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P. VillarDept. Leng. y Sist. Inform�atios.E.S. de Ing. Inform�atiaUniversidade de Vigo32004 - Ourense, Spainpvillar�uvigo.esAbstratFuzzy Rule-Based Systems areknowledge-based systems, inorpo-rating human knowledge into theirknowledge base through fuzzy rules(Rule Base) and fuzzy membershipfuntions (Data Base). In these kindsof systems, the Data Base is usually de-�ned by hoosing a spei� membershipfuntion type, uniformly partitioningthe variable domains into a number oflinguisti labels and assigning a fuzzyset to eah partition. This operationmode an signi�antly derease theFRBS performane. To solve this prob-lem, in this ontribution, we proposea geneti proess to automatiallylearn the whole Data Base de�nitionfrom examples, using an ad-ho dataovering learning method to obtainthe Rule Base. Our proess learns anappropiate number of labels for eahvariable primary fuzzy partition and agood distribution for the membershipfuntions (using a non-linear salingfuntion to de�ne the fuzzy partitionontexts). Moreover, it tries to improvethe �nal performane of the FRBS byhanging the extents of the universe ofdisourse of the linguisti variables.Keywords: Fuzzy Rule-Based System-s, Data Base, Learning, Geneti Algo-rithms.1This researh has been supported by CICYT underprojet PB98-1319.

1 IntrodutionA Fuzzy Rule-Based System (FRBS) presents t-wo main omponents: 1) the Inferene System,whih puts into e�et the fuzzy inferene proessneeded to obtain an output from the FRBS whenan input is spei�ed, and 2) the Knowledge Base(KB) representing the knowledge about the prob-lem being solved, omposed of the Rule Base (RB)onstituted by the olletion of fuzzy rules, and ofthe Data Base (DB), ontaining the membershipfuntions of the fuzzy partitions assoiated to thelinguisti variables.The omposition of the KB of an FRBS diretlydepends on the problem being solved. The bestsituation is when there is a human expert able toexpress its knowledge in the form of fuzzy rules,thus providing the de�nitions for the DB (the rel-evant input and output linguisti variables for thesystem, the term sets for all of them and the mem-bership funtions of the fuzzy sets de�ning theirmeaning) and for the RB (the fuzzy rules them-selves). Unfortunately, this fat is not very om-mon and either the expert is not usually able toprovide all this information or there is no expertinformation about the problem under solving.Although, there is a large quantity of RB learn-ing methods proposed in the speialized litera-ture [5, 13, 18℄, there is not muh informationabout the way to derive the DB and most ofthese RB learning methods need of the existeneof a previous de�nition for it (although some ofthem are able to learn both the de�nitions of theDB and the RB). In this ontribution we pro-pose a geneti method to learn an appropiate DBfrom examples (inluding its three usual ompo-



nents: number of labels per variable, member-ship funtion de�nitions |obtained from a non-linear saling funtion that de�nes the fuzzy parti-tion ontexts| and saling fators). This genetilearning method works ooperatively with an R-B derivation method, onsidered to validate thequality of eah DB de�nition generated. In thispaper we will use two di�erent ones: Wang andMendel rule generation method (WM) [18℄ andCord�on and Herrera generation method (CH) [4℄.2 Previous approahes for thede�nition of the Data BaseAs said, the majority of RB learning methodsneed a previous de�nition of the DB to operate.A very ommon way to proeed to design it in-volves onsidering uniform fuzzy partitions withthe same number of terms (usually an odd num-ber between three and seven) for all the linguistivariables existing in the problem. However, thisoperation mode makes the DB have a signi�antinuene on the FRBS performane. In [8℄, theinuene of the fuzzy partition granularity (num-ber of labels per variable) on the FRBS aurayis analysed.On the other hand, there are some approahesthat try to improve the preliminary DB de�ni-tion onsidered one the RB has been derived.To put this into e�et, a tuning proess onsider-ing the whole KB obtained (the preliminary DBand the subsequently derived RB) is used a poste-riori to adjust the membership funtion parame-ters to improve the FRBS behaviour (for someexamples of these kinds of methods, based onNeural Networks and Geneti Algorithms, referto [2, 3, 9, 13℄).On the other hand, there are some ontributionsthat onsider the de�nition of the DB as an im-portant task prior to the FRBS design. For exam-ple, a lustering method that obtains a good fuzzypartition for problems with a single input variablevariable an be found in [17℄. In [8℄, a method tolearn a good uniform fuzzy partition granularityusing Simulated Annealing is proposed. More-over, in [14℄, a learning mehanism for di�erentparameters of the DB (saling fators and sensi-bility of the fuzzy partition in the variable work-

