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tFuzzy Rule-Based Systems areknowledge-based systems, in
orpo-rating human knowledge into theirknowledge base through fuzzy rules(Rule Base) and fuzzy membershipfun
tions (Data Base). In these kindsof systems, the Data Base is usually de-�ned by 
hoosing a spe
i�
 membershipfun
tion type, uniformly partitioningthe variable domains into a number oflinguisti
 labels and assigning a fuzzyset to ea
h partition. This operationmode 
an signi�
antly de
rease theFRBS performan
e. To solve this prob-lem, in this 
ontribution, we proposea geneti
 pro
ess to automati
allylearn the whole Data Base de�nitionfrom examples, using an ad-ho
 data
overing learning method to obtainthe Rule Base. Our pro
ess learns anappropiate number of labels for ea
hvariable primary fuzzy partition and agood distribution for the membershipfun
tions (using a non-linear s
alingfun
tion to de�ne the fuzzy partition
ontexts). Moreover, it tries to improvethe �nal performan
e of the FRBS by
hanging the extents of the universe ofdis
ourse of the linguisti
 variables.Keywords: Fuzzy Rule-Based System-s, Data Base, Learning, Geneti
 Algo-rithms.1This resear
h has been supported by CICYT underproje
t PB98-1319.

1 Introdu
tionA Fuzzy Rule-Based System (FRBS) presents t-wo main 
omponents: 1) the Inferen
e System,whi
h puts into e�e
t the fuzzy inferen
e pro
essneeded to obtain an output from the FRBS whenan input is spe
i�ed, and 2) the Knowledge Base(KB) representing the knowledge about the prob-lem being solved, 
omposed of the Rule Base (RB)
onstituted by the 
olle
tion of fuzzy rules, and ofthe Data Base (DB), 
ontaining the membershipfun
tions of the fuzzy partitions asso
iated to thelinguisti
 variables.The 
omposition of the KB of an FRBS dire
tlydepends on the problem being solved. The bestsituation is when there is a human expert able toexpress its knowledge in the form of fuzzy rules,thus providing the de�nitions for the DB (the rel-evant input and output linguisti
 variables for thesystem, the term sets for all of them and the mem-bership fun
tions of the fuzzy sets de�ning theirmeaning) and for the RB (the fuzzy rules them-selves). Unfortunately, this fa
t is not very 
om-mon and either the expert is not usually able toprovide all this information or there is no expertinformation about the problem under solving.Although, there is a large quantity of RB learn-ing methods proposed in the spe
ialized litera-ture [5, 13, 18℄, there is not mu
h informationabout the way to derive the DB and most ofthese RB learning methods need of the existen
eof a previous de�nition for it (although some ofthem are able to learn both the de�nitions of theDB and the RB). In this 
ontribution we pro-pose a geneti
 method to learn an appropiate DBfrom examples (in
luding its three usual 
ompo-



nents: number of labels per variable, member-ship fun
tion de�nitions |obtained from a non-linear s
aling fun
tion that de�nes the fuzzy parti-tion 
ontexts| and s
aling fa
tors). This geneti
learning method works 
ooperatively with an R-B derivation method, 
onsidered to validate thequality of ea
h DB de�nition generated. In thispaper we will use two di�erent ones: Wang andMendel rule generation method (WM) [18℄ andCord�on and Herrera generation method (CH) [4℄.2 Previous approa
hes for thede�nition of the Data BaseAs said, the majority of RB learning methodsneed a previous de�nition of the DB to operate.A very 
ommon way to pro
eed to design it in-volves 
onsidering uniform fuzzy partitions withthe same number of terms (usually an odd num-ber between three and seven) for all the linguisti
variables existing in the problem. However, thisoperation mode makes the DB have a signi�
antin
uen
e on the FRBS performan
e. In [8℄, thein
uen
e of the fuzzy partition granularity (num-ber of labels per variable) on the FRBS a

