
3A General Study on Genetic FuzzySystemsOSCAR CORD�ON, FRANCISCO HERRERA3.1 INTRODUCTIONAs it is known, a rule based system (production rule system) has been successfully usedto model human problem-solving activity and adaptive behavior, where a classic wayto represent the human knowledge is the use of IF/THEN rules. The satisfaction of therule antecedents gives rise to the execution of the consequent, one action is performed.The conventional approaches to knowledge representation are based on bivalent logic.A serious shortcoming of such approaches is their inability to come to grips with theissue of uncertainty and imprecision.As a consequence, the conventional approaches donot provide an adequate model for modes of reasoning and all commonsense reasoningfall into this category.Fuzzy Logic (FL) may be viewed as an extension of classical logical systems,provides an e�ective conceptual framework for dealing with the problem of knowledgerepresentation in an environment of uncertainty and imprecision. FL, as its namesuggests, is the logic underlying modes of reasoning which are approximate rather thanexact. The importance of FL derives from the fact that most modes of human reasoning-and especially commonsense reasoning- are approximate in nature. FL is concernedin the main with imprecision and approximate reasoning.The applications of FL to rule based systems have been widely developped. Froma very broad point of view a Fuzzy System (FS) is any Fuzzy Logic Based Sytems,where FL can be used either as the basis for the representation of di�erent forms ofknowledge systems, or to model the interactions and relationships among the systemvariables. FS have been shown to be an important tool for modelling complex systems,in which, due to the complexity or the imprecision, classical tools are unsuccessful.Sample Contributed BookEditor Jenny Smith c
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Environment EnvironmentFigure 3.1 Genetic Fuzzy SysemsAmong the most successful applications of this systems has been the area of Fuzzylogic controllers (FLCs). FLCs are rule based systems useful in the context of complexill-de�ned processes, especially those which can be controlled by a skilled humanoperator without knowledge of their underlying dynamics. Recentely fuzzy controltechniques have been applied to many industrial processes, FLCs have been widthlyused in automation and engineering. The experience of skilled operators and theknowledge of control engineers are expressed qualitetively by a set of fuzzy controlrules. In fact, one of the features of the FLCs is that the IF-THEN rules are describedon the base of the conventional control strategy and the experts' knowledge. Each fuzzyrule has an antecedent, or IF, part containing several preconditions, and a consequent,or THEN, part which prescribes the value.Recentely, numerous papers and applications combining fuzzy concepts and geneticalgorithms (GAs) have become known, and there is an increasing concern in theintegration of these two topics. In particular, there are a great number of publicationsexploring the use of GAs for developping fuzzy systems, the called genetic fuzzy systems(GFSs). Figure 1 shows this idea.This paper presents an overview of the GFSs, showing the use of the GAs in theconstruction of the fuzzy logic controllers knowledge bases comprising the knownknowledge about the controlled system.To achieve that, this paper is divided into 4 sections the �rst being this introduction.The section 2 introduces the fuzzy systems with a special attention to FLCs, whilesection 3 presents the GFSs. Some �nal remarks are made in section 4.cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



A GENERAL STUDY ON GENETIC FUZZY SYSTEMS 33.2 FUZZY SYSTEMSFuzzy logic and fuzzy sets in a wide interpretation of FL (in terms of which fuzzy logicis coextensive with the theory of fuzzy sets, that is, classes of objects in which thetransition from membership to nonmembership is gradual rather than abrupt) haveplaced modeling into a new and broader perspective by providing innovative tools tocope with complex and ill-de�ned systems. The area of fuzzy sets has emerged followingsome pioneering works of Zadeh [Zad65, Zad73] where the �rst fundamentals of fuzzysystems were established.As we aforesaid, a rule based system has been successfully used to model humanproblem-solving activity and adaptive behavior. The conventional approaches toknowledge representation, are based on bivalent logic. A serious shortcoming of suchapproaches is their inability to come to grips with the issue of uncertainty andimprecision.As a consequence, the conventional approaches do not provide an adequatemodel for modes of reasoning. Unfortunatelly, all commonsense reasoning fall into thiscategory.The application of FL to rule based systems leads us to the fuzzy systems. Themain role of fuzzy sets is representing knowledge about the problem, or to model theinteractions and relationships among the system variables. There are two essentialadvantages for the design of rule-based systems with fuzzy sets and logic:� the key features of knowledge captured by fuzzy sets involve handlinguncertainty, and� inference methods become more robust and 
exible with approximatereasoning methods of fuzzy logic.Knowledge representation is enhanced with the use of linguistic variables and theirlinguistic values that are de�ned by context-dependent fuzzy sets whose meanings arespeci�ed by graded membership functions. On other hand, inference methods suchas generalized modus ponens, tollens, etc., which are based on fuzzy logic form thebases of approximate reasoning with pattern matching scores of similarity. Fuzzy logicprovides an unique computational base for inference in rule based systems. Unliketraditional logical systems, fuzzy logic is aimed at providing modes of reasoning whichare approximate and analogical rather than exact.Abording the fuzzy system modeling issue, it is essentially developed into twodi�erent types of system models identi�ed as acquisition of rules and their parameters:i) fuzzy expert system models, and ii) fuzzy logic controllers.Fuzzy expert system models are designed, developed and implemented with a directparticipation of a system's expert who is throughly familiar with the characteristicbehaviour of the system under investigation. The knowledge of the expert is extractedfrom the expert through experimental methods of questionnaires, protocols andinterviews which may be conducted by people or by computers for the purpose ofidentifying the form and the structure of the rules, i.e., structure identi�cation aswell as the membership functions of the linguistic values of linguistic variables, i.e.,parameter identi�cation.On the other hand, fuzzy control model design, development and implementationare dependent on the availability of input-output data sets. The system structureidenti�cation in terms of rules and speci�cation of membership functions that de�necbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)
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DefuzzificationFigure 3.2 Generic structure of a fuzzy logic controllerthe meaning representation of linguistic values of linguistic variables are determinedby learning techniques. Also there is a third kind that is the combination of the otherstwo that may be called fuzzy expert-control.Here, we will center in the second fuzzy system model, the FLCs, where the GAshave been used for design the structure identi�cation of the system.FLCs, initiated by Mamdani and Assilian in the work [MA75], are now consideredas one of the most important applications of the fuzzy set theory. FLCs are knowledgebased controllers that make use of the known knowledge of the process, expressed inform of fuzzy linguistic control rules collected in a knowledge base (KB), to controlit. The advantage of this approach with respect to the classical Control Theory isthat it has not necessity of expressing the relationships existing in the system bymeans of a mathematical model, what constitutes a very di�cult task in many realsituations presenting nonlinear characteristics or complex dynamic. In the followingtwo subsections we present an introduction to FLCs and to the FLC KBs.3.2.1 Fuzzy Logic ControllersAn FLC is composed by a Knowledge Base, that comprises the information given bythe process operator in form of linguistic control rules, a Fuzzi�cation Interface, whichhas the e�ect of transforming crisp data into fuzzy sets, an Inference System, thatuses them joined with the Knowledge Base to make inference by means of a reasoningmethod, and a Defuzzi�cation Interface, that translates the fuzzy control action soobtained to a real control action using a defuzzi�cation method. The generic structureof an FLC is shown in �gure 2 [Lee90].Several factors with a signi�cant in
uence have to be analyzed in order to design anFLC for a concrete process. Concretely, there are two main decisions to make in orderto design a FLC, to derive a KB for the system and to decide the reasoning method touse. As can be viewed, only the �rst one depends directly on the concrete applicationaltough several reasoning methods will perform better with some kind of systems thanothers.cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



