to them. To do so, it includes a query language, that collects the rules to generate
legitimate queries and procedures to select the relevant documents.
Boolean queries are expressed using a query language that is based on query terms and permits combi-

nations of simple user requirements with logical operators AND, OR and NOT (Van Rijsbergen, 1979).
The result obtained from the processing of a query is a set of documents that totally match with it, i.e., only
two possibilities are considered for each document: to be or not to be relevant for the user�s needs, repre-
sented by his query.

The matching mechanism. It evaluates the degree to which the document representations satisfy the
requirements expressed in the query, the retrieval status value (RSV), and retrieves those documents that
are judged to be relevant to it.
As said, the RSV has only two values associated, 0 and 1, in Boolean IRSs. In order to match a query, a

document has to fulfill it completely, i.e., it has to include the positive query terms specified in the search
expression and not to include those that have been specifically given in a negative way. In order to obtain
the set of relevant documents for a query, it is represented as a parse tree and is evaluated from the leaves
to the root. Each leaf is associated to the set of documents including (or not including) the corresponding
(negative) query term. Then, the retrieved document sets in the inner nodes are computed by applying set
arithmetic (with the ANDoperator being the set intersection and the OR operator standing for the set union).
The final set of retrieved documents is that associated to the root when finishing the evaluation of the tree.
Fig. 1. Generic structure of an IRS.
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2.2. Evaluation criteria of IRSs

There are several ways to measure the quality of an IRS, such as the system efficiency and effectiveness,
and several subjective aspects related to the user satisfaction (see, for example, Baeza-Yates & Ribeiro-
Neto, 1999, Chapter 3). Traditionally, the retrieval effectiveness—usually based on the document relevance
with respect to the user�s needs—is the most considered. There are different criteria to measure this aspect,
with the precision arid the recall being the most used.
Precision is the rate between the relevant documents retrieved by the IRS in response to a query and the

total number of documents retrieved, whilst recall is the rate between the relevant documents retrieved and
the total number of relevant documents to the query existing in the data base (Van Rijsbergen, 1979). The
mathematical expression of each of them is shown as follows:
P ¼
P

drd � fdP
dfd

; R ¼
P

drd � fdP
dfd

ð1Þ
with rd 2 {0,1} being the relevance of document d for the user and fd 2 {0,1} being the retrieval of docu-
ment d in the processing of the current query. Notice that both measures are defined in [0,1], with 1 being
the optimal value.
We should also notice that the only way to know all the relevant documents for a query existing in a

documentary base (needed to compute the recall measure) is to evaluate all of them one by one. Due to
this and to the relevance subjectivity, there are several classical documentary test collections available, each
of them with a set of queries with known relevance judgments, that can be used to test the different new
proposals in the field of IR (Baeza-Yates & Ribeiro-Neto, 1999; Salton & McGill, 1983). In this contribu-
tion, we will deal with the well-known Cranfield and CACM collections.
As said, up to our knowledge, all the previous applications ofmachine learning techniques to any of the IRS

components trying to optimize both criteria have considered a weighted combination of the said two criteria.
2.3. The IQBE paradigm and its application to IR

IQBE was proposed in Chen et al. (1998) as ‘‘a process in which searchers provide sample documents
(examples) and the algorithms induce (or learn) the key concepts in order to find other relevant docu-
ments’’. This way, IQBE is a process for assisting the users in the query formulation process performed
by machine learning methods. It works by taking a set of relevant (and optionally, non relevant docu-
ments) provided by a user—that can be obtained from a preliminary query or from a browsing process
in the documentary base—and applying an off-line learning process to automatically generate a query
describing the user�s needs (as represented by the document set provided by him). The obtained query
can then be run in other IRSs to obtain more relevant documents. This way, there is no need that the user
interacts with the process as in other query refinement techniques such as relevance feedback (Salton &
McGill, 1983).
There have been designed several IQBE algorithms for the different existing IR models. As said, Smith

and Smith (1997) proposed the GP algorithm to derive Boolean queries that will be considered in this
paper. On the other hand, all of the machine learning methods considered in Chen et al.�s (1998) paper
(regression trees, genetic algorithms and simulated annealing) dealt with the vector space model (Salton
& McGill, 1983). Moreover, there are several approaches for the derivation of weighted Boolean queries
for fuzzy IRSs (Bordogna, Carrara, & Pasi, 1995), such as the GP algorithm of Kraft, Petry, Buckles,
and Sadasivan (1997), the niching GA-P method (Cordón, Moya, & Zarco, 2000) and the simulated
annealing-GP hybrid (Cordón, Moya, & Zarco, 2002). For descriptions of some of the previous techniques
based on EAs, the interested reader can refer to Cordón, Herrera-Viedma, López-Pujalte, et al. (2003).
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2.4. EAs and their application to IR

Evolutionary computation (Bäck et al., 1997) uses computational models of evolutionary processes as key
elements in the design and implementation of computer-based problem solving systems. There is a variety
of evolutionary computational models that have been proposed and studied, which are referred as EAs.
There have been four well-defined EAs which have served as the basis for much of the activity in the field:
genetic algorithms (GAs) (Michalewicz, 1996), evolution strategies (Schwefel, 1995), GP (Koza, 1992) and
evolutionary programming (Fogel, 1991).
An EA maintains a population of trial solutions, imposes random changes to these solutions, and incor-

porates selection to determine which ones are going to be maintained in future generations and which will
be removed from the pool of trials.
GP is based on evolving structures encoding programs such as expression trees. As Boolean and

extended Boolean queries can be easily represented in the form of expression trees, GP has been widely used
in the IR query learning topic.
EAs are not specifically learning algorithms but they offer a powerful and domain independent search

ability that can be used in many learning tasks, since learning and self organization can be considered as
optimization problems in many cases. Due to this reason, the application of EAs to IR has increased in
the last decade. Among others, EAs have been applied to solve the following problems:

(1) Automatic document indexing, either by learning the relevant terms to describe them (Gordon, 1988)
or their weights (Vrajitoru, 1998), and to design a customized term weighting function (Fan, Gordon,
& Pathak, 2004).

