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Abstract

Fuzzy = Rule-Based  Systems  are
knowledge-based systems, incorpo-
rating human knowledge into their
knowledge base through fuzzy rules
(Rule Base) and fuzzy membership
functions (Data Base). In these kinds
of systems, the Data Base is usually de-
fined by choosing a specific membership
function type, uniformly partitioning
the variable domains into a number of
linguistic labels and assigning a fuzzy
set to each partition. This operation
mode can significantly decrease the
FRBS performance. To solve this prob-
lem, in this contribution, we propose
a genetic process to automatically
learn the whole Data Base definition
from examples, using an ad-hoc data
covering learning method to obtain
the Rule Base. Our process learns an
appropiate number of labels for each
variable primary fuzzy partition and a
good distribution for the membership
functions (using a non-linear scaling
function to define the fuzzy partition
contexts). Moreover, it tries to improve
the final performance of the FRBS by
changing the extents of the universe of
discourse of the linguistic variables.
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1 Introduction

A Fuzzy Rule-Based System (FRBS) presents t-
wo main components: 1) the Inference System,
which puts into effect the fuzzy inference process
needed to obtain an output from the FRBS when
an input is specified, and 2) the Knowledge Base
(KB) representing the knowledge about the prob-
lem being solved, composed of the Rule Base (RB)
constituted by the collection of fuzzy rules, and of
the Data Base (DB), containing the membership
functions of the fuzzy partitions associated to the
linguistic variables.

The composition of the KB of an FRBS directly
depends on the problem being solved. The best
situation is when there is a human expert able to
express its knowledge in the form of fuzzy rules,
thus providing the definitions for the DB (the rel-
evant input and output linguistic variables for the
system, the term sets for all of them and the mem-
bership functions of the fuzzy sets defining their
meaning) and for the RB (the fuzzy rules them-
selves). Unfortunately, this fact is not very com-
mon and either the expert is not usually able to
provide all this information or there is no expert
information about the problem under solving.

Although, there is a large quantity of RB learn-
ing methods proposed in the specialized litera-
ture [5, 13, 18], there is not much information
about the way to derive the DB and most of
these RB learning methods need of the existence
of a previous definition for it (although some of
them are able to learn both the definitions of the
DB and the RB). In this contribution we pro-
pose a genetic method to learn an appropiate DB
from examples (including its three usual compo-



nents: number of labels per variable, member-
ship function definitions —obtained from a non-
linear scaling function that defines the fuzzy parti-
tion contexts— and scaling factors). This genetic
learning method works cooperatively with an R-
B derivation method, considered to validate the
quality of each DB definition generated. In this
paper we will use two different ones: Wang and
Mendel rule generation method (WM) [18] and
Cordén and Herrera generation method (CH) [4].

2 Previous approaches for the
definition of the Data Base

As said, the majority of RB learning methods
need a previous definition of the DB to operate.
A very common way to proceed to design it in-
volves considering uniform fuzzy partitions with
the same number of terms (usually an odd num-
ber between three and seven) for all the linguistic
variables existing in the problem. However, this
operation mode makes the DB have a significant
influence on the FRBS performance. In [8], the
influence of the fuzzy partition granularity (num-
ber of labels per variable) on the FRBS accuracy
is analysed.

On the other hand, there are some approaches
that try to improve the preliminary DB defini-
tion considered once the RB has been derived.
To put this into effect, a tuning process consider-
ing the whole KB obtained (the preliminary DB
and the subsequently derived RB) is used a poste-
riori to adjust the membership function parame-
ters to improve the FRBS behaviour (for some
examples of these kinds of methods, based on
Neural Networks and Genetic Algorithms, refer
to 2, 3, 9, 13)).

On the other hand, there are some contributions
that consider the definition of the DB as an im-
portant task prior to the FRBS design. For exam-
ple, a clustering method that obtains a good fuzzy
partition for problems with a single input variable
variable can be found in [17]. In [8], a method to
learn a good uniform fuzzy partition granularity
using Simulated Annealing is proposed. More-
over, in [14], a learning mechanism for different
parameters of the DB (scaling factors and sensi-
bility of the fuzzy partition in the variable work-

ing range, i.e., fuzzy partition contexts) is pro-
posed included into a global KB learning method.