ura
yis analysed.On the other hand, there are some approa
hesthat try to improve the preliminary DB de�ni-tion 
onsidered on
e the RB has been derived.To put this into e�e
t, a tuning pro
ess 
onsider-ing the whole KB obtained (the preliminary DBand the subsequently derived RB) is used a poste-riori to adjust the membership fun
tion parame-ters to improve the FRBS behaviour (for someexamples of these kinds of methods, based onNeural Networks and Geneti
 Algorithms, referto [2, 3, 9, 13℄).On the other hand, there are some 
ontributionsthat 
onsider the de�nition of the DB as an im-portant task prior to the FRBS design. For exam-ple, a 
lustering method that obtains a good fuzzypartition for problems with a single input variablevariable 
an be found in [17℄. In [8℄, a method tolearn a good uniform fuzzy partition granularityusing Simulated Annealing is proposed. More-over, in [14℄, a learning me
hanism for di�erentparameters of the DB (s
aling fa
tors and sensi-bility of the fuzzy partition in the variable work-

ing range, i.e., fuzzy partition 
ontexts) is pro-posed in
luded into a global KB learning method.In this paper we 
ombine the latter two approa
h-es with the aim of learning the whole DB de�ni-tion, i.e., the fuzzy partition granularity, the s
al-ing fa
tors and the sensibility of the membershipfun
tions for ea
h linguisti
 variable. Our obje
-tive is to improve the FRBS performan
e by �nd-ing an appropiate DB for a determinated problemusing a simple RB learning method.3 Learning the DB of an FRBS usingGeneti
 AlgorithmsGeneti
 Algoritmhs (GAs) [15℄ are sear
h and op-timization te
hniques that are based on a for-malization of natural geneti
s. The geneti
 pro-
ess starts with a population of solutions 
alled
hromosomes, that 
onstitutes the �rst generation(G(0)), and undergoes evolution over it. Whilea 
ertain termination 
ondition is not met, ea
h
hromosome is evaluated by means of an evalua-tion fun
tion (a �tness value is assigned to the
hromosome) and a new population is 
reated(G(t+ 1)), by applying a set of geneti
 operatorsto the individuals of generation G(t).Reviews of di�erent systems that use GAs in orderto design FRBS are 
ontained in [5, 10℄. GAshave been basi
ally applied to the learning of thedi�erent 
omponents of the KB (RB in isolationor both DB and RB) and to adjust a preliminaryDB de�nition maintaining �xed an RB previouslyderived [5℄.The important questions when using GAs are:how to 
ode ea
h solution (in this 
ase, the DBof an FRBS), how to evaluate these solutions andhow to 
reate new solutions from existing ones.Moreover, it is relatively important the 
hoi
e ofthe initial population, be
ause we 
an obtain thebetter solutions more qui
kly if an adequate ini-tial gene pool is 
hosen.In this se
tion, we propose a geneti
 learningmethod for the DB of a Mamdani FRBS that al-lows us to de�ne:� The number of labels for ea
h linguisti
 vari-able.
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h fuzzy membership fun
tionin non-uniform fuzzy partitions, using a non-linear s
aling fun
tion that de�nes di�erentareas in the variable working range where theFRBS has a higher or a lower relative sensi-bility, i.e., the fuzzy partition 
ontexts.All of that elements will be adapted throughouta geneti
 pro
ess. Sin
e it is interesting to redu
ethe dimensionality of the sear
h spa
e for thatpro
ess, the use of non-linear s
aling fun
tions is
onditioned by the ne
essity of using parameter-ized fun
tions with a redu
ed number of parame-ters. In this paper we 
onsider the s
aling funtionproposed in [14℄, that has a single sensibility pa-rameter 
alled a (a 2 IR). The fun
tion used is(f : [�1; 1℄! [�1; 1℄)f(x) = sign(x)� jxja ; with a > 0The �nal result is a value in [�1; 1℄ where theparameter a produ
es uniform sensibility (a = 1),higher sensibility for 
enter values (a > 1), orhigher sensibility for extreme values (a < 1). Fig.1 shows a graphi
al representation for these threepossibilities.Triangular membership fun
tions are 
onsidereddue to their simpli
ity. Moreover, the non-linears
aling fun
tion will only be applied on the threede�nition points of the membership fun
tion, in

order to make easier the stru
ture of the generat-ed DB and to simplify the defuzzi�
ation pro
ess.Ea
h 
hromosome 
odi�es a 
omplete DB de�ni-tion by en
oding the said parameters. To evalu-ate a 
romosome, we use an ad-ho
 data 
over-ing method to learn the RB 
onsidering the D-B 
ontained in it, obtaining a 
omplete KB, andmeasure the a