A GENERAL STUDY ON GENETIC FUZZY SYSTEMS 5The Knowledge Base is the FLC component comprising the expert knowledgeknown about the controlled system. So it is the only component of the FLC dependingon the concrete application and it makes the accuracy of the FLC depends directly onits composition. It is composed by a set of fuzzy control rules with the form:If X1 is Ai1 and X2 is Ai2 and ... and Xn is Ain then Y is Bibeing the Xi and Y linguistic system variables and the Ai and the Bi linguistic labelsassociated with fuzzy sets specifying their meaning.The Fuzzi�cation Interface de�nes a mapping from an observed input space tofuzzy sets in certain input universes of discourse, obtaining the membership functionassociated to each one of the crisp system inputs.The Inference System is based on the application of the Generalized ModusPonens, extension of the classical logic Modus Ponens proposed by Zadeh. It is done bymeans of the Compositional Rule of Inference (CRI) given by the following expression:�B0 (y) = Supx2X nT 0(�A0 (x); I(�Ai(x); �B(y)))o (3.1)being T , T 0 connectives, �Ai(x) = T (�Ai1(x); : : : ; �Ain(x)) and I an implicationoperator.Since the input x corresponding to the state variables of the controlled system iscrisp, x = x0, the fuzzy set A0 is a singleton, that is, �A0 (x) = 1 if x = x0 and�A0 (x) = 0 if x 6= x0. Thus the CRI is reduced to:�B0 (y) = I(�Ai (x0); �B(y)) (3.2)Since from each rule Ri is obtained a fuzzy set B0i from the inference process, theDefuzzi�cation Interface uses an aggregation operator G which composes them andapplies a defuzzi�cation method D to translate the fuzzy sets obtained in this way intovalues corresponding to the control variables of the system. So, calling S to the FLC,x0 to the inputs value and y0 to the crisp value obtained from the defuzzi�cation, wehave: �B0 (y) = Gn�B01(y); �B02 (y); : : : ; �B0n(y)o (3.3)y0 = S(x0) = D(�B0 (y)) (3.4)At present, the commonly used defuzzi�cation methods may be described as the MaxCriterion, the Mean of Maximum (MOM) and the Center of Area (COA) [Lee90].The design tasks that have to be developed in order to decide the FLC reasoningmethod are the selection of the fuzzy operators I, T and G and the defuzzi�cationoperator D [KKS85]. The problem of selection them have been analyzed in severalworks such us [CCC+94, CCC+95, CHP95b, CHP95a, KKS85].For more information about FLCs see [CHP95a, DHR93, HMB93, Lee90].3.2.2 The Fuzzy Logic Controller Knowledge BaseThe Knowledge Base is comprised of two components, a Data Base (DB), containingthe de�nitions of the fuzzy control rules linguistic labels, that is, the membershipcbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



6 OSCAR CORD�ON, FRANCISCO HERRERAfunctions of the fuzzy sets specifying the meaning of the linguistic terms, and aRule Base (RB), constituted by the collection of fuzzy control rules representing theexpert knowledge. We are going to analize more concretely this two components in thefollowing sections.The Data BaseThe concepts associated with a DB are used to characterize fuzzy control rules andfuzzy data manipulation in an FLC [Lee90]. In this way, the main task to be done inorder to design an FLC DB is to associate a membership function to every one of thelinguistic terms that the system input and output variables can take as possible values.There are two modes of DB de�nition:� By means of a quantization or normalization process.� By means of a tuning or learning process.Every linguistic variable involved in the FLC KB forms a fuzzy space with respect toa certain universe of discourse and have associated a label set containing the possiblelinguistic values that it can take. A fuzzy partition determines how many terms shouldexist in the label set. The choice of the term set is equivalent to �nding the primaryfuzzy sets or linguistic labels (terms). This is a previous task for the �rst mode andfor some of the methods included in the second one.The �rst de�nition mode makes use only of a little part of the a priori knownknowledge of the system. In order to de�ne the meaning of the linguistic term set,a discretization of the process input and output variables continuous universes ofdiscourse have to be performed. This process is usually called quantization and isdone in a number of steps [DHR93, HMB93, Lee90]:1. The continuous domain is discretized (quantized) into a certain �nitenumber of segments called quantization levels. Each segment is labeledas a generic element and the set of all generic elements forms a discreteuniverse of discourse.2. Given a linguistic value from a certain term set, the fuzzy set de�ningthe meaning of this linguistic value is built by assigning a degree ofmembership to each generic element. This is done for every linguisticvalue in a term set.The use of quantized or normalized domains requires a scale transformation whichmaps the physical values of the process variables into the discretized universe. In bothcases, the mapping can be uniform (linear), non-uniform (nonlinear) or both. Either anumerical or functional de�nition may be used to assign the degrees of membership tothe primary fuzzy sets [DHR93, HMB93, Lee90]. This choice is based on the subjectivecriteria and it should be more convenient that the human processes operators couldrepresent the meaning of their usually employed linguistic terms in form of fuzzy sets.Unfortunatelly, in many real cases it is not possible for him to make that, and it isvery common the use of an uniform fuzzy partition as the one proposed by Liaw andWang [LW91] shown in �gure 3.cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)
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Figure 3.3 Fuzzy partition proposed by LiawThe second de�nition mode employs many of the known knowledge and leads toa more application speci�c DB requiring less intervention of the controller designerand presenting more automatically developed tasks. Belonging to this group, we candistinguish two di�erent subgroups:� De�nition by means of a tuning process� De�nition by means of a learning processMethods included in the �rst one make use of a primary DB de�nition developedby means of a quantization or normalization process and then apply a process thatmodi�es the meaning of the linguistic labels, that is, the de�nitions of the fuzzy setsassociated to them. On the other hand, it would be a learning process when there isnot an initial DB de�nition. Usually, this last process is carried out joined to a RuleBase learning process.Moreover, an important decision in order to de�ne the FLC is to determine thenature of its DB. There are two di�erent approximations for it depending on the scopein what there is assigned the meaning to the linguistic labels belonging to the di�erentterm sets. On one hand, an usual DB de�nition process in what the fuzzy sets givingmeaning to the linguistic labels are uniformly de�ned for all rules included in the RBconstitutes a descriptive approach since the linguistic labels represents a real worldsemantics. On the other hand, it can be considered a KB whose rules present di�erentmeaning for the same linguistic terms. The meaning associated to a concrete labelwill depend on the concrete rule in what this label appears. In this case, the KB andthe FLC using it present a di�erent philosofy. The approach is approximative and thesystem is in the line of an Universal Approximator [Cas95].The Rule BaseThere are di�erent kinds of fuzzy control rules proposed in the specialized literatureregarding to the expression of the consequent. Mamdani and Assilian employ rules incbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



