
Learning Fuzzy Rules UsingAnt Colony Optimization Algorithms 1Jorge Casillas, Osar Cord�on, Franiso HerreraDepartment of Computer Siene and Arti�ial Intelligene,University of Granada, E-18071 Granada, Spainfasillas,oordon,herrerag�desai.ugr.esAbstratWithin the Linguisti Modeling �eld, one of the most important appliations of FuzzyRule-Based Systems, the automati learning from numerial data of the fuzzy linguisti rulesomposing these systems is an important task. In this paper we introdue a novel way ofaddressing the problem making use of Ant Colony Optimization (ACO) algorithms. To do so,the learning task will be formulated as an optimization problem and the features neessaryfor an ACO algorithm will be introdued. The behavior of the proposed learning methodwill be analyzed, ompared with other ones, when solving of two appliations with di�erentharateristis: a three-dimensional funtion and a real-world eletri engineering problem.1 IntrodutionNowadays, one of the most important areas for the appliation of Fuzzy Set Theory are FuzzyRule-Based Systems (FRBSs). These kinds of systems onstitute an extension of lassial Rule-Based Systems, beause they deal with fuzzy rules instead of lassial logi rules [2℄. An impor-tant appliation of FRBSs is Linguisti Modeling, whih in this �eld may be onsidered as anapproah used to model a system making use of a desriptive language based on Fuzzy Logi withfuzzy prediates [11℄, where the interpretability of the obtained model is the main requirement.Thus, the linguisti model onsists of a set of linguisti desriptions regarding the behavior ofthe system being modeled.In this approah, fuzzy linguisti IF-THEN rules are formulated and a proess of fuzzi�ation,inferene, and defuzzi�ation leads to the �nal deision of the system. Although sometimes thefuzzy rules an be diretly derived from expert knowledge, di�erent e�orts have been made toobtain an improvement on system performane by inorporating learning mehanisms guidedby numerial information to de�ne the fuzzy rules. This issue, known as fuzzy rule learning(FRL), is onsidered a hard problem and a large number of methods has been proposed toautomatially generate fuzzy rules from numerial data making use of di�erent tehniques suhas ad ho data-driven methods, neural networks, geneti algorithms, fuzzy lustering, et. Fora review on some of them, refer to [1℄.In this ontribution we propose a novel way of faing the FRL problem making use of Ant ColonyOptimization (ACO) algorithms [3, 7℄. To do so, the FRL problem will be formulated as anoptimization problem and the features related to these kinds of algorithms|suh as heuristiinformation, pheromone initialization, �tness funtion, solution onstrution, and pheromoneupdate|will be introdued.With this aim, the paper is set up as follows. In Setion 2, a brief introdution to FRBSsand the FRL problem is presented. Setion 3 is devoted to introdue all the aspets related to1This researh has been supported by CICYT under projet PB98-1319



ACO algorithms partiularized to the FRL problem. In Setion 4, the behavior of the proposedlearning approah to solve two di�erent appliations is analyzed. Finally, in Setion 5, someonluding remarks will be pointed out.2 Fuzzy Rule-Based Systems and Fuzzy Rule Learning Problem2.1 Introdution to Fuzzy Rule-Based SystemsAn FRBS presents two main omponents: 1) the Knowledge Base (KB), representing the knowl-edge about the problem being solved in the form of fuzzy linguisti IF-THEN rules, and 2) theInferene Engine, whih puts into e�et the fuzzy inferene proess needed to obtain an outputfrom the FRBS when an input is spei�ed. The struture of a linguisti FRBS is shown inFigure 1.
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yFigure 1: Generi struture of a linguisti Fuzzy Rule-Based System� The KB is omposed of the Rule Base (RB), onstituted by the olletion of linguisti rulesthemselves joined by means of the onnetive also, and of the Data Base (DB), ontainingthe term sets and the membership funtions de�ning their semantis. The fuzzy linguistirule struture onsidered in linguisti FRBSs is the following:Ri : IF X1 is Ai1 and ... and Xn is Ain THEN Y is Bj ;with X1; : : : ;Xn and Y being the input and output linguisti variables, respetively, andAi1; : : : ; Ain and Bj being linguisti labels, eah one of them having assoiated a fuzzyset de�ning its meaning.� The Inferene Engine is omprised by three omponents: a Fuzzi�ation Interfae, whihhas the e�et of transforming risp input data into fuzzy sets, an Inferene System, thatuses these together with the KB to perform the fuzzy inferene proess, and a Defuzzi-�ation Interfae, that obtains the �nal risp output from the individual fuzzy outputsinferred.The Inferene System is based on the appliation of the Generalized Modus Ponens, ex-tension of the lassial logi Modus Ponens. It is done by means of the CompositionalRule of Inferene, whih in its simplest form is redued to [5℄:Ri(x0; y) = �B0i(y) = I(�Ai(x0); �Bj (y)) ;with x0 = (x1; : : : ; xn) being the urrent system input, �Ai(x0) = T (�Ai1(x1); : : : ; �Ain(xn))being the mathing degree between the rule anteedent and the input |with �Aik(�) beingthe membership funtion of the label Aik and T being a onjuntive operator (a t-norm)|,and I being a fuzzy impliation operator.



