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Abstract. The fuzzy information retrieval model was proposed some
years ago to solve several limitations of the Boolean model without a
need of a complete redesign of the information retrieval system. However,
the complexity of the fuzzy query language makes it difficult to formulate
user queries. Among other proposed approaches to solve this problem, we
find the Inductive Query by Example (IQBE) framework, where queries
are automatically derived from sets of documents provided by the user.
In this work we test the applicability of a multiobjective evolutionary
IQBE technique for fuzzy queries in a machine learning environment. To
do so, the Cranfield documentary collection is divided into two different
document sets, labeled training and test, and the algorithm is run on the
former to obtain several queries that are then validated on the latter.

1 Introduction

Information retrieval (IR) may be defined as the problem of the selection of
documentary information from storage in response to search questions provided
by a user [2]. Information retrieval systems (IRSs) deal with documentary bases
containing textual, pictorial or vocal information and process user queries trying
to allow the user to access to relevant information in an appropriate time interval.

The fuzzy information retrieval (FIR) model [3] was proposed to overcome
several limitations of Boolean IRSs [2], the most extended ones, without a need
of a complete redesign. However, the extended Boolean (fuzzy) query structure
considered in fuzzy IRSs – weighted, positive or negative terms joined by the
AND and OR operators – is difficult to be formulated by non expert users.
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The paradigm of Inductive Query by Example (IQBE) [4], where queries
describing the information contents of a set of documents provided by a user
are automatically derived, has proven to be useful to assist the user in the
query formulation process. Focusing on the FIR model, the most known ap-
proach is that of Kraft et al. [13], based on genetic programming (GP) [12].
Several other approaches have been proposed based on more advanced evolu-
tionary algorithms (EAs) [1], such as genetic algorithm-programming (GA-P)
[11] or simulated annealing-programming, to improve Kraft et al.’s [6,7].

In [9], we proposed a new IQBE algorithm that tackled fuzzy query learning
as a multiobjective problem. The algorithm was able to automatically generate
several queries with a different trade-off between precision and recall in a single
run. To do so, a Pareto-based multiobjective EA scheme [5] was incorporated
into the single-objective GA-P IQBE technique proposed in [6].

In this contribution, we design a experimental framework to test the said
technique in a machine learning environment. To do so, several queries are se-
lected from the Cranfield collection and the document set is divided into two
different subsets, training and test, for each of them. The multiobjective GA-P
algorithm is then run on the former sets and the obtained queries are validated
on the latter ones to get a view of the real applicatibility of the approach.

The paper is structured as follows. Section 2 is devoted to the preliminaries,
including the basis of FIRSs and a short review of IQBE techniques. Then,
the multiobjective GA-P proposal is reviewed in Section 3. Section 4 presents
the experimental setup designed and the experiments developed. Finally, several
concluding remarks are pointed out in Section 5.

2 Preliminaries

2.1 Fuzzy Information Retrieval Systems

FIRSs are constituted of the following three main components:

The documentary data base, that stores the documents and their represen-
tations (typically based on index terms in the case of textual documents).

Let D be a set of documents and T be a set of unique and significant terms
existing in them. An indexing function F : D × T → [0, 1] is defined as a fuzzy
relation mapping the degree to which document d belongs to the set of documents
“about” the concept(s) represented by term t. By projecting it, a fuzzy set is
associated to each document (di = {< t, µdi(t) > | t ∈ T }; µdi(t) = F (di, t))
and term (tj = {< d, µtj (d) > | d ∈ D}; µtj (d) = F (d, tj)).

In this paper, we will work with Salton’s normalized inverted document fre-
quency (IDF) [2]: wd,t = fd,t · log(N/Nt) ; F (d, t) = wd,t

Maxd wd,t
, where fd,t is

the frequency of term t in document d, N is the total number of documents and
Nt is the number of documents where t appears at least once.
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The query subsystem, allowing the users to formulate their queries and pre-
senting the retrieved documents to them. Fuzzy queries are expressed using a
query language that is based on weighted terms, where the numerical or linguistic
weights represent the “subjective importance” of the selection requirements.

In FIRSs, the query subsystem affords a fuzzy set q defined on the document
domain specifying the degree of relevance (the so called retrieval status value
(RSV)) of each document in the data base with respect to the processed query:
q = {< d, µq(d) > | d ∈ D} ; µq(d) = RSVq(d).