ura
y of the FRBS obtained on atraining data set.The next four subse
tions des
ribe the main 
om-ponents of the geneti
 learning pro
ess.3.1 En
oding the DBThe three main 
omponents of the DB are thenumber of linguisti
 terms for variable, the mem-bership fun
tions that de�ne their semanti
s andthe s
aling fa
tors. The latter 
omponent allowsus to 
hange the variable working range, usual-ly 
onsidered as a �xed part of the problem. Asdes
ribed in [14℄ for the 
ase of Fuzzy Logi
 Con-trollers, an enlargement of the working range pro-du
es a 
hange on the gain of the 
ontroller relat-ed to the 
orresponding variable. We will dire
tlytranslate this idea to the Fuzzy Modeling �eld.As regards the membership fun
tions, we initially
onsider triangular-shaped fun
tions, symmetri-
al and uniformly distributed a
ross the variableworking range. Then, we apply the non-linearfun
tion previously des
ribed on the three de�ni-tion points of ea
h label. Thus, the number oflabels and the sensibility parameter for ea
h vari-able are the only information needed to de�ne thewhole fuzzy partition.Therefore, ea
h 
hromosome will be 
omposed ofthree parts:� Number of labels (C1): For a system with Nvariables (in
luding input and output vari-ables), the number of labels per variable isen
oded into an integer array of lenght N. Inthis 
ontribution, the possible values 
onsid-ered are the set f3; : : : ; 9g.� Sensibility parameters (C2): A real array oflenght N, where the sensibility parameter (a)for ea
h variable is stored. In our 
ase, therange 
onsidered for this parameter is the in-terval (0; 10).



� Working ranges (C3): An array of N � 2 re-al values stores the variable working range([vmin; vmax℄). If the initial domain of a vari-able is [vimin; vimax℄, and d is the interval di-mension (d = vimax � vimin), the range 
on-sidered for the variable domain lower limit is[vimin� (1=4 � d); vimin℄, and the range for theupper limit is [vimax; vimax + (1=4 � d)℄.A graphi
al representation of the 
hromosome isshowed next: C1 = (l1; : : : ; lN )C2 = (a1; : : : ; aN )C3 = (rinf1 ; rsup1 ; : : : ; rinfN ; rsupN )C = C1C2C33.2 Initial Gene PoolThe initial population is 
omposed of three parts,the �rst two having #val�3 
hromosomes, being#val the 
ardinality of the term set (in our 
ase#val = 7, 
orresponding to the seven possibilitiesfor the number of labels, 3 : : : 9). Therefore, thenumber of 
hromosomes (M) has to be at leastgreater than #val� 6. The generation of the ini-tial gene pool is des
ribed next:� The �rst #val�3 
hromosomes will have thesame number of labels and the initial work-ing range in all its variables. For ea
h possi-ble number of labels, three individuals withthe three main possibilities for the sensibilityparameter will be 
reated: one with a = 1,another with a < 1 and the other with a > 1(the latter two values are generated at ran-dom).� The se
ond #val� 3 
hromosomes are equalto the �rst group, but randomly 
hanging thevariable working range. Ea
h 
hromosomewill have the same number of labels in allits variables. For ea
h possible number oflabels, three individuals are 
reated as in the�rst part of the population (one with a = 1,another with a < 1 and the other with a >1). For the third part of the 
hromosomes,two random values in the variable workingrange interval (lower and upper) are sele
ted.

� In the rest of the initial population, the re-mainingM�(#val�6) 
hromosomes, all the
omponents are sele
ted at random. In our
ase, this part has 22 
hromosomes, so, thetotal population lenght is 64.3.3 Evaluating the DBThere are three steps that must be done to eval-uate ea
h 
hromosome:� Generate the fuzzy partitions for all the lin-guisti
 variables using the information 
on-tained in the 
hromosome. First, ea
h vari-able is linearly mapped from its workingrange [rinfi ; rsupi ℄, i = 1; : : : ; N (third part ofthe 
hromosome) to [�1; 1℄. In a se
ond step,uniform fuzzy partitions for all the variablesare 
reated 
onsidering the number of label-s per variable (l1; : : : ; lN , �rst part of the
hromosome). Finally, the non-linear s
al-ing fun
tion with its sensibility parameter(a1; : : : ; aN , se
ond part of the 
hromosome)is applied to the de�nition points of the mem-bership fun
tions obtained in the previousstep, obtaining the whole DB de�nition.� Generate the RB, by running a fuzzy rulelearning method 
onsidering the DB ob-tained.� Cal
ulate the Mean Square Error over thetraining set using the KB obtained (DB +RB). This value will be used as the �tness ofthe 
hromosome.3.4 Geneti
 operatorsA set of geneti
 operators is applied to the ge-neti
 