8 OSCAR CORD�ON, FRANCISCO HERRERAwhich the consequent is another fuzzy variable [MA75], while Sugeno et al. use ruleswhose conclusion is a polynomial function of the inputs (TSK rules) [TS85]. Anotherkind of rules present also the consequent being a function of the input parameters.The following three rules show respectively the generical expressions of the three typescommented:If X1 is A1 and ::: and Xn is An then Y is BIf X1 is A1 and ::: and Xn is An then Y = p0 + p1X1 + :::+ pnXnIf X1 is A1 and ::: and Xn is An then Y = f(X1; :::; Xn)being the Xi and Y, linguistic system variables and the Ai and B, linguistic labelsassociated with fuzzy sets specifying their meaning.There are four modes of derivation of fuzzy control rules that are not mutuallyexclusive [HMB93, Lee90]. These modes are the following:1. Expert Experience and Control Engineering Knowledge.2. Modeling of the Operator's Control Actions.3. Based on the Fuzzy Model of a Process.4. Based on Learning and Self-Organization.The �rst method has been widely used. This method is e�ective when expert humanoperators can express what they use to control the system in terms of control rules.The rules more usually obtained by means of this process are Mamdani type becausethey present an adequate form to represent the expert knowledge. The second methoddirectly models the control actions of the process operator. Instead of interviewing theoperator, the types of control actions taken by him are modeled. The third approachis based on developing a model of the plant and construct an FLC to control the fuzzymodel generating the fuzzy control rules of the RB by means of the fuzzy model of thesystem. It makes this approach similar to that traditionally used in Control Theory.Hence, structure and parameter identi�cation are needed. Finally, the fourth methodis focused on learning. In this case, the ability to create fuzzy control rules and tomodify them based on experience in order to improve the controller performance isconsidered.3.3 DESIGNING GENETIC FUZZY SYSTEMSAs it has been shown in the above section, there are many tasks that have to beperformed in order to design an FLC to control a concrete system. We have commentedyet that the derivation of the KB is the only one directly depending on the controlledsystem and it presents a signi�cative importance in the design process. It is knownthat the more used method in order to perform this task is based directly on extractingthe expert experience from the human processes operators. The problem arises whenthese are not able to express their knowledge in terms of fuzzy control rules. In order toavoid this drawback, researches have been investigating automatic learning methods fordesigning FLCs by deriving automatically an appropiate KB for the controlled systemwithout necessity of its human operator.The genetic algorithms (GAs) have demostrated to be a powerful tool for automatingthe de�nition of the KB since adaptative control, learning and self-organization cancbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



A GENERAL STUDY ON GENETIC FUZZY SYSTEMS 9be considered in a lot of cases as optimization or search processes. The fuzzy systemsmaking use of a GA in their design process are called generically GFSs.These advantages have extended the use of the GAs in the development of a widerange of approaches for designing FLCs in the last years. Some of these approaches ofgenetic FLC design will be shown in the present chapter. It is possible to distinguishthree di�erent groups of genetic FLC design processes according to the KB componentsincluded in the learning process. These ones are the following:1. Genetic de�nition of the Fuzzy Logic Controller Data Base.2. Genetic derivation of the Fuzzy Logic Controller Rule Base.3. Genetic learning of the Fuzzy Logic Controller Knowledge Base.In the following subsections we are going to analyze each one of the approaches forgenetic design of FLCs.3.3.1 De�ning the Fuzzy Logic Controller Data Base using Genetic AlgorithmsAs we have commented already, one of the modes of de�nition of the FLC DB isbased on learning or tuning this FLC component. The di�erence between these twoapproaches depends on the existence of a previously primary DB de�nition. Whilelearning processes do not need this previous de�nition, tuning processes works over itobtaining a more accurated one.Several methods have proposed in order to de�ne the FLC DB using GAs[BN95, BMU95, FTH94, HLV95b, HTS93, Kar91b]. All of them are based on theexistence of a previously de�ned RB, usually extracted from the process operator. Eachchromosome involved in the evolution process will represent di�erent DB de�nitions,that is, each one of the chromosomes will contain a coding of the whole membershipfunctions giving meaning to the linguistic terms. The degree of adaptation of anindividual is measured using a �tness function that usually is based on the aplication ofthe FLC to the controlled system, using a KB formed by the RB and the DB encodedby the chromosome.There are two di�erent approaches for the genetic de�nition of FLC DBs dependingon the scope of the association of membership functions to linguistic labels in the KB,either all fuzzy control rules using the same meaning for the system variables linguisticterms or a di�erent approximation in what each rule presents its own meaning for thelabels involved by it. In this subsection we analyze an example of each one of bothgroups. The method proposed by Karr [Kar91b], belonging to the �rst one, and themethod of Herrera et al. [HLV95b], belonging to the second one.The DB de�nition method proposed by KarrThe approach of Karr [Kar91b] is based on the existence of primary fuzzy partitions ofthe di�erent system variables input and output spaces. The GA is applied for de�ningthe meaning of the di�erent linguistic term sets, that is, for learning the fuzzy setsassociated to each one of the linguistic labels belonging to the fuzzy partitions. As itcan be viewed, this approach is a descriptive one because all the fuzzy terms appearingin the fuzzy control rules will use the same meaning (that de�ned by means of the GAlearning process).cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)
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0.4Figure 3.4 An example of fuzzy partition in the Karr's DB de�nition methodIn order to develop this task, Karr uses a SimpleGA with binary coding, proportionalselection mechanism, simple crossover and randommutation. The binary coding outlinewill represent all the membership functions associated to the di�erent linguistic labelsbelonging to each one of the linguistic term sets into a single chromosome.The membership functions selected by Karr to de�ne the meaning of the linguisticlabels are triangular-shaped. He consider only two points, extremes of the fuzzy setssupport, for de�ning every triangle, �xing its central point which presents value 1 inthe membership function. In this way, the evolution performed by the GA can make thetriangles to be distorted (when the base width is altered) and translated (when thesetwo points are shifted along the x-axis) freely. The process is di�erent for the extremetriangles, which only requires a single point with value of the membership functionsequal to 0 to be de�ned. Their modal point is clearly placed in the correspondentextreme of the concrete system variable universe of discurse. Only one operation canbe performed with these triangles, altering their base width in one of the two x-axisdirections, that is, making it bigger or smaller. Figure 4 shows an example.The constraint placed over the membership functions is that the ones associated tothe extreme labels must remain right triangles while those associated to the interiorterms must remain isosceles triangles. It is clear that this constraint avoid the GA toobtain incorrectlly de�ned membership functions.A chromosome coding all the membership functions is built �nally by joining all theindividual coding of these ones into a single string. As each point is represented by abinary number with a �xed number of bits, the chromosomes are of �xed-length, thatis, all individuals in the population will present the same length.Finally, Karr do not present a concrete �tness function but introduces severalconsiderations in order to de�ne it. His idea for measuring the accuracy of a concreteDB in the optimal control of the system is based on an application-dependent measure,that is, any error or convergence measure (see [CCC+94, CHP95a]).cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



