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Abstract. In this paper we introduce Accurate Linguistic Modelling,
an approach to design linguistic models from data, which are accurate
to a high degree and may be suitably interpreted. Linguistic models
constitute an Intelligent Data Analysis structure that has the advantage
of providing a human-readable description of the system modelled in the
form of linguistic rules. Unfortunately, their accuracy is sometimes not
as high as desired, thus causing the designer to discard them and replace
them by other kinds of more accurate but less interpretable models.
ALM has the aim of solving this problem by improving the accuracy of
linguistic models while maintaining their descriptive power, taking as a
base some modifications on the interpolative reasoning developed by the
Fuzzy Rule-Based System composing the model. In this contribution we
shall introduce the main aspects of ALM, along with a specific design
process based on it. The behaviour of this learning process in the solving
of two different applications will be shown.

1 Introduction

Nowadays, one of the most important areas for the application of Fuzzy Set The-
ory as developed by Zadeh in 1965 [14] are Fuzzy Rule-Based Systems (FRBSs).
These kinds of systems constitute an extension of classical Rule-Based Systermns,
because they deal with fuzzy rules instead of classical logic rules.

In this approach, fuzzy IF-THEN rules are formulated and a process of fuzzi-
fication, inference and defuzzification leads to the final decision of the system.
Although sometimes the fuzzy rules can be directly derived from expert knowl-
edge, different efforts have been made to obtain an improvement on system
performance by incorporating learning mechanisms guided by numerical infor-
mation to define the fuzzy rules and/or the membership functions associated to
them. Hence, FRBSs are a suitable tool for Intelligent Data Analysis where the
structure considered to represent the available data is a Fuzzy Rule Base.

From this point of view, the most important application of FRBSs is system
modelling [10], which in this field may be considered as an approach used to
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model a system making use of a descriptive language based on Fuzzy Logic
with fuzzy predicates [11]. In this kind of modelling we may usually find two
contradictory requirements, accuracy and interpretability.

When the main requirement is the accuracy, descriptive Mamdani-type FRBSs
[7] are considered which use fuzzy rules composed of linguistic variables that take
values in a term set with a real-world meaning. This area is called Fuzzy Lin-
guistic Modelling due to the fact that the linguistic model consists of a set of
linguistic descriptions regarding the behaviour of the system being modelled
[11]. Nevertheless, the problem is that sometimes the accuracy of these kinds of
models is not sufficient to solve the problem in a right way. In order to solve
this problem, in this paper, we introduce Accurate Linguistic Modelling (ALM),
a Linguistic Modelling approach which will allow us to improve the accuracy of
linguistic models without losing its interpretability to a high degree.

To do so, this contribution is set up as follows. In Section 2, a brief intro-
duction to FRBSs is presented with a strong focus on descriptive Mamdani-type
ones. Section 3 is devoted to introduce the basis of ALM. In Section 4, a Lin-
guistic Modelling process based on it is proposed. In Section 5, the behaviour of
the linguistic models generated to solve two different applications is analysed.
Finally, in Section 6, some concluding remarks will be pointed out.

2 Fuzzy Rule-Based Systems

An FRBS presents two main components: 1) the Inference Engine, which puts
into effect the fuzzy inference process needed to obtain an output from the FRBS
when an input is specified, and 2) the Fuzzy Rule Base, representing the known
knowledge about the problem being solved in the form of fuzzy IF-THEN rules.

The structure of the fuzzy rules in the Fuzzy Rule Base determines the type
of FRBS. Two main types of fuzzy rules are usually found in the literature:

1. Descriptive Mamdani-type fuzzy rules [7] —also called linguistic rules— which
present the expression:

IF X;is A; and ... and X,, is A,, THEN Y is B;

with X;,...,X,, and Y being the input and output linguistic variables, re-
spectively, and A;,..., A, and B being linguistic labels, each one of them
having associated a fuzzy set defining its meaning.

2. Takagi-Sugeno-Kang (TSK) fuzzy rules [12], which are based on representing
the consequent as a polynomial function of the inputs:

IF X;is Ay and ... and X, is A, THENY =p; - X1 +... +pn - X0 + Do
with pg,p1,...,p, being real-valued weights.

