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Abstract

In Group Decision Making is diffi-
cult that all experts have the same
knowledge over the problem. In
this contribution we shall focus in
Group Decision Making problems in
which the experts can express their
knowledge over the alternatives us-
ing different types of information
that will be called Heterogeneous In-
formation. The aim of this contri-
bution is to develop an aggregation
process able to manage all different
types of information. As mean to
agregate the heterogeneous informa-
tion we shall use the linguistic 2-
tuple model.

Keywords: decision making, aggregation,
linguistic 2-tuples, heterogenous information.

1 Introduction

Group Decision Making (GDM) problems
have a finite set of alternatives X =
{x1, ..., xn} n ≥ 2, as well as a finite set of ex-
perts E = {e1, ..., em} m ≥ 2. Each expert ek

provides his/her preferences on X by means
of a preference relation, i.e. Pek

(xi, xj) = pk
ij

the degree of preference of alternative xi over
xj .

A solution is derived either from the individ-
ual preference relations, without constructing
a social preference relation (direct approach),
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or by computing first a social fuzzy preference
relation and then using it to find a solution
(indirect approach) [8], in this contribution
we sahll use the last one. In any of the above
approaches the decision process is composed
by two steps [12]: (i) Aggregation phase: that
combines the expert preferences, and (ii) Ex-
ploitation one: that obtains a solution set of
alternatives from a preference relation.

It seems dificult that the nature of the pref-
erence values , pk

ij , provided by the experts
would be the same because it depends on the
knowledge of them over the alternatives (usu-
aly it is not precise). Therefore, the prefer-
ence has been expressed in different domains.
Early in DM problems, the uncertainty were
expressed in the preference values by means
of real values assessed in a predefined range
[8], soon other approaches based on interval
valued [9, 13] and linguistic one [3, 14] were
proposed. The most of the proposals for solv-
ing GDM problems are focused in cases where
all the experts provide their preferences in an
unique domain, usually the experts are from
different knowledge field and could express
his/her preferences with different types of in-
formation depending on their kholedge. We
shall call this type of information as Hetero-
geneous Information. Hence, we say that the
GDM problem is defined in a heterogeneous
context.

The main difficulty for dealing with GDM
problems defined in a heterogenous context
is how to aggregate the preferences. Because
of, there not exists operators or processes for
combining that information. The linguistic



2-tuple model [4] has shown itself as a good
choice to manage non-homogeneous informa-
tion in aggregation processes [5, 6]. In this
contribution we shall present an aggregation
process for heterogeneous information based
on the 2-tuple model.

In order to do that, this paper is structured
as follows: in Section 2 we shall review dif-
ferent basic concepts; in Section 3 we shall
propose an aggregation process for combin-
ing heterogeneous information; in Section 4
we shall solve an example of a GDM problem
defined in a heterogeneous context and finally,
some concluding remarks are pointed out.

2 Preliminaries

We have just seen that in decision making
problems the experts express their preferences
depending on their knowledge over the al-
ternatives by means of preference relations.
Here we review different approaches to ex-
press those preferences. And afterwards, we
shall review the 2-tuple linguistic representa-
tion model.

2.1 Approaches for Modelling
Preferences

2.1.1 Fuzzy Binary Relations

A valued (fuzzy) binary relation R on X is
defined as a fuzzy subset of the direct product
X ×X with values in [0, 1], i.e, R : X ×X →
[0, 1]. The value, R(xi, xj) = pij , of a valued
relation R denotes the degree to which xiRxj .
These were the first type of relations used in
decicion making [8].

2.1.2 Interval-valued Relations

The above approach has serious problems, in
particular it has been argued that the most
experts are unable to make a fair estimation
of the inaccuracy of their judgements, making
far larger estimation errors that the bound-
aries accepted by them as feasible [10].

A first approach to overcome this problem
is to add some flexibility to the uncertainty
representation problem by means of interval-

valued relations:

R : X ×X → ℘([0, 1]).