ode of the DB 
ontained in G(t), to obtainG(t + 1). Due to the spe
ial nature of the 
hro-mosomes involved in this DB de�nition pro
ess,the design of geneti
 operators able to deal withit be
omes a main task. Sin
e there is a strongrelationship among the three 
hromosome part-s, operators working 
ooperatively in C1, C2 andC3 are required in order to make best use of therepresentation used.Taking into a

ount these aspe
ts, the followingoperators are 
onsidered:



3.4.1 Sele
tionThe reprodu
tion operator is the Baker's sto
has-ti
 universal sampling [1℄, in whi
h the number ofany stru
ture o�spring is limited by the 
oor and
eiling of the expe
ted number of o�spring, to-gether with the elitist sele
tion.3.4.2 MutationTwo di�erent operators are used, ea
h one of thema
ting on di�erent 
hromosome parts. A brief de-s
ription of them is given below:� Mutation on C1: The mutation operator se-le
ted for C1 is similar to the one proposedby Thrift in [16℄. When a mutation on a genebelonging to the �rst part of the 
hromosomeis going to be performed, a lo
al modi�
ationis developed by 
hanging the number of labelsto the inmediately upper or lower value (thede
ision is made at random). When the valueto be 
hanged is the lowest (3) or highest one(9), the only possible 
hange is developed.� Mutation on C2 and C3: Sin
e both parts arebased on a real-
oding s
heme, Mi
halewi
z'snon-uniform mutation operator is employed[15℄.If Ctv = (
1; :::; 
k ; :::; 
H ) is a 
hromosomeand the element 
k was sele
ted for this mu-tation (the domain of 
k is [
kl; 
kr℄), the re-sult is a ve
tor Ct+1v = (
1; :::; 
0k ; :::; 
H ), withk 2 1; :::;H , and
0k = ( 
k +4(t; 
kr � 
k) if e = 0,
k �4(t; 
k � 
kl) if e = 1where e is a random number that may have avalue of zero or one, and the fun
tion 4(t; y)returns a value in the range [0; y℄ su
h thatthe probability of 4(t; y) being 
lose to 0 in-
reases as t in
reases:4(t; y) = y(1� r(1� tT )b)where r is a random number in the interval[0; 1℄, T is the maximum number of genera-tions and b is a parameter 
hosen by the user,

whi
h determines the degree of dependen
ywith the number of iterations. This proper-ty 
auses this operator to make an uniformsear
h in the initial spa
e when t is small,and a very lo
al one in later stages.3.4.3 CrossoverAs regards the re
ombination pro
ess, two di�er-ent 
rossover operators are 
onsidered dependingon the two parents' s
ope:� Crossover when both parents have the samegranularity level per variable: If the two par-ents have the same values in C1 (ea
h vari-able has the same number of labels in thetwo parents), then the geneti
 sear
h has lo-
ated a promising spa
e zone that has to beadequatelly exploitated. This task is devel-oped by applying the max-min-arithmeti
al(MMA) 
rossover operator in C2 and C3 andobviously by maintaining the parent C1 val-ues in the o�spring. This 
rossover opera-tor is proposed in [11℄ and works in the wayshown below.If Ctv = (
1; :::; 
k ; :::; 
H ) and Ctw =(
01; :::; 
0k ; :::; 
0H ) are to be 
rossed, the fol-lowing four o�spring are generatedCt+11 = dCtw + (1� d)CtvCt+12 = dCtv + (1� d)CtwCt+13 with 
t+13k = minf
k; 
0kgCt+14 with 
t+14k = maxf
k; 
0kgThis operator 
an use a parameter d whi
h iseither a 
onstant, or a variable whose valuedepends on the age of the population. Theresulting des
endents are the two best of thefour aforesaid o�spring.� Crossover when the parents en
ode di�eren-t granularity levels: This se
ond 
ase high-ly re
ommends the use of the informationen
oded by the parents for explorating thesear
h spa
e in order to dis
over new promis-ing zones, 
onsidering that a good sensibili-ty parameter or working range for a variableprobably 
auses worse behaviour if it is usedwith a di�erent number of labels. Hen
e,