The structure of a descriptive Mamdani-type FRBS is shown in Figure 1.
As can be seen, and due to the use of linguistic variables, the Fuzzy Rule Base
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Fig. 1. Generic structure of a descriptive Mamdani-type Fuzzy Rule-Based System

becomes a Knowledge Base (KB) composed of the Rule Base (RB), constituted
by the collection of linguistic rules joined by means of the connective also, and
of the Data Base (DB), containing the term sets and the membership functions
defining their semantics.

On the other hand, the Inference Engine is comprised by three components:
a Fuzzification Interface, which has the effect of transforming crisp input data
into fuzzy sets, an Inference System, that uses these together with the KB to
perform the fuzzy inference process, and a Defuzzification Interface, that obtains
the final crisp output from the individual fuzzy outputs inferred.

The Inference System is based on the application of the Generalized Modus
Ponens, extension of the classical logic Modus Ponens. It is done by means of
the Compositional Rule of Inference, which in its simplest form is reduced to [2]:

pp (y) = I(pa; (o), pB(Y))

with ¢g = (21, - . ., ©p) being the current system input, pa, (vo) = T'(41(z1),- .-,
Ap(zy)) being the matching degree between the rule antecedent and the input
—T is a conjunctive operator (a t-norm)— and I being a fuzzy implication
operator.

The Compositional Rule of Inference is applied to each individual rule, thus
obtaining an output fuzzy set B; from each rule in the KB. The Defuzzification
Interface aggregates the information provided by these fuzzy sets and transforms
it into a single crisp value by working in one of the two following ways [2]:

1. Mode A: Aggregation first, defuzzification after: The individual fuzzy sets
inferred are aggregated to obtain a final fuzzy set B’ by means of a fuzzy
aggregation operator G —which models the also operator that relates the
rules in the base—. Then, a defuzzification method D is applied to transform
the latter into a crisp value yo that will be given as system global output:

up (y) = G{pus; (v), w8y (Y), - e, (W)} 5 yo=D(us(y))

Usual choices for G and D are, respectively, the minimum and maximum
operators and the Centre of Gravity and Mean of Maxima defuzzification
methods.



2. Mode B: Defuzzification first, aggregation after: In this case, the contribution

of each fuzzy set inferred is individually considered and the final crisp value
is obtained by means of an operation (an average, a weighted average, or the
selection of one of them, among others) performed on a crisp characteristic
value of each one of the individual fuzzy sets.
The most commonly used characteristic values are the Centre of Gravity
and the Maximum Value Point. Several importance degrees are considered
to select or weight them, the matching degree of the rule and the area or the
height of the consequent fuzzy set among others [2].

3 ALM: An Approach for Generating Accurate Linguistic
Models for Intelligent Data Analysis

One of the most interesting features of an FRBS is the interpolative reasoning
it develops, which plays a key role in its high performance and is a consequence
of the cooperation among the fuzzy rules composing the KB. As mentioned in
the previous Section, the output obtained from an FRBS is not usually due to
a single fuzzy rule but to the cooperative action of several fuzzy rules that have
been fired, because they match the input to the system to some degree.

ALM will deal with the way in which the linguistic model make inference in
order to improve its accuracy while not losing its description. Hence, it will be
based on two main aspects that will be described in the two following subsections.
The remaining one in this Section analyses some interesting remarks of the
proposed approach.

3.1 A New Descriptive Knowledge Base Structure for Locally
Improving the Model Accuracy

Some problems derived from the inflexibility of the concept of linguistic variable
(see [1]) makes the usual linguistic model structure shown in the previous Section
present low accuracy when working with very complex systems. Due to this
reason, we consider obtaining a new more flexible KB structure that allows us
to improve the accuracy of linguistic models without losing their interpretability.
In [9], an attempt was made to put this idea into effect first by designing a
fuzzy model based on simplified TSK-type rules, i.e., rules with a single point in
the consequent, and then transforming it into a linguistic model, which has to be
as accurate as the former. To do so, they introduced a secondary KB, in addition
to the usual KB, and proposed an Inference Engine capable of obtaining an
output result from the combined action of both Fuzzy Rule Bases. Hence, what
the system really does is to allow a specific combination of antecedents to have
two different consequents associated, the first and second in importance, thus
avoiding some of the said problems associated to the linguistic rule structure.
Taking this idea as a starting point, we allow a specific combination of an-
tecedents to have two consequents associated, the first and second in importance
in the fuzzy input subspace, but only in those cases in which it is really necessary