(2) Clustering of documents (Gordon, 1991) and terms (Robertson & Willet, 1994). In both cases, a GA is
considered to obtain the cluster configuration.

(3) Query definition, by means of an on-line relevance feedback procedure in vector space (Horng & Yeh,
2000; López-Pujalte, Guerrero, & Moya, 2002, 2003; Robertson & Willet, 1996; Yang & Korfhage,
1994) and fuzzy (Sanchez, Miyano, & Bracket, 1995) IRSs, or an off-line IQBE process (Chen
et al., 1998) for Boolean (Fernández-Villacanas & Shackleton, 2003; Smith & Smith, 1997) and fuzzy
(Cordón, Herrera-Viedma, Luque, Moya, & Zarco, 2003; Cordón et al., 2000; Cordón et al., 2002,
Cordón, Moya, & Zarco, 2004; Kraft et al., 1997) IRSs. Also, we find genetic techniques for solving
multimodal problems in IR (Boughanem, Chrisment, & Tamine, 1999, 2002, 2003). Notice that, the
IQBE approach tackled in the current contribution is included in this group as the final goal is to
automatically derive a query representing the user�s needs.

(4) Design of user profiles for IR in the Internet. IRSs are limited by the lack of personalization in the rep-
resentation of user�s needs. An important issue in this situation is the construction of user profiles
which maintain previously retrieved information associated with previous user�s needs. In Chen
and Shahabi (2001), Larsen, Marı́n, Martı́n-Bautista, and Vila (2000), Martı́n-Bautista, Larsen,
and Vila (1999), we can find different approaches involving user profiles and GAs.

For a review of several of the previous approaches, see Cordón, Herrera-Viedma, López-Pujalte, et al.
(2003).
2.5. Multiobjective EAs and IR

Most of the IQBE approaches in IR evaluate the performance of the derived queries using the two usual
criteria, precision and recall (see Section 2.2). Therefore, the optimization of the components of an IRS
becomes a clear example of a multiobjective problem.
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EAs are very appropriate to solve multiobjective problems. These kinds of problems are characterized by
the fact that several objectives have to be simultaneously optimized. Hence, there is not usually a single best
solution solving the problem, i.e. being better than the remainder with respect to every objective, as in
single-objective optimization. Instead, in a typical multiobjective optimization framework, there is a set
of solutions that are superior to the remainder when all the objectives are considered, the Pareto set. These
solutions are known as nondominated solutions (Chankong & Haimes, 1983), while the remainder are
known as dominated solutions. Since none of the Pareto set solutions is absolutely better than the other non-
dominated solutions, all of them are equally acceptable as regards the satisfaction of all the objectives.
This way, thanks to the use of a population of solutions, EAs can search many Pareto-optimal solutions

in the same run, specifically, many queries with different precision–recall trade-offs in our case.
Evolutionary approaches in multiobjective optimization can be classified into three groups: plain aggre-

gating approaches, population-based nonPareto approaches, arid Pareto-based approaches (Coello et al.,
2002; Deb, 2001).
The first group constitutes the extension of classical methods to EAs. The objectives are artificially com-

bined, or aggregated, into a scalar function according to some understanding of the problem, and then the
EA is applied in the usual way.1

Population-based nonPareto approaches allow us to exploit the special characteristics of EAs. A nondom-
inated individual set is obtained instead of generating only one solution. In order to do so, the selection
mechanism is changed. Generally, the best individuals according to each of the objectives are selected,
and then these partial results are combined to obtain the new population. An example of a multiobjective
GA belonging to this group is Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985).
Finally, Pareto-based approaches seem to be the most active research area on multiobjective EAs now-

adays. In fact, algorithms included within this family are divided into two different groups: first and second
generation (Coello et al., 2002). They all attempt to promote the generation of multiple nondominated solu-
tions, as the former group, but directly making use of the Pareto-optimality definition.
The difference between the first and the second generation of Pareto-based approaches arises on the use

of elitism. Algorithms included within the first generation group, such as Niched Pareto Genetic Algorithm
(NPGA), Non-dominated Sorting Genetic Algorithm (NSGA) and Multiple-Objective Genetic Algorithm
(MOGA), do not consider this characteristic. On the other hand, second generation Pareto-based multiob-
jective EAs are based on the consideration of an auxiliary population where the nondominated solutions
generated among the different iterations are stored. Examples of the latter family are Strength Pareto
EA (SPEA) (Zitzler & Thiele, 1999) (the one considered in this contribution) and SPEA2, NSGA2 and
NPGA2, among others. For the description of all of these algorithms, the interested reader can refer to
Deb (2001) and Coello et al. (2002).
When multiobjective optimization is tackled, the definition of the quality is substantially more complex

than for single-objective optimization problems, since the optimization process itself involves several
objectives:

(1) The distance of the resulting nondominated set to the Pareto-optimal front should be minimized.
(2) A good (in most cases uniform) distribution of the solutions found is desirable. The assessment of this
criterion might be based on a certain distance metric.

(3) The extent of the obtained nondominated front should be maximized.