In this paper we combine the latter two approach-
es with the aim of learning the whole DB defini-
tion, i.e., the fuzzy partition granularity, the scal-
ing factors and the sensibility of the membership
functions for each linguistic variable. Our objec-
tive is to improve the FRBS performance by find-
ing an appropiate DB for a determinated problem
using a simple RB learning method.

3 Learning the DB of an FRBS using
Genetic Algorithms

Genetic Algoritmhs (GAs) [15] are search and op-
timization techniques that are based on a for-
malization of natural genetics. The genetic pro-
cess starts with a population of solutions called
chromosomes, that constitutes the first generation
(G(0)), and undergoes evolution over it. While
a certain termination condition is not met, each
chromosome is evaluated by means of an evalua-
tion function (a fitness value is assigned to the
chromosome) and a new population is created
(G(t+ 1)), by applying a set of genetic operators
to the individuals of generation G(t).

Reviews of different systems that use GAs in order
to design FRBS are contained in [5, 10]. GAs
have been basically applied to the learning of the
different components of the KB (RB in isolation
or both DB and RB) and to adjust a preliminary
DB definition maintaining fixed an RB previously
derived [5].

The important questions when using GAs are:
how to code each solution (in this case, the DB
of an FRBS), how to evaluate these solutions and
how to create new solutions from existing ones.
Moreover, it is relatively important the choice of
the initial population, because we can obtain the
better solutions more quickly if an adequate ini-
tial gene pool is chosen.

In this section, we propose a genetic learning
method for the DB of a Mamdani FRBS that al-
lows us to define:

e The number of labels for each linguistic vari-
able.
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Figure 1: Fuzzy partitions with a = 1 (at the
top), a > 1 (down left), and a < 1 (down right)

e The variable domain (working range).

e The form of each fuzzy membership function
in non-uniform fuzzy partitions, using a non-
linear scaling function that defines different
areas in the variable working range where the
FRBS has a higher or a lower relative sensi-
bility, i.e., the fuzzy partition contexts.

All of that elements will be adapted throughout
a genetic process. Since it is interesting to reduce
the dimensionality of the search space for that
process, the use of non-linear scaling functions is
conditioned by the necessity of using parameter-
ized functions with a reduced number of parame-
ters. In this paper we consider the scaling funtion
proposed in [14], that has a single sensibility pa-
rameter called ¢ (¢ € IR). The function used is

(f : [_171] - [_171])

f(z) = sign(z) x |z|*, with a >0

The final result is a value in [—1,1] where the
parameter a produces uniform sensibility (a = 1),
higher sensibility for center values (a > 1), or
higher sensibility for extreme values (a < 1). Fig.
1 shows a graphical representation for these three
possibilities.

Triangular membership functions are considered
due to their simplicity. Moreover, the non-linear
scaling function will only be applied on the three
definition points of the membership function, in

order to make easier the structure of the generat-
ed DB and to simplify the defuzzification process.

Each chromosome codifies a complete DB defini-
tion by encoding the said parameters. To evalu-
ate a cromosome, we use an ad-hoc data cover-
ing method to learn the RB considering the D-
B contained in it, obtaining a complete KB, and
measure the accuracy of the FRBS obtained on a
training data set.

The next four subsections describe the main com-
ponents of the genetic learning process.

3.1 Encoding the DB

The three main components of the DB are the
number of linguistic terms for variable, the mem-
bership functions that define their semantics and
the scaling factors. The latter component allows
us to change the variable working range, usual-
ly considered as a fixed part of the problem. As
described in [14] for the case of Fuzzy Logic Con-
trollers, an enlargement of the working range pro-
duces a change on the gain of the controller relat-
ed to the corresponding variable. We will directly
translate this idea to the Fuzzy Modeling field.

As regards the membership functions, we initially
consider triangular-shaped functions, symmetri-
cal and uniformly distributed across the variable
working range. Then, we apply the non-linear
function previously described on the three defini-
tion points of each label. Thus, the number of
labels and the sensibility parameter for each vari-
able are the only information needed to define the
whole fuzzy partition.