ing range, i.e., fuzzy partition ontexts) is pro-posed inluded into a global KB learning method.In this paper we ombine the latter two approah-es with the aim of learning the whole DB de�ni-tion, i.e., the fuzzy partition granularity, the sal-ing fators and the sensibility of the membershipfuntions for eah linguisti variable. Our obje-tive is to improve the FRBS performane by �nd-ing an appropiate DB for a determinated problemusing a simple RB learning method.3 Learning the DB of an FRBS usingGeneti AlgorithmsGeneti Algoritmhs (GAs) [15℄ are searh and op-timization tehniques that are based on a for-malization of natural genetis. The geneti pro-ess starts with a population of solutions alledhromosomes, that onstitutes the �rst generation(G(0)), and undergoes evolution over it. Whilea ertain termination ondition is not met, eahhromosome is evaluated by means of an evalua-tion funtion (a �tness value is assigned to thehromosome) and a new population is reated(G(t+ 1)), by applying a set of geneti operatorsto the individuals of generation G(t).Reviews of di�erent systems that use GAs in orderto design FRBS are ontained in [5, 10℄. GAshave been basially applied to the learning of thedi�erent omponents of the KB (RB in isolationor both DB and RB) and to adjust a preliminaryDB de�nition maintaining �xed an RB previouslyderived [5℄.The important questions when using GAs are:how to ode eah solution (in this ase, the DBof an FRBS), how to evaluate these solutions andhow to reate new solutions from existing ones.Moreover, it is relatively important the hoie ofthe initial population, beause we an obtain thebetter solutions more quikly if an adequate ini-tial gene pool is hosen.In this setion, we propose a geneti learningmethod for the DB of a Mamdani FRBS that al-lows us to de�ne:� The number of labels for eah linguisti vari-able.
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-1 -0.5 0 0.5 1Figure 1: Fuzzy partitions with a = 1 (at thetop), a > 1 (down left), and a < 1 (down right)� The variable domain (working range).� The form of eah fuzzy membership funtionin non-uniform fuzzy partitions, using a non-linear saling funtion that de�nes di�erentareas in the variable working range where theFRBS has a higher or a lower relative sensi-bility, i.e., the fuzzy partition ontexts.All of that elements will be adapted throughouta geneti proess. Sine it is interesting to reduethe dimensionality of the searh spae for thatproess, the use of non-linear saling funtions isonditioned by the neessity of using parameter-ized funtions with a redued number of parame-ters. In this paper we onsider the saling funtionproposed in [14℄, that has a single sensibility pa-rameter alled a (a 2 IR). The funtion used is(f : [�1; 1℄! [�1; 1℄)f(x) = sign(x)� jxja ; with a > 0The �nal result is a value in [�1; 1℄ where theparameter a produes uniform sensibility (a = 1),higher sensibility for enter values (a > 1), orhigher sensibility for extreme values (a < 1). Fig.1 shows a graphial representation for these threepossibilities.Triangular membership funtions are onsidereddue to their simpliity. Moreover, the non-linearsaling funtion will only be applied on the threede�nition points of the membership funtion, in