Several quantitative metrics have been proposed in the literature to formalize the above definition (or
parts of it) (Coello et al., 2002; Deb, 2001; Zitzler, Deb, & Thiele, 2000). Some of them are defined below.
1 As said, this has been the approach usually followed in the application of EAs to IR.
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Given a set of pairwise nondominated decision vectors X 0 ˝ X, a neighborhood parameter r > 0 (to be
chosen appropriately), and a distance metric i Æ i:

(1) The functionM1 gives the average distance to the Pareto-optimal set X � X :
M1ðX 0Þ :¼ 1

jX 0j
X
a02X 0

minfka0 � �ak; �a 2 Xg ð2Þ
(2) The functionM2 takes the distribution in combination with the number of nondominated solutions
found into account:
M2ðX 0Þ :¼ 1

jX 0 � 1j
X
a02X 0

jfb0 2 X 0; ka0 � b0k > rgj ð3Þ
(3) The functionM3 considers the extent of the front described by X 0:
M3ðX 0Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1
maxfka0i � b0ik; a0; b0 2 X 0g

s
ð4Þ
Analogously, Zitzler et al. (2000) define three metrics.M�
1,M

�
2, andM�

3 on the objective space. Let Y
0,

Y � Y be the sets of objective vectors that correspond to X 0 and X , respectively, and r* > 0 and i Æ i* as
before:
M�
1ðY 0Þ :¼ 1

jY 0j
X
p02X 0

minfkp0 � �pk�; �p 2 Y g ð5Þ

M�
2ðY 0Þ :¼ 1

jY 0 � 1j
X
P 02X 0

jfq0 2 Y 0; kp0 � q0k� > r�gj ð6Þ

M�
3ðY 0Þ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1
maxfkp0i � q0ik

�
; p0; q0 2 Y 0g

s
ð7Þ
3. A multiobjective IQBE EA to learn multiple Boolean queries

Our main objective is to improve Smith and Smith�s results obtaining several queries instead of just one
in a single run. To do so, we will use a multiobjective focus, incorporating Pareto-based evolutionary mul-
tiobjective components into GP, whose good behaviour was demonstrated in Rodrı́guez-Vazquez, Fonseca,
and Fleming (1997).
Firstly we will review Smith and Smith�s approach and then introduce our proposal.

3.1. The Smith and Smith’s approach to learn Boolean queries

Smith and Smith (1997) proposed an IQBE process to derive Boolean queries based on GP which we
extend in the following section to improve the aid possibilities to the users in the query formulation process.
Its components are described as follows:

Coding scheme: The Boolean queries are encoded in expression trees, whose terminal nodes are query
terms and whose inner nodes are the Boolean operators AND, OR or NOT, as shown in Fig. 2.



Fig. 2. GP individual representing the query t1 AND (t2 OR t5).
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Selection scheme: Each generation is based on selecting two parents, with the best fitted one having a
greater chance to be chosen, and generating two offspring from them. Both offspring are added to the cur-
rent population.2

Genetic operators: The usual GP crossover is considered (Koza, 1992), which is based on randomly
selecting one edge in each parent and exchanging both subtrees from these edges between the both parents.
No mutation operator is considered.3

Generation of the initial population: All the individuals in the first population are randomly generated. A
pool is created with all the terms included in the set of relevant documents provided by the user, having
those present in more documents a higher probability of being selected.

Fitness function: The following function is maximized:
2 Ou
using
3 We
subtre
4 Th
the co
be intr
F ¼ a � P þ b � R

where precision P and recall R are computed as shown in Section 2.2, while a and b defined in R are the
weighting factors.

3.2. A new approach to learn Boolean queries by means of multiobjective evolutionary algorithms

As is shown in Section 2.5, there are several kinds of multiobjective EAs. In first generation Pareto-based
algorithms the elitism concept is lost. There is no way to assure the presence of the best solution since there
is not an only best solution, but a set of them. To solve this, new multiobjective evolutionary models were
designed. These models use an external population, where the nondominated solutions found are progres-
sively stored.
With the aim of maintaining the elitism concept, we have considered SPEA (Zitzler & Thiele, 1999) as

the multiobjective EA to be incorporated into the basic GP algorithm.4 This algorithm introduces the elit-
ism concept, explicitly maintaining an external population Pe. This population stores a fixed number of
nondominated solutions which have been found since the start of the run.
Fig. 3 shows the scheme of the SPEA algorithm. In each generation, the new nondominated solutions

found are compared with the solutions in the existing external population, storing the resulting nondom-
inated solutions on the latter. Furthermore, SPEA uses these elitist solutions, together with those in the
current population, in the genetic operations, in the hope to lead the population to good areas in the search
space.
r implementation differs in this point as we consider a classical generational scheme where the intermediate population is created
tournament selection.
do use a mutation operator which changes a randomly selected term or operator by a random one, or a randomly selected
e by a randomly generated one.
e proposed multiobjective algorithm has common components with the basic GP algorithm described in the previous section:
ding and selection schemes, the genetic operators and the generation of the initial population. Their description will not
oduced again for the sake of clarity.



Fig. 3. SPEA�s scheme.
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Hence, the intermediate population is created from both the current population and the external popu-
lation by means of tournament selection. This selection process involves randomly choosing a number of
individuals of the population, the so called tournament size, with or without replacement, selecting the best
individual of this group, and repeating the process until the number of selected individuals matches up with
the population size. To perform the selection, there is a need to assign a fitness value to each individual of
both populations. The fitness functions considered are:

� Elements of the elitist population:
5 To
Si ¼
ni

N þ 1 ð8Þ
where ni is the number of solutions in the current population dominated by the ith individual of the elitist
population, and N is the size of the current population.

