
A New ACO Model Integrating Evolutionary ComputationConepts: The Best-Worst Ant System 1Osar Cord�on1, I~naki Fern�andez de Viana2, Franiso Herrera1, Llanos Moreno31Dept. of Computer Siene and Arti�ial Intelligene. E.T.S.I. Inform�atia.University of Granada. Avda. Andalu��a, 38. 18071 - Granada. Spain2 E.T.S.I. Inform�atia. University of Granada.Avda. Andalu��a, 38. 18071 - Granada. Spain3Infotel Informai�on y Teleomuniaiones SA. / San Ant�on, 72,5a planta, o�ina 16. 18005 - Granada. Spain1foordon,herrerag�desai.ugr.es, 2ijfviana�navegalia.om, 3llanos�infotel.esAbstratIn this ontribution, a new ACO model, the Best-Worst Ant System, will be proposedwhih is based on Evolutionary Computation onepts. Its performane will be analyzedwhen solving of di�erent instanes of the traveling salesman problem and will be omparedto two existing previous models, the Ant System and the Ant Colony System.1 IntrodutionIn the last few years, Ant Colony Optimization (ACO) [6℄ has appeared as a new bio-inspiredmeta-heuristi to solve many omplex optimization problems. ACO algorithms mimi the be-havior of natural ant olonies. They are thus based on the ooperation among multiple agents,ants, every one generating a possible solution to the problem in eah algorithm iteration. To doso, eah ant travels a graph whih represents a spei� problem instane and makes use of twoinfomation types that are ommon to the whole olony and speify the preferene of the graphedges at every moment:� Heuristi information, whih depends on the spei� problem instane, is omputed beforerunning the algorithm and remains �xed during it. The value assoiated to eah edge (i; j)is noted by �ij .� Pheromone trail information, whih is modi�ed during the algorithm run and depends onthe number of ants that travelled eah edge in the past and on the quality of the solutionsthey generated. It is usually represented in the form of a pheromone matrix, � = [�ij ℄,whih mimis the real pheromona that natural ants deposit in their movements.In view of the previous behavior, and as already noted in [6℄, it an be seen that there aresome similarities between the operation mode of ACO algorithms and the Population-BasedInremental Learning (PBIL) [1℄ evolutionary algorithm (EA) due to the following reasons [3℄:� They both make use of a memoristi struture that undergoes adaption.� This struture allows possible solutions to the problem to be generated in eah iterationand its adaption is guided by the quality of these solutions.1This researh has been supported by projet CICYT PB98-1319



These similarities were also analyzed in deep by Monmarh�e et al. in [8℄, who haraterized aommon framework, whih they alled Probabilisti Searh Meta-heuristi, where a third model,Bit-Simulated Crossover, is inluded as well.The said ommon harateristis were the ones that motivated our idea that the integration ofsome spei� aspets of PBIL, in partiular, and of other EAs, in general, ould improve theperformane of ACO [3℄ (in fat, two ACO models, ASelite and ASrank, based on this idea areto be found in [2℄). The new ACO model so developed will be alled Best-Worst Ant System(BWAS) and will be introdued in this work.To do so, one analyzed the basi operation mode of ACO algorithms and desribed some spei�models in Setion 2, Setion 3 will be devoted to briey introdue the PBIL algorithm. Later,our new ACO model will be desribed in Setion 4 and its performane when solving of someTSP instanes will be analyzed and ompared with other two ACO algorithms. Finally, someonluding remarks and future works will be mentioned in Setion 6.2 Ant Colony OptimizationThe basi operation mode of an ACO algorithm is the following: in eah iteration, a populationof m ants gradually and onurrently build solutions to the problem aording to a transitionrule whih depends on the heuristi and pheromone trail information available. Ants an releasepheromone while building the solutions (online step-by-step pheromone trail updating), onethey have been generated and evaluated (online delayed pheromone trail updating) |positivelyreinforing the edges travelled with an amount of pheromone diretly dependent on the solutionquality| or both. Then, all the pheromone trails su�er from evaporation.Moreover, some daemon ations an be performed from a global perspetive, suh as observingthe quality of all the solutions generated and updating an additional pheromone trail only insome of them, or applying a loal searh proedure to the solutions generated by the antsand depositing additional pheromone. In both ases, the daemon replaes the online delayedpheromone updating and the proess is alled o�ine pheromone trail updating.A simpli�ed struture of a generi ACO algorithm for stati ombinatorial optimization problemsis shown as follows:1. Give an initial pheromone value, �0, to eah edge.2. For k=1 to m do (in parallel)� Plae ant k in an initial node r.� Inlude r in Lk (tabu list of ant k keeping a reord of the visited nodes).� While (ant k not in a target node) do{ Selet the next node to visit, s =2 Lk, aording to the transition rule.{ Inlude s in Lk.{ Optional: Online step-by-step updating of the pheromone trail �rs of the travellededge.