Thus, documents can be ranked according to the membership degrees of
relevance before being presented to the user. The retrieved document set can be
specified providing an upper bound for the number of retrieved documents or
defining a threshold σ for the RSV (the σ-cut of the query response fuzzy set q).

The matching mechanism, that evaluates the degree to which the document
representations satisfy the requirements expressed in the query (i.e., the RSV)
and retrieves those documents that are judged to be relevant to it.

When using the importance interpretation [3], the query weights represent
the relative importance of each term in the query. The RSV of each document
to a fuzzy query q is then computed as follows [15]. When a single term query
is logically connected to another by the AND or OR operators, the relative
importance of the single term in the compound query is taken into account by
associating a weight to it. To maintain the semantics of the query, this weighting
has to take a different form according as the single term queries are ANDed or
ORed. Therefore, assuming that A is a fuzzy term with assigned weight w,
the following expressions are applied to obtain the fuzzy set associated to the
weighted single term queries Aw (disjunctive queries) and Aw (conjunctive ones):

Aw = {< d, µAw (d) > | d ∈ D} ; µAw(d) = Min (w, µA(d))

Aw = {< d, µAw (d) > | d ∈ D} ; µAw(d) = Max (1 − w, µA(d))

If the term is negated in the query, a negation function is applied to obtain
the corresponding fuzzy set: A = {< d, µA(d) > | d ∈ D} ; µA(d) = 1−µA(d).

Finally, the RSV of the compound query is obtained by combining the single
weighted term evaluations into a unique fuzzy set as follows:

A AND B={< d, µA AND B(d)> | d∈D} ; µA AND B(d)=Min(µA(d), µB(d))

A OR B = {< d, µA OR B(d) > | d ∈ D} ; µA OR B(d) = Max(µA(d), µB(d))

2.2 Inductive Query by Example

IQBE was proposed in [4] as “a process in which searchers provide sample docu-
ments (examples) and the algorithms induce (or learn) the key concepts in order
to find other relevant documents”. This way, IQBE is a technique for assisting the
users in the query formulation process performed by machine learning methods.
It works by taking a set of relevant (and optionally, non relevant documents)
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provided by a user and applying an off-line learning process to automatically
generate a query describing the user’s needs from that set. The obtained query
can then be run in other IRSs to obtain more relevant documents.

Apart from the IQBE algorithms for the FIR model reviewed in the Intro-
duction, several others have been proposed for the remaining IR models, such
as the Boolean [16,8] or the vector space [4] ones.

3 A Multiobjective GA-P Algorithm for Automatically
Learning Fuzzy Queries

In [9], we proposed a multiobjective IQBE algorithm to learn fuzzy queries based
on the GA-P paradigm whose components are described next.

Coding Scheme: The expressional part (GP part) encodes the query compo-
sition – terms and logical operators – and the real-coded coefficient string (GA
part) represents the term weights, as shown in Figure 1.

t1

0.5

0.7

0.25

w1

w2

w3t3 4t

Value string

OR

AND

Expressional part

Fig. 1. GA-P individual representing the fuzzy query 0.5 t1 AND (0.7 t3 OR
0.25 t4)

Fitness Function: The multiobjective GA-P (MOGA-P) algorithm is aimed
at jointly optimizing the classical precision and recall criteria [2], as follows:

Max P =
∑

d rd · fd∑
d fd

; Max R =
∑

d rd · fd∑
d rd

with rd ∈ {0, 1} being the relevance of document d for the user and fd ∈ {0, 1}
being the retrieval of document d in the processing of the current query.

Pareto-Based Multiobjective Selection and Niching Scheme: The
Pareto-based multiobjective EA considered is Fonseca and Fleming’s Pareto-
based MOGA [5]. Each individual is first assigned a rank equal to the number
of individuals dominating it plus one (non-dominated individuals receive rank
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1) and the population is sorted in ascending order according to that rank. Then,
each individual Ci is assigned a fitness value according to its ranking in the
population: f(Ci) = 1

rank(Ci)
. Finally, the fitness assignment of each group of

individuals with the same rank is averaged among them.
A niching scheme is then applied in the objective space to obtain a well-

distributed set of queries with a different trade-off between precision and recall.
To do so, Goldberg and Richardson’s sharing function [14] is considered:

F (Ci) =
f(Ci)∑M

j=1 Sh(d(Ci, Cj))
; Sh(x) =

{
1 − ( x

σshare
)γ , if x < σshare

0, otherwise

with M being the population size, σshare being the niche radius and d standing
for the Euclidean distance.