Where R(xi, xj) = pij denotes the interval-
valued preference degree of the alternative xi

over xj . In these approaches [9, 13], the pref-
erences provided by the experts consist of in-
terval values assessed in ℘([0, 1]), where the
preference is expressed as [a, a]ij , with a ≤ a.

2.1.3 Linguistic Approach

Many aspects cannot be assessed in a quanti-
tative way, but rather in a qualitative one, i.e.,
with vague or imprecise knowledge. In that
case a good approach may be to use linguistic
assessments instead of numerical values. The
fuzzy linguistic approach represents qualita-
tive aspects as linguistic values by means of
linguistic variables [15].

We have to choose the appropriate linguistic
descriptors for the term set and their seman-
tics. In the literature, several posibilities can
be found (see [7] for a wide description). An
important aspect to analyce is the ”granular-
ity of uncertainty”, i.e., the level of discrimi-
nation among different counts of uncertainty.
The ”granularity of uncertainty” for the lin-
guistic term set S = {s0, ..., sg} is g +1, while
its ”interval of granularity” is [0, g].

One possibility of generating the linguistic
term set consists of directly supplying the
term set by considering all terms distributed
on a scale on which a total order is defined
[14]. For example, a set of seven terms S,
could be given as follows:

S = {s0 : N, s1 : V L, s2 : L, s3 : M, s4 : H, s5 : V H, s6 : P}

Usually, in these cases, it is required that in
the linguistic term set satisfy the following ad-
ditional characteristics:

1. There is a negation operator: Neg(si) =
sj such that j = g − i (g+1 is the cardi-
nality).

2. si ≤ sj ⇐⇒ i ≤ j. Therefore, there ex-
ists a min and a max operator.



The semantics of the linguistic terms are given
by fuzzy numbers defined in the [0,1] interval.
A way to characterize a fuzzy number is to
use a representation based on parameters of
its membership function [1]. The linguistic
assessments given by the users are just ap-
proximate ones, some authors consider that
linear trapezoidal membership functions are
good enough to capture the vagueness of those
linguistic assessments. The parametric repre-
sentation is achieved by the 4-tuple (a, b, d, c),
where b and d indicate the interval in which
the membership value is 1, with a and c in-
dicating the left and right limits of the defi-
nition domain of the trapezoidal membership
function [1]. A particular case of this type of
representation are the linguistic assessments
whose membership functions are triangular,
i.e., b = d, then we represent this type of
membership functions by a 3-tuple (a, b, c). A
possible semantics for the above term set, S,
may be the following (Figure 1):

P = (.83, 1, 1) V H = (.67, .83, 1)
H = (.5, .67, .83) M = (.33, .5, .67)
L = (.17, .33, .5) V L = (0, .17, .33)
N = (0, 0, .17)

Figure 1: A set of seven linguistic terms with
its semantics

2.2 The 2-tuple Linguistic
Representation Model

This model was presented in [4], for overcom-
ing the drawback of the loss of information
presented by the classical linguistic computa-
tional models: (i) The model based on the
Extension Principle [1], (ii) and the symbolic
one [2]. The 2-tuple fuzzy linguistic represen-
tation model is based on symbolic methods
and takes as the base of its representation the
concept of Symbolic Translation.

Definition 1. The Symbolic Translation of
a linguistic term si ∈ S = {s0, ..., sg} is a
numerical value assessed in [−.5, .5) that su-
port the ”difference of information” between
a counting of information β ∈ [0, g] and the
closest value in {0, ..., g} that indicates the in-
dex of the closest linguistic term in S(si), be-
ing [0,g] the interval of granularity of S.

From this concept a new linguistic representa-
tion model is developed, which represents the
linguistic information by means of 2-tuples
(ri, αi), ri ∈ S and αi ∈ [−.5, .5). ri repre-
sents the linguistic label center of the infor-
mation and αi is the Symbolic Tranlation.

This model defines a set of functions between
linguistic 2-tuples and numerical values.