� Elements of the current population:
F j ¼ 1þ
X

i2P e and i dominates j
Si ð9Þ
When the intermediate population is created, the genetic operators are used over the new individuals to

get a new population of size N. Then, the nondominated solutions existing in the new population are copied
to the elitist population Pe, removing dominated and duplicated solutions. Therefore, the new elitist popu-
lation is composed of the best nondominated solutions found so far, including new and old elitist solutions.
To limit the growth of the elitist population, the size is restricted to Ne solutions using clustering tech-

niques, selecting the solutions closer to the center of each cluster by means of the clustering algorithm
shown in Fig. 4.
4. Experiments developed

As said, the experimental study has been developed using the Cranfield and CACM collections. Cranfield
is composed of 1398 documents about Aeronautics while CACM contains 3204 documents published in the
journal Communications of the ACM between 1958 and 1979. In both collections, the textual documents
have been automatically indexed in the usual way5 by first extracting the nonstop words and performing
do so, we use the classical Salton�s SMART IRS (Salton, 1971).



Fig. 4. SPEA�s clustering algorithm.
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a stemming process, thus obtaining a total number of 3857 and 7562 different indexing terms, respectively,
and then considering the binary indexing to generate the term weights in the document representations.
Both collections have associated a large number of queries (225 in the Cranfield collection and 64 in the

CACM collection). In our problem, each query generates a different experiment and our goal involves auto-
matically deriving a set of queries that describes the information contents of the set of documents associated
with it. Instead of working with the complete query set, we have selected a representative sample that allow
us to study the behavior of our proposal.
The experimental environment considered is graphically shown in Fig. 5. The role of the user who pro-

vides documents will be played by the queries associated with the considered collection, and more exactly,
by the relevance judgments associated with them. In this way, for example, if there are 29 relevant docu-
ments for query 1 in the Cranfield collection, this query will mimic a situation in which the user provides
29 documents related to his information need. Besides, the remaining, nonrelevant 1369 documents (1398—
29) will be considered as nonrelevant documents provided to the IQBE process as well. We should remark
that, opposite to relevance feedback techniques in which the collection query structures are considered and
processed in the same way that documents, we only use the relevance judgments of the existing queries,
as the IQBE process learns the query structures starting from scratch.
So, among the 225 queries associated to the Cranfield collection, we have selected a representative sub-

set: on the one hand, those queries presenting 20 or more relevant documents have been taken into account;
on the other hand, 10 queries with 15 or less relevant documents have also been chosen to test the perfor-
mance of our approach with queries presenting a lesser number of relevant documents (representing a situ-
ation where the user provides a small number of documents to the IQBE process). The resulting 17 queries
(numbers 1, 2, 3, 7, 8, 11, 19, 23, 26, 38, 39, 40, 47, 73, 157, 220 and 225) have 29, 25, 9, 6, 12, 8, 10, 33, 7, 11,
14, 13, 15, 21, 40, 20 and 25 relevant documents associated, respectively. On the other hand, 18 queries have
been selected from the 64 associated to the CACM collection (numbers 4, 7, 9, 10, 14, 19, 24, 25, 26, 27, 40,
42, 43, 45, 58, 59, 60 and 61), those 13 presenting more than 20 relevant documents and five with less than
15 relevant documents (12, 28, 9, 35. 44, 11, 13, 51, 30, 29, 10, 21, 41, 26, 30, 43, 27 and 31 relevant
documents, respectively). We have selected these queries in order to have enough chances to show the
performance advantages of our multiobjective algorithm.
The experiments developed involve to run our multiobjective proposal as well as the Smith and Smith�s

one as comparison algorithm. Each algorithm has been run 10 times with different initializations for each
selected query during the same fixed number of fitness function evaluations (100,000) in a 2.4 GHz Pentium
IV computer with 1Gb of RAM.6 The common parameter values considered are a maximum of 20 nodes
for the trees,7 0.8 arid 0.2 for the crossover and mutation probabilities, respectively, 5 for the tournament
6 The Smith & Smith�s algorithm spends more or less 2:50 and 6:20 min when working with Cranfield arid CACM queries,
respectively, whilst our proposal approximately takes 3 and 6:40 min.
7 In practice, the maximum number of nodes is 19 since the expression trees implemented are binary arid therefore the number of
nodes of a correct query tree has to be odd.
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Fig. 5. Graphical representation of the IQBE experimental environment considered.
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size arid a population size of M = 1600 queries. The high value of the latter parameter is because it is well
known that GP requires large population sizes to achieve good performance. Apart from these parameters.
Smith and Smith�s algorithm uses a typical setting for the weights in the fitness function ((a,b) = (1.2,0.8)),
and the size of the elitist population has been fixed to 100 in SPEA.
In Section 2.5, a set of metrics usually considered to measure the quality of the Pareto sets has been

shown. Specifically, we have used three different metrics:M�
2 aridM

�
3, defined in the aforementioned section,

and the number of nondominated solutions in the Pareto set.
The metricM1 has been given up since it cannot be used as we do not know the optimal Pareto fronts;

furthermore, this metric does not consider the Pareto set distribution. Therefore, we have used M2 (that
measures the distribution of nondominated solutions) and M3 (which measures the size of the area that
contains the nondominated solutions). The reason of usingM�

2 andM
�
3 instead ofM2 andM3 comes from

the fact that we are interested in that Boolean queries learned are well distributed in the objective space, to
be able to obtain several queries with different precision–recall trade-offs.
Notice that, since our problem is composed of just two objectives,M�

3 is equal to the distance among the
objective vectors of the two outer solutions (hence, the maximum possible value is

ffiffiffi
2

p
¼ 1:4142).