A GENERAL STUDY ON GENETIC FUZZY SYSTEMS 11The DB de�nition method proposed by Herrera et al.In [HLV95b] it was presented a DB de�nition process used to tune the DB parameters.The process is based on the existence of a previous complete KB, that is, an initialDB de�nition and a RB constituted by m control rules. The chromosomes will encodea complete KB since each one of them contains the RB with a di�erent DB associated.The GA designed for the process present real coding issue and use the stochasticuniversal sampling as selection procedure and the Michaelewicz's non-uniformmutationoperator. Regarding to the crossover, two di�erent operators are employed: the simpleand the Max-Min-Arithmetical crossover. This last operator have been proposed bythe authors and makes use of fuzzy operators in order to improve the behavior of theGA crossover operator.The membership functions selected in order to de�ne the DB are trapezoidal- shaped.They have associated a parametric representation based on a 4-tupla of real values.Let the following rule be the ith rule of the previous RB:If X1 is Ai1 and X2 is Ai2 and : : :and Xn is Ain then Y is BiThen the fuzzy sets giving meaning to the linguistic labelsAij associated to the inputvariablesXi will be represented by the 4-tuple (cij; aij; bij; dij) and the ones associatedto the output variable linguistic labels Bi by (c0i; a0i; b0i; d0i). Thus each one of the ruleswill be encoded in pieces of chromosome Cri, i = 1; : : : ;m, in the following way:Cri = (ci1; ai1; bi1; di1; :::; cin; ain; bin; din; c0i; a0i; b0i; d0i) (3.5)Therefore the complete RB with an associated DB is represented by a completechromosome Cr: Cr = Cr1 Cr2 ::: Crm (3.6)As it can be viewed, each individual of the population represents a complete KB.More concretelly, all of them encode the derived system RB and the di�erence betweenthem is the meaning associated to the linguistic variables taking part in the fuzzycontrol rules, that is, the DB de�nition. As each rule is coded in a piece of chromosome,the fuzzy set giving meaning to a linguistic term can be changed in one rule and notin the other ones in which it appears or, in a more extreme case, it can be changedin many rules presenting di�erent forms in several ones. The meaning of the linguisticterms will depend then on the rule in which they are involved. The KB so obtainedwill present an approximative behavior.The initial gene pool is created from the initial KB. This KB is encoded directly ina chromosome, denoted as C1. The remaining individuals are generated by associatingan interval of performance, [clh; crh] for every gene ch of C1, h = 1 : : : (n + 1) �m � 4.Each interval of performance will be the interval of adjustment for the correspondentvariable, ch 2 [clh; crh].If (t mod 4) = 1 then ct is the left value of the support of a fuzzy number. Thefuzzy number is de�ned by the four parameters (ct, ct+1, ct+2, ct+3) and the intervalsof performance are the following:ct 2 [clt; crt ] = [ct � ct+1�ct2 ; ct + ct+1�ct2 ]cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)
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t+ 3C lFigure 3.5 Intervals of performancect+1 2 [clt+1; crt+1] = [ct+1 � ct+1�ct2 ; ct+1 + ct+2�ct+12 ]ct+2 2 [clt+2; crt+2] = [ct+2 � ct+2�ct+12 ; ct+2 + ct+3�ct+22 ]ct+3 2 [clt+3; crt+3] = [ct+3 � ct+3�ct+22 ; ct+3 + ct+3�ct+22 ]Figure 5 shows these intervals. Therefore, we create a population of chromosomescontaining C1 as its �rst individual and the remaining ones initiated randomly, witheach gene being in its respective interval of performance.By using a training input-output data set, ETDS , and a concrete error measure, thesquare medium error, the �tness function of a chromosome is de�ned. In this way,the adaptation value associated to an individual is obtained by computing the errorbetween the outputs given by the FLC using the KB encoded in the chromosome andthose contained in the training data set. The �tness function is represented by thefollowing expression: E(C) = 12jETDS j Xek2ETDS(eyk � S(exk))2 (3.7)3.3.2 Deriving the Fuzzy Logic Controller Rule Base using Genetic AlgorithmsThe great majority of the approaches belonging to this group are based on learning theconsequents of the fuzzy control rules included in the FLC RB. In this way, many ofthese genetic processes encode the complete system decision table in the chromosomes.There are di�erent methods developing this task [Bon93, HT94, Kar91a, KB93, Thr91]but in many cases the only di�erence existing among them is the cappability of learningthe number of rules forming the RB. This characteristic is presented when there exista possible alelle representing the absence of consequent for a rule with a concreteantecedent, that is, the absence of the correspondent rule in the RB.All methods belonging to this family suppose the existence of a de�ned DB. Thus,a primary partition of the fuzzy spaces, that is, a term set for each one of them,and a collection of fuzzy sets giving meaning to these primary labels are considered.Other common characteristic for a majority of them is that they consider the FLCRB represented in form of decision table (called too look-up table). As it is known,cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