2.2 The Fuzzy Rule Learning ProblemSeveral tasks have to be performed in order to design an FRBS for a onrete appliation. One ofthe most important and diÆult ones is to obtain an appropriate KB about the problem beingsolved, in the following referred to as FRL problem. The diÆulty presented by the humanexperts to express their knowledge in the form of fuzzy rules has made researhers developautomati tehniques for performing this task. For a review on some of them, refer to [1℄.All these methods are based on working with an input-output data set E = fe1; : : : ; eNg,el = (xl1; : : : ; xln; yl), representing the behavior of the problem being solved, and with a previousde�nition of the DB omposed of the input and output primary fuzzy partitions. In our ase,we will onsider symmetrial fuzzy partitions with a number of triangular membership funtionsrossing at height 0.5 (as shown Figure 2 for the ase of seven fuzzy sets). Therefore, ourFRL problem will be restrited to obtain the rules ombining the labels of the anteedents andassigning a spei� onsequent to eah anteedent ombination.
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Figure 2: Graphial representation of a uniform fuzzy partition with seven labels3 Ant Colony Optimization Algorithms for Learning Fuzzy RulesTo apply ACO algorithms to a spei� problem, the following steps have to be performed:1. Obtain a problem representation as a graph or a similar struture easily overed by ants.2. De�ne the way of assigning a heuristi preferene to eah hoie that the ant has to takein eah step to generate the solution.3. Establish an appropriate way of initializing the pheromone.4. De�ne a �tness funtion to be optimized.5. Selet an ACO algorithm and apply it to the problem.In the following subsetions, these steps will be introdued to solve the FRL problem.3.1 Problem RepresentationTo apply ACO algorithms to the FRL problem, it is onvenient to see it as a ombinatorialoptimization problem with the apability of being represented on a graph. In this way, wean fae the problem onsidering a �xed number of rules and interpreting the FRL problem asthe way of assigning onsequents (i.e., labels of the output fuzzy partition) to these rules withrespet to an optimality riterion.



Hene, we are in fat dealing with an assignment problem and the problem representation an besimilar to the one used to solve the quadrati assignment problem (QAP) [3, 7℄, but with somepeuliarities. We may draw an analogy between rules and failities and between onsequentsand loations. However, unlike the QAP, the set of possible onsequents for eah rule may bedi�erent and it is possible to assign a onsequent to more than one rule (two rules may havethe same onsequent). We an dedue from these harateristis that the order of seleting eahrule to be assigned a onsequent is not determinant, i.e., the assignment order is irrelevant.To onstrut the graph, the following steps are taken:1. Determine the rules: A rule Ri |i = 1; : : : ; Nr| de�ned by an anteedent ombination,Ri = IF X1 is Ai1 and : : : and Xn is Ain ;will take part in the graph if and only if:9el = (xl1; : : : ; xln; yl) 2 E suh that �Ai1(xl1) � : : : � �Ain(xln) 6= 0 :That is, there is at least one example loated in the fuzzy input subspae de�ned by theanteedents onsidered in the rule.2. Link the rules to onsequents: The rule Ri will be linked to the onsequent Bj |j =1; : : : ; N| (taken from the set of labels of the output fuzzy partition) if and only if itmeets the following ondition:9el = (xl1; : : : ; xln; yl) 2 E suh that �Ai1(xl1) � : : : � �Ain(xln) � �Bj (yl) 6= 0 :That is, there is at least one example loated in the fuzzy input subspae that is overedby suh a onsequent.Figure 3 shows an example of a system with four rules and one output variable with threeonsequents. In Figure 3(a), the possible onsequents for eah anteedent ombination areshown. To onstrut a omplete solution, an ant iteratively goes over eah rule and hoosesa onsequent with a probability that depends on the pheromone trail �ij and the heuristiinformation �ij, as usual (see Figure 3(b)). As said, the order of seleting the rules is irrelevant.In Figure 3() we may see the possible paths that an ant an take in a spei� example.3.2 Heuristi InformationThe heuristi information on the potential preferene of seleting a spei� onsequent, Bj, ineah anteedent ombination (rule) is determined by onsidering overing riteria as follows (seeFigure 4 for a graphial interpretation of the heuristi assignment):For eah rule de�ned by an anteedent ombination, Ri = IF X1 is Ai1 and : : : and Xn is Ain|i = 1; : : : ; Nr| do:1. Build the set E0i omposed of the input-output data pairs that are loated in the inputsubspae de�ned by Ri, i.e., E0i = fel = (xl1; : : : ; xln; yl) 2 E suh that �Ai1(xl1) � : : : ��Ain(xln) 6= 0g.