Although the main aim of this paper is to get an IQBE algorithm generating several queries with a
different precision–recall trade-off in a single run, we are going to establish a procedure to compare the
performance of the proposed technique with that of the original Smith and Smith�s proposal.
To do so, the best average solution in precision and recall is selected from the Pareto set derived by our

multiobjective IQBE algorithm. This solution is obtained as shown below:

(1) 1000 pairs of random numbers are generated (wi1,wi2), wi1 2 [0, 1], wi2 = 1 � wi1.
(2) For each Boolean query Sj included in the Pareto set, with recall Rj and precision Pj, the next index is
computed:
AverageðSjÞ ¼
P1000

i¼1 wi1 � Rj þ wi2 � P j

1000
ð10Þ
(3) The solution that maximizes the Average value is selected.
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5. Results and analysis of results

5.1. Analysis of the Pareto sets derived

Tables 1 and 2 show several statistics corresponding to our multiobjective proposal. These tables collects
several data, about the composition of the 10 Pareto sets generated for each query, always showing the
averaged value and its standard deviation. From left to right, the columns contain the number of nondom-
inated solutions obtained (#p), equal to the number of different objective vectors (i.e., precision–recall
pairs) existing among them, and the values of the two multiobjective EA metrics selected, M�

2 and M�
3

all of them followed by their respective standard deviation values.
The main aim of this paper has been clearly fulfilled since the Pareto fronts obtained are very well dis-

tributed, as demonstrated by the high values in theM�
2 andM�

3 metrics. So, we can see that all runs gen-
erate a proportional number of Boolean queries with different precision–recall trade-offs according to the
number of relevant documents associated with them (for those cases where a larger number of relevant
documents are provided, a larger number of different queries are obtained in the Pareto sets); and that stan-
dard deviation values are around 0.4 and 0.6 in the Cranfield and CACM collections, respectively. The val-
ues of theM�

2 andM
�
3 metrics are very appropriate as well, emphasizing the values of the latter, very closer

to 1.4142, the maximum possible value. This shows us how the Pareto fronts generated cover a wide area in
the space.
More specifically, the experiments generated from queries 157 of the Cranfield collection and 25 of the

CACM collection are those deriving the Pareto sets with the best average values. So, query 157 generates a
Pareto front with around 24 different solutions, and obtains a value of 10.56 for the distribution of these
solutions over it ðM�

2Þ and a value of 1.29 for the ðM�
3Þ metric. Similarly, query 25 of CACM has the fol-

lowing values associated: 29.7 for the number of nondominated solutions in the Pareto front, and 12.9 and
1.316 for M�

2 and M�
3 metrics, respectively.

As an example, Figs. 6 and 7 graphically show the Pareto fronts obtained for queries 157 of Cranfield
and 25 of CACM, respectively, representing the recall values in the X-axis and the precision ones on the
Table 1
Statistics of the Pareto sets obtained by the proposed SPEA-GP IQBE algorithm on the Cranfield collection

#q #p r#p M�
2 rM�

2
M�
3 rM�

3

Cranfield

1 15.800 0.675 6.909 0.291 1.237 0.007
2 11.700 0.736 5.188 0.314 1.190 0.014
3 2.000 0.141 0.950 0.111 0.649 0.088
7 2.600 0.155 1.300 0.077 1.009 0.023
8 7.700 0.375 3.599 0.162 1.209 0.012
11 3.200 0.190 1.600 0.095 1.040 0.028
19 2.100 0.170 1.000 0.122 0.645 0.080
23 18.400 0.551 8.038 0.227 1.235 0.012
26 5.400 0.155 2.700 0.077 1.269 0.012
38 4.700 0.318 2.333 0.147 1.040 0.031
39 7.800 0.276 3.584 0.125 1.196 0.010
40 5.900 0.411 2.764 0.213 1.093 0.021
47 6.100 0.330 2.940 0.157 1.117 0.016
73 11.100 0.499 5.049 0.203 1.192 0.012
157 24.400 0.738 10.559 0.319 1.290 0.004
220 9.200 0.237 4.191 0.104 1.137 0.011
225 14.100 0.640 6.180 0.276 1.238 0.006



Table 2
Statistics of the Pareto sets obtained by the proposed SPEA-GP IQBE algorithm on the CACM collection

#q #p r#p M�
2 rM�

2
M�
3 rM�

3

CACM

4 6.300 0.285 3.077 0.142 1.218 0.015
7 13.800 0.486 6.153 0.198 1.239 0.011
9 5.400 0.473 2.700 0.237 1.165 0.053
10 15.700 1.030 6.845 0.447 1.228 0.024
14 12.600 0.429 5.214 0.171 1.231 0.028
19 8.000 0.200 3.640 0.116 1.268 0.008
24 7.500 0.158 3.507 0.074 1.233 0.010
25 29.700 0.694 12.900 0.299 1.316 0.007
26 14.700 0.511 6.471 0.229 1.230 0.011
27 15.700 0.694 6.875 0.324 1.220 0.010
40 4.900 0.298 2.450 0.149 1.153 0.023
42 13.500 0.292 6.086 0.150 1.285 0.006
43 22.800 0.834 9.965 0.361 1.291 0.008
45 13.200 0.629 5.933 0.260 1.260 0.007
58 16.600 0.751 7.414 0.344 1.337 0.004
59 21.400 0.951 9.375 0.408 1.282 0.011
60 12.900 0.591 5.738 0.226 1.187 0.012
61 15.500 0.552 6.841 0.238 1.258 0.011
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Query 157, Cranfield

Fig. 6. Pareto front obtained for query 157 of Cranfield.
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Y-axis. As done in Zitzler et al. (2000), the Pareto sets obtained in the 10 runs performed for each query
were put together, and the dominated solutions where removed from the unified set before plotting the
curves.
The problem found is that the number of solutions presenting different precision–recall values (different

objective value arrays) can be a little bit low with respect to the size of the elitist population. The main rea-
son of this behavior is found in the way we measure the similarity between a pair of solutions (queries).
Two solutions can be equal in the objective space or in the decision space. In IR, if we work in the objec-

tive space, two solutions will be equal when their precision and recall values are the same, regardless of
its structure. However, if we work in the decision space, two solutions will be equal when their structures
(i.e., query compositions) coincide.
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Query 25, Cacm