A GENERAL STUDY ON GENETIC FUZZY SYSTEMS 13an usual FLC RB constituted by control rules presenting n input variables and asingle output variable can be represented using an n-dimensional decision table, eachdimension corresponding to each one of the input variables. Every dimension will haveassociated an array containing the labels of the concrete variable term set and thecells of the decision table will contain the linguistic label that the output variable takefor the combination of antecedents represented in this cell. Therefore each table cellrepresents a fuzzy control rule that can belong to the FLC RB.This structure is encoded in the individuals forming the GA population. If there notexist a value for the alleles representing the absence of value for the rule consequent,there is not possible to derive a FLC RB with an optimal number of rules but all thepossible rules have to be considered belonging to it. This is the case of the methodsproposed by Karr [Kar91a], and Kropp and Baitinger [KB93] altough the �rst of themdo not encode the complete decision table as we are going to see in the following. Theremaining ones commented are able to learn the number of fuzzy rules.In this subsection we are going to study three di�erent approaches. The methodsselected were proposed by Thrift [Thr91], Karr [Kar91a] and Bonarini [Bon93]. Thislast one constitutes an original approach for learning FLC RB and di�ers a lot fromthe others belonging to this family as we are going to see in the following.The RB derivation method proposed by ThriftThis method, as many others belonging to these category, is based on encoding all thecells of the complete decision table in the chromosomes. In this way, Thrift [Thr91]establishes a mapping between the label set associated to the system output variableand an increasing integer set (containing one element more and taking 0 as �rstelement) representing the alelle set. An example is shown to clarify the concept.Being fNB;NS;ZR;PS; PBg the term set associated to the output variable, it canbe noticed the absence of value for the output variable by the symbol -. The completeset formed joining this symbol to the term set is mapped into the set f0; 1; 2; 3; 4;5g.Hence the label NB is associated with the value 0, NS with 1, : : : , PB with 4 and theblank symbol - with 5.Therefore the GA emploies an integer coding. Each one of the chromosomes isconstituted by joining the partial coding associated to each one of the linguistic labelscontained in the decision table cells. A gen presenting the alelle - will represent theabsence of the control rule contained in the corresponding cell in the RB being thechromosome phenotype.The GA proposed emploies an elitist selection scheme and the genetic operatorsused are of di�erent nature. While the crossover operator is the standard two -pointcrossover, the mutation operator is speci�cally designed for the process. When it isapplied over an alelle di�erent from the blank symbol, changes it either up or downone level or to the blank code. When the previous gen value is the blank symbol, itselects a new value at random.Finally, the �tness function is based too on an application speci�c measure. AMeasure of Convergence is considered for this task. The �tness of an individual isdetermined by applying the FLC employing the RB coded in its genotype to thecontrolled system with several di�erent starting points and computing the convergenceof it to the desired equilibrium point.cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



14 OSCAR CORD�ON, FRANCISCO HERRERAThe RB derivation method proposed by KarrKarr proposes a method for deriving FLC RBs [Kar91a] where the complete RB inform of decision table is not coded in each chromosome. The approach of Karr isbased in the fact that the number of rules is provided by an expert, together withmany complete rules forming the RB and the antecedents for the reamining ones. Hepresents an GA derivation method for learning the rule consequents of this last typerules.As it can be viewed, the method needs the existence of a deep knowledge aboutthe controlled system. As Karr comments, his approach is useful when the controllerhuman designer knows all the input states relevant for the problem (in this way, heknows the number of rules needed to control it) and the control action that have tobe performed in order to obtain an optimal control from several of them (that is, heknows several complete antecedent-consequent control rules), but the actions that haveto be associated to the remaining input states are not obvious for him. Usually, theknown rules are those describing the extreme conditions, which are easy to write inmany cases.The coding outline will associate a binary number to each label belonging to theoutput variable term set in the way that each of them will be mapped to a binarynumber according to its order in the label set. Thus, considering seven linguisticterms describing the control variable, the possible control actions for one rule will berepresented as a three-bit string (000 represents action 1 (NB), 001 represents action2 (NM ), and so on). A chromosome is obtained by joining the partial codings of therules for what there is not known the control action to apply. Therefore a chromosomecodes only a little part of the complete RB. In the commented example, calling nthe number of not determinated rules, a string of length 3n represents every possiblecon�guration for this partial FLC rule set.The GA employed is the same used for the Karr's DB de�nition method that wehave commented in the previous subsection, that is, a Simple GA with binary coding,proportional selection mechanism, simple crossover and random mutation. In the sameway, the �tness function is de�ned by using an application speci�c measure.Finally, it is important to note that the author proposes to combine their two FLCgenetic design methods, the DB de�nition method and the RB derivation method, inorder to design a complete KB. In this way, the RB derivation method is applied ina �rst step and, once an acceptable RB have been learned by the GA, the selectionof high-performance membership functions (an accurated DB) is carried out using theabove described tuning process.The RB derivation method proposed by BonariniThe method proposed by Bonarini [Bon93], called ELF (Evolutionary Learning ofFuzzy Rules), is quite di�erent to the other approaches developed into this group. Theauthor considers the high computationally cost needed to derive a RB by applying anGA with a population of individuals coding the whole decision table and presents amodel based on learning only the control rules that the FLC will use.In order to develop this task, the GA used by Bonarini maintains a population ofrules This new coding will allow to learn the complete structure of the control rules,cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



A GENERAL STUDY ON GENETIC FUZZY SYSTEMS 15that is, their antecedent and consequent and the optimal number of rules forming theFLC RB. The author wants to learn with ELF what states occur in the controlledsystem and which are irrelevant for it, obtaining optimal RBs for the application.The �tness function judges the state reached at each activation of the rules. Eachindividual of the population, that is, each rule, will have associated information aboutseveral questions: how good it has been judged (its strength), when it has beengenerated, when it has been triggered the last time and how much it contributed to pastcontrol actions performed by the controller. ELF will modify the strength associated toa rule according to the performance of the action it contributed to. This performanceis evaluated by the �tness function.Other important characteristic of this method is that it is designed in order to runin a real enviroment. The process �rst selects among the rules matching the currentstate of the controlled system, the rules matching better than a degree given by theFLC designer. The rules belonging to this set will compete between them in order topropose the best control action for the current state.Several genetic operations are applied over this set of individuals. Some of theserules are considered tested enough since they contributed to past control actions morethan a given reference. If some of them have low strength, it means that the controlactions proposed by them do not perform well. These rules are substituted by othersperforming better and the consequents of such rules are modi�ed with a probabilityproportional to their strength. This last step constitute the GA mutation operator andmakes ELF to look for new rules in a neighboorhood of the good ones previouslylearned.If much time have passed from the last rule modi�cation, this means that thepopulation of rules matching well the current state have stucked and all of them havealmost the same strength. In this case, ELF selects the worst rule and mutates itsconsequents in order to continue the search looking for a better con�guration.If there exists few rules matching the current state (the parameter representing theenough number of rules is changed dinamically), ELF generates a new rule covering itand proposes a control action at random. This is the only mechanism introducing newantecedents and it is called cover-detector. It may introduce with a given probabilityalso "dont care" symbols as values for some variables in the new rule generated. Ruleswhose antecedents contain these kind of symbols match di�erent states and competewith di�erent groups of rules, one for each of the matching states.The dual situation is in which there are too many rules matching a state. In thiscase, the genetic operator applied is called rule-killer and it simply eliminate the worstrule matching this state from the population.One time performed the selection and applied the genetic operators, ELF uses theFLC with the RB coded in the population taking the current state as input. The �tnessfunction will then evaluate the new state obtained, giving it a reward. There exists asharing process in the distibution of this reward, each individual gets part of the totalreward according to the contribution of the rule that it codes gave to the control actionapplied. This process results in a modi�cation of the strenght associated to the rulescoded in the population.Finally, several questions have to be noted. On one hand, Bonarini proposesapplication speci�c performance measures to de�ne the �tness function. On the otherhand, ELF gives di�erent RBs as output of the learning process. It is due to eachcbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