Therefore, each chromosome will be composed of
three parts:

e Number of labels (C}): For a system with N
variables (including input and output vari-
ables), the number of labels per variable is
encoded into an integer array of lenght N. In
this contribution, the possible values consid-
ered are the set {3,...,9}.

e Sensibility parameters (Cy): A real array of
lenght N, where the sensibility parameter (a)
for each variable is stored. In our case, the
range considered for this parameter is the in-
terval (0, 10).



e Working ranges (C3): An array of N x 2 re-
al values stores the variable working range
([vmins Vmaz))- If the initial domain of a vari-

able is [v} ;. vl .|, and d is the interval di-
mension (d = vl,,, — Vhin), the range con-

sidered for the variable domain lower limit is
[0 . —(1/4xd),v% . ], and the range for the
! )

upper limit is [0}, 40> Vimae + (1/4 % d)].

A graphical representation of the chromosome is
showed next:

Cy =(ly,...,ln)
CQZ(G]_,...,CLN)
_inf  sup inf  sup
Cy=(r",r . ,rN TN )
C = C10C5

3.2 Initial Gene Pool

The initial population is composed of three parts,
the first two having #wal x 3 chromosomes, being
#wval the cardinality of the term set (in our case
#wval = 7, corresponding to the seven possibilities
for the number of labels, 3...9). Therefore, the
number of chromosomes (M) has to be at least
greater than #wval x 6. The generation of the ini-
tial gene pool is described next:

e The first #wval x 3 chromosomes will have the
same number of labels and the initial work-
ing range in all its variables. For each possi-
ble number of labels, three individuals with
the three main possibilities for the sensibility
parameter will be created: one with a = 1,
another with ¢ < 1 and the other with a > 1
(the latter two values are generated at ran-
dom).

e The second #wal x 3 chromosomes are equal
to the first group, but randomly changing the
variable working range. Each chromosome
will have the same number of labels in all
its variables. For each possible number of
labels, three individuals are created as in the
first part of the population (one with a = 1,
another with ¢ < 1 and the other with a >
1). For the third part of the chromosomes,
two random values in the variable working
range interval (lower and upper) are selected.

e In the rest of the initial population, the re-
maining M — (#wval x 6) chromosomes, all the
components are selected at random. In our
case, this part has 22 chromosomes, so, the
total population lenght is 64.

3.3 Evaluating the DB

There are three steps that must be done to eval-
uate each chromosome:

e Generate the fuzzy partitions for all the lin-
guistic variables using the information con-
tained in the chromosome. First, each vari-
able is linearly mapped from its working
range [rf"f,rfw, i =1,...,N (third part of
the chromosome) to [—1,1]. In a second step,
uniform fuzzy partitions for all the variables
are created considering the number of label-
s per variable (ly,...,ly, first part of the
chromosome). Finally, the non-linear scal-
ing function with its sensibility parameter
(a,...,an, second part of the chromosome)
is applied to the definition points of the mem-
bership functions obtained in the previous
step, obtaining the whole DB definition.

e Generate the RB, by running a fuzzy rule
learning method considering the DB ob-
tained.

e Calculate the Mean Square Error over the
training set using the KB obtained (DB +
RB). This value will be used as the fitness of
the chromosome.

3.4 Genetic operators

A set of genetic operators is applied to the ge-
netic code of the DB contained in G(¢), to obtain
G(t + 1). Due to the special nature of the chro-
mosomes involved in this DB definition process,
the design of genetic operators able to deal with
it becomes a main task. Since there is a strong
relationship among the three chromosome part-
s, operators working cooperatively in C, Cy and
(5 are required in order to make best use of the
representation used.

Taking into account these aspects, the following
operators are considered:



3.4.1 Selection

The reproduction operator is the Baker’s stochas-
tic universal sampling [1], in which the number of
any structure offspring is limited by the floor and
ceiling of the expected number of offspring, to-
gether with the elitist selection.

3.4.2 Mutation

Two different operators are used, each one of them
acting on different chromosome parts. A brief de-
scription of them is given below:

e Mutation on Cp: The mutation operator se-
lected for C; is similar to the one proposed
by Thrift in [16]. When a mutation on a gene
belonging to the first part of the chromosome
is going to be performed, a local modification
is developed by changing the number of labels
to the inmediately upper or lower value (the
decision is made at random). When the value
to be changed is the lowest (3) or highest one
(9), the only possible change is developed.

o Mutation on C9 and C3: Since both parts are
based on a real-coding scheme, Michalewicz’s
non-uniform mutation operator is employed

[15].