3. Optional: For k=1 to m do� Evaluate the solution generated by ant k, Sk.� For eah edge (r; s) 2 Sk, apply the online delayed pheromone trail updating rule.4. Evaporate pheromone.5. Optional: Perform the daemon ations.6. If (Stop Condition is satis�ed) Then give the global best solution found as output and StopElse go to step 2.In partiular, the two �rst ACO models, Ant System (AS) [4℄ and Ant Colony System (ACS)[5℄, implement the algorithm omponents as follows:AS:� Transition rule: The destination node s for an ant k loated in node r is randomly hosenaording to the following probability distributionpk(r; s) = 8<: [�rs℄��[�rs℄�Pu2Jk(r)[�ru℄��[�ru℄� ; if s 2 Jk(r)0; otherwise ;with �rs being the pheromone trail of edge (r; s), �rs being the heuristi value (for example,in the TSP , �rs = 1lrs , where lrs is the length of edge (r; s)), Jk(r) being the set of nodesthat remain to be visited by ant k, and with � and � being parameters weighting therelative importane of pheromone trail and heuristi information.� Online delayed pheromone updating rule: It is developed by means of the expression�rs  (1� �) � �rs + mXk=1��krs where ��krs = ( f(C(Sk)); if (r; s) 2 Sk0; otherwise ;with � 2 [0; 1℄ being the pheromone deay parameter and f(C(Sk)) being the amountof pheromone to be deposited by ant k, whih depends on the quality of the solution itgenerated, C(Sk) (for example, in the TSP, f(C(Sk)) = 1C(Sk) ).It is noteworthy that, for pratial purposes, the rule inludes the evaporation of an (1��)per one of the pheromone trail (step 4 of the algorithm).ACS:� Transition rule: The destination node s is hosen as follows:s = 8<: arg maxu2Jk(r)f[�ru℄� � [�ru℄�g; if q < q0S; otherwise ;with q being a random value uniformly distributed in [0,1℄, q0 2 [0; 1℄ being a parameterde�ning the balane explotaition-biased exploration, and with S being a random nodeseleted aording to the probability distribution given by the AS transition rule.



� Online step-by-step updating rule: Eah time an ant travels an edge, it is made in the way:�rs  (1� �) � �rs + � ���rsIn this paper we onsider ��ij = �0, thus dealing with the simple ACS.� O�ine pheromone updating: In this ase, the deposit of pheromone is done by the daemononly onsidering a single ant, the one who generated the global best solution, Sglobal�best:�rs  (1��)��rs+����rs where ��rs = ( f(C(Sglobal�best)); if (r; s) 2 Sglobal�best0; otherwiseFor a review of other ACO algorithms refer to [6℄.3 The PBIL algorithmPBIL [1℄ takes a memoristi struture, a probability array P = (p1; : : : ; pn) of dimension n equalto the number of problem variables, as a base. This array enodes a probability distributionrepresenting a prototype for good quality solutions and is used to generate a population ofpossible solutions (binary arrays) in eah iteration.The probability array is the omponent that undergoes adaption during the algorithm runaording to its history. In the PBIL basi model, the array is updated aording to the qualityof the best solution generated in the urrent iteration, Best-solution, as follows:pi = (1� LR) � pi + LR �Best� solutioniwith LR 2 [0; 1℄ being a parameter ontrolling the speed of onvergene, the learning rate.Moreover, the omponents of P su�er random mutations with probabilityMutProb to avoid thepossibility of a premature onvergene of the algorithm. The mutation will be performed in thefollowing way: pi = ( (1�MutShift) � pi; if a = 0;(1�MutShift) � pi +MutShift; if a = 1with a being a random value in f0; 1g and MutShift 2 [0; 1℄ being the mutation step size.Analyzing the algorithm operation mode, it an be seen the similarity between PBIL and ACO.Besides, the updating rule for P is similar to the o�ine updating rule in ACS.An extension of the basi PBIL model involves onsidering also the worst solution in the urrentpopulation, Worst-solution, for the updating:pi = (1� LRneg) � pi + LRneg �Worst� solutioni if Worst� solutioni 6= Best� solutioniwith LRneg 2 [0; 1℄ being the negative learning rate.