Finally, the intermediate population is obtained by Tournament selection
[14], i.e., to fill each free place in the new population, t individuals are random
selected from the current one and the best adapted of them is chosen.

Genetic Operators: The BLX-α crossover operator [10] is applied twice on the
GA part to obtain two offsprings. Michalewicz’s non-uniform mutation operator
[14] is considered to perform mutation on that part.

The usual GP crossover randomly selecting one edge in each parent and
exchanging both subtrees from these edges between the both parents [12] is con-
sidered. Each time a mutation is to be made, one of the two following mutation
operators (selected at random) is applied: random generation of a new subtree
substituting an old one located in a randomly selected edge, and random change
of a query term by another one not present in the encoded query, but belonging
to any relevant document.

4 Experimental Setup and Experiments Developed

The documentary set used to design our machine learning experimental frame-
work has been the Cranfield collection, composed of 1400 documents about Aero-
nautics. It has been automatically indexed by first extracting the non-stop words,
applying a stemming algorithm, thus obtaining a total number of 3857 different
indexing terms, and then using the normalized IDF scheme (see Section 2.1) to
generate the term weights in the document representations.

Among the 225 queries associated to the Cranfield collection, we have selected
those presenting 20 or more relevant documents (queries 1, 2, 23, 73, 157, 220
and 225). The number of relevant documents associated to each of these seven
queries are 29, 25, 33, 21, 40, 20 and 25, respectively.

For each one of these queries, the documentary collection has been divided
into two different, non overlapped, document sets, training and test, each of them
composed of a 50% of both the relevant and non relevant documents. Hence, we
represent a retrieval environment where no document retrieved by the learned
queries in the test sets has been previously seen by the user.
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MOGA-P has been run ten different times on the training document set
associated to each query. The parameter values considered are a maximum of
20 nodes for the expression parts, a population size of 800, 50000 evaluations
per run, a Tournament size t of 8, 0.8 and 0.2 for the crossover and mutation
probabilities in both the GA and the GP parts, a sharing function parameter
γ equal to 2, and a niche radius σshare experimentally set to 0.1. The retrieval
threshold σ has been set to 0.1 in the FIRS.

Table 1. Statistics of the Pareto sets obtained by the MOGA-P algorithm

#q #p σ#p #dp σ#dp M∗
2 σM∗

2
M∗

3 σM∗
3

1 110.0 10.5 5.3 0.348 39.901 4.574 0.918 0.044
2 127.4 7.462 4.3 0.202 47.023 3.235 0.895 0.033
23 133.8 5.805 6.9 0.170 52.156 3.004 1.042 0.015
73 93.0 12.435 2.6 0.210 24.893 5.133 0.730 0.041
157 118.9 7.886 7.8 0.310 45.264 3.943 1.066 0.006
220 91.1 6.897 1.9 0.221 18.987 4.395 0.437 0.094
225 98.1 6.243 2.3 0.202 22.931 4.266 0.626 0.083

Table 1 collects several statistics about the ten Pareto sets generated for
each query. From left to right, the columns contain the number of non-dominated
solutions obtained (#p), the number of different objective vectors (i.e., precision-
recall pairs) existing among them (#dp), and the values of two of the usual
multiobjective metrics M∗

2 and M∗
3 [17]1, all of them followed by their respective

standard deviation values.
In order to test the real applicability of the algorithm in the machine learning

environment, the Pareto sets obtained in the ten runs performed for each query
were put together, and the dominated solutions were removed from the unified
set. Then, five queries well distributed on the Pareto front were selected from
each of the seven unified Pareto sets2 and run on the corresponding test set once
preprocessed (for example, the query terms not existing on the test collection are
removed from the query). The results obtained are shown in Table 2, standing
Sz for the query size, P and R for the precision and recall values and #rr/#rt
for the number of relevant and retrieved documents, respectively.