to improve the model accuracy in this subspace, and not in all the possible ones
as in [9]. Therefore, the existence of a primary and a secondary Fuzzy Rule Base
is avoided, and the number of rules in the single KB is decreased, which makes
easier to interpret the model.

These double-consequent rules will locally improve the interpolative reason-
ing performed by the model allowing a shift of the main labels making the final
output of the rule lie in an intermediate zone between the two consequent fuzzy
sets. They do not constitute an inconsistency from a Linguistic Modelling point
of view due to the fact that they have the following interpretation:

IF ¢y is A; and ...and x, is A, THEN y is between By, and Bs

Other advantages of our approach are that we do not need the existence of
a previous TSK fuzzy model and that we work with a classical fuzzy Inference
Engine. In this contribution, we shall use the Minumum t-norm in the role of
conjunctive and implication operator (although any other fuzzy operator may
be considered for either of the two tasks). The only restriction is to use any
defuzzification method working in mode B and considering the matching degree
of the rules fired. We shall work with the Centre of Gravity weighted by the
matching degree [2], whose expression is shown as follows:

iy iy
ZzT:1 hi
with T being the number of rules in the KB, h; being the matching degree

between the ith rule and the current system input (see Section 2) and y; being
the centre of gravity of the fuzzy set inferred from that rule.

Yo =

3.2 A New Way to Generate Fuzzy Rules for Globally Improving
the Cooperation Between Them

The previous point deals with the local improvement of the fuzzy reasoning
accuracy in a specific fuzzy input subspace. On the other hand, the second
aspect deals with the cooperation between the rules in the KB, i.e., with the
overlapped space zones that are covered by different linguistic rules. As is known,
the generation of the best fuzzy rule in each input subspace does not ensure that
the FRBS will perform well due to the fact that the rules composing the KB may
not cooperate suitably. Many times, the accuracy of the FRBS may be improved
if other rules different than the primary ones are generated in some subspaces
because they cooperate in a better way with their neighbour rules.

Hence, we shall consider an operation mode based on generating a prelimi-
nary fuzzy rule set composed of a large number of rules, which will be single or
double-consequent ones depending on the complexity of the specific fuzzy input
subspace —no rules will be generated in the subspaces where the system is not
defined—. Then, all these fuzzy rules will be treated as single-consequent ones
(each double-consequent rule will be decomposed in two simple rules) and the
subset of them with best cooperation level will be selected in order to compose
the final KB.



3.3 Some Important Remarks about ALM

We may draw two very important conclusions from the assumptions made in
the previous subsections. On the one hand, it is possible that, although the
preliminary fuzzy rule set generated has some double-consequent rules, the final
KB does not contain any rule of this kind after the selection process. In this case,
the linguistic model obtained has taken advantage of the way in which the fuzzy
rules has been generated because many rule subsets with different cooperation
levels have been analysed. This is why it will present a KB composed of rules
cooperating well, a fact that may not happen in other inductive design methods,
such us Wang and Mendel’s (WM-method) [13] and the Explorative Generation
Method (EGM) [4] — an adaptation of Ishibuchi et al’s fuzzy classification rule
generation process [6] able to deal with rules with linguistic consequents— both
of which are based on directly generating the best consequent for each fuzzy
input subspace.

On the other hand, it is possible that the KB obtained presents less rules
than KBs generated from other methods thanks to both aspects: the existence of
two rules in the same input subspace and the generation of neighbour rules with
better cooperation may mean that many of the rules in the KB are unnecessary
to give the final system response. These assumptions will be corroborated in
view of the experiments developed in Section 5.

