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RATIONALITY OF INDUCED ORDERED WEIGHTED
OPERATORS BASED ON THE RELIABILITY OF
THE SOURCE OF INFORMATION IN
GROUP DECISION–MAKING

Francisco Chiclana, Francisco Herrera and Enrique Herrera-Viedma

The aggregation of preference relations in group decision-making (GDM) problems can
be carried out based on either the reliability of the preference values to be aggregated, as
is the case with ordered weighted averaging operators, or on the reliability of the source of
information that provided the preferences, as is the case with weighted mean operators.

In this paper, we address the problem of aggregation based on the reliability of the
source of information, with a double aim: a) To provide a general framework for induced
ordered weighted operators based upon the source of information, and b) to provide a study
of their rationality. We study the conditions which need to be verified by an aggregation
operator in order to maintain the rationality assumptions on the individual preferences in
the aggregation phase of the selection process of alternatives. In particular, we show that
any aggregation operator based on the reliability of the source of information does verify
these conditions.

Keywords: aggregation operators, induced aggregation, group decision-making, preference
relations, rationality, consistency

AMS Subject Classification: 91B06, 91B10

1. INTRODUCTION

Preference relations are the most common representation structures of information
used in decision-making problems because they are a useful tool in modelling decision
processes, above all when we want to aggregate experts’ preferences into group
preferences [14, 22, 23]. Many important decision models have been developed using
mainly two kinds of preference relations: fuzzy preference relations [7, 14, 21, 24]
and multiplicative preference relations [22].

Fuzzy preference relations: (See [14, 24].) A fuzzy preference relation P on a
set of alternatives X is a fuzzy set on the product set X ×X, that is characterized
by a membership function

µP : X ×X −→ [0, 1].
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When cardinality of X is small, the preference relation may be conveniently repre-
sented by the n × n matrix P = (pij) being pij = µP (xi, xj) ∀ i, j ∈ {1, . . . , n}.
pij is interpreted as the preference degree of the alternative xi over xj : pij = 1/2
indicates indifference between xi and xj (xi ∼ xj), pij = 1 indicates that xi is abso-
lutely preferred to xj , and pij > 1/2 indicates that xi is preferred to xj (xi Â xj).
In this case, the preference matrix, P , is usually assumed additive reciprocal, i. e.,

pij + pji = 1 ∀ i, j ∈ {1, . . . , n}.

Multiplicative preference relations: (See [22].) A multiplicative preference
relation A on a set of alternatives X is represented by a matrix A ⊂ X×X, A = (aij),
being aij interpreted as the ratio of the preference intensity of alternative xi to that
of xj , i. e., it is interpreted as xi is aij times as good as xj . Saaty suggests measuring
aij using a ratio-scale, and precisely the 1 to 9 scale: aij = 1 indicates indifference
between xi and xj , aij = 9 indicates that xi is absolutely preferred to xj , and
aij ∈ {2, . . . , 8} indicates intermediate preference evaluations. In this case, the
preference relation, A, is usually assumed multiplicative reciprocal, i. e.,

aij · aji = 1 ∀ i, j ∈ {1, . . . , n}.

The aggregation of a set of preference relations can be done taking into account
the reliability of the preference values to be aggregated, as is the case with ordered
weighted averaging (OWA) operators, or taking into account the reliability of the
source of information, as is the case with weighted mean (WM) operators (see Ap-
pendix A.1).

A fundamental aspect of the OWA operators is the reordering of the arguments
to be aggregated, based upon the magnitude of their respective values, which allows
an importance to be given to the values to be aggregated. However, it is clear
that a set of values can be reordered in a different way to the one used by the
ordered weighted (OW) operators. This is the idea on which Yager and Filev based
the definition of the induced OWA (IOWA) operator [28]. Motivated by this idea,
and the fact that OWA operators are not appropriate aggregation operators for
ratio-scale measurements (see Appendix A.2), we introduced the ordered weighted
geometric (OWG) operator [16, 17] and the induced OWG (IOWG) operator [10].
The class of induce OW (IOW) operators includes both classes of OW and WM
operators.

In this paper, we address the problem of aggregation based on the reliability of
the source of information, with a double aim:

• To provide a general framework for IOW operators based upon the source of
information. In particular, we present the importance IOW (I-IOW) oper-
ator, when dealing with heterogeneous GDM, which induces the ordering of
the argument values based upon the importance of the source of information,
and the consistency IOW (C-IOW) operator, when dealing with homogeneous
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GDM, which induces the ordering of the argument values based upon the con-
sistency of the source of information. We also show that these IOW operators
when guided by a linguistic quantifier allow the introduction of the importance
and consistency concepts in the aggregation phase of a selection process of the
alternatives in GDM.

• Secondly, and as the main novelty of this paper, we study the conditions
which need to be verified by an aggregation operator in order to maintain
the rationality assumptions on the individual preferences in the aggregation
phase of a selection process. In particular, we show that any aggregation
operator based on the reliability of the source of information does verify these
conditions, as do the I-IOW and the C-IOW operators.

In order to do this, the paper is set out as follows. In Section 2, we deal with
the issue of rationality in the aggregation of preference relations in group decision-
making. In Section 3, we justify the election of IOW operators based upon the
reliability of the source of information in order to get rational aggregation results,
and shortly introduce the basic IOW operators: the IOWA and the IOWG opera-
tors. In Section 4, we present two different IOW operators to aggregate preference
relations in GDM problems based upon the reliability of the source of information,
the I-IOW and the C-IOW operators. In Section 5, we study the conditions needed
to guarantee both indifference, reciprocity and consistency properties of the indi-
vidual preference relations trough the aggregation phase. Our concluding remarks
are given in Section 6. Finally, in the appendix we provide some definitions needed
throughout this paper.