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(e)Figure 3: Learning proess for a simple problem with two input variables (n = 2), four rules(Nr = 4), and three labels in the output fuzzy partition (N=3): (a) Set of possible onsequentfor eah rule (only the rules where at least one example is loated in the orresponding subspaeare onsidered); (b) Graph of paths where �ij 6= 0 exept �13, �31, �41, and �42, whih are zero;() It is possible to take twelve di�erent paths (ombinations of onsequents); (d) Rule deisiontable for the third ombination; (e) RB generated from the third ombination2. Make use of an initialization funtion based on overing riteria to give a heuristi prefer-ene degree to eah eletion. Many di�erent hoies may be onsidered [4℄. In this paperwe will work with the overing of the example best overed riterion shown in Figure 4.Sine the heuristi information is based on overing riteria, it will be zero for a spei� onse-quent when no examples loated in the fuzzy input subspae are overed by it. This means thatfor a rule, only those links to onsequents whose heuristi information is greater than zero willbe onsidered. In Figure 3(b) we an observe the onsequent B3 an not be assigned to the ruleR1, the onsequent B1 an not be assigned to the rule R3, and the onsequents B1 and B2 annot be assigned to the rule R4 beause their heuristi informations (overing degrees) are zero.3.3 Pheromone InitializationThe initial pheromone value of eah assignment is obtained as follows: �0 = PNri=1maxNj=1 �ijNr : Inthis way, the initial pheromone will be the mean value of the path onstruted taking the bestonsequent in eah rule aording to the heuristi information (a greedy assignment).
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Figure 4: Heuristi assignment from the rule Ri to eah onsequent in a system with two inputvariables, �ve labels for eah of them, and N labels (onsequents) in the output fuzzy partition.The overing of the example best overed is onsidered to be the heuristi information3.4 Fitness FuntionThe �tness funtion establishes the quality of a solution. The measure onsidered will be thefuntion alled mean square error (MSE), whih de�ned as MSE(RBk) = 12�jEj Pel2E(yl �Fk(xl0))2, with Fk(xl0) being the output obtained from the FRBS (built using the RB generatedby the ant k, RBk) when reeives the input xl0 (input omponent of the example el), and ylbeing the known desired output. The loser to zero the measure is, the better the solution is.3.5 Ant Colony Optimization AlgorithmOne the previous omponents have been de�ned, an ACO algorithm has to be given to solvethe problem. In this ontribution, two well-known ACO algorithms will be onsidered: theAnt System (AS) [9℄ and the Ant Colony System (ACS) [8℄. Depending on the ACO algorithmfollowed, two methods arise: the AS-FRL and the ACS-FRL ones. The so-known solutiononstrution and pheromone trail update rule onsidered by these ACO algorithms will be used.Only some adaptations will be needed to apply them to the FRL problem:� The set of nodes attainable from Ri (set of feasible neighborhood of node Ri) will beJk(i) = fj suh that �ij 6= 0g in the transition rules onsidered by both ACO algorithmswhen onstruting the solution.� The amount of pheromone ant k puts on the ouplings belonging to the solution on-struted by it will be 1=MSE(RBk), with RBk being the RB generated by ant k.� In the loal pheromone trail update rule of the ACS algorithm, the most usual way ofalulating ��ij, ��ij = �0, we will be used, thus onsidering the simple-ACS algorithm.4 Examples of AppliationWith the aim of analyzing the behavior of the proposed ACO proesses, we have hosen twodi�erent appliations: the fuzzy modeling of a three-dimensional funtion and a real-world