16 OSCAR CORD�ON, FRANCISCO HERRERAtime the performance of the system is higher than a "satisfactory" value given by thecontroller designer, it saves the current RB and forces modi�cations in the currentpopulation in order to obtain a better solution.3.3.3 Learning the Fuzzy Logic Controller Knowledge Base using GeneticAlgorithmsThis last group is the one to with more contributions have been made in the lastyears. There exists many approaches for genetic learning complete FLC KBs such as[CV93, HLV94, HLV95a, LT93, LP94, LM94, NL94, NHW92, SK94, VM95] and all ofthem present di�erent characteristics. Belonging to these great group of works, we �ndapproaches presenting variable cromosomal length [CV93, LP94], others making use ofmany expert knowledge in order to improve the learning process [HLV95a, LT93] andseveral working with chromosomes encoding single control rules instead of completeKBs [HLV95a, VM95]. Many of them de�ne the �tness function by means of a singleapplication speci�c measure, usually a measure of convergence, while others includemore objective to optimize for obtaining more robust KBs [HLV95a, LT93]. In thefollowing we are going to study �ve di�erent approaches belonging to this family.The KB learning method proposed by Lee and TakagiIn [LT93] Lee and Takagi introduce an GFS design method that allows to learnautomatically a complete FLC KB. The method is based on an RB formed by TSKcontrol rules. In this way, the derivation of the rule consequents will consist on learningthe weights wi used for combining linearly the input values in order to obtain theoutputs.For the linguistic terms in the rule antecedents, the authors consider triangular-shaped membership functions although they note that the method can work with anykind of parametrized membership functions, such as Gaussian, bell, trapezoidal orsigmoidal ones. They suppose a fuzzy partition of the input space. Each triangularmembership function associated to each one of the primary fuzzy sets (linguistic terms)is represented by three parameters. The �rst one is the center point of the triangle,that is, its modal point. Only the center of the triangle associated to the �rst primaryfuzzy set is given as an absolute position, while the parameters associated to the otherones represent the distance existing from the center point of the current triangle tothe previous one. The other two parameters represent the left and right point of thetriangle base respectively and they both present membership function value 0.The GA used emploies a binary coding. First, the membership functions are encodedby taking the binary values of the three associated parameters and joining them intoa binary substring. Eight bits are used to encode each parameter value. Then, thecomplete DB is encoded by joining the partial codings of the membership functionsassociated to each one of the input variables primary fuzzy sets one after other. Thelast part of the chromosome is built by coding the parameters wi associated to eachcombination of the input values and joining them into a new binary substring. Eight bitsare used again to encode the values of these parameters. In this way, each chromosomerepresents a complete KB. The number of rules forming the KB will depend on thenumber of primary fuzzy sets associated to each one of the input variables and it willcbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



A GENERAL STUDY ON GENETIC FUZZY SYSTEMS 17be equal to the product of them.The coding used allows to decide the optimal number of control rules forming the RBin the following way. Those linguistic terms in what the center point of their associatedtriangular membership functions are out of a concrete bound, obtained from the knownknowledge about the system, are not considered to belong to any rule in the RB. Thusall rules whose antecedent should be a combination of the valid input values coded inthe �rst part of the chromosome, will belong to the FLC RB. As an example, let usconsider a chromosome coding the KB of a system with two input variables havingassociated m and n valid linguistic labels respectively. The whole number of rules ofthe RB encoded in it will be m � n.The �tness function is based on optimizing two di�erent criteria. On one hand, anapplication speci�c measure is considered (concretely, in the example proposed it isused a measure of convergence and the FLC is applied from di�erent initial states). Onthe other hand, chromosomes coding RBs with a large number of rules are penalizedin order to obtain others with less rules.Finally, it is very important to note that the authors propose two di�erent waysof incorporating previous known knowledge about the system to the proposed GFSsdesign method in order to improve its behavior. They comment that this previousknowledge will make the GA gain signi�cant speedup if the solutions designed bymeans of it are approximatelly correct. On one hand, it is possible to incorporateknowledge via the initial settings for the FLC KB parameters. This knowledge is usedto generate the GA initial population. Thus, the individuals forming it are not allgenerated at random but several of them are obtained by equally partitioning theinput spaces into varying number of linguistic terms. This knowledge can also be usedto initially set appropriately the parameters wi of the rule consequents. On the otherhand, the previous knowledege can be incorporated via structural representation of theKBs. For example, in a problem of symmetric nature as the Inverted Pendulum, theFLC can be constrained in order to simetrically partition the input space about theorigin. This will reduce the size of the search space because the number of membershipfunctions is reduced by half.The KB learning method proposed by Ng and LiThe method proposed by Ng and Li [NL94] is very speci�c since it is designed forapplying in two-inputs-one-output systems all whose input and output spaces arepartitioned into exactly seven primary fuzzy sets (the term set of the three variablesis the same: fzero;�small;�medium;�largeg). On the other hand, it is not able tolearn the number of rules that will constitute the optimal RB. As we are going to seein the following, the whole decision table is represented in the part of chromosomecorresponding to the RB. Therefore, the way for derivating the RB is the same used bythe methods belonging to the second group commented in this work. The look-up tablewill allways present dimmension 7� 7 and all the rules contained in it will belong tothe �nal RB.The DB considered is designed by using symmetrical exponential membershipfunctions de�ned by the following expression:cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