2. THE PROBLEM OF RATIONALITY OF INFORMATION IN GDM

In this section, we analize the fundamental rationality assumptions when dealing
with preference relations in GDM, as well as the necessary compatibility between
them.

In a preference relation an expert associates a real number to each pair of alter-
natives that reflects the preference degree, or the ratio of preference intensity, of the
first alternative over, or to that of, the second one. When doing this, a first and
natural question immediately arises: Which conditions have to be verified in order
to obtain consistent results?

There are three fundamental and hierarchical levels of rationality assumptions
when dealing with preference relations [15]:

• The first level of rationality requires indifference between any alternative and
itself.

• The second one assumes the property of reciprocity in the pairwise comparison
between any two alternatives.

• Finally, the third one is associated with the transitivity in the pairwise com-
parison among any three alternatives.
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The mathematical modelling of all these rationality assumptions obviously depends
on the scales used for providing the preference values [12, 14, 20, 22, 24].

A preference relation verifying the third level of rationality is called a consistent
preference relation and any property that guarantees the transitivity of the prefer-
ences is called a consistency property. The lack of consistency in decision making
can lead to inconsistent conclusions; that is why it is important, in fact crucial, to
study conditions under which consistency is satisfied [14, 20, 22].

Clearly, the problem of consistency itself includes two problems [5, 6, 18]:

(i) when an expert, considered individually, is said to be consistent and,

(ii) when a whole group of experts are considered consistent.

The first problem was addressed in [20], and thus in this paper we focus on the
second one. We address the problem of rationality in the aggregation of rational
(consistent) information in GDM problems.

Due to the hierarchical structure of the three rationality assumptions for a prefer-
ence relation, the verification of a particular level of rationality should be a necessary
condition in order to verify the next level of rationality. This means that the third
level of rationality, transitivity of preferences, should imply or be compatible with
the second level of rationality, reciprocity of preferences, and the second level with
the first one, indifference of any alternative with itself.

This necessary compatibility between the rationality assumptions can be used
as a criterion for considering a particular condition modelling any one of the ra-
tionality levels as adequate or inadequate. In the case of fuzzy (multiplicative)
preference relations, the indifference between any alternative, xi, and itself is mod-
elled by associating the preference value pii = 0.5 (aii = 1). The reciprocity of
fuzzy (multiplicative) preferences is modelled using the property pij + pji = 1, ∀ i, j
(aij · aji = 1, ∀ i, j). A necessary condition for a preference relation to verify reci-
procity should be that indifference between any alternative and itself holds. Because
reciprocity property implies the indifference of preferences, we conclude that both
properties are compatible.

In the case of multiplicative preference relations Saaty means by consistency what
he calls cardinal transitivity in the strength of preferences,

aij · ajk = aik ∀ i, j, k = 1, . . . , n,

which is a stronger condition than the traditional requirement of the transitivity
of preferences. Inconsistency for Saaty is a violation of proportionality which may
not entail violation of transitivity [22]. Furthermore, consistency implies reciprocity,
and therefore, they are both compatible.

In [22] Saaty shows that a reciprocal multiplicative preference relation is consis-
tent if and only if its maximum or principal eigenvalue λmax is equal to the number
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of alternatives n. Perfect consistency is however difficult to obtain in practice, espe-
cially when measuring preferences on a set with a large number of alternatives. For
measuring consistency we can use Saaty’s consistency index

CIk =
λk

max − n

n− 1

where λk
max is the maximum or principal eigenvalue of Ak. The closer CIk to 0

the more consistent the information provided by the expert ek is, and thus, more
importance should be given to this information.

In decision-making problems based on fuzzy preference relations, the study of
consistency is associated with the study of the transitivity property, and more than
one condition has been suggested for modelling the transitivity of preferences [20].
Thus, a study of the compatibility between them and the reciprocity property would
be of great help in deciding which one of them is the most adequate to model
the transitivity of preferences. Using the transformation function of proposition A
(Appendix A), the additive transitivity property

pij + pjk + pki =
3
2
∀ i, j, k

is the corresponding concept to use to model the additive consistency property for
fuzzy preference relations [20]. Furthermore, additive transitivity implies reciprocity
of fuzzy preference relations, and therefore, they are both compatible. In [20],
Herrera-Viedma et al. gave a characterization of the consistency property defined
by the additive transitivity property of a fuzzy preference relation P k = (pk

ij). Using
this characterization method, a procedure was given to construct a consistent fuzzy
preference relation P̃ k from a non-consistent fuzzy preference relation P k.

3. THE ROLE OF IOW OPERATORS BASED UPON THE SOURCE OF
INFORMATION IN GDM

The classical GDM procedure follows two steps [14]: aggregation and exploitation.
The aggregation of experts’ preferences, consisting of combining the individual pref-
erences into a collective one in such a way that it summarizes or reflects all the
properties contained in all the individual preferences, is a necessary and very im-
portant task to carry out when we want to obtain a final solution of GDM problems
[13, 14, 21].

The aggregation of a set of preference relations can be done taking into account
the reliability of the preference values to be aggregated, as is the case with OW
operators, or taking into account the reliability of the source of information, as is
the case with WM operators. Furthermore, in any GDM process the final solution
must be accepted by a majority of experts. The majority is traditionally defined as
a threshold number of elements. However, this concept is not always included in the
GDM process. Fuzzy logic provides one possible way of modelling it.
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Fuzzy majority is a soft majority concept expressed by a fuzzy quantifier [30],
which is manipulated via a fuzzy logic based calculus of linguistically quantified
propositions. Therefore, using fuzzy majority guided aggregation operators we can
incorporate the concept of majority into the computation of the solution. The
OWA operators have been extensively implemented in the last few years in the
resolution process of different problems and have also proved to be very important
in solving GDM problems because they allow the implementation of the concept of
fuzzy majority, which is fundamental when looking for a final solution of consensus
[7, 21]. However, as far as we are aware no resolution process using WM operators
has, so far, been proposed that implements the concept of fuzzy majority.