4 The Best-Worst Ant SystemThe proposed BWAS uses the transition rule of AS (see Setion 2), does not perform on-line pheromone updatings (nor step-by-step neither delayed) and onsiders the three followingdaemon ations. The name of the algorithm is a onsequene of the �rst of them:� The global best and urrent worst solutions are onsidered respetively to performpositive and negative updatings, as PBIL algorithm does with the probability array. Ofourse, our aim is to reinfore the edges ontained in good solutions and penalize the ones frombad solutions. To do so, the daemon in BWAS �rst apply a loal searh proedure on the di�erentsolutions generated by the ants, and o�ine updates the pheromone trail only onsidering theglobal best solution as done in ACS:�rs  (1� �) � �rs +��rs where ��rs = ( f(C(Sglobal�best)); if (r; s) 2 Sglobal�best0; otherwiseThen, all the edges existing in the worst solution generated in the urrent iteration, Surrent�worst,that are not present in the global best one are penalized by another deay of the pheromonetrail assoiated |an additional evaporation| performed as follows:8(r; s) 2 Surrent�worst and (r; s) 62 Sglobal�best; �rs  (1� �) � �rs� BWAS also inludes a restart of the searh proess when it get stuk, a key hara-teristi of the CHC EA [7℄. In ACO, this fat happens when the pheromone matrix has evolvedto a situation where the pheromone trails assoiated to the edges belonging to the best solutionsare very high, whilst the remaining ones are very lose to zero (stagnation).We should note that this aspet is not new in the ACO �eld, sine previous models |suh usMMAS [9℄| have onsidered it previously as a daemon ation with di�erent approahes. Inour ase, we will perform the restart by setting all the pheromone matrix omponents to �0, theinitial pheromone value, when the number of edges that are di�erent between the best and theworst solutions generated in the urrent iteration is lesser than a spei� perentage.� The pheromone matrix su�ers mutations to introdue diversity in the searhproess, as done in PBIL with the memoristi struture |the probability array P|. Themutation operator will perform small hanges in the earlier searh stages and strong ones inthe later stages. Hene, it tries to �nd new spae zones where better solutions than the urrentglobal best one an be found in these later stages when the ACO algorithm has onverged to aspei� spae zone, thus enouraging the exploration instead of the exploitation. To do so, eahomponent of the pheromone matrix is mutated |with probability Pm| as follows:� 0rs = ( �rs +mut(it; �threshold); if a = 0�rs �mut(it; �threshold); if a = 1 �threshold = P(r;s)2Sglobal�best �rsjSglobal�bestjwith a being a random value in f0; 1g, it being the urrent iteration, �threshold being the averageof the pheromone trail in the edges omposing the global best solution and with mut(�) being:mut(it; �threshold) = it� itrNit� itr � � � �threshold



where Nit is the maximum number of iterations of the algorithm and itr is the last iterationwhere a restart was performed.We should note two aspets of the mutation operator proposed:� The mutation range omes bak to its initial value eah time a restart is performed. Then,the algorithm starts with a new searh from an exploration phase.� The parameter � spei�es the power of the mutation with respet to the number of itera-tions developed till the moment. For example, if � = 4, the value to add or subtrat willreah �threshold eah time a 25% of the total number of iterations remaining sine the lastrestart have been run.It is noteworthy that the hoie of the omponents integrated from the Evolutionary Computa-tion (EC) �eld has been done to obtain an appropriate balane between the exploration and theexploitation of the searh spae. Our pheromone updating mehanism auses a strong exploita-tion that allows the algorithm to obtain good solutions eÆiently, whilst the pheromone matrixmutation enourages the spae exploration and avoids the algorithm stagnation. Moreover, therestart proess also allows the algorithm not to get stuk and not to make unneesary iterations.5 Experiments and Analysis of ResultsThe proposed ACO model and the two �rst proposals of ACO algorithms, AS and ACS, willbe used to the solving of eight symmetri TSP instanes. The