order to make easier the struture of the generat-ed DB and to simplify the defuzzi�ation proess.Eah hromosome odi�es a omplete DB de�ni-tion by enoding the said parameters. To evalu-ate a romosome, we use an ad-ho data over-ing method to learn the RB onsidering the D-B ontained in it, obtaining a omplete KB, andmeasure the auray of the FRBS obtained on atraining data set.The next four subsetions desribe the main om-ponents of the geneti learning proess.3.1 Enoding the DBThe three main omponents of the DB are thenumber of linguisti terms for variable, the mem-bership funtions that de�ne their semantis andthe saling fators. The latter omponent allowsus to hange the variable working range, usual-ly onsidered as a �xed part of the problem. Asdesribed in [14℄ for the ase of Fuzzy Logi Con-trollers, an enlargement of the working range pro-dues a hange on the gain of the ontroller relat-ed to the orresponding variable. We will diretlytranslate this idea to the Fuzzy Modeling �eld.As regards the membership funtions, we initiallyonsider triangular-shaped funtions, symmetri-al and uniformly distributed aross the variableworking range. Then, we apply the non-linearfuntion previously desribed on the three de�ni-tion points of eah label. Thus, the number oflabels and the sensibility parameter for eah vari-able are the only information needed to de�ne thewhole fuzzy partition.Therefore, eah hromosome will be omposed ofthree parts:� Number of labels (C1): For a system with Nvariables (inluding input and output vari-ables), the number of labels per variable isenoded into an integer array of lenght N. Inthis ontribution, the possible values onsid-ered are the set f3; : : : ; 9g.� Sensibility parameters (C2): A real array oflenght N, where the sensibility parameter (a)for eah variable is stored. In our ase, therange onsidered for this parameter is the in-terval (0; 10).



� Working ranges (C3): An array of N � 2 re-al values stores the variable working range([vmin; vmax℄). If the initial domain of a vari-able is [vimin; vimax℄, and d is the interval di-mension (d = vimax � vimin), the range on-sidered for the variable domain lower limit is[vimin� (1=4 � d); vimin℄, and the range for theupper limit is [vimax; vimax + (1=4 � d)℄.A graphial representation of the hromosome isshowed next: C1 = (l1; : : : ; lN )C2 = (a1; : : : ; aN )C3 = (rinf1 ; rsup1 ; : : : ; rinfN ; rsupN )C = C1C2C33.2 Initial Gene PoolThe initial population is omposed of three parts,the �rst two having #val�3 hromosomes, being#val the ardinality of the term set (in our ase#val = 7, orresponding to the seven possibilitiesfor the number of labels, 3 : : : 9). Therefore, thenumber of hromosomes (M) has to be at leastgreater than #val� 6. The generation of the ini-tial gene pool is desribed next:� The �rst #val�3 hromosomes will have thesame number of labels and the initial work-ing range in all its variables. For eah possi-ble number of labels, three individuals withthe three main possibilities for the sensibilityparameter will be reated: one with a = 1,another with a < 1 and the other with a > 1(the latter two values are generated at ran-dom).� The seond #val� 3 hromosomes are equalto the �rst group, but randomly hanging thevariable working range. Eah hromosomewill have the same number of labels in allits variables. For eah possible number oflabels, three individuals are reated as in the�rst part of the population (one with a = 1,another with a < 1 and the other with a >1). For the third part of the hromosomes,two random values in the variable workingrange interval (lower and upper) are seleted.

� In the rest of the initial population, the re-mainingM�(#val�6) hromosomes, all theomponents are seleted at random. In ourase, this part has 22 hromosomes, so, thetotal population lenght is 64.3.3 Evaluating the DBThere are three steps that must be done to eval-uate eah hromosome:� Generate the fuzzy partitions for all the lin-guisti variables using the information on-tained in the hromosome. First, eah vari-able is linearly mapped from its workingrange [rinfi ; rsupi ℄, i = 1; : : : ; N (third part ofthe hromosome) to [�1; 1℄. In a seond step,uniform fuzzy partitions for all the variablesare reated onsidering the number of label-s per variable (l1; : : : ; lN , �rst part of thehromosome). Finally, the non-linear sal-ing funtion with its sensibility parameter(a1; : : : ; aN , seond part of the hromosome)is applied to the de�nition points of the mem-bership funtions obtained in the previousstep, obtaining the whole DB de�nition.� Generate the RB, by running a fuzzy rulelearning method onsidering the DB ob-tained.� Calulate the Mean Square Error over thetraining set using the KB obtained (DB +RB). This value will be used as the �tness ofthe hromosome.3.4 Geneti operatorsA set of geneti operators is applied to the ge-neti ode of the DB ontained in G(t), to obtainG(t + 1). Due to the speial nature of the hro-mosomes involved in this DB de�nition proess,the design of geneti operators able to deal withit beomes a main task. Sine there is a strongrelationship among the three hromosome part-s, operators working ooperatively in C1, C2 andC3 are required in order to make best use of therepresentation used.Taking into aount these aspets, the followingoperators are onsidered:



3.4.1 SeletionThe reprodution operator is the Baker's stohas-ti universal sampling [1℄, in whih the number ofany struture o�spring is limited by the oor andeiling of the expeted number of o�spring, to-gether with the elitist seletion.3.4.2 MutationTwo di�erent operators are used, eah one of themating on di�erent hromosome parts. A brief de-sription of them is given below:� Mutation on C1: The mutation operator se-leted for C1 is similar to the one proposedby Thrift in [16℄. When a mutation on a genebelonging to the �rst part of the hromosomeis going to be performed, a loal modi�ationis developed by hanging the number of labelsto the inmediately upper or lower value (thedeision is made at random). When the valueto be hanged is the lowest (3) or highest one(9), the only possible hange is developed.� Mutation on C2 and C3: Sine both parts arebased on a real-oding sheme, Mihalewiz'snon-uniform mutation operator is employed[15℄.If Ctv = (1; :::; k ; :::; H ) is a hromosomeand the element k was seleted for this mu-tation (the domain of k is [kl; kr℄), the re-sult is a vetor Ct+1v = (1; :::; 0k ; :::; H ), withk 2 1; :::;H , and0k = ( k +4(t; kr � k) if e = 0,k �4(t; k � kl) if e = 1where e is a random number that may have avalue of zero or one, and the funtion 4(t; y)returns a value in the range [0; y℄ suh thatthe probability of 4(t; y) being lose to 0 in-reases as t inreases:4(t; y) = y(1� r(1� tT )b)where r is a random number in the interval[0; 1℄, T is the maximum number of genera-tions and b is a parameter hosen by the user,

whih determines the degree of dependenywith the number of iterations. This proper-ty auses this operator to make an uniformsearh in the initial spae when t is small,and a very loal one in later stages.3.4.3 CrossoverAs regards the reombination proess, two di�er-ent rossover operators are onsidered dependingon the two parents' sope:� Crossover when both parents have the samegranularity level per variable: If the two par-ents have the same values in C1 (eah vari-able has the same number of labels in thetwo parents), then the geneti searh has lo-ated a promising spae zone that has to beadequatelly exploitated. This task is devel-oped by applying the max-min-arithmetial(MMA) rossover operator in C2 and C3 andobviously by maintaining the parent C1 val-ues in the o�spring. This rossover opera-tor is proposed in [11℄ and works in the wayshown below.If Ctv = (1; :::; k ; :::; H ) and Ctw =(01; :::; 0k ; :::; 0H ) are to be rossed, the fol-lowing four o�spring are generatedCt+11 = dCtw + (1� d)CtvCt+12 = dCtv + (1� d)CtwCt+13 with t+13k = minfk; 0kgCt+14 with t+14k = maxfk; 0kgThis operator an use a parameter d whih iseither a onstant, or a variable whose valuedepends on the age of the population. Theresulting desendents are the two best of thefour aforesaid o�spring.� Crossover when the parents enode di�eren-t granularity levels: This seond ase high-ly reommends the use of the informationenoded by the parents for explorating thesearh spae in order to disover new promis-ing zones, onsidering that a good sensibili-ty parameter or working range for a variableprobably auses worse behaviour if it is usedwith a di�erent number of labels. Hene,