As shown in [3, 4], the proper aggregation operator of ratio-scale measurements
is not the arithmetic mean but the geometric mean. However, this operator does not
allow the concept of fuzzy majority in the decision processes to be implemented. We
could use the OWA operator but as it presents a similar behaviour to the arithmetic
mean this is not advisable. In [7] the OWG operator based on the OWA operator
and the geometric mean was introduced. These operators allow the implementation
of the concept of fuzzy majority in the decision processes of a GDM problem with
ratio-scale measurements in a similar way to OWA operators [7, 16, 17].

As we have mentioned, a fundamental aspect of the OW operators is the reorder-
ing of the arguments to be aggregated, based upon the magnitude of their respective
values, which allows an importance to be given to the values to be aggregated. How-
ever, it is clear that a set of values can be reordered in a different way to the one
used by the OW operators. This is the idea on which Yager and Filev based the def-
inition of the IOWA operator [28]. Motivated by this idea, and the aforementioned
fact that OWA operators are not appropriate aggregation operators for ratio-scale
measurements, in [10] we introduced the IOWG operator.

The OW operators allow the implementation of the concept of fuzzy majority but
fail to maintain the rationality assumptions [9, 17], in contrast to WM operators,
which maintain the rationality assumptions but do not allow the implementation of
the fuzzy majority concept. The solution to this situation would be the use of IOW
operators in the resolution process. In particular, the type of IOW operator that
induces the ordering of the argument to be aggregated based upon the reliability of
the source of information, will, on the one hand, guarantee the conservation of the
rationality assumptions because they act in the same way as a WM operator, and,
on the other hand, will allow the implementation of the concept of fuzzy majority
because they are based on the OW operator.

Therefore, in this paper, we focus on the aggregation of preference relations based
upon the reliability of the source of information (the experts). This would allow
us to design a rational resolution process based on IOW aggregation that both
implements the concept of fuzzy majority, and maintains the rationality assumption
of the individual preference relations. Before that, we provide the basic definitions
of the IOWA and IOWG operators.
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3.1. The IOWA operator

Definition 1. (See [28].) An IOWA operator of dimension n is a function

ΦW : (R× R)n −→ R,

to which a set of weights or weighting vector is associated, W = (w1, . . . , wn), such
that wi ∈ [0, 1] and Σiwi = 1, and it is defined to aggregate the set of second
arguments of a list of n 2-tuples {〈u1, p1〉, . . . , 〈un, pn〉} according to the following
expression,

ΦW (〈u1, p1〉, . . . , 〈un, pn〉) =
n∑

i=1

wi · pσ(i)

being σ is a permutation of {1, . . . , n} such that uσ(i) ≥ uσ(i+1), ∀ i = 1, . . . , n− 1,
i. e., 〈uσ(i), pσ(i)〉 is the 2-tuple with uσ(i) the ith highest value in the set {u1, . . . , un}.

In the above definition the reordering of the set of values to be aggregated,
{p1, . . . , pn}, is induced by the reordering of the set of values {u1, . . . , un} asso-
ciated to them, which is based upon their magnitude. Due to this use of the set
of values {u1, . . . , un}, Yager and Filev called them the values of an order inducing
variable and {p1, . . . , pn} the values of the argument variable [27, 28, 29]. As we have
mentioned, the main difference between the OWA operator and the IOWA operator
resides in the reordering step of the argument variable. In the case of OWA operator
this reordering is based upon the magnitude of the values to be aggregated, while
in the case of IOWA operator an order inducing variable has to be defined as the
criterion to induce that reordering.

An immediate consequence of this definition is that if the order inducing variable
is the argument variable then the IOWA operator is reduced to the OWA operator.
A detailed list of properties of the IOWA operator and some of their uses can be
consulted in [27, 28, 29].

Note 1. In this paper we focus on the aggregation of numerical preferences, which
is why we assume that the nature of the first argument of the IOWA operators is
also numeric, although it could be linguistic [27, 28, 29].

Note 2. In the case of using an IOWA operator in the aggregation phase of a GDM
problem, the concept of fuzzy majority can be implemented by means of fuzzy lin-
guistic quantifiers [30]. When a fuzzy linguistic quantifier Q is used to compute the
weights of the IOWA operator Φ, then it is symbolized by ΦQ.

Example 1. Suppose three experts provide the following fuzzy preference relations
on a set of three alternatives

P 1 =




0.5 0.75 0.87
0.25 0.5 0.66
0.13 0.34 0.5


 P 2 =




0.5 0.66 0.94
0.34 0.5 0.87
0.06 0.13 0.5


 P 3 =




0.5 0.66 0.75
0.34 0.5 0.66
0.25 0.34 0.5


 ,
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and have the following values associated to them b = (0.65, 0.13, 0.22). Using them
to induce the ordering of the fuzzy preference values to be aggregated, and the fuzzy
linguistic quantifier “most of”, we obtain the following collective fuzzy preference
relation

P c = Φmost

(〈0.65, P 1〉, 〈0.13, P 2〉, 〈0.22, P 3〉) =




0.5 0.67 0.81
0.33 0.5 0.72
0.19 0.28 0.5


 .

For example, the value pc
13 is obtained as follows:

pc
13 = Φmost (〈0.65, 0.87〉, 〈0.13, 0.94〉, 〈0.22, 0.75〉)

=
1
15
· 0.87 +

10
15
· 0.75 +

4
15
· 0.94 =

12.13
15

' 0.81.