18 OSCAR CORD�ON, FRANCISCO HERRERA��i(x) = exp �jx� �ij�i�i ! (3.8)considering that �+large = 1, if x > �+large and ��large = 1, if x < ��large.Hence, it is possible a parametric representation of the membership functions bymeans of the set of parameters (�; �; �), representing respectively the position, shapeand scaling parameters.The most important characteristic of this approach is that the FLC design spaceis coded in base-7 chromosomes. As in the great majority of the methods belongingto this group, each chromosome represents a complete KB. Each chromosome is builtby joining �ve substrings coding the di�erent parameters of the problem. The �rstone of them represents the FLC RB and, as we have commented yet, the process issimilar to this developed in the methods deriving only the FLC RB. The fourty ninerule consequents contained in the decision table cells are encoded one after other in asubstring presenting a base-7 value for each one of them.The second substring is constituted by the scaling parameters (�) associated to theseven linguistic labels of the two input variables. It presents fourteen base-7 values,two for each one of the following parameters: ��large, ��medium, ��small and �zero.The next substring of eight base-7 values represent the positions (�) of the fuzzy setsassociated to the terms "small" and "medium" (each one requiring two bits), whilstthe positions of those giving meaning to "large" and "zero" are �xed (��large = �3,�+large = 3 and �zero = 0). The fourth substring represents K1 and K2 as gains of thetwo inputs variables, error and change of error, with three base-7 bits associated to eachand, �nally, the last group of eigth integer characters encodes the shape coe�cients �of the fuzzy sets associated to the term set of both variables, requiring a base-7 valuefor each parameter.The �tness function employed by the GA is application speci�c. It is based directly oncomputing the value obtained by the FLC in a measure of convergence when controllingthe system by using the concrete KB encoded in the individual.The KB learning method proposed by Leitch and ProbertThe more important characteristic presented by the method proposed by these authors[LP94] is the speci�c coding outline that they design in order to represent FLC KBs intochromosomes in an e�cient way. The coding proposed will make the genetic variationto be increased, reducing in this way premature convergence and avoiding the need forcomplex crossover operators.Leitch and Probert begin studying the previous approaches for designing GFSs andcomment that the coding schemes employed by the di�erent GAs developed for thistask in the specialized literature represent the KB in a very �xed form. In order toavoid this shortcoming they develop a coding scheme more 
exible than the positiondependent ones commented. In their context depending coding the meaning of a pieceof chromosome is not determined by the absolute position that it presents into thegenotype, as usual, but it is determined by surrounding genes contained into it. In thisway, the chromosomal length is variable.They consider a DB with spherical fuzzy sets each one determined by its concretecbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



A GENERAL STUDY ON GENETIC FUZZY SYSTEMS 19center point presenting height 1, and all of them by a global radius value. All inputs andoutput are scaled to the interval [0; 1] and the values of the commented parameters areencoded by using binary substrings of variable length. The parameter value is decodedin the following way. Let it be a binary substring of length n whose integer value ism � n. The real number encoded in it is m2n�1 .The method is able to learn the optimal number of rules forming the RB, the inputvariables involved in each rule and the shape of the membership functions associated tothe input and output variables. As it can be viewed, it does not use a previously de�nedfuzzy partition of the input and output spaces but learn directly the membershipfunctions associated to each variable involved in each concrete rule. Therefore, the KBobtained from the learning process clearly present an approximative behavior.Each chromosome encodes a complete KB by using the context depending codingcommented. The alphabet of the chromosome consists of the integers 0, 1 and the letterE, used to indicate the end of a number (the value E is associated to a surroundinggen). The encoding of a rule is obtained by joining several substrings separated byE symbols. The �rst one presents a bit for each system input variable, taking value1 if the concrete variable is involved in the rule and 0 otherwise. The surroundinggenes contained in this substring are ignored. Next substring encodes the center of themembership functions associated to the input variables involved in the rule, each oneseparated from each other by a surrounding gen. An empty value is associated to thevariables not taking part in the rule. The third substring presents only a binary numbercoding the membership functions radius. The value encoded represents a percentagefrom a maximum radius value given by the controller designer. The last substringencodes the central point of the membership function associated to the output variable.A chromosome is obtained by joining the partial codings of the rules contained inthe KB. The evolutionary process can make the end of a chromosome not coincide withthe end of a rule (it rarely does). In this case, the incomplete rule is ignored and thegenes coding it (called junk genes) are used to limit the e�ect of the disruption causedby the genetic operators.Regarding to these ones, single point crossover is employed with a little modi�cationin its usual form: the crossover point is randomly selected on each of the chromosomesinvolved. On other hand, classical mutation operator is used. Due to the coding schemeemployed by the GA, both operators can not produce illegal chromosomes.We �nish noting several remarks about the method. The initial population formedby chromosomes of random initial length is generated at random. The �tness functionemploies a measure of convergence since the authors enunciate that this is the moree�cient way to design GFSs. Several noise is introduced in the simulations in order toobtain more robust KBs from the learning process.The KB learning method proposed by Cooper and VidalThe underlying idea in the approach proposed by Cooper and Vidal [CV93] is that theexcesive length of the chromosomes encoding the KB can make the GA not able to�nd accurated solutions due to the high complexity of the search space. In this way,they propose a novel encoding scheme which maintains only those rules necessary tocontrol the target system, alowing to obtain an RB with optimal number of rules.In this case, the membership functions contained in the DB are trianglescbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



20 OSCAR CORD�ON, FRANCISCO HERRERAcharacterized by the location of its center and the half-length of its base. A single rule,therefore, consists of the concatenation of the one-byte unsigned characters (assumingvalues from 0 to 255) specifying the centers and half-lengths of the membershipfunctions. The rule descriptions for a single KB are then concatenated into a single bitstring where the number of rules is not restricted. Hence, the GA employs a integercoding and the chromosomes present variable-length.This GA does not use the classical genetic mutation operator. In this approach, thisoperator include the inversion of the copied bit and the addition or deletion of an entirerule. These latter two mutations permit the size of a FLC KB to evolve. The cycle ofevaluation and reproduction continues for a predetermined number of generations oruntil an acceptable performance level is achieved.To be meaningful, the genetic paradigm requires that the rules in the two stringsshould be aligned so that similar rules are combined with each other. Simply bycombining the strings in the order they appear it does not preserve much informationabout either KB encoded and produces nearly random results, rather as a child KB thatperforms in a manner similar to its parents. For example, this can make that the childchromosome will present repeated rules. Therefore, before reproduction, both stringsmust be aligned so that the centers of the input variables match as closely as possible.The most closely matching rules are combined �rst, followed by the next most closelymatching rules from those remaining and so on. Any rules forming a longer string thatis not matched are added at the end.The �tness function is designed by using a measure of convergence. The FLC is usedto control the system from twenty test cases and its accuracy is measured during sixtyseconds each trial.The KB learning method proposed by Herrera et al.The KB learning process proposed in [HLV95a] presents several important di�erenceswith respect to the other methods belonging to the same group as we are going tosee in the following. First, it can be considered the existence of previous control rulesderivated directly from the human process operator and include them in the learningprocess, being able to combine them with other rules automatically learned and todetect incorrect rules into this previous set. Moreover, the approach is based on severalsteps and not in a single process such in the other methods. The chromosomes of themain GA represent single rules and not complete KBs. On other hand, the �tnessfunction is based not only in an FLC performance measure but it include severalcriteria in order to obtain optimal KBs. Finally, the approach will obtain a KB with anapproximative nature even in the case in which there exists several descriptive fuzzycontrol rules provided by the expert.The approach is based on the use of GAs under the following hypotheses:� There is some linguistic information from the experience of the humancontroller but linguistic rules alone are usually not enough for designingsuccessfully a control system or could not be available.� There is some numerical information from sampled input-output (state-control) pairs that are recorded experimentally.� The combination of these two kinds of information may be su�cient forcbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