4 A Linguistic Modelling Process Based on ALM

Following the assumptions presented in the previous Section, any design process
based on ALM will present two stages: a preliminary linguistic rule generation
method and a rule selection method. The composition of both stages in the learn-
ing process presented in this contribution, which takes as a base the WM-method,
is shown in the next two subsections. Another ALM process based on the EGM
is to be found in [4].

4.1 The Linguistic Rule Generation Method

Let E be an input-output data set representing the behaviour of the system
being modelled. Then the RB is generated by means of the following steps:

1. Consider a fuzzy partition of the input variable spaces: It may be obtained
from the expert information —if it is availaible— or by a normalization
process. In this paper, we shall work with symmetrical fuzzy partitions of
triangular membership functions (see Figure 2).

2. Generate a preliminary linguistic rule set: This set will be formed by the rule
best covering each example —input-ouput data pair— contained in E. The
structure of the rule R, = IF x; is A} and ...and x,, is Aﬁb THEN y s By
generated from the example ¢; = (z},..., 2! ,y') is obtained by setting each
rule variable to the linguistic label associated to the fuzzy set best covering
every example component.
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Fig. 2. Graphical representation of the type of fuzzy partition considered

3. Give an importance degree to each rule: The importance degree associated
to R; will be obtained as follows:

G(Ri) = p (1) - - par (27,) - 1y (y)

4. Obtain a final RB from the preliminary linguistic rule set: This step is the

only one differing from the original WM-method. Whilst in that method
the rule with the highest importance degree is the only one chosen for each
combination of antecedents, in our case we allow the two most important
rules in each input subspace —if they exist— to form part of the RB.
Of course, a combination of antecedents may have no rules associated (if
there are no examples in that input subspace) or only one rule (if all the ex-
amples in that subspace generated the same rule). Therefore, the generation
of double-consequent rules is only addressed when the problem complezity,
represented by the example set, shows that it is necessary.

4.2 The Rule Selection Genetic Process

In order to obtain a final KB composed of rules cooperating well and to achieve
that more than a single rule is used only in those zones where it is really nec-
essary, we shall use a rule selection process with the aim of selecting the best
subset of rules from the initial linguistic rule set.

The selection of the subset of linguistic rules best cooperating is a combinato-
rial optimization problem [11]. Since the number of variables involved in it, i.e.,
the number of preliminary rules, may be very large, we consider an approximate
algorithm to solve it, a Genetic Algorithm (GA) [5]. However, we should note
that any other kind of technique can be considered without any change in ALM.
Our rule selection genetic process [3] is based on a binary coded GA, in which
the selection of the individuals is performed using the stochastic universal sam-
pling procedure together with an elitist selection scheme, and the generation of
the offspring population is put into effect by using the classical binary two-point
crossover and uniform mutation operators.

The coding scheme generates fixed-length chromosomes. Considering the
rules contained in the linguistic rule set derived from the previous step counted
from 1 to T, a T-bit string C = (¢4, ..., cr) represents a subset of candidate rules
to form the RB finally obtained as this stage output, B?, such that,



If ¢; = 1 then R; € B® else R; & B?®

The initial population is generated by introducing a chromosome representing
the complete previously obtained rule set, i.e., with all ¢; = 1. The remaining
chromosomes are selected at random.

As regards the fitness funtion, F'(C}), it is based on a global error measure
that determines the accuracy of the FRBS encoded in the chromosome, which
depends on the cooperation level of the rules existing in the KB. We usually
work with the mean square error (SE), although other measures may be used.
SE over the training data set, E, is represented by the following expression:

F(Cj) = ﬁ S (' - S(ah)?

e €F

where S(z!) is the output value obtained from the FRBS using the RB coded
in C;, when the input variable values are 2! = (z},...,2%), and ¢ is the known

desired value.