3.2. The IOWG operator

Suppose that we want to aggregate a set of two-tuples {〈u1, a1〉, . . . , 〈un, an〉} where
{u1, . . . , un} is the set of order inducing values associated to the set of argument
values {a1, . . . , an}, which are given on the basis of a positive ratio-scale. In this
case, we can use the IOWA operator on the set {〈u1, p1〉, . . . , 〈un, pn〉}, where the
argument values {p1, . . . , pn} are obtained using the transformation function f (see
Appendix A.2), i. e., pi = f(ai) = 1

2 (1 + log9 ai). Thus, we obtain:

p = ΦW (〈u1, p1〉, . . . , 〈un, pn〉) =
n∑

i=1

wi · pσ(i)

where 〈uσ(i), pσ(i)〉 is the two-tuple with uσ(i) the ith highest value in the set
{u1, . . . , un}.

The set of two-tuples {〈u1, a1〉, . . . , 〈un, an〉} and {〈u1, p1〉, . . . , 〈un, pn〉} have the
same set of order inducing values, and therefore the same order of the arguments
{a1, . . . , an} and {p1, . . . , pn} is induced:

p =
n∑

i=1

wi · 1
2

(
1 + log9 aσ(i)

)
=

1
2

(
n∑

i=1

wi +
n∑

i=1

wi · log9 aσ(i)

)

=
1
2

(
1 +

n∑

i=1

log9

(
aσ(i)

)wi

)
=

1
2

(
1 + log9

n∏

i=1

(
aσ(i)

)wi

)
.

This last expression justifies the definition of the IOWG operator as follows:

Definition 2. (See [10].) An IOWG operator of dimension n is a function

ΦG
W : (R× R+)n −→ R+,

to which a set of weights or weighting vector is associated, W = (w1, . . . , wn), such
that wi ∈ [0, 1] and Σiwi = 1, and it is defined to aggregate the set of second
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arguments of a list of n two-tuples {〈u1, a1〉, . . . , 〈un, an〉}, given on the basis of a
positive ratio-scale, according to the following expression,

ΦG
W (〈u1, a1〉, . . . , 〈un, an〉) =

n∏

i=1

(
aσ(i)

)wi

being σ a permutation of {1, . . . , n} verifying uσ(i)≥uσ(i+1), ∀ i=1, . . . , n−1, that is
〈uσ(i), aσ(i)〉 is the two-tuple with uσ(i) the ith highest value in the set {u1, . . . , un}.
Example 2. Suppose a set of three experts provide the following multiplicative
preference relations on a set of three alternatives

A1 =




1 3 5
1/3 1 2
1/5 1/2 1


 A2 =




1 2 7
1/2 1 5
1/7 1/5 1


 A3 =




1 2 3
1/2 1 2
1/3 1/2 1


 .

If these experts are associated with the following values b = (0.65, 0.13, 0.22), then
the collective multiplicative preference relation obtained using them to induce the
ordering, and the same fuzzy linguistic quantifier “most of”, is

Ac = ΦG
most

(〈0.65, A1〉, 〈0.13, A2〉, 〈0.22, A3〉) =




1 1.08 3.89
1/1.08 1 2.55
1/3.89 1/2.55 1


 .

4. IOW OPERATORS BASED ON THE RELIABILITY OF THE SOURCE
OF INFORMATION

In this section we present a general framework for the definition of IOW operators
for GDM problems based on the reliability of the source of information.

In [10, 11] we present two general studies on the IOWG and IOWA operators,
respectively. Here, we present a particular study focused on the induced aggregation
based on the reliability of the source of information. In particular, we study the
importance IOW (I-IOW) operator, which induces the ordering of the argument
values based upon the importance of the source of information; and the consistency
IOW (C-IOW) operator, which induces the ordering of the argument values based
upon the consistency of the source of information. These IOW operators allow the
introduction of some semantics or meaning in the aggregation.

4.1. The Importance IOW operator

In many cases, each expert ek ∈ E has an importance degree associated to them.
This importance degree can be interpreted as a fuzzy subset, µI : E −→ [0, 1],
in such a way that µI(ek) ∈ [0, 1] denotes the importance degree of the opinion
provided by the expert ek. When this is the case, we call this a heterogeneous GDM
problem [19]. The general procedure for the inclusion of these importance values
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in the aggregation process involves the transformation of the preference values, pk
ij ,

under the importance degree µI(ek) to generate a new value, p̄k
ij . This activity is

carried out by means of a transformation function g :

p̄k
ij = g

(
pk

ij , µI(ek)
)
.

Examples of functions g used in these cases include the minimum operator [19], the
exponential function g(x, y) = xy [25], or generally any t-norm operator [31].

In our case, we can implement this importance degree variable by an alternative
method, which consists of using it as the order inducing variable of the IOW operator
to be applied in the aggregation stage of our resolution process. Thus, the ordering
of the preference values is induced by the ordering of the experts from the most to
the least important one. We call this importance degree based IOW operator the
I-IOW operator and denote it as ΦI

W .

Definition 3. If a set of of experts, E = {e1, . . . , em}, provide preferences about
a set of alternatives, X = {x1, . . . , xn}, by means of the set of preference relations,
{R1, . . . , Rm}, and each expert ek has an importance degree, µI(ek) ∈ [0, 1], asso-
ciated to them, then an I-IOW operator of dimension n, ΦI

W , is an IOW operator
whose set of order inducing values is the set of importance degrees.

Example 3. Suppose that the importance pairwise comparisons of the set of three
experts of example 1 are given in the following fuzzy preference relation

I =




0.5 0.87 0.75
0.23 0.5 0.38
0.25 0.62 0.5


 .

As shown in [7], the vector of importance of a consistent fuzzy preference relation
induces the same ordering among the set of experts as the vector of quantifier guided
dominance degrees, no matter which linguistic quantifier is used. For this reason, we
propose to calculate the importance associated to the expert ei as the total sum of
the values of the row i, i. e., µI(ek) =

∑
j pk

ij . The normalized vector of importance
for this matrix is I = (0.46, 0.24, 0.30).