Fig. 7. Pareto front obtained for query 25 of CACM.
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In this proposal, we have decided to work in the objective space, supported by the recommendation of
the SPEA algorithm�s authors (Zitzler & Thiele, 1999) of using the clustering algorithm in this space.
Nevertheless, we notice that, with this criterion, several optimal solutions were eliminated. The only differ-
ence between these solutions and those of the elitist population is the query composition. This considerably
reduces the final number of individuals in the elitist population.
To solve this, we decided to work in the decision space, utilizing the edit or Levenshtein distance

(Levenshtein, 1996) to measure the similarity between expression trees. Although this measure increased
the number of solutions, the run time also increased.8 Finally, we decided to choose the original option,
leaving the search for new similarity functions between query expressions for future works.

5.2. Analysis of the ‘‘Best’’ queries derived

Before developing this new analysis, we should again remark that, though the obtained results can be
used for comparing our algorithm with the basic one, the fundamental SPEA-GP aim is not to obtain
the best individual query but we are trying to find a set of queries with a different precision–recall trade-off.
The results obtained by the basic algorithm on the Cranfield and the CACM collections are shown in

Tables 3 and 4, respectively, In both tables, #q stands for the corresponding query number, Sz for the aver-
age of the generated queries size and rSz for its standard deviation, F and rF for the average and standard
deviation of the fitness value, respectively, P and R for the average of the precision and recall values
(respectively, rR and rP for their standard deviations), #rt for the number of documents retrieved by the
query, and #rr for the number of relevant documents retrieved, both with their standard deviations, r#rt
and r#rr.
Tables 5 and 6 show the results obtained by our multiobjective proposal. These results come from the

best average queries derived, chosen by means of the procedure described in Section 4. Notice that, in both
tables, the best results are shown in boldface, fn view of these results, the performance of our proposal is
very significant. On the one hand, the fitness value provided by our multiobjective proposal improves Smith
and Smith�s results in all the queries of the Cranfield collection,9 and in 16 of the 18 queries of the CACM
collection. In both collections, the average precision value is slightly reduced, while the average recall value
8 On the Cranfield collection, the genotypic approach spends more or less 3 min whilst the phenotypic variant takes around 30 min.
9 Notice that the same weight values for the fitness function considered by the Smith and Smith�s approach have been used to
compute this value with the query generated from our algorithm.



Table 4
Results obtained by the basic Smith and Smith�s IQBE algorithm on the CACM collection

#q Sz rSz F rF P rP R rR #rr r#rr #rt r#rt

CACM

4 18.800 0.190 1.420 0.025 1.000 0.000 0.275 0.031 3.300 0.375 3.300 0.375
7 19.000 0.000 1.414 0.021 1.000 0.000 0.268 0.026 7.500 0.738 7.500 0.738
9 19.000 0.000 1.422 0.049 1.000 0.000 0.278 0.061 2.500 0.552 2.500 0.552
10 19.000 0.600 1.399 0.114 1.000 0.000 0.249 0.143 8.700 5.001 8.700 5.001
14 19.000 0.000 1.472 0.018 0.604 0.018 0.934 0.007 41.100 0.300 68.100 2.587
19 18.600 0.379 1.353 0.048 1.000 0.000 0.191 0.059 2.100 0.655 2.100 0.655
24 18.800 0.190 1.440 0.027 1.000 0.000 0.300 0.033 3.900 0.435 3.900 0.435
25 19.000 0.000 1.349 0.048 1.000 0.000 0.186 0.060 9.500 3.041 9.500 3.041
26 19.000 0.000 1.468 0.032 0.994 0.005 0.343 0.044 10.300 1.327 10.400 1.380
27 18.600 0.379 1.327 0.016 1.000 0.000 0.159 0.020 4.600 0.586 4.600 0.586
40 18.200 0.419 1.472 0.023 1.000 0.000 0.340 0.029 3.400 0.290 3.400 0.290
42 18.800 0.190 1.322 0.022 1.000 0.000 0.152 0.028 3.200 0.580 3.200 0.580
43 19.000 0.000 1.389 0.073 1.000 0.000 0.237 0.091 9.700 3.761 9.700 3.761
45 18.800 0.188 1.311 0.014 1.000 0.000 0.138 0.017 3.600 0.452 3.600 0.452
58 18.800 0.190 1.387 0.027 1.000 0.000 0.233 0.034 7.000 1.010 7.000 1.010
59 19.000 0.000 1.409 0.067 0.976 0.055 0.298 0.090 12.800 3.868 13.300 4.605
60 19.000 0.000 1.487 0.020 1.000 0.000 0.359 0.024 9.700 0.664 9.700 0.664
61 19.000 0.000 1.394 0.070 1.000 0.000 0.242 0.088 7.500 2.729 7.500 2.729

Table 3
Results obtained by the basic Smith and Smith�s IQBE algorithm on the Cranfield collection