Definition 2. Let S = {s0, ..., sg} be a lin-
guistic term set and β ∈ [0, g] a value rsup-
porting the result of a symbolic aggregation
operation, then the 2-tuple that expresses the
equivalent information to β is obtained with
the following function:

∆ : [0, g] −→ S × [−0.5, 0.5)

∆(β) = (si, α), with

{
si i = round(β)

α = β − i α ∈ [−.5, .5)

where round(·) is the usual round operation,
si has the closest index label to ”β” and ”α”
is the value of the symbolic translation.

Proposition 1.Let S = {s0, ..., sg} be a lin-
guistic term set and (si, α) be a linguistic 2-
tuple. There is always a ∆−1 function, such
that, from a 2-tuple it returns its equivalent
numerical value β ∈ [0, g] in the interval of
granularity of S.

Proof. It is trivial, we consider the following
function:

∆−1 : S × [−.5, .5) −→ [0, g]
∆−1(si, α) = i + α = β

Remark: From Definitions 1 and 2 and
Proposition 1, it is obvious that the conver-
sion of a linguistic term into a linguistic 2-
tuple consist of adding a value 0 as symbolic
translation: si ∈ S =⇒ (si, 0)



3 Aggregation Process for a
Heterogeneous Information in a
GDM problem

In this section we present our purpose to carry
out the aggregation step of a decision making
process in a GDM problem defined in a het-
erogeneous context.

We focus in GDM problems in which the pref-
erence relations provided by the experts can
be:

1. Fuzzy preference relations [8]

2. Interval-valued preference relation [13]

3. Linguistic preference relation assessed in
a pre-established label set [3]

Following, we present our proposal for com-
bining this heterogeneous information. This
aggregation process is composed by the fol-
lowing phases:

1. Making the information uniform. The
heterogeneous information will be unified
into a specific linguistic domain, which is
a Basic Linguistic Term Set (BLTS). The
process is carried out in the following or-
der:

(a) Transforming numerical values in
[0, 1] into F (ST ).

(b) Transforming linguistic terms into
F (ST ).

(c) Transforming interval-valued into
F (ST ).

2. Aggregating individual performance val-
ues. For each alternative, a collective
performance value is obtained by means
of the aggregation of the above fuzzy sets
on the BLTS that represents the individ-
ual performance values assigned by the
experts according to his/her preference.

3. Transforming into 2-tuple. The collec-
tive performance values (fuzzy sets) are
transformed into linguistic 2-tuples in the
BLTS and obtained a collective 2-tuple
preference relation.

Following we shall show in deep each step of
the above phases of the aggregation process.

3.1 Making the information uniform

Firstly, the heterogeneous information is uni-
fied in an unique expression domain. In this
case, we shall use fuzzy sets over a BLTS, de-
noted as F (ST ). We study the linguistic term
set S that belongs to the definition context of
the GDM problem. If:

1. S is a fuzzy partition,

2. and the membership functions of its
terms are triangular, i.e., si = (ai, bi, ci)

then we select S as BLTS, due to the fact that,
these conditions are necessary and sufficient
for the transformation between values in [0, 1]
and 2-tuples, being them carried out without
loss of information [6].

If the linguistic term set S, used in the def-
inition context of the problem, does not sat-
isfy the above conditions then we shall choose
as BLTS a term set with a larger number of
terms than the number of terms that a per-
son is able to discriminate (normally 11 or
13, see [1]) and satisfies the above conditions.
We choose the BLTS with 15 terms symmetri-
cally distributed, with the following semantics
(graphically, Figure 2).

s0 (0,0,0.07) s1 (0,0.07,0.14)
s2 (0.07,0.14,0.21) s3 (0.14,0.21,0.28)
s4 (0.21,0.28,0.35) s5 (0.28,0.35,0.42)
s6 (0.35,0.42,0.5) s7 (0.42,0.5,0.58)
s8 (0.5,0.58,0.65) s9 (0.58,0.65,0.72)
s10 (0.65,0.72,0.79) s11 (0.72,0.79,0.86)
s12 (0.79,0.86,0.93) s13 (0.86,0.93,1)
s14 (0.93,1,1)

Figure 2: A BLTS with 15 terms symmetri-
cally distributed

The process of unifying the information in-
volves the comparison between fuzzy sets.