Using the fuzzy linguistic quantifier “most of”, the collective fuzzy preference
relation obtained using the corresponding Importance IOWA (I-IOWA) operator
ΦI

most is

P c = ΦI
most

(〈0.46, P 1〉, 〈0.24, P 2〉, 〈0.30, P 3〉) =




0.5 0.67 0.81
0.33 0.5 0.72
0.19 0.28 0.5




whose elements can be considered as the preference of one alternative over another
for most of the more important experts.

Example 4. Suppose that we have a set of three experts E = {e1, e2, e3} and a
set of four alternatives X = {x1, x2, x3, x4}. Suppose that the importance pairwise
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comparisons of these three experts are given in the following reciprocal multiplicative
preference relation

I =




1 6 4
1/6 1 3
1/4 1/3 2


 .

According to Saaty, the next step would be the computation of a vector of pri-
orities, in our case of importance, from the given matrix, for which the principal
eigenvector is computed and normalized. The vector of importance for this matrix
is I = (0.70, 0.19, 0.11).

Suppose that these experts provide the following reciprocal multiplicative prefer-
ence relation on the set of alternatives

A1 =




1 6 6 3
1/6 1 4 3
1/6 1/4 1 1/2
1/3 1/3 2 1


A2 =




1 6 6 8
1/6 1 2 3
1/6 1/2 1 1/2
1/8 1/3 2 1


 A3 =




1 1/5 1/3 1
5 1 4 1/5
3 1/4 1 1/4
1 1/5 4 1


 .

Using the the fuzzy linguistic quantifier “most of”, the collective multiplicative
preference relation using the I-IOWG operator ΦI−G

most is:

Ac = ΦI−G
most

(〈0.701, A1〉, 〈0.193, A2〉, 〈0.106, A3〉) =




1 2.42 3.65 4.3
0.41 1 2.52 1.46
0.27 0.4 1 0.42
0.23 0.68 2.38 1




whose elements can be considered as the preference of one alternative over another
for most of the more important experts.

4.2. The Consistency IOW operator

When the experts have equal importance, i. e., in a homogeneous GDM problem, the
I-IOW operator is reduced to the Average Mean (AM) operator. Thus, in this case
the application of the I-IOW operator does not introduce any new meaning and its
application is not advisable. However, in a homogeneous situation, each expert can
always have a consistency index (CI) value associated to them, with the following
interpretation: the closer CI to 0 the more consistent the expert is. Usually, for
each expert this consistency index value is obtained by analyzing the consistency of
the preference relation provided. These values can be used as the order inducing
variable in the aggregation of preferences by means of IOW operators. In this case,
we call this a C-IOW operator.
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Definition 4. If a set of experts, E = {e1, . . . , em}, provides preferences about a set
of alternatives, X = {x1, . . . , xn}, by means of the preference relations, {R1, . . . , Rm},
then a C-IOW operator of dimension n, ΦC

W , is an IOW operator whose set of order
inducing values is the set of consistency index values, {CI1, . . . , CIm}, associated
to the set of experts.

Example 5. (See [21].) Suppose a set of four alternatives X = {x1, x2, x3, x4} and
a set of four experts E = {e1, e2, e3, e4}, whose fuzzy preference relations on X are:

P 1 =




0.5 0.3 0.7 0.1
0.7 0.5 0.6 0.6
0.3 0.4 0.5 0.2
0.9 0.4 0.8 0.5


 P 2 =




0.5 0.4 0.6 0.2
0.6 0.5 0.7 0.4
0.4 0.3 0.5 0.1
0.8 0.6 0.9 0.5




P 3 =




0.5 0.5 0.7 0
0.5 0.5 0.8 0.4
0.3 0.2 0.5 0.2
1 0.6 0.8 0.5


 P 4 =




0.5 0.4 0.7 0.8
0.6 0.5 0.4 0.3
0.3 0.6 0.5 0.1
0.7 0.7 0.9 0.5


 .

The consistency indexes are CI = (−0.6,−0.14,−0.73,−0.77). The collective
fuzzy preference relation obtained by using a C-IOWA operator guided by the same
linguistic quantifier “most of”, with weighting vector (0, 0.4, 0.5, 0.1), is

P c = ΦC
most

(〈−0.6, P 1〉, 〈−0.14, P 2〉, 〈−0.73, P 3〉, 〈−0.77, P 4〉)

=




0.5 0.41 0.7 0.12
0.59 0.5 0.68 0.47
0.3 0.32 0.5 0.19
0.88 0.53 0.81 0.5


 ,

whose elements can be considered as the preference of one alternative over another
for most of the more consistent experts.

Example 6. If we take the same data as in Example 2, the consistency index
values associated to these experts are CI = (0.002, 0.007, 0.005), and the collective
multiplicative preference relation obtained by using a C-IOWG operator guided by
the same linguistic quantifier “most of” is

Ac = ΦC−G
most

(〈−0.002, A1〉, 〈−0.007, A2〉, 〈−0.005, A3〉) =




1 1.08 3.89
0.93 1 2.55
0.26 0.39 1




whose elements can be interpreted as the preference intensity, measured in [1/9, 9]
[22], of one alternative over another for most of the more consistent experts.
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5. RATIONALITY OF IOW OPERATORS BASED ON THE RELIABILITY
OF THE SOURCE OF INFORMATION

In GDM models we normally assume that preference relations are reciprocal. How-
ever, it is well known that reciprocity is not generally maintained after aggregation is
carried out in the resolution process [9, 17]. An aggregation operator that maintains
the rationality assumption is called a rational aggregation operator. In the follow-
ing, we study the conditions needed to guarantee that an aggregation operator is
rational.

Definition 5. An aggregation operator F of preference relations is a rational ag-
gregation operator when it maintains the indifference, the reciprocity and the con-
sistency properties.