In view of the precision and recall values obtained, the performance of our
proposal is very significant3. The algorithm is always able to find at least a

1 M∗
2 ∈ [0, #p] measures the diversity of the solutions found, while M∗

3 measures the
range to which the Pareto front spreads out in the objective values (in our case, the
maximum possible value is

√
2 = 1.4142). In both cases, the higher the value, the

better the quality of the obtained Pareto set.
2 An example of such a query (#q1-5) in preorder is: OR AND OR t1158(w=0.298)
OR t1051(w=0.518) OR t2721(w=0.957) OR t2950(w=0.838) t12(w=0.970) OR OR

t1320(w=0.577) t238(w=0.847) t2579(w=0.737) OR t1129(w=0.701) t12(w=0.329).
3 The interested reader can refer to [6,7,8,9] to compare the obtained results with those

of several other approaches in the same documentary base.
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Table 2. Retrieval efficacy of the selected queries on the training and test col-
lections

Training set Test set

#q Sz P R #rr/#rt Sz P R #rr/#rt

1 19 0.304 1.0 14/46 9 0.188 0.4 6/32
2 19 0.318 1.0 14/44 19 0.111 0.267 4/36

1 3 19 0.591 0.929 13/22 5 0.154 0.133 2/13
4 19 0.786 0.786 11/14 5 0.143 0.067 1/7
5 19 1.0 0.643 9/9 15 0.0 0.0 0/3

1 19 0.273 1.0 12/44 19 0.297 0.846 11/37
2 19 0.387 1.0 12/31 19 0.216 0.615 8/37

2 3 19 0.579 0.917 11/19 17 0.0 0.0 0/24
4 19 0.786 0.917 11/14 15 0.059 0.077 1/17
5 19 1.0 0.667 8/8 17 0.143 0.154 2/14

1 19 0.232 1.0 16/69 19 0.031 0.118 2/65
2 19 0.39 1.0 16/41 17 0.208 0.588 10/48

23 3 19 0.591 0.812 13/22 19 0.344 0.647 11/32
4 19 0.786 0.688 11/14 15 0.455 0.294 5/11
5 19 1.0 0.625 10/10 19 0.111 0.059 1/9

1 19 0.692 0.9 9/13 17 0.25 0.455 5/20
2 19 0.5 1.0 10/20 15 0.208 0.455 5/24

73 3 19 0.526 1.0 10/19 15 0.071 0.091 1/14
4 19 0.769 1.0 10/13 17 0.062 0.091 1/16
5 19 1.0 0.9 9/9 17 0.455 0.455 5/11

1 19 0.299 1.0 20/67 15 0.195 0.8 16/82
2 19 0.39 0.8 16/41 19 0.119 0.25 5/42

157 3 19 0.593 0.8 16/27 17 0.3 0.3 6/20
4 19 0.789 0.75 15/19 15 0.25 0.15 3/12
5 19 1.0 0.5 10/10 15 0.375 0.15 3/8

1 19 0.833 1.0 10/12 13 0.2 0.1 1/5
2 19 0.588 1.0 10/17 13 0.167 0.1 1/6

220 3 19 0.588 1.0 10/17 15 0.167 0.1 1/6
4 17 0.714 1.0 10/14 13 0.6 0.3 3/5
5 19 1.0 0.9 9/9 19 0.111 0.1 1/9

1 17 0.324 1.0 12/37 15 0.0 0.0 0/33
2 17 0.324 1.0 12/37 15 0.0 0.0 0/33

225 3 19 0.579 0.917 11/19 11 0.0 0.0 0/15
4 19 0.688 0.917 11/16 15 0.0 0.0 0/8
5 19 1.0 0.917 11/11 15 1.0 0.077 1/1

query retrieving all the relevant documents (R = 1.0) provided by the user in
the training set. As regards the generalization ability of the learned queries, i.e.,
their capability to retrieve new relevant documents for the user, it can be seen
how it is very satisfactory in the most of the cases. For example, recall levels of
0.4, 0.846, 0.647, 0.455, 0.8 and 0.3 are respectively obtained for queries 1, 2,
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23, 73, 157, and 220, all of them with appropriate precision values ranging from
0.188 to 0.6. However, we should note that the results obtained in the last query,
225, have not been appropriate as only one of the learned queries has been able
to retrieve a relevant document in the test set. In this case, it seems that there
is a larger diversity of index terms in the relevant documents for the query, and
those index terms existing in the training documents do not describe the test
relevant documents.

5 Concluding Remarks

The real applicability of a multiobjective evolutionary IQBE technique for learn-
ing fuzzy queries has been tested in a machine learning environment. It has been
run on training document sets obtained from the Cranfield collection to derive
several queries that have been validated on a different test document set. Very
promising results have been achieved for six of the seven Cranfield queries con-
sidered in view of the retrieval efficacy obtained.

As future works, we will study other real-like environments based on different
training-test partitions of the document collection and will use retrieval measures
considering not only the absolute number of relevant and non relevant documents
retrieved, but also their relevance order in the retrieved document list.

References
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