eletri engineering problem [6℄. We will ompare them with two well-known ad ho rule learningmethods whose high performane has been learly demonstrated: the method proposed by Wangand Mendel (WM-method) [12℄ and the one proposed by Nozaki, Ishibuhi, and Tanaka (NIT-method) [10℄. Two new methods have also been developed with the aim of omparing the ACOapproah with other optimization ones. These two methods are based on the same problemrepresentation presented in this paper (ombinatorial searh of onsequents among a set ofandidates for eah rule) but using a Simulated Annealing algorithm (SA-FRL) and a GenetiAlgorithm (GA-FRL) to aomplish the searh. Finally, a greedy algorithm diretly based onthe heuristi information (HI-FRL) by taking the onsequent with the highest value for eahrule, whih was proposed in [4℄, will be also onsidered. The results presented for eah algorithmhave been taken after a hard experimentation with the parameters in order to look for the bestbehavior.An initial DB onstituted by a primary fuzzy partition for eah variable will be onsidered ineah ase. Every partition is formed by seven labels with triangular-shaped equally distributedfuzzy sets giving meaning to them (as shown in Figure 2), and the appropriate saling fators totranslate the generi universe of disourse into the one assoiated with eah problem variable.With respet to the FRBS reasoning method used, we have seleted theminimum t-norm playingthe role of the impliation and onjuntive operators, and the enter of gravity weighted by themathing strategy ating as the defuzzi�ation operator [5℄.Conerning the parameters used in the ACO algorithms, the number of ants will be the numberof rules in eah ase, the number of iterations will be 50, and for the rest of parameters (�, �,and �, for both AS-FRL and ACS-FRL, and q0 for ACS-FRL) an experimental study has beenperformed, showing in the tables the best results.4.1 Linguisti Modeling of a Simple Three-Dimensional FuntionFor this �rst experiment, a simple unimodal three-dimensional mathematial funtion is on-sidered to be modeled, F (x1; x2) = x21 + x22, with x1; x2 2 [�5; 5℄ and hene F (x1; x2) 2 [0; 50℄.A set with 1; 681 values has been generated for the training data set. Another set with 168values (the ten perent of the training set) has been generated for its use as test set to evaluatethe performane of the learning methods, avoiding any possible bias related to the data in thetraining set.The results obtained by the seven methods analyzed are olleted in Table 1, where #R standsfor the number of rules, MSEtra and MSEtst for the values obtained over the training and testdata sets respetively, and EBS for the number of evaluations needed to obtain the best solution.The best results are shown in boldfae.Analyzing these results, we may note the high performane of the ACO methods. Oppositeto the three ad ho learning methods, the models generated by AS-FRL and ACS-FRL arelearly better in both approximation (MSEtra) and generalization (MSEtst). Fousing on themethods based on ombinatorial searh, the ACS-FRL is the algorithm that performs the bestsearh proess obtaining the most aurate model regarding approximation, and with a goodgeneralization. However, the four methods obtain similar results (being slightly worse the ap-proximation degree of the model generated by AS-FRL) and is in the onvergene speed wherethe ACO approahes stand out. As notie, ACS-FRL found the best solution three times quikerthan the SA approah and seventeen times quiker than the GA. In AS-FRL, the di�erenes arestill more signi�ant. This fat is due to the use of heuristi information that guides the ACOalgorithms in the searh proess.