A desirable property to be verified by a rational aggregation operator is that a
small change in the arguments to be aggregated should produce a small change in
the value of the operator. In other words, we consider rational aggregation operators
to be continuous.

Assuming that F is a rational aggregation operator and Rc = (rc
ij) is the collective

preference relation obtained from the set of m individual consistent preference rela-
tions {R1, . . . , Rm}, the above definition of a rational aggregation operator implies
that F has to verify the following properties:

1. Fuzzy preference relations:

(a) Indifference property: rc
ii = 0.5 ∀ i = 1, 2, . . . , n. In terms of function F :

F (0.5, 0.5, . . . , 0.5) = 0.5.

(b) Reciprocity property: rc
ij+rc

ji = 1 ∀ i, j = 1, 2, . . . , n. In terms of function
F :

F (r1
ij , r

2
ij , . . . , r

m
ij ) + F (r1

ji, r
2
ji, . . . , r

m
ji ) = 1.

(c) Additive consistency property: rc
ij + rc

jk + rc
ki = 1.5 ∀ i, j = 1, 2, . . . , n.

In terms of function F :

F (r1
ij , r

2
ij , . . . , r

m
ij ) + F (r1

jk, r2
jk, . . . , rm

jk) + F (r1
ki, r

2
ki, . . . , r

m
ki) = 1.5

2. Multiplicative preference relations:

(a) Indifference property: rc
ii = 1 ∀ i = 1, 2, . . . , n, or equivalently

F (1, 1, . . . , 1) = 1

(b) Reciprocity property: rc
ij · rc

ji = 1 ∀ i, j = 1, 2, . . . , n, or equivalently

F (r1
ij , r

2
ij , . . . , r

m
ij ) · F (r1

ji, r
2
ji, . . . , r

m
ji ) = 1.
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(c) Multiplicative consistency property: rc
ij · rc

jk · rc
ki = 1 ∀ i, j = 1, 2, . . . , n,

or equivalently

F (r1
ij , r

2
ij , . . . , r

m
ij ) · F (r1

jk, r2
jk, . . . , rm

jk) · F (r1
ki, r

2
ki, . . . , r

m
ki) = 1.

The following result holds:

Proposition 1. A continuous aggregation operator of fuzzy preference relations
that maintains the additive consistency property is a rational aggregation operator.

P r o o f . Assuming that F is a continuous aggregation operator verifying

F (r1
ij , r

2
ij , . . . , r

m
ij ) + F (r1

jk, r2
jk, . . . , rm

jk) + F (r1
ki, r

2
ki, . . . , r

m
ki) = 1.5,

firstly, we have

F (0.5, 0.5, . . . , 0.5) + F (0.5, 0.5, . . . , 0.5) + F (0.5, 0.5, . . . , 0.5) = 1.5

and thus F (0.5, 0.5, . . . , 0.5) = 0.5, that is, F maintains the indifference property.
Secondly, taking (r1

jk, r2
jk, . . . , rm

jk) = (0.5, 0.5, . . . , 0.5) and k = j we have

F (r1
ij , r

2
ij , . . . , r

m
ij ) + F (0.5, 0.5, . . . , 0.5) + F (r1

ji, r
2
ji, . . . , r

m
ji ) = 1.5,

which implies
F (r1

ij , r
2
ij , . . . , r

m
ij ) + F (r1

ji, r
2
ji, . . . , r

m
ji ) = 1,

that is, F maintains the reciprocity property.

The dual result for multiplicative preference relations also holds:

Proposition 2. An aggregation operator of multiplicative preference relations that
maintains the multiplicative consistency property is a rational aggregation operator.

The following result characterises the aggregation operators that maintain the
reciprocity property, and therefore, also the indifference property.

Proposition 3. An aggregation operator verifying

F (1− x1, . . . , 1− xn) = 1− F (x1, . . . , xn) ∀ (x1, . . . , xn) ∈ Rn

(
F (1/x1, . . . , 1/xn) = 1/F (x1, . . . , xn) ∀ (x1, . . . , xn) ∈ Rn

+

)

maintains the additive (multiplicative) reciprocity.

P r o o f . If F verifies

F (1− x1, . . . , 1− xn) = 1− F (x1, . . . , xn) ∀ (x1, . . . , xn) ∈ Rn

then



Rationality of IOW Operators in GDM 135

F (r1
ij , r

2
ij , . . . , r

m
ij )+F (r1

ji, r
2
ji, . . . , r

m
ji ) = F (r1

ij , r
2
ij , . . . , r

m
ij )

+ F (1− r1
ij , 1− r2

ij , . . . , 1− rm
ij )

= F (r1
ij , r

2
ij , . . . , r

m
ij )+1−F (r1

ij , r
2
ij , . . . , r

m
ij )

= 1.

that is, F maintains the reciprocity property.

The proof for the multiplicative case follows a similar reasoning to this one.

In the case of OW operators guided by a linguistic quantifier, in [9, 17] a similar
result was obtained:

Proposition 4. If Q is a linguistic quantifier with a membership function verifying

Q(1− x) = 1−Q(x), ∀x

then the collective preference relation, obtained by aggregating a set of reciprocal
preference relations, using an OW operator guided by Q, is reciprocal.

Moreover, in the case of Q being a non-decreasing relative fuzzy quantifier with
membership function:

Q(x) =





0 0 ≤ x < a
x−a
b−a a ≤ x ≤ b

1 b < x ≤ 1

a, b ∈ [0, 1], the following characterization result was also obtained in [9, 17]:

Proposition 5. If Q is a relative non-decreasing linguistic quantifier with parame-
ters a and b then the collective preference relation, obtained by aggregating a set of
reciprocal preference relations, using an OW operator guided by Q, is reciprocal if
and only if a + b = 1.

The corresponding results to guarantee the consistency property are not as straight-
forward as the previous ones. However, the following general condition guarantees
both reciprocity and consistency properties (see Appendix A).