If CY = (c1y.yChy--ycpy) is a chromosome
and the element ¢, was selected for this mu-
tation (the domain of ¢ is [cg, ckr]), the re-

sult is a vector ™! = (cq, ..., ¢}, ..., e ), with
kel,.. H,and

¢ = Ck+A(t,Ckr—Ck) ife=0,

k= Ck—A(t,Ck—Ckl) ife=1

where e is a random number that may have a
value of zero or one, and the function A(¢,y)
returns a value in the range [0,y] such that
the probability of A(t,y) being close to 0 in-
creases as t increases:

Altyy) = y(1 —r0-1)")

where 7 is a random number in the interval
[0,1], T" is the maximum number of genera-
tions and b is a parameter chosen by the user,

which determines the degree of dependency
with the number of iterations. This proper-
ty causes this operator to make an uniform
search in the initial space when ¢ is small,
and a very local one in later stages.

3.4.3 Crossover

As regards the recombination process, two differ-
ent crossover operators are considered depending
on the two parents’ scope:

e Crossover when both parents have the same
granularity level per variable: If the two par-
ents have the same values in C; (each vari-
able has the same number of labels in the
two parents), then the genetic search has lo-
cated a promising space zone that has to be
adequatelly exploitated. This task is devel-
oped by applying the max-min-arithmetical
(MMA) crossover operator in Cy and C3 and
obviously by maintaining the parent C val-
ues in the offspring. This crossover opera-
tor is proposed in [11] and works in the way
shown below.

If ¢! = (c1,-rCky-ycy) and CL =
(¢), s €y ey () are to be crossed, the fol-
lowing four offspring are generated

Citt = dCL + (1 - d)C!
Citt = dCt + (1 — a)Cl,
C4! with ¢5i! = min{cg, ¢}, }

Cit! with ¢4i! = max{cy, ¢, }

This operator can use a parameter d which is
either a constant, or a variable whose value
depends on the age of the population. The
resulting descendents are the two best of the
four aforesaid offspring.

e Crossover when the parents encode differen-
t granularity levels: This second case high-
ly recommends the use of the information
encoded by the parents for explorating the
search space in order to discover new promis-
ing zones, considering that a good sensibili-
ty parameter or working range for a variable
probably causes worse behaviour if it is used
with a different number of labels. Hence,



when (] is crossed at a certain point, the val-
ues in Cy and C'5 corresponding to the crossed
variables are also crossed in the two parents.
In this way, an standard crossover operator
is applied over the three parts of the chro-
mosomes. This operator performs as follows:
a crossover point p is randomly generated in
C7 and the two parents are crossed at the p-
th variable in Cj. The crossover is developed
this way in the three chromosome parts, C1,
Cs and (5, thereby producing two meaning-
ful descendents.

Let us look at an example in order to clarify
the standard crossover application. Let

Ct = (ll,...,lp,lp+1,...,l1v,a1,... ,p, Ap+1,y-..,AN,
inf _sup inf _sup _inf _sup inf _sup
’I‘]_ 7T1 :"':Tp :TP 77ﬂp+1:7ﬂp+1:---77"N :TN )
! r r ! r r r ! !
Ct = (ll,...,lp,lp_,_l,...,lN,al,... ypy, Apy1,---5,aN,
inf' sup' inf' sup’ _inf' sup’ inf' sup'
1"1 » 1 )"')Tp )TP 7Tp+l7rp+l)"'7rN 7TN )

be the individuals to be crossed at point p,
the two resulting offspring are:

r ! r r

Ct+1:(lla"'7lpalp+1:"'7lN:a17'":apyaerly"':aN:

inf _sup inf sup _inf' sup' inf'  sup’
Tl ,’I‘]_ 7---7Tp 7TP 7rp+177"p+17---77"N 7TN )