when C1 is 
rossed at a 
ertain point, the val-ues inC2 and C3 
orresponding to the 
rossedvariables are also 
rossed in the two parents.In this way, an standard 
rossover operatoris applied over the three parts of the 
hro-mosomes. This operator performs as follows:a 
rossover point p is randomly generated inC1 and the two parents are 
rossed at the p-th variable in C1. The 
rossover is developedthis way in the three 
hromosome parts, C1,C2 and C3, thereby produ
ing two meaning-ful des
endents.Let us look at an example in order to 
larifythe standard 
rossover appli
ation. LetCt = (l1; : : : ; lp; lp+1; : : : ; lN ; a1; : : : ; ap; ap+1; : : : ; aN ;rinf1 ; rsup1 ; : : : ; rinfp ; rsupp ; rinfp+1; rsupp+1; : : : ; rinfN ; rsupN )C0t = (l01; : : : ; l0p; l0p+1; : : : ; l0N ; a01; : : : ; a0p; a0p+1; : : : ; a0N ;rinf 01 ; rsup01 ; : : : ; rinf 0p ; rsup0p ; rinf 0p+1 ; rsup0p+1 ; : : : ; rinf 0N ; rsup0N )be the individuals to be 
rossed at point p,the two resulting o�spring are:Ct+1 = (l1; : : : ; lp; l0p+1; : : : ; l0N ; a1; : : : ; ap; a0p+1; : : : ; a0N ;rinf1 ; rsup1 ; : : : ; rinfp ; rsupp ; rinf 0p+1 ; rsup0p+1 ; : : : ; rinf 0N ; rsup0N )C0t+1 = (l01; : : : ; l0p; lp+1; : : : ; lN ; a01; : : : ; a0p; ap+1; : : : ; aN ;rinf 01 ; rsup01 ; : : : ; rinf 0p ; rsup0p ; rinfp+1; rsupp+1; : : : ; rinfN ; rsupN )Hen
e the 
omplete re
ombination pro
ess will al-low the GA to follow an adequate exploration-exploitation rate in the geneti
 sear
h. The ex-pe
ted behavior 
onsists of an initial phase wherea high number of standard 
rossovers and a verysmall of MMA ones (equal to zero in the greatmajority of the 
ases) are developed. The geneti
sear
h will perform a wide exploration in this �rststage, lo
ating the promising zones and samplingthe population individuals at them in several run-s. At this moment a new phase begin, 
hara
ter-ized by the in
rease of the exploitation of thesezones and the de
rease of the spa
e exploration.Therefore the number of MMA 
rossovers rises alot and the appli
ation of the standard 
rossoverde
reases. This way to perform an appropiateexploration-exploitation balan
e in the sear
h wassu

esfully applied in [7℄.
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 representation and operators'appli
ation s
ope4 Appli
ation examplesA problem with estimations of minimum mainte-nan
e 
osts whi
h are based on a model of the op-timal ele
tri
al network for a spanish town [6℄ willbe 
onsidered to validate the DB geneti
 learningpro
ess proposed. The problem has four inputvariables: Sum of the lengths of all streets in thetown, Total area of the town, Area that is o

u-pied by buildings and Energy supply to the townand one output variable: Maintenan
e 
osts ofmedium voltage line. These values are somewhatlower than the real ones, but 
ompanies are in-terested in an estimation of the minimum 
ost-s. Of 
ourse, real maintenan
e 
osts are exa
tlya

ounted but a model that relates these 
oststo any 
hara
teristi
 of simulated towns with theoptimal installation is important for the ele
tri
al
ompanies.We were provided with data 
on
erning four dif-ferent 
hara
teristi
s of the towns and their min-imum maintenan
e 
osts in a sample of 1059 sim-ulated towns. In this 
ase, our obje
tive was torelate the last variable (maintenan
e 
osts) withthe other four ones. The training set 
ontains 847elements and the test set 
ontains 212 elements.We are going to 
onsider two RB automati
 learn-ing methods:� The WM fuzzy rule generation method [18℄.� An adaptation of the simpli�ed TSK fuzzyrule generation method presented in [12℄,that makes the pro
ess able to deal with ruleswith fuzzy 
onsequent, whi
h 
an be found in[4℄. This method 
onsiders the n-dimensionaltable representation for the RB to generate.