three algorithms will onsider thesame parameter values, the use of a andidate list of the same size and the same loal searhproedure, as well as the same seeds for the random number generator. The tour improvementproedure will be the restrited 2-opt proedure, where the andidate nodes are seleted insidethe andidate list and the don't look bit struture is onsidered.The parameter values onsidered are shown in Table 1. We should note that these values havenot been seleted to obtain the best possible results but to get an appropriate balane betweenauray and eÆieny for omparison purposes. For example, longer runs of the loal searhproedure will be needed to obtain better results in the largest instanes.It is noteworthy that the number of iterations shown, 300, is a maximum threshold, sine thealgorithm will stop if the optimal solution is found before all these iterations are performed.This will inuene the run time of the models, thus allowing us to measure the onvergenespeed of the three algorithms onsidered.Eah model has been run 15 times in a omputer with a Pentium II proessor at 266 MHz.The overall results obtained are shown in Table 2, where eah olumn name has the followinginterpretations: Best means the ost of the best solution found in the 15 runs, Average olletsthe average of the osts of the 15 solutions generated, Dev: shows the standard deviations,Error stands for the perentage di�erene between the average and the ost of the optimalsolution (whih is shown in brakets after the instane name), and T ime shows the average timeonsumed by the models, measured in seonds. Finally, the last olumn named #Rest: ontainsthe average number of restarts performed by BWAS in the 15 runs.The omputational results in Table 2 show that generally BWAS presents the best performane.It allows us to obtain the best results in all the eight instanes but the largest one, Fl1577, where



Table 1: Parameter values onsidered for the ACO modelsParameter ValueNumber of ants m = 25Maximum number of iterations Nit = 300Number of runs of eah algorithm 15Pheromone updating rules parameter � = 0:2AS o�ine pheromone rule positive updating f(C(Sk)) = 1C(Sk)ACS o�ine pheromone rule positive updating f(C(Sglobal�best)) = 1C(Sglobal�best)Transition rule parameters � = 1, � = 2ACS transition rule parameters q0 = 0:8Initial pheromone amount �0 = #itiesC(SGreedy)Candidate list size l = 20BWAS parametersPheromone matrix mutation probability Pm = 0:3Mutation operator parameter � = 4Perentage of di�erent edges in the restart ondition 5%Loal searh proedure parametersNumber of neighbors generated per iteration 40Neighbor hoie rule �rst improvementACS outperforms it. We think that this BWAS result ould be improved by relaxing the restartheking ondition |a di�erene on the 5% of the total number of edges between the best andworst solutions generated in the urrent run|, whih seems to be exessively restritive forvery large instanes. On the other hand, BWAS gets the optimal solution in the �ve smallerinstanes, whilst AS and ACS does so only in the four and three ases, respetively.Fousing on the average performane in the 15 runs developed, the results show that BWASoveromes again AS in all the eight instanes and ACS in seven of them (the only exeption isagain the instane Fl1577, where BWAS is also outperformed by ACS in average). Moreover,in view of the standard deviation values, whih are lesser than AS and ACS ones in every ase,we an draw that BWAS is a very robust algorithm.6 Conluding RemarksIn this ontribution, BWAS has been proposed, whih is a new ACO model based on theintegration of EC onepts. Its performane has been analyzed when solving of eight TSPinstanes of di�erent sizes and it has shown a good behavior in omparison with AS and ACS.Di�erent ideas for future developments arise: (i) to improve BWAS performane on signi�antlylarge instanes, (ii) to study the inuene of the di�erent algorithm omponents in isolation andof the appropriate values for the parameters, and (iii) to analyze the onsideration of other ECaspets suh us the use of a number of the best and worst ants to positive and negatively updatethe pheromone trails or the weighting of the pheromone amount eah ant does depending on itsranking |as done in ASelite and ASrank, respetively|.