Comparisons are usually carried out by means
of a measure of comparison. We focus in mea-
sures of comparison which evaluate the re-
semblance of likeness of two objects (fuzzy
sets in our case). These type of measures are
called measures of similitude [11]. For sim-
plicity, in this contribution we sall choose a
measure of similitude based on a possibility
funcion S(A,B) = maxxmin(µA(x), µB(x)),
where µA and µB are the membership func-
tion of the fuzzy set A and B respectively.

3.1.1 Transforming numerical values
in [0, 1] into F (ST ).

Let F (ST ) be the set of fuzzy sets in ST =
{s0, . . . , sg}, we shall transform a numerical
value ϑ ∈ [0, 1] into a fuzzy set in F (ST ) com-
puting the membership value of ϑ in the mem-
bership functions associated with the linguis-
tic terms of ST .

Definition 3. [6] The function τ transforms
a numerical value into a fuzzy set in ST :

τ : [0, 1] → F (ST )

τ(ϑ) = {(s0, γ0), ..., (sg, γg)}, si ∈ ST and γi ∈ [0, 1]

γi = µsi(ϑ) =


0, if ϑ /∈ Support(µsi(x))
ϑ−ai
bi−ai

, if ai ≤ ϑ ≤ bi

1, if bi ≤ ϑ ≤ di
ci−ϑ
ci−di

, if di ≤ ϑ ≤ ci

Remark: We consider membership func-
tions, µsi(·), for linguistic labels, si ∈
ST , that achieved by a parametric function
(ai, bi, di, ci). A particular case are the lin-
guistic assessments whose membership func-
tions a triangular, i.e., bi = di.

Example 1

Let ϑ = 0.78 be a numerical value to be trans-
formed into a fuzzy set in S = {s0, ..., s4}.
The semantic of these term set is:

s0 = (0, 0, 0.25) s1 = (0, , 0.25, 0.5)
s2 = (0.25, 0.5, 0.75) s3 = (0.5, 0.75, 1)
s4 = (0.75, 1, 1)

τ(0.78) = {(s0, 0), (s1, 0), (s2, 0), (s3, 0.88), (s4, 0.12)}

3.1.2 Transforming linguistic terms in
S into F (ST ).

Definition 5.[5] Let S = {l0, . . . , lp} and
ST = {s0, . . . , sg} be two linguistic term sets,
such that, g ≥ p. Then, a multi-granularity
transformation function, τSST

, is defined as:

τSST
: A → F (ST )

τSST
(li) = {(ck, γ

i
k) / k ∈ {0, ..., g}}, ∀li ∈ S

γi
k = maxy min{µli(y), µck

(y)}

where F (ST ) is the set of fuzzy sets defined in
ST , and µli(·) and µck

(·) are the membership
functions of the fuzzy sets associated with the
terms li and ck, respectively.

Therefore, the result of τSST
for any linguistic

value of S is a fuzzy set defined in the BLTS,
ST .

Example 2

Let S = {l0, l1, . . . , l4} and ST =
{s0, s1, . . . , s6} be two term set, with 5 and
7 labels, respectively, and with the following
semantics associated:

l0 = (0, 0, 0.25) s0 = (0, 0, 0.16)
l1 = (0, , 0.25, 0.5) s1 = (0, 0.16, 0.34)
l2 = (0.25, 0.5, 0.75) s2 = (0.16, 0.34, 0.5)
l3 = (0.5, 0.75, 1) s3 = (0.34, 0.5, 0.66)
l4 = (0.75, 1, 1) s4 = (0.5, 0.66, 0.84)

s5 = (0.66, 0.84, 1)
s6 = (0.84, 1, 1)

The fuzzy set obtained after applying τSST
for

l1 is:

τAST
(l1) = {(s0, 0.39), (s1, 0.85), (s2, 0.85),

(s3, 0.39), (s4, 0), (s5, 0), (s6, 0)}

3.1.3 Transforming interval-valued
into F (ST ).

Let I = [i, i] be an interval-valued in [0, 1],
to carry out this transformation we assume
that the interval-valued has a representation,
inspired in the membership function of fuzzy
sets [9], as follows:

µI(ϑ) =


0, if ϑ < i
1, if i ≤ ϑ ≤ i
0, if i < ϑ



Table 1: The preference relation

Pek =

 pk
11 = {(s0, γ

11
k0

), . . . , (sg, γ11
kg

)} · · · pk
1n = {(s0, γ

1n
k0

), . . . , (sg, γ1n
kg

)}
... · · ·

...
pk

n1 = {(s0, γ
n1
k0

), . . . , (sg, γn1
kg

)} · · · pk
nn = {(s0, γ

nn
k0

), . . . , (sg, γnn
kg

)}



Table 2: Example preference relations

P n
1 =

 − .5 .8 .4
.5 − .9 .5
.8 .9 − .4
.4 .5 .4 −

 P S
2 =

 − H V H M
H − H V H

V H H − V H
M V H V H −

 P I
3 =

 − [.7, .8] [.65, .7] [.8, .9]
[.7, .8] − [.6, .7] [.8, .85]
[.8, .9] [.6, .7] − [.7, .9]
[.8, .9] [.8, .85] [.7, .9] −



where ϑ is a value in [0, 1]. In Figure 3 can
be observed the graphical representation of an
interval.

Figure 3: Membership function of I = [i, i]

Definition 5. Let ST = {s0, . . . , sg} be a
BLTS. Then, the function τIST

transforms a
interval-valued I in [0, 1] into a fuzzy set in
ST .

τIST
: I → F (ST )

τIST
(I) = {(ck, γ

i
k) / k ∈ {0, ..., g}},

γi
k = maxy min{µI(y), µck

(y)}

where F (ST ) is the set of fuzzy sets defined in
ST , and µI(·) and µck

(·) are the membership
functions associated with the interval-valued I
and terms ck, respectively.

Example 3

Let I = [0.6, 0.78] be an interval-valued to
be transformed into a fuzzy set in ST . The
semantic of these term set is the same of Ex-
ample 3.1.1. The fuzzy set obtained after ap-
plying τIST

is:

τIST
= {(s0, 0), (s1, 0), (s2, 0.6), (s3, 1), (s4, 0.2)}

3.2 Aggregating individual
performance values

Using the above transformation functions we
express the input information by means of

fuzzy sets on the BLTS, ST = {s0, . . . , sg},.
Now we use an aggregation function for com-
bining the fuzzy sets on the BLTS to obtain
a collective performance for each alternative
that will be a fuzzy set on the BLTS.

For the heterogeneous GDM the preference
relations are expressed by means of fuzzy sets
on the BLTS as Table 1, where pk

ij is the pref-
erence degree of the alternative xi over xj pro-
vides by the expert ek.

We shall represent each fuzzy set, pk
ij , as

rk
ij = (γij

k0
, . . . , γij

kg
) being the values of rk

ij

their respective membership degrees. Then,
the collective performance value of the pref-
erence relation according to all preference re-
lations provided by experts {rk

ij ,∀ek} is ob-
tained aggregating these fuzzy sets. This col-
lective performance value, denoted rij , is a
new preference relation of fuzzy set defined in
ST , i.e.,

rij = (γij
0 , . . . , γij

g )

characterized by the following membership
function:

γij
v = f(γij

1v
, . . . , γij

kv
),

where f is an “aggregation operator” and k is
the number of experts.