Table 1: Results obtained in the modeling of FMethod #R MSEtra MSEtst EBS ParametersWM-method 49 2.048137 2.255928 0 |NIT-method 98 2.465487 1.768125 0 |HI-FRL 49 2.048137 2.255928 0 |SA-FRL 49 1.609891 1.213388 3,528 Init. temp. = 40, No. of neighbors = 98GA-FRL 49 1.606097 1.514651 20,555 500 gen., 61 indiv., P = 0:6, Pm = 0:2AS-FRL 49 1.660622 1.419587 686 � = 1, � = 2, � = 0:2ACS-FRL 49 1.601071 1.350340 1,225 � = 1, � = 1, � = 0:2, q0 = 0:44.2 The Eletrial Distribution Network ProblemSometimes, there is a need to measure the amount of eletriity lines that an eletri ompanyowns. This measurement may be useful for several aspets suh as the estimation of the main-tenane osts of the network, whih was the main goal in this appliation [6℄. The probleminvolves �nding a model that relates the total length of low voltage line installed in a rural townwith the number of inhabitants in the town and the mean of the distanes from the enter ofthe town to the three furthest lients in it. This model will be used to estimate the total lengthof line being maintained.To ompare the methods, we have randomly divided the sample, omposed of 495 piees of realdata obtained from diret measures in this number of villages, into two sets omprising 396 and99 samples, labeled training and test. The results obtained with the onsidered methods areolleted in Table 2. Table 2: Results obtained in the eletrial appliationMethod #R MSEtra MSEtst EBS ParametersWM-method 24 222,654 239,962 0 |NIT-method 64 185,395 170,489 0 |HI-FRL 32 239,393 275,953 0 |SA-FRL 32 174,295 161,261 1,248 Init. temp. = 500, No. of neighbors = 32GA-FRL 32 175,122 187,605 20,512 500 gen., 61 indiv., P = 0:6, Pm = 0:2AS-FRL 32 178,119 158,662 384 � = 1, � = 2, � = 0:6ACS-FRL 32 175,096 165,561 576 � = 1, � = 2, � = 0:2, q0 = 0:2From the obtained results, we may again note the good performane of the ACO approahesthat outperform the three ad ho learning methods. Among the four ombinatorial searhalgorithms, the AS-FRL performs a searh a little worse than the rest but obtains the bestmodel with respet to generalization. ACS-FRL obtains a very good model only overame to alesser extent by the SA-FRL method. Again, the main advantage of the ACO algorithms lies inthe onvergene speed, whih in the ase of the ACS-FRL method is twie quiker than the SAapproah and thirty �ve times quiker than the GA-FRL method, moreover obtaining a mostaurate model in this latter ase.



5 Conluding RemarksIn this paper, a novel and interesting appliation, the FRL problem (whih involves automatiallylearning from numerial data the RB omposing an FRBSs), has been proposed to be solvedby the ACO meta-heuristi. In this way, two spei� ACO-based learning methods have beenpresented. Their high performane has been shown in the solving of two problems. Comparingwith other ad ho learning algorithms, the models obtained by the ACO methods are learlybetter. Moreover, opposite to other kinds of optimization tehniques as SA and GAs, the ACOapproah performs a quik onvergene and sometimes obtains better results. The former is dueto the use of heuristi information to guide the global searh. As further work, we propose toapply new ACO approahes to the FRL problem using new features suh as the loal searh toimprove the performane of the models designed.Referenes[1℄ R. Alal�a, J. Casillas, O. Cord�on, F. Herrera, and S.J.I. Zwir. Learning and tuning fuzzy rule-basedsystems for linguisti modeling. In C.T. Leondes (Ed.), Knowledge-Based Systems, vol. 3, h. 29.Aademi Press, 2000.[2℄ A. B�ardossy and L. Dukstein. Fuzzy rule-based modeling with appliation to geophysial, biologialand engineering systems. CRC Press, 1995.[3℄ E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligene: From Natural to Arti�ial Systems.Oxford University Press, 1999.[4℄ O. Cord�on and F. Herrera. A proposal for improving the auray of linguisti modeling. IEEETrans. on Fuzzy Systems, 8(3), 2000.[5℄ O. Cord�on, F. Herrera, and A. Peregr��n. Appliability of the fuzzy operators in the design of fuzzylogi ontrollers. Fuzzy Sets and Systems, 86: 15{41, 1997.[6℄ O. Cord�on, F. Herrera, and L. S�anhez. Solving eletrial distribution problems using hybrid evolu-tionary data analysis tehniques. Applied Intelligene, 10: 5{24, 1999.[7℄ M. Dorigo and G. Di Caro. The ant olony optimization meta-heuristi. In D. Corne, M. Dorigo,and F. Glover (Eds.), New Ideas in Optimization, pp. 11{32. MGraw-Hill, 1999.[8℄ M. Dorigo and L.M. Gambardella. Ant olony system: a ooperative learning approah to thetravelling salesman problem. IEEE Trans. on Evolutionary Computation, 1(1): 53{66, 1997.[9℄ M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: optimization by a olony of ooperatingagents. IEEE Trans. on Systems, Man, and Cybernetis, Part B: Cybernetis, 26(1): 29{41, 1996.[10℄ K. Nozaki, H. Ishibuhi, and H. Tanaka. A simple but powerful heuristi method for generatingfuzzy rules from numerial data. Fuzzy Sets and Systems, 86: 251{270, 1997.[11℄ M. Sugeno and T. Yasukawa. A fuzzy-logi-based approah to qualitative modeling. IEEE Trans.on Fuzzy Systems, 1(1): 7{31, 1993.[12℄ L.X. Wang and J.M. Mendel. Generating fuzzy rules by learning from examples. IEEE Trans. onSystems, Man, and Cybernetis, 22(6): 1414{1427, 1992.