5 Examples of Application

With the aim of analysing the behaviour of the proposed ALM process, we have
chosen two different applications: the fuzzy modelling of a three-dimensional
function [3] and the problem of rice taste evaluation [9]. In both cases, we shall
compare the accuracy of the linguistic models generated from our process with
the ones designed by means of other methods with different characteristics: two
methods based on generating the RB rule by rule, i.e., without considering the
cooperation among linguistic rules —the one proposed by Nozaki et al. (N-
method) in [9], that has been mentioned in Section 3, and the simple WM-
method— and another process based on working at the level of the whole KB
—NEFPROX, the Neuro-Fuzzy approach proposed in [8].

5.1 Fuzzy Modelling of a Three-dimensional Function

The expression of the selected function, the universes of discourse considered for
the variables and its graphical representation are shown as follows. It is a simple
unimodal function presenting two discontinuities at the points (0,0) and (1,1).
Fz,2) = 10- o820 s
T1,T2 € [07 1]7F(m17w2) € [07 10]

In order to model this function, a training data set composed of 674 data uni-
formly distributed in the three-dimensional definition space has been obtained
experimentally. On the other hand, another set composed of 67 data (a ten per-
cent of the training set size) has been randomly generated for its use as a test



Fig. 3. Graphical representation of the function considered

set for evaluating the performance of the design methods. Of course, the lat-
ter set is only emploied to measure the generalization ability of the generated
model, i.e., it is not considered in the learning stage. The DB used for all design
methods is constituted by three normalised fuzzy partitions formed by seven
triangular-shaped fuzzy sets (as shown in Fig. 2). The linguistic term set consid-
ered is {ES,VS,S,M,L,VL,EL}, standing E for Extremely, V for Very, and
S, M, and L for Small, Medium and Large, respectively. Finally, the parame-
ters considered for the rule selection genetic process are: Number of generations:
500, Population size: 61, Crossover probability: 0.6 and Mutation probability:
0.1 (per individual).

The results obtained in the experiments developed are collected in Table
1 where #R stands for the number of simple rules of the corresponding KB,
and SE., and SE:s for the values obtained in the SE measure computed over
the training and test data sets, respectively. As may be observed, the results
obtained by our process after each stage, generation and selection, are included.

Table 1. Results obtained in the fuzzy modelling of the selected function

Generation Selection
Method #R ECtra ECtSt #R ECtm ECtSt

N-method 98 0.175382 0.061249 -
WDM-method 49 0.194386 0.044466 -
NEFPROX 49 0.505725 0.272405 -
ALM 88 0.220062 0.146529 55 0.019083 0.026261

In view of these results, we should underline the good behaviour presented by
our ALM process, that generates the most accurate model in the approximation
of the training and test sets. As regards the number of rules in the KBs, we
should note that our linguistic model only presents a few more rules than the
ones generated from the WM-method and from NEFPROX. As shown in Table 2,
by only adding eight new rules (and by removing two more) to the KB generated
by means of the WM-method, a significantly more accurate model is obtained



with a very small loss of interpretability (as mentioned, this KB only contains
eight double-consequent rules). On the other hand, our model is more accurate
to a high degree than the N-method one, presenting a very much simpler KB
(55 rules against 98).

Table 2. Decision tables for the linguistic models obtained for the selected function
by means of the WM-method (left) and our ALM process (right)

T2 X2
z1 |ES|{VS| S |M| L |VL|EL z1 |ES|VS| S |M| L |VL|EL
ES|ES |ES |ES |[ES |ES |ES |ES ES ES |ES |ES |ES |ES |ES
VS|EL |M |S |VS|VS|ES |ES VS|EL |M |S |VS|S |ES |ES
Vs
S|EL|L (M |S§ |VS|VS|ES S|EL|L (M |S |§ |VSI|ES
VS |ES
MI|EL \VL|L |M |S |VS|ES MI|EL \VL|L |M |S |VS|ES
L |EL|\VL|VLI|L |M |S |ES L |\EL\VL|L |L |M |S |ES
EL VL Vs
VL|\EL \[EL \VL \VL|L |M |ES VL|EL \[EL |VL \VL|L |M |ES
EL VL
EL|EL |EL |[EL |EL |EL |EL |ES EL|EL (EL |EL |\EL |\EL |[EL

5.2 Rice taste evaluation

Subjective qualification of food taste is a very important but difficult problem.
In the case of the rice taste qualification, it is usually put into effect by means of
a subjective evaluation called the sensory test. In this test, a group of experts,
usually composed of 24 persons, evaluate the rice according to a set of charac-
teristics associated to it. These factors are: flavor, appearance, taste, stickiness,
and toughness [9].