when C1 is rossed at a ertain point, the val-ues inC2 and C3 orresponding to the rossedvariables are also rossed in the two parents.In this way, an standard rossover operatoris applied over the three parts of the hro-mosomes. This operator performs as follows:a rossover point p is randomly generated inC1 and the two parents are rossed at the p-th variable in C1. The rossover is developedthis way in the three hromosome parts, C1,C2 and C3, thereby produing two meaning-ful desendents.Let us look at an example in order to larifythe standard rossover appliation. LetCt = (l1; : : : ; lp; lp+1; : : : ; lN ; a1; : : : ; ap; ap+1; : : : ; aN ;rinf1 ; rsup1 ; : : : ; rinfp ; rsupp ; rinfp+1; rsupp+1; : : : ; rinfN ; rsupN )C0t = (l01; : : : ; l0p; l0p+1; : : : ; l0N ; a01; : : : ; a0p; a0p+1; : : : ; a0N ;rinf 01 ; rsup01 ; : : : ; rinf 0p ; rsup0p ; rinf 0p+1 ; rsup0p+1 ; : : : ; rinf 0N ; rsup0N )be the individuals to be rossed at point p,the two resulting o�spring are:Ct+1 = (l1; : : : ; lp; l0p+1; : : : ; l0N ; a1; : : : ; ap; a0p+1; : : : ; a0N ;rinf1 ; rsup1 ; : : : ; rinfp ; rsupp ; rinf 0p+1 ; rsup0p+1 ; : : : ; rinf 0N ; rsup0N )C0t+1 = (l01; : : : ; l0p; lp+1; : : : ; lN ; a01; : : : ; a0p; ap+1; : : : ; aN ;rinf 01 ; rsup01 ; : : : ; rinf 0p ; rsup0p ; rinfp+1; rsupp+1; : : : ; rinfN ; rsupN )Hene the omplete reombination proess will al-low the GA to follow an adequate exploration-exploitation rate in the geneti searh. The ex-peted behavior onsists of an initial phase wherea high number of standard rossovers and a verysmall of MMA ones (equal to zero in the greatmajority of the ases) are developed. The genetisearh will perform a wide exploration in this �rststage, loating the promising zones and samplingthe population individuals at them in several run-s. At this moment a new phase begin, harater-ized by the inrease of the exploitation of thesezones and the derease of the spae exploration.Therefore the number of MMA rossovers rises alot and the appliation of the standard rossoverdereases. This way to perform an appropiateexploration-exploitation balane in the searh wassuesfully applied in [7℄.
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On every ell of this table, the subset of theinput-output data pairs belonging to the or-responding input fuzzy subspae is onsid-ered. The onsequent assoiated to the rulewill be the output variable label that maxi-mizes some overing riterion over the train-ing set. This method will be denoted CH.The geneti parameters used in the experimentsare showed in Table 1.Table 1: Geneti parameter valuesParameter ValuePopulation size 64Crossover probability 0.6Mutation probability 0.1Parameter b (non-uniform mutation) 0.5Parameter d (MMA rossover) 0.35Number of generations 1000Four experiments were run for eah one of thetwo RB learning methods onsidered with di�er-ent initial seeds, and the main results (MSEtra)are ompared with the best results obtained whenrunning these methods onsidering uniform fuzzypartitions and initial working ranges, obtainedfrom an exhaustive searh, as developed in [8℄.The results obtained onsidering uniform fuzzypartitions are showed in Table 2 whilst the result-s obtained by our method are presented in Table3, where the last two olumns show the improve-ment perentage of our method over the best re-sult onsidering uniform fuzzy partitions with thesame number of labels per variable (1) and withany number of labels per variable (2).5 Conluding RemarksTwo main onlusions an be drawn from the re-sults obtained:� Our method obtains a signi�ative improve-ment with respet to the lassial uniformfuzzy partitions onsidered in both RB learn-ing methods.� Our method is very robust, beause it doesnot ause over-learning. The MSEtra andthe MSEtst are very similar in all the exper-iments.