Table 2: Results obtained in the di�erent instanesEil51 (426) Berlin52 (7542)Model Best Average Dev: Error T ime #R Best Average Dev: Error T ime #RBWAS 426 426 0 0 1.72 3.33 7542 7542 0 0 0.13 0AS 426 426.93 0.46 0.22 11.41 | 7542 7542 0 0 0.34 |ACS 429 436.07 4.28 2.36 7.37 | 7542 7716.53 105.68 2.31 6.14 |Brazil58 (25395) Kroa100 (21282)Model Best Average Dev: Error T ime #R Best Average Dev: Error T ime #RBWAS 25395 25395 0 0 0.45 0 21282 21285.07 8.09 0.01 6.73 6.2AS 25395 25395 0 0 0.59 | 21282 21331.27 34.69 0.23 26.61 |ACS 25395 25395 0 0 0.31 | 21320 21558.67 155.89 1.3 15.73 |Gr120 (6942) Att532 (27686)Model Best Average Dev: Error T ime #R Best Average Dev: Error T ime #RBWAS 6942 6950.87 5.24 0.13 20.96 9.53 27842 27988.87 100.82 1.09 119.84 16.13AS 7031 7088.27 32.98 2.11 34.88 | 29348 29573.27 156.99 6.82 253.91 |ACS 7057 7210.73 74.84 3.87 22.72 | 28000 28370.20 162.27 2.47 99.97 |Rat783 (8806) Fl1577 (22249)Model Best Average Dev: Error T ime #R Best Average Dev: Error T ime #RBWAS 8972 9026.27 35.26 2.50 186.92 13.27 22957 23334.53 187.33 4.88 656.64 0AS 9586 9647.80 45.96 9.56 421.14 | 26063 26944 376.41 21.10 1251.01 |ACS 9218 9307.33 52.97 5.69 167.25 | 22749 23122.53 260.92 3.93 865.96 |Referenes[1℄ S. Baluja, R. Caruana. Removing the Genetis from the Standard Geneti Algorithm. In A. Prieditis,S. Rusell (Eds.), Mahine Learning: Proeedings of the Twelfth International Conferene, pp. 38-46.Morgan Kaufmann Publishers, 1995.[2℄ B. Bullnheimer, R.F. Hartl, C. Strauss. A New Rank Based Version of the Ant System: A Compu-tational Study. Central European Journal for Ops. Researh and Eonomis, 7(1):25-38, 1999.[3℄ O. Cord�on, F. Herrera, L. Moreno. Integrai�on de Coneptos de Computai�on Evolutiva en un NuevoModelo de Colonias de Hormigas (in spanish). In Atas de la CAEPIA'99. Seminario Espeializadosobre Computai�on Evolutiva, Vol. II, pp. 98-105. 1999.[4℄ M. Dorigo, V. Maniezzo, A. Colorni. The Ant System: Optimization by a Colony of CooperatingAgents. IEEE Trans. on Systems, Man, and Cybernetis, Part B, 26(1):29-41, 1996.[5℄ M. Dorigo, L.M. Gambardella. Ant Colony System: A Cooperative Learning Approah to the Trav-elling Salesman Problem. IEEE Transations on Evolutionary Computation 1(1):53-66, 1997.[6℄ M. Dorigo, G. Di Caro. Ant Algorithms for Disrete Optimization. Arti�ial Life 5(2): 137-172.1999.[7℄ L.J. Eshelman. The CHC Adaptive Searh Algorithm: How to Safe Searh when Engaging in Non-traditional Geneti Reombination. In G.J.E. Rawlins (Ed.), Foundations of Geneti Algorithms,pp. 265-283. Morgan Kaufmann Publishers, 1991.[8℄ N. Monmarh�e, E. Ramat, G. Dromel, M. Slimane, G. Venturini. On the Similarities Between AS,BSC and PBIL: Toward the Birth of a New Meta-Heuristi. Tehnial Report 215, Eole d'Ing�enieursen Informatique pour l'Industrie (E3i), Universit�e de Tours, 1999.[9℄ T. St�utzle, H. Hoos. The MAX-MIN Ant System and Loal Searh for the Traveling Salesman Prob-lem. In Proeedings of the Fourth International Conferene on Evolutionary Computation (ICEC'97),pp. 308-313. IEEE Press, 1997.