3.3 Transforming into 2-tuple

In this phase we transform the fuzzy sets
on the BLTS into linguistic 2-tuples over the
BLTS. In [5] was presented a function χ that
transforms a fuzzy set in a linguistic term set
into a numerical value in the interval of gran-
ularity of ST , [0, g]:

χ : F (ST ) → [0, g]

χ(τ(ϑ)) = χ({(sj , γj), j = 0, ..., g}) =

∑g

j=0
jγj∑g

j=0
γj

= β



Table 3: Fuzzy sets in a BLTS

P n
1 =

 − (0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 0, .19, .81, 0) (0, 0, .59, .41, 0, 0, 0)
(0, 0, 0, 1, 0, 0, 0) − (0, 0, 0, 0, 0, .59, .41) (0, 0, 0, 1, 0, 0, 0)

(0, 0, 0, 0, .19, .81, 0) (0, 0, 0, 0, 0, .59, .41) − (0, 0, .59, .41, 0, 0, 0)
(0, 0, .59, .41, 0, 0, 0) (0, 0, 0, 1, 0, 0, 0) (0, 0, .59, .41, 0, 0, 0) −



Table 4: The collective Preference relation.

P =

 − (0, 0, 0, 0, .6, .27, 0) (0, 0, 0, .04, .4, .67, 0) (0, 0, .2, .47, .27, .33, .14)
(0, 0, 0, 0, .6, .27, 0) − (0, 0, 0, .14, .67, .26, .14) (0, 0, 0, .33, .06, .67, .04)

(0, 0, 0, .04, .4, .67, 0) (0, 0, 0, .14, .67, .26, .14) − (0, 0, .2, .14, .27, .67, .14)
(0, 0, .2, .47, .27, .33, .14) (0, 0, 0, .33, .06, .67, .04) (0, 0, .2, .14, .27, .67, .14) −



Therefore, applying the ∆ function to β we
shall obtain a collective preference relation
whose values are linguistic 2-tuples.

4 Example

Let us suppose that an enterprise want to ren-
ove its computers. There exist four models
of computers available, {HP, IBM, COMPAQ
and DELL} and three experts provide his/her
preference relations over the four cars. The
first expert expresses his/her preference rela-
tion using numerical values in [0, 1], Pn

1 . The
second one expresses the preferences by means
of linguistic values in a linguistic term set S
(see Figure 1), PS

2 . And the third expert can
express them using interval-valued in [0, 1],
P I

3 . The three experts attempt to reach a
collective decision.

4.1 Decision Process

We shall use the following decision process to
solve this problem:

A) Aggregation Phase

We use the aggregation process presented in
this paper.

1. Making the information uniform

(a) Choose the BLTS. It will be S, due
to the fact, it satisfies the conditions
showed in Section 3.1.

(b) Transforming the input information
into F (ST ). (see Table 3)

(c) Aggregating individual performance
values. In this example we use as
aggregation operator, f , the arith-
metic mean obtaining the collective
preference relation shows in Table 4

2. Transforming into 2-tuple. The re-
sult of this transformation is:

P =

 − (H, .31) (V H,−.43) (H,−.18)
(H, .31) − (H, .33) (H, .38)

(V H,−.43) (H, .33) − (H, .29)
(H,−.18) (H, .38) (H, .29) −



B) Exploitation Phase

To solve the GDM problem, finally we calcu-
late the dominance degree for the alternative
xi over the rest of alternatives. To do so, we
shall use the following function:

Λ(xi) =
1

n− 1

n∑
j=0 | j 6=i

βij

where n is the number of alternatives and
βij = ∆−1(pij) being pij a lingusitic 2-tuple.

In this phase we shall calculate the dominance
degree for this preference relation showed in
Table 5.

Table 5: Dominance degree of the alternatives

HP IBM COMPAQ DELL

(H, .23) (H, .34) (H,.4) (H, .16)

Then, the dominance degree rank the alterna-
tives and we choose the best alternatives how
solution set of GDM problem, in this example
the solution set is {COMPAQ}.

5 Concluding Remarks

We have developed an aggregation process for
aggregating heterogeneous information com-
posed by numerical, interval valued and lin-
guistic values. This aggregation process is



based on the transformation of the informa-
tion into fuzzy sets and afterwards into lin-
guistic 2-tuples. This aggregation process has
been applied it to a GDM problem defined in
a heterogeneous context.

In the future we want to apply this aggre-
gation process to other types of information
used in the literature to express preference as
can be Interval-Valued Fuzzy Sets, Intuition-
istic Fuzzy Sets.
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