Our future work will be foused on validating theDB de�nitions obtained for our geneti proessombined with simple and quik RB generationsmethods when onsidered to design FRBSs bymeans of more sophistiated RB generation pro-esses, and to modify the proess in order to ap-ply other kinds of non-linear funtions to de�nethe fuzzy partition ontexts, i.e., to hange thesensibility of the membership funtions into thevariable working range.Referenes[1℄ Baker, J.E., Reduing bias and ineÆien-y in the seletion algoritmh, Pro. SeondInt. Conferene on Geneti Algorithms (IC-GA'87), Hillsdale, 1987, pp. 14-21.[2℄ Bonissone, P.P., Khedkar, P.S., Chen, Y-T., Geneti algorithms for automated tuningof fuzzy ontrollers, a transportation aplia-tion, Pro. Fifth IEEE Int. Conferene onFuzzy Systems (FUZZ-IEEE'96), New Or-leans, 1996, pp. 674-680.[3℄ Cord�on, O., Herrera, F., A three-stageevolutionary proess for learning desrip-tive and approximative fuzzy logi ontrollerknowledge bases from examples, Internation-al Journal of Approximate Reasoning 17(4),1997, pp. 369-407.[4℄ Cord�on, O., Herrera, F., A proposal for im-proving the Auray of Linguisti Modeling,IEEE Transations on Fuzzy Systems, 2000.To appear.[5℄ Cord�on, O., Herrera, F., Ho�mann, F., Mag-dalena, L., Geneti Fuzzy Systems. Evo-lutionary Tuning and Learning of FuzzyKnowledge Bases, World Sienti�, in prepa-ration.[6℄ Cord�on, O., Herrera, F., S�anhez, A., Solv-ing eletrial distribution problems using hy-brid evolutionary data analysis tehniques,Applied Intelligene 10, 1999, pp. 5-24.[7℄ Cord�on, O., Herrera, F., Hybridizing genet-i algorithms with sharing sheme and evo-lution strategies for designing approximate



Table 2: Best results onsidering uniform fuzzy partitionsMethod Granularity # Rul. MSEtra MSEtstWM 9 9 9 9 9 130 32337.4 (1) 33505.95 7 7 7 9 95 24867.7 (2) 26964.1CH 8 8 8 8 8 543 42735.8 (1) 53596.95 6 9 9 7 589 27698.0 (2) 26134.3Table 3: Results onsidering our DB learning methodMethod Granularity Parameter a # Rul. MSEtra MSEtst %imp. (1) %imp. (2)4 4 9 9 8 8.6 7.7 0.8 0.4 0.9 82 11542.2 13573.5 64.3% 53.5%WM 8 4 9 9 9 0.4 4.2 1.0 0.8 0.9 92 18547.4 18863.4 42.6% 25.4%6 5 9 9 9 0.9 0.4 0.7 0.4 1.2 89 10347.4 11286.2 68.0% 58.3%3 3 9 9 9 1.6 2.7 0.7 0.4 1.1 71 9859.6 9559.4 69.5% 60.3%5 4 9 9 9 0.5 0.2 0.7 0.4 1.0 348 10972.2 10232.1 74.3% 60.3%CH 6 5 9 9 8 0.8 0.9 0.9 0.5 0.9 548 11282.5 12950.4 73.5% 59.2%5 4 9 9 9 0.7 0.3 0.7 0.5 1.1 399 12086.1 13305.8 71.7% 56.3%8 6 9 9 9 1.3 0.9 0.9 0.4 1.1 653 11206.3 13722.4 72.7% 59.5%fuzzy rule-based systems, Fuzzy Sets and Sys-tems, 2000. To appear.[8℄ Cord�on, O., Herrera, F., Villar, P., Analy-sis and guidelines to obtain a good unifor-m fuzzy partition granularity for fuzzy rule-based systems using simulated annealing, In-ternational Journal of Approximate Reason-ing 2000. To appear.[9℄ Herrera, F., Lozano, M., Verdegay, J.L., Tun-ing fuzzy ontrollers by geneti algorithms,International Journal of Approximate Rea-soning 12, 1995, pp. 299-315.[10℄ Herrera, F., Verdegay, J.L., (Eds). Genet-i Algorithms and Soft Computing, Physia-Verlag, 1996.[11℄ F. Herrera, M. Lozano, J.L. Verdegay, Fuzzyonnetives based rossover operators tomodel geneti algorihtms population diversi-ty, Fuzzy Sets and Systems 92:1 (1997) 21-30.[12℄ Ishibuhi, H., Nozaki, K., Tanaka, H., Hosa-ka, Y., Matsuda, M., empirial study onlearning in fuzzy systems by rie taste anal-ysis, Fuzzy Sets and Systems 64, 1994, pp.129-144.[13℄ Jang, J.R., ANFIS: Adaptive-network-basedfuzzy inferene system, IEEE Transation-s on Systems, Man, and Cybernetis 23(3),1993, pp. 665-684.
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