#q Sz rSz F rF P rP R rR #rr r#rr #rt r#rt

Cranfield

1 18.800 0.600 1.385 0.055 1.000 0.000 0.231 0.069 6.700 2.002 6.700 2.002
2 18.800 0.600 1.507 0.144 1.000 0.000 0.384 0.180 9.600 4.499 9.600 4.499
3 18.800 0.190 1.884 0.013 1.000 0.000 0.855 0.016 7.700 0.145 7.700 0.145
7 18.800 0.190 1.533 0.021 1.000 0.000 0.417 0.026 2.500 0.158 2.500 0.158
8 18.600 0.253 1.327 0.024 1.000 0.000 0.158 0.030 1.900 0.359 1.900 0.359
11 18.800 0.190 1.580 0.031 1.000 0.000 0.475 0.039 3.800 0.310 3.800 0.310
19 19.000 0.000 1.768 0.038 1.000 0.000 0.710 0.048 7.100 0.478 7.100 0.478
23 19.000 0.000 1.385 0.031 1.000 0.000 0.197 0.039 6.500 1.285 6.500 1.285
26 18.800 0.190 1.383 0.024 1.000 0.000 0.228 0.030 1.600 0.210 1.600 0.210
38 19.000 0.000 1.571 0.028 1.000 0.000 0.464 0.035 5.100 0.386 5.100 0.386
39 19.000 0.000 1.417 0.018 1.000 0.000 0.271 0.022 3.800 0.310 3.800 0.310
40 19.000 0.000 1.588 0.023 1.000 0.000 0.485 0.029 6.300 0.375 6.300 0.375
47 18.800 0.190 1.397 0.017 1.000 0.000 0.247 0.021 3.700 0.318 3.700 0.318
73 18.800 0.600 1.451 0.080 1.000 0.000 0.314 0.100 6.600 2.107 6.600 2.107
157 19.000 0.000 1.330 0.030 1.000 0.000 0.163 0.037 6.500 1.500 6.500 1.500
220 19.000 0.000 1.521 0.078 1.000 0.000 0.390 0.097 7.800 1.939 7.800 1.939
225 19.000 0.000 1.501 0.041 1.000 0.000 0.376 0.051 9.400 1.281 9.400 1.281
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is significantly increased in the most of the cases, being these variations more pronounced in the CACM
collection. In the same way, the number of relevant documents retrieved is also significantly increased. It
seems that the diversity induced by the Pareto-based selection and the use of an elitist population make
SPEA-GP converge to better space zones.
This way, we can conclude that our multiobjective IQBE approach is not only a good way to derive dif-

ferent queries with several precision–recall trade-offs but also to obtain individual queries with high retrie-
val accuracy.



Table 5
Results obtained by the our multiobjective proposal, SPEA-GP algorithm on the Cranfield collection

#q Sz rSz F rF P rP R rR #rr r#rr #rt r#rt

Cranfield

1 19.000 0.000 1.515 0.041 0.955 0.057 0.462 0.068 13.400 1.960 14.200 2.960
2 19.000 0.000 1.529 0.073 0.858 0.124 0.624 0.136 15.600 3.412 19.200 7.318
3 17.200 1.112 1.905 0.013 0.980 0.013 0.911 0.021 8.200 0.190 8.400 0.290
7 18.400 0.290 1.780 0.023 0.983 0.016 0.750 0.026 4.500 0.158 4.600 0.210
8 18.600 0.253 1.533 0.021 1.000 0.000 0.417 0.026 5.000 0.316 5.000 0.316
11 18.600 0.253 1.770 0.019 0.975 0.016 0.750 0.031 6.000 0.245 6.200 0.340
19 18.800 0.188 1.896 0.019 0.973 0.017 0.910 0.017 9.100 0.170 9.400 0.322
23 19.000 0.000 1.464 0.063 0.937 0.116 0.424 0.144 14.000 4.754 16.000 8.866
26 17.600 0.569 1.462 0.017 0.980 0.019 0.357 0.030 2.300 0.318 2.600 0.290
38 19.000 0.000 1.719 0.024 0.990 0.009 0.664 0.034 7.300 0.375 7.400 0.429
39 18.200 0.759 1.570 0.019 0.980 0.013 0.493 0.033 6.900 0.457 7.100 0.556
40 19.000 0.000 1.635 0.028 0.942 0.030 0.631 0.028 8.200 0.369 8.900 0.670
47 19.000 0.000 1.691 0.024 0.938 0.022 0.707 0.019 10.600 0.290 11.400 0.514
73 19.000 0.000 1.570 0.067 0.959 0.041 0.524 0.067 11.000 1.414 11.500 1.628
157 19.000 0.000 1.359 0.091 0.896 0.189 0.355 0.172 14.200 6.867 20.700 23.469
220 18.800 0.600 1.610 0.051 0.945 0.074 0.595 0.082 11.900 1.640 12.800 2.821
225 19.000 0.000 1.508 0.035 0.992 0.023 0.396 0.052 9.900 1.300 10.000 1.483

Table 6
Results obtained by the our multiobjective proposal, SPEA-GP algorithm on the CACM collection