! ! ! ! !
Ct+l:(lla"'7lp:lp+1:"'7lN:a17'":apyap-i-ly"':aN:
inf' sup' inf'  sup’ _inf sup inf _sup
1"1 ,7"1 )"')rp )TP 7Tp+l7rp+l7"')rN 7TN )

Hence the complete recombination process will al-
low the GA to follow an adequate exploration-
exploitation rate in the genetic search. The ex-
pected behavior consists of an initial phase where
a high number of standard crossovers and a very
small of MMA ones (equal to zero in the great
majority of the cases) are developed. The genetic
search will perform a wide exploration in this first
stage, locating the promising zones and sampling
the population individuals at them in several run-
s. At this moment a new phase begin, character-
ized by the increase of the exploitation of these
zones and the decrease of the space exploration.
Therefore the number of MMA crossovers rises a
lot and the application of the standard crossover
decreases. This way to perform an appropiate
exploration-exploitation balance in the search was
succesfully applied in [7].

G C», Cs
e GENGG
\ I \

Thrift's Mutation Max-Min-Arithmetical Crossover
Non-uniform Mutation

Simple Crossover

Figure 2: Genetic representation and operators’
application scope

4 Application examples

A problem with estimations of minimum mainte-
nance costs which are based on a model of the op-
timal electrical network for a spanish town [6] will
be considered to validate the DB genetic learning
process proposed. The problem has four input
variables: Sum of the lengths of all streets in the
town, Total area of the town, Area that is occu-
pied by buildings and Energy supply to the town
and one output variable: Maintenance costs of
medium voltage line. These values are somewhat
lower than the real ones, but companies are in-
terested in an estimation of the minimum cost-
s. Of course, real maintenance costs are exactly
accounted but a model that relates these costs
to any characteristic of simulated towns with the
optimal installation is important for the electrical
companies.

We were provided with data concerning four dif-
ferent characteristics of the towns and their min-
imum maintenance costs in a sample of 1059 sim-
ulated towns. In this case, our objective was to
relate the last variable (maintenance costs) with
the other four ones. The training set contains 847
elements and the test set contains 212 elements.

We are going to consider two RB automatic learn-
ing methods:

e The WM fuzzy rule generation method [18].

e An adaptation of the simplified TSK fuzzy
rule generation method presented in [12],
that makes the process able to deal with rules
with fuzzy consequent, which can be found in
[4]. This method considers the n-dimensional
table representation for the RB to generate.



On every cell of this table, the subset of the
input-output data pairs belonging to the cor-
responding input fuzzy subspace is consid-
ered. The consequent associated to the rule
will be the output variable label that maxi-
mizes some covering criterion over the train-
ing set. This method will be denoted CH.

The genetic parameters used in the experiments
are showed in Table 1.

Table 1: Genetic parameter values

Parameter Value
Population size 64
Crossover probability 0.6
Mutation probability 0.1
Parameter b (non-uniform mutation) 0.5
Parameter d (MMA crossover) 0.35

Number of generations 1000

Four experiments were run for each one of the
two RB learning methods considered with differ-
ent initial seeds, and the main results (M SFEy,,)
are compared with the best results obtained when
running these methods considering uniform fuzzy
partitions and initial working ranges, obtained
from an exhaustive search, as developed in [8].
The results obtained considering uniform fuzzy
partitions are showed in Table 2 whilst the result-
s obtained by our method are presented in Table
3, where the last two columns show the improve-
ment percentage of our method over the best re-
sult considering uniform fuzzy partitions with the
same number of labels per variable (1) and with
any number of labels per variable (2).

5 Concluding Remarks

Two main conclusions can be drawn from the re-
sults obtained:

e Our method obtains a significative improve-
ment with respect to the classical uniform
fuzzy partitions considered in both RB learn-
ing methods.

e Our method is very robust, because it does
not cause over-learning. The M SEy,, and
the M SFE} are very similar in all the exper-
iments.

Our future work will be focused on validating the
DB definitions obtained for our genetic process
combined with simple and quick RB generations
methods when considered to design FRBSs by
means of more sophisticated RB generation pro-
cesses, and to modify the process in order to ap-
ply other kinds of non-linear functions to define
the fuzzy partition contexts, i.e., to change the
sensibility of the membership functions into the
variable working range.
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