Proposition 6. A +-separable (×-separable) mean aggregation operator is a ratio-
nal aggregation operator for fuzzy (multiplicative) preference relations.

P r o o f . If X = (r1
ij , r

2
ij , . . . , r

m
ij ), Y = (r1

jk, r2
jk, . . . , rm

jk) and Z = (r1
ki, r

2
ki, . . . , r

m
ki),

then the consistency of individual fuzzy preference relations imply

X + Y + Z = (r1
ij + r1

jk + r1
ki, r

2
ij + r2

jk + r2
ki, . . . , r

m
ij + rm

jk + rm
ki) = (1.5, 1.5, . . . , 1.5).
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Because F is +-separable then:

F (1.5, 1.5, . . . , 1.5) = F ((X +Y )+Z) = F (X +Y )+F (Z) = F (X)+F (Y )+F (Z).

F is a mean operator then F (X + Y + Z) = 1.5. All these considerations together
imply that

F (r1
ij , r

2
ij , . . . , r

m
ij ) + F (r1

jk, r2
jk, . . . , rm

jk) + F (r1
ki, r

2
ki, . . . , r

m
ki) = 1.5,

which proves the rationality of the operator F .
The proof in the case of a ×-separable mean aggregation operator follows a similar

reasoning.

The following result characterises the +-separable (×-separable) continuous mean
aggregation operators.

Proposition 7. A +-separable (×-separable) continuous mean aggregation operator
is a weighted averaging (geometric) operator.

P r o o f . We will prove only the part corresponding to +-separable, as the ×-
separable part is straightforward using the logarithmic function. Therefore, we have
to prove that if a continuous mean aggregation operator verifies

F (X + Y ) = F (X) + F (Y ) ∀X, Y ∈ Rn

then

F (x1, . . . , xn) =
n∑

i=1

wi · xi,

with W = (w1, . . . , wn) a weighting vector verifying
∑n

i=1 wi = 1.

Proof by induction will be used.

1. Basis: For n = 1, we have that F (x + y) = F (x) + F (y) ∀x, y ∈ R. Because F
is continuous then there exists a constant a ∈ R such that F (x) = ax ∀x ∈ R
[1, 2].

2. Induction hypothesis: Let’s assume that any +-separable continuous mean
aggregation operator of dimension k is a weighted averaging operator, i. e.,
F (X + Y ) = F (X) + F (Y ) ∀X, Y ∈ Rk then

F (x1, . . . , xk) =
k∑

i=1

wi · xi,

with W = (w1, . . . , wk) a weighting vector verifying
∑n

i=1 wi = 1.
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3. Induction step: Let’s assume that F is a +-separable continuous mean aggrega-
tion operator of dimension k+1 such that F (X +Y ) = F (X)+F (Y ) ∀X,Y ∈
Rk+1. Then, we have:

F (x1, . . . , xk, xk+1) = F ((x1, . . . , xk, 0) + (0, . . . , 0, xk+1))
= F (x1, . . . , xk, 0) + F (0, . . . , 0, xk+1).

We define G(x1, . . . , xk) = F (x1, . . . , xk, 0) and H(xk+1) = F (0, . . . , 0, xk+1).
Function G is a +-separable continuous aggregation operator of dimension k,

and therefore, by applying the induction hypothesis, we obtain: G(x1, . . . , xk) =∑k
i=1 wi · xi.
Function H verifies H(x + y) = H(x) + H(y) ∀x, y ∈ R, and therefore, there

exists a constant wk+1 ∈ R such that H(x) = wk+1 · x ∀x ∈ R.

Both results together imply:

F (x1, . . . , xk, xk+1) =
k∑

i=1

wi · xi + wk+1 · xk+1 =
k+1∑

i=1

wi · xi

Finally, because F is a mean aggregation operator 1 = F (1, . . . , 1, 1) =
∑k+1

i=1 wi.

This result guarantees that the IOW operators that induce the ordering of the
arguments based on the reliability of the information source are rational aggrega-
tion operators. In particular, both the I-IOW and C-IOW operators are rational
aggregation operators. We note that the same cannot be assured in the case of OW
operators as has been shown in [9, 17].

6. CONCLUDING REMARKS

In this paper we have studied the use of IOW operators in the aggregation of pref-
erence relations in GDM problems: the I-IOW operator, which induces the ordering
of the argument values based upon the importance of the source of information; and
the C-IOW operator, which induces the ordering of the argument values based upon
the consistency of the source of information.

Conditions have been given to assure the rationality of an aggregation operator
of preference relations. In particular, we have shown that IOW operators inducing
the ordering of the arguments based on the reliability of the source of information
are rational ones.

APPENDIX A. ORDERED WEIGHTED OPERATORS

In this appendix, we present the OWA operator used to aggregate measurements
given on a difference scale. When the measurements are given on a ratio-scale,
the OWG Operator is the appropriate one. Firstly, we set out some definitions of
aggregation operators.
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Definition A.1. A function F : Rn −→ R is called an aggregation operator of
dimension n.

Definition A.2. An aggregation operator of dimension n is ∗-separable if

F (X ∗ Y ) = F (X) ∗ F (Y ) ∀X,Y ∈ Rn

where ∗ : R2 −→ R is a continuous, commutative and associative operation such
that x ∗ z = y ∗ z ∀ z ∈ R then x = y.

Definition A.3. An aggregation operator F : Rn −→ R is a mean operator if

min{x1, . . . , xn} ≤ F (x1, . . . , xn) ≤ max{x1, . . . , xn}.

In the following we define the two special cases of weighted mean operators:

Definition A.4. An aggregation operator F : Rn −→ R is a weighted averaging
operator if

F (x1, . . . , xn) =
n∑

i=1

wi · xi,

with W = (w1, . . . , wn) a weighting vector verifying
∑n

i=1 wi = 1.