Because of the large quantity of relevant variables, the problem of rice taste
analysis becomes very complex, thus leading to solve it by means of modelling
techniques capable of obtaining a model representing the non-linear relationships
existing in it. Moreover, the problem-solving goal is not only to obtain an accu-
rate model, but to obtain a user-interpretable model as well, capable of putting
some light on the reasoning process performed by the expert for evaluating a
kind of rice in a specific way. Due to all these reasons, in this Section we deal
with obtaining a linguistic model to solve the said problem.

In order to do so, we are going to use the data set presented in [9]. This set is
composed of 105 data arrays collecting subjective evaluations of the six variables
in question (the five mentioned and the overall evaluation of the kind of rice),
made up by experts on this number of kinds of rice grown in Japan (for example,
Sasanishiki, Akita-Komachi, etc.). The six variables are normalised, thus taking
values in the real interval [0, 1].



With the aim of not biasing the learning, we have randomly obtained ten
different partitions of the said set, composed by 75 pieces of data in the training
set —to generate ten linguistic models in each experiment— and 30 in the test
one —to evaluate the performance of the generated models—. To solve the prob-
lem, we use the same Linguistic Modelling processes considered in the previous
Section. The values of the parameters of the rule selection genetic process are
the same ones considered in that Section as well.

As was done in [9], we have worked with normalised fuzzy partitions (see
Fig. 2) composed of a different number of linguistic labels for the six variables
considered —two and three, to be precise—. The results obtained in the exper-
iments developed are collected in Table 3. The values shown in columns SE;.,
and SE;4 have been computed as an average of the SE values obtained on the
training and test data sets, respectively, by the ten linguistic models generated
in each case. The column #L stands for the number of labels considered in the
fuzzy partitions in each experiment and #R stands for the average number of
linguistic rules in the KBs of the models generated from each process.

Table 3. Results obtained in the rice taste evaluation

Generation Selection
#L Method #R ECtra ECtst #R ECtTa ECtst

N-method 64 0.00862 0.00985 — — —

2 WM-method 15 0.01328 0.01311 - — —
NefProx 15 0.00633 0.00568 — — —
ALM 19.8 0.02192 0.02412 5 0.00341 0.00398

N-method  364.8 0.00251 0.00322 - — —

3 WDM-method 23 0.00333 0.00375 - — —
NefProx 32.2 0.00338 0.00644 — — —
ALM 25.7 0.00595 0.00736 12.2 0.00185 0.00290

From an analysis of these results, we may again note the good behaviour
presented by the proposed ALM process. The linguistic models generated from
it clearly outperform the ones designed by means of the other processes in the
approximation of both data sets (training and test) in the two experiments
developed (using 2 and 3 labels in the fuzzy partitions). On the other hand, even
following the approach of double-consequent generation proposed in Section 3,
our process generates the KBs with less rules, thus making the corresponding
models simpler to be interpreted. In fact, none of the 20 KBs generated finally
presents double-consequent rules due to the action of the selection process.

6 Concluding Remarks

In this paper, ALM has been proposed, that is a new approach to design linguistic
models in the field of Intelligent Data Analysis, which are accurate to a high



degree and suitably interpretable by human-beings. An ALM process has been
introduced as well, and its behaviour has been compared to other Linguistic
Modelling techniques in solving two different problems. The proposed process
has obtained very good results.

This leads us to conclude that, as mentioned in Section 3.3, our process has
the capability of distinguishing the unnecesary rules and of generating KBs with
good cooperation. The ALM operation mode based on: a) generating a prelimi-
nary fuzzy rule set with a large number of rules —considering double-consequent
ones if it is necessary— and b) selecting the subset of them cooperating best al-
lows us to obtain good results in the area of Linguistic Modelling.
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