#q Sz rSz F rF P rP R rR #rr r#rr #rt r#rt

CACM

4 19.000 0.000 1.577 0.030 0.920 0.036 0.592 0.034 7.100 0.411 8.000 0.787
7 18.800 0.190 1.561 0.016 0.913 0.019 0.582 0.033 16.300 0.928 18.100 1.315
9 18.000 0.583 1.538 0.041 0.941 0.032 0.511 0.079 4.600 0.710 5.200 1.028
10 19.000 0.000 1.330 0.064 0.524 0.081 0.877 0.069 30.700 2.410 60.900 15.248
14 18.800 0.600 1.474 0.026 0.601 0.022 0.941 0.011 41.400 0.490 69.000 2.864
19 19.000 0.000 1.491 0.014 1.000 0.000 0.364 0.018 4.000 0.200 4.000 0.200
24 18.600 0.379 1.566 0.015 0.982 0.017 0.485 0.029 6.300 0.375 6.500 0.534
25 18.600 0.800 1.383 0.047 0.970 0.054 0.273 0.056 13.900 2.879 14.500 3.801
26 19.000 0.000 1.558 0.020 0.947 0.032 0.527 0.043 15.800 1.279 17.500 2.491
27 19.000 0.000 1.488 0.016 0.994 0.006 0.369 0.024 10.700 0.708 10.800 0.772
40 17.200 1.147 1.639 0.033 0.953 0.030 0.620 0.046 6.200 0.465 6.700 0.708
43 19.000 0.000 1.407 0.095 0.875 0.134 0.446 0.093 18.300 3.796 22.300 9.263
42 18.800 0.190 1.450 0.011 0.980 0.019 0.343 0.028 7.200 0.580 7.500 0.840
45 19.000 0.000 1.480 0.013 0.930 0.029 0.454 0.044 11.800 1.14 13.200 1.719
58 18.800 0.190 1.356 0.008 0.990 0.009 0.210 0.013 6.300 0.401 6.400 0.473
59 19.000 0.000 1.463 0.061 0.817 0.075 0.602 0.064 25.900 2.737 32.200 5.980
60 19.000 0.000 1.598 0.017 0.988 0.007 0.515 0.025 13.900 0.670 14.100 0.741
61 19.000 0.000 1.466 0.077 0.931 0.109 0.435 0.087 13.500 3.008 15.100 5.394
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6. Concluding remarks

The automatic derivation of Boolean queries has been considered by incorporating a second generation
multiobjective evolutionary approach, SPEA, to an existing GP-based IQBE proposal. The proposed
approach has performed appropriately in 35 queries, 17 of the well known Cranfield collection, and
18 of the CACM collection, in terms of absolute retrieval performance arid of the quality of the obtained
Pareto sets, allowing us to derive a set of queries with different precision–recall trade-offs.
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In our opinion, many different future works arise from this preliminary study. Firstly, we will search for
new functions to measure the similarity between expression trees with the purpose of being able to work in
the decision space. On the other hand, preference information of the user on the kind of queries to be de-
rived can be included in the Pareto-based selection scheme in the form of a goal vector whose values are
adapted during the evolutionary process (Fonseca & Fleming, 1993). On the other hand, the proposed
IQBE algorithm can be extended to other kinds of IRSs based on complex query languages such as ex-
tended Boolean (fuzzy) IRSs (Herrera-Viedma, 2001; Herrera-Viedma, Cordón, Luque, López, & Muñoz,
2003) (several preliminaries works on this topic can be found in Cordón, Herrera-Viedma, Luque, et al.,
2003; Cordón et al., 2004). Moreover, a training-test validation procedure can be considered to test the real
application of the proposed IQBE algorithm.
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López-Pujalte, C., Guerrero, V., & Moya, F. (2003). Order-based fitness functions for genetic algorithms applied to relevance
feedback. Journal of the American Society for Information Science and Technology, 54(2), 152–160.

Martı́n-Bautista, M., Larsen, H., & Vila, M. (1999). A fuzzy genetic algorithm approach to an adaptive information retrieval agent.
Journal of the American Society for Information Science, 50(9), 760–771.

Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs. Springer-Verlag.
Robertson, A., & Willet, P. (1994). Generation of equifrequent groups of words using a genetic algorithm. Journal of Documentation,

50(3), 213–232.
Robertson, A., & Willet, P. (1996). An upperbound to the performance for ranked-output searching: Optimal weighting of query terms
using a genetic algorithm. Journal of Documentation, 52(4), 405–420.

Rodrı́guez-Vazquez, K., Fonseca, C. M., & Fleming, P. J. (1997). Multiobjective genetic programming: A nonlinear system
identification application. In Late breaking papers at the genetic programming 1997 conference (pp. 207–212).

Salton, G. (1971). The smart retrieval system. Experiments in automatic document processing. Englewood Cliffs: Prentice-Hall.
Salton, G., & McGill, M. (1983). Introduction to modern information retrieval. McGraw-Hill.
Sanchez, E., Miyano, H., & Bracket, J. (1995). Optimization of fuzzy queries with genetic algorithms. Application to a data base of
patents in biomedical engineering. In Proceedings of VI IFSA congress, Sao-Paulo, Brazil (pp. 293–296).

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In Genetic algorithms and their

applications. Proceedings of the first international conference on genetic algorithms (pp. 93–100). Lawrence Erlbaum.
Schwefel, H.-P. (1995). Evolution and optimum seeking. Sixth generation computer technology series. John Wiley and Sons.
Smith, M., & Smith, M. (1997). The use of genetic programming to build Boolean queries for text retrieval through relevance feedback.

Journal of Information Science, 23(6), 423–431.
Van Rijsbergen, C. (1979). Information retrieval (2nd ed.). Butterworth.
Vrajitoru, D. (1998). Crossover improvement for the genetic algorithm in information retrieval. Information Processing &Management,

34(4), 405–415.
Yang, J., & Korfhage, R. (1994). Query modifications using genetic algorithms in vector space models. International Journal of Expert

Systems, 7(2), 165–191.
Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary

Computation, 8(2), 173–195.
Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach.

IEEE Transactions on Evolutionary Computation, 3(4), 257–271.


	Improving the learning of Boolean queries by means of a multiobjective IQBE evolutionary algorithm
	Introduction
	Preliminaries
	Boolean IRS
	Evaluation criteria of IRSs
	The IQBE paradigm and its application to IR
	EAs and their application to IR
	Multiobjective EAs and IR

	A multiobjective IQBE EA to learn multiple Boolean queries
	The Smith and Smith’s approach to learn Boolean queries
	A new approach to learn Boolean queries by means of multiobjective evolutionary algorithms

	Experiments developed
	Results and analysis of results
	Analysis of the Pareto sets derived
	Analysis of the  ldquo Best rdquo  queries derived

	Concluding remarks
	Acknowledgement
	References