On every 
ell of this table, the subset of theinput-output data pairs belonging to the 
or-responding input fuzzy subspa
e is 
onsid-ered. The 
onsequent asso
iated to the rulewill be the output variable label that maxi-mizes some 
overing 
riterion over the train-ing set. This method will be denoted CH.The geneti
 parameters used in the experimentsare showed in Table 1.Table 1: Geneti
 parameter valuesParameter ValuePopulation size 64Crossover probability 0.6Mutation probability 0.1Parameter b (non-uniform mutation) 0.5Parameter d (MMA 
rossover) 0.35Number of generations 1000Four experiments were run for ea
h one of thetwo RB learning methods 
onsidered with di�er-ent initial seeds, and the main results (MSEtra)are 
ompared with the best results obtained whenrunning these methods 
onsidering uniform fuzzypartitions and initial working ranges, obtainedfrom an exhaustive sear
h, as developed in [8℄.The results obtained 
onsidering uniform fuzzypartitions are showed in Table 2 whilst the result-s obtained by our method are presented in Table3, where the last two 
olumns show the improve-ment per
entage of our method over the best re-sult 
onsidering uniform fuzzy partitions with thesame number of labels per variable (1) and withany number of labels per variable (2).5 Con
luding RemarksTwo main 
on
lusions 
an be drawn from the re-sults obtained:� Our method obtains a signi�
ative improve-ment with respe
t to the 
lassi
al uniformfuzzy partitions 
onsidered in both RB learn-ing methods.� Our method is very robust, be
ause it doesnot 
ause over-learning. The MSEtra andthe MSEtst are very similar in all the exper-iments.

Our future work will be fo
used on validating theDB de�nitions obtained for our geneti
 pro
ess
ombined with simple and qui
k RB generationsmethods when 
onsidered to design FRBSs bymeans of more sophisti
ated RB generation pro-
esses, and to modify the pro
ess in order to ap-ply other kinds of non-linear fun
tions to de�nethe fuzzy partition 
ontexts, i.e., to 
hange thesensibility of the membership fun
tions into thevariable working range.Referen
es[1℄ Baker, J.E., Redu
ing bias and ineÆ
ien-
y in the sele
tion algoritmh, Pro
. Se
ondInt. Conferen
e on Geneti
 Algorithms (IC-GA'87), Hillsdale, 1987, pp. 14-21.[2℄ Bonissone, P.P., Khedkar, P.S., Chen, Y-T., Geneti
 algorithms for automated tuningof fuzzy 
ontrollers, a transportation apli
a-tion, Pro
. Fifth IEEE Int. Conferen
e onFuzzy Systems (FUZZ-IEEE'96), New Or-leans, 1996, pp. 674-680.[3℄ Cord�on, O., Herrera, F., A three-stageevolutionary pro
ess for learning des
rip-tive and approximative fuzzy logi
 
ontrollerknowledge bases from examples, Internation-al Journal of Approximate Reasoning 17(4),1997, pp. 369-407.[4℄ Cord�on, O., Herrera, F., A proposal for im-proving the A

ura
y of Linguisti
 Modeling,IEEE Transa
tions on Fuzzy Systems, 2000.To appear.[5℄ Cord�on, O., Herrera, F., Ho�mann, F., Mag-dalena, L., Geneti
 Fuzzy Systems. Evo-lutionary Tuning and Learning of FuzzyKnowledge Bases, World S
ienti�
, in prepa-ration.[6℄ Cord�on, O., Herrera, F., S�an
hez, A., Solv-ing ele
tri
al distribution problems using hy-brid evolutionary data analysis te
hniques,Applied Intelligen
e 10, 1999, pp. 5-24.[7℄ Cord�on, O., Herrera, F., Hybridizing genet-i
 algorithms with sharing s
heme and evo-lution strategies for designing approximate



Table 2: Best results 
onsidering uniform fuzzy partitionsMethod Granularity # Rul. MSEtra MSEtstWM 9 9 9 9 9 130 32337.4 (1) 33505.95 7 7 7 9 95 24867.7 (2) 26964.1CH 8 8 8 8 8 543 42735.8 (1) 53596.95 6 9 9 7 589 27698.0 (2) 26134.3Table 3: Results 
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