Definition A.5. An aggregation operator F : Rn
+ −→ R+ is a weighted geometric

operator if

F (x1, . . . , xn) =
n∏

i=1

xi
wi ,

with W = (w1, . . . , wn) a weighting vector verifying
∑n

i=1 wi = 1.

Weighted averaging operators are separable with respect to the addition operation
(+-separable), while weighted geometric operators are separable with respect to the
product operation (×-separable).

APPENDIX A.1. THE OWA OPERATOR

In [7] Chiclana et al. considered GDM problems where the information about the
alternatives is represented using fuzzy preference relations and designed a fuzzy ma-
jority guided choice scheme that follows two steps to achieve a final decision from
the synthesis of performance degrees of the majority of criteria: i) aggregation and
ii) exploitation. This choice scheme is based on the OWA operator [26].
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Definition A.6. (See [26].) An OWA operator of dimension n is a function φ :
Rn −→ R, that has associated to it a set of weights or weighting vector W =
(w1, . . . , wn) such that, wi ∈ [0, 1] and

∑n
i=1 wi = 1, and is defined to aggregate a

list of values {p1, . . . , pn} according to the following expression,

φ(p1, . . . , pn) =
n∑

i=1

wi · pσ(i)

being σ a permutation of {1, . . . , n} such that pσ(i) ≥ pσ(i+1), ∀ i = 1, . . . , n − 1,
that is pσ(i) is the ith highest value in the set {p1, . . . , pn}.

In [26], Yager proposed two ways to obtain the weighting vector associated to an
OWA operator. The first approach is to use some kind of learning mechanism using
some sample data; and the second approach is to try to give some semantic meaning
to the weights. In this last case, the OWA operator can be used to implement the
concept of fuzzy majority in the aggregation phase by means of the fuzzy quantifiers
[30] which are used to calculate its weights, which in the case of a non-decreasing
relative quantifier Q, is expressed as follows [26]:

wi = Q

(
i

n

)
−Q

(
i− 1

n

)
, i = 1, . . . , n.

When a fuzzy quantifier Q is used to compute the weights of the OWA operator φ,
then it is symbolized by φQ.

APPENDIX A.2. THE OWG OPERATOR

The GDM problem when the experts express their preferences using multiplicative
preference relations has been studied by Saaty using the decision analytic hierarchi-
cal process (AHP), which obtains the set of solution alternatives by means of the
eigenvector method [22]. However, this decision process is not guided by the concept
of fuzzy majority. As shown in [3, 4], the proper aggregation operator of ratio-scale
measurements is not the arithmetic mean but the geometric mean. However, the ge-
ometric mean does not allow the concept of fuzzy majority to be incorporated in the
decision process. Therefore, if we want to design a decision scheme for multiplicative
preference relations that allows decision makers to implement the concept of fuzzy
majority to obtain the final solution, then it is necessary to introduce a new class of
operator to aggregate ratio-scale measurements allowing the implementation of the
fuzzy majority concept.

In [7] we obtained the transformation function between multiplicative and fuzzy
preference relations, which is given in the following result:

Proposition A. (See [7].) Suppose that we have a set of alternatives, X =
{x1, . . . , xn}, and associated with it a multiplicative reciprocal preference relation
A = (aij), with aij ∈ [1/9, 9] and aij · aji = 1,∀ i, j. Then the corresponding fuzzy
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reciprocal preference relation, P = (pij), associated to A, with pij ∈ [0, 1] and
pij + pji = 1, ∀ i, j, is given as follows:

pij = f(aij) =
1
2

(1 + log9 aij) .

The above transformation function is bijective and, therefore, allows us to trans-
pose concepts that have been defined for fuzzy preference relations to multiplicative
preference relations. In this way, for example, if we want to aggregate a set of values
{a1, . . . , an} given on the basis of a positive ratio-scale we can use the OWA operator
on the set of values {p1, . . . , pn} obtained using the above transformation function
f , i. e., pi = f(ai) = 1

2 (1 + log9 ai). Thus, we obtain:

p = φ(p1, . . . , pn) =
n∑

i=1

wi · pσ(i)

being σ a permutation of {1, . . . , n} such that pσ(i) is the ith highest value in the
set {p1, . . . , pn}. Because f is an increasing function, then aσ(i) is the ith highest
value in the set {a1, . . . , an}, and therefore

p =
n∑

i=1

wi · 1
2
(1 + log9 aσ(i)) =

1
2

(
1 +

n∑

i=1

wi · log9 aσ(i)

)

=
1
2

(
1 +

n∑

i=1

log9(aσ(i))wi

)

=
1
2

(
1 + log9

n∏

i=1

(aσ(i))wi

)

This last expression justifies the definition of the OWG operator as an aggregation

operator of information given on a ratio-scale:

Definition A.7. (See [8].) An OWG operator of dimension n is a function φG :
Rn

+ −→ R+, to which a set of weights or weighting vector is associated, W =
(w1, . . . , wn), such that wi ∈ [0, 1] and Σiwi = 1, and it is defined to aggregate a list
of values {a1, . . . , an} according to the following expression,

φG(a1, . . . , an) =
n∏

i=1

(
aσ(i)

)wi

where σ is a permutation of {1, . . . , n} such that aσ(i) ≥ aσ(i+1), ∀ i = 1, . . . , n− 1,
that is aσ(i) is the ith highest value in the set {a1, . . . , an}.

As the OWG operator is based on the OWA operator, it is clear that the weighting
vector W can be obtained by the same method used in the case of the OWA operator,
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i. e., the vector may be obtained using a fuzzy quantifier, Q, representing the concept
of fuzzy majority. When a fuzzy quantifier Q is used to compute the weights of the
OWG operator φG, then, it is symbolized by φG

Q. In [8, 17], a fuzzy majority guided
choice scheme based on the quantifier guided OWG operator was presented.
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