A GENERAL STUDY ON GENETIC FUZZY SYSTEMS 21a successful design of a FLC KB.� The possibility of not having any linguistic information and having acomplete numerical information is considered.Taking into account the aforementioned hypothesis a learning process is designedaccording to the following goals:� to develop a KB generating process from numerical data pairs; and� to develop a general approach combining both kinds of information,linguistic information and fuzzy control rules obtained by the generatingprocess, into a common framework using both simultaneously andcooperatively to solve the control design problem.In order to reach these goals, it is proposed a methodology based on the design ofthe three following components:1. a KB generating process of desirable fuzzy control rules able to includethe complete knowledge of the set of examples,2. a combining information and simplifying rules process, which �nds the�nal KB able to approximate the input-output behaviour of a real system,3. a tuning process of the �nal KB DB,all of them developed by means of GAs.As it is possible to have some linguistic IF � THEN rules given by an expert,it is used a linguistic fuzzy rules structure to represent them. That is, a previouslyde�ned DB representing fuzzy partitions with real-world meaning is considered. Onother hand, there are sampled input-output pairs and a free fuzzy rules structure togenerate the fuzzy rules covering these examples is used (the meaning presented byalinguistic term is di�erent when it belongs to di�erent rules, that is, the example setare used to generate rules with an approximative behavior). The membership functionsof the linguistic labels involved in the control rules are trapezoidal-shaped. Then bothkind of rules are combined, by using a simpli�cation method based on a GA, and�nally a tuning method is applied over the simpli�ed set of rules that will make all ofthem �nally present an approximate behavior.The generating fuzzy rules process consists of a generating method of desirable fuzzyrules from examples using GAs together with a covering method of the set of examples.� The generating method of fuzzy rules is developed by means of a realcoded GA (RCGA) where a chromosome represents a fuzzy rule and itis evaluated by means of a frequency method. The RCGA �nds the bestrule in every running over the set of examples according to the followingfeatures which will be included in the �tness function of the GA.� The covering method is developed as an iterative process. It permits toobtain a set of fuzzy rules covering the set of examples. In each iteration, itruns the generating method choosing the best chromosome (rule), assignsto every example the relative covering value and removes the exampleswith a covering value greater than a value � provided by the controllerdesigner.cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



22 OSCAR CORD�ON, FRANCISCO HERRERABecause we can obtain two similar rules in the generating process or one rule similarto another given by an expert, it is necessary to combine and simplify the completeKB obtained from the previous process for deriving the �nal KB allowing to controlthe system. Finally, the tuning method presented in [HLV95b] and commented in aprevious subsection is applied over the simpli�ed KB for obtaining a more accuratedone.3.4 FINAL REMARKSIn this chapter we have reviewed some approaches of GFSs in which GAs have beenused for designing FLCs KBs. Three di�erent modes to cope this problem have beenattached and di�erent methods developing each one of them have been analyzed.There are many others researchs that have contributed to these three areas as wehave cited above. Moreover, there are other researchs that have contributed to variousaspects of GFSs, not included in the three GFS designing modes aforementioned, whichwe have not a change to deal with but are worthy to mention. They are commented inthe following.In [SKG93] it is proposed an automatic design method combining self-organizingfeature maps and GAs. In a �rst step, the fuzzy control rules and linguistic variablesare extracted from a referential data set by using a self-organizing process. Then aGA is used to �nd optimal membership functions (that is, to tune the DB).George et al. [GSR94] propose a method based on GAs and Neural Networks (NN)for de�ning FLC DBs by learning the membership functions associated to the primaryfuzzy partitions provided by the expert. The combination of the two search processallows to combine the best characteristics of each one of them in order to solve theproblem. Other papers combining both GA and NN are [IFSA95, SFH95].Ho�man and P�ster present two di�erent genetic based methods for designinghierarchical FLCs by learning the RB [HP94, HP95]. While the �rst of them usesa Simple GA with �xed-length binary coding and usual genetic operators [HP94], thesecond one employs a Messy GA with variable-length binary coding and the crossoveroperator replaced by two simple ones: splice and cut.Several approaches based on fuzzy classi�er systems (FCSs) have been developed[BK94, CF94, PB93, VR91b, VR91a]. The FCS is a genetic based machine learningsystem which integrates a fuzzy RB, the bucket-brigade learning algorithm (thelearning algorithm commonlly used by the classi�er systems) and a GA [GS92, VR91b,VR91a]. Each classi�er represents a fuzzy rule and the FCS employs a GA to evolveadequate rules running over the population of classi�ers searching new improved ones.Finally, to point out that although the application of GA for designing fuzzy systemsis recent, it has an increasing concern over the last years that will allow to obtainfruitful researches in the building of fuzzy logic based intelligent systems.cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



References[BK94] B�ack T. and Kursawe F. (July 1994) Evolutionary algorithms for fuzzylogic: A brief overview. In Proc. Fifth International Conference on InformationProcessing and Management of Uncertainty in Knowledge Based Systems(IPMU'94), pages 659{664. Paris.[BMU95] Braunstingl R., Mujika J., and Uribe J. P. (March 1995) A wall followingrobot with a fuzzy logic controller optimized by a genetic algorithm. In Proc.Fourth IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'95),pages 77{82. Yokohama.[BN95] Bolata F. and Now�e A. (March 1995) From fuzzy linguistic speci�cations tofuzzy controllers using evolution strategies. In Proc. Fourth IEEE InternationalConference on Fuzzy Systems (FUZZ-IEEE'95), pages 1089{1094. Yokohama.[Bon93] Bonarini A. (September 1993) Elf: Learning incomplete fuzzy rule setsfor an autonomous robot. In Proc. First European Congress on Fuzzy andIntelligent Technologies (EUFIT'93), pages 69{75. Aachen.[Cas95] Castro J. L. (March 1995) Fuzzy logic controllers are universalapproximators. To appear in IEEE Transactions on Systems, Man andCybernetics.[CCC+94] C�ardenas E., Castillo J. C., Cord�on O., Herrera F., and Peregr��nA. (January 1994) In
uence of fuzzy implication functions and defuzzi�cationmethods in fuzzy control. BUSEFAL 57: 69{79.[CCC+95] C�ardenas E., Castillo J. C., Cord�on O., Herrera F., and Peregr��n A.(January 1995) Applicability of t-norms in fuzzy control. BUSEFAL 61: 28{37.[CF94] Carse B. and Fogarty T. C. (1994) A fuzzy classi�er system using thepittsburgh approach. In Davidor Y., Schwefel H. P., and M�aanner R. (eds)Parallel Problem Solving from Nature - PPSN III, pages 260{269. Springer-Verlag, Berlin.[CHP95a] Cord�on O., Herrera F., and Peregr��n A. (March 1995) Applicability ofthe fuzzy operators in the design of fuzzy logic controllers. Technical ReportDECSAI-95111, University of Granada, Department of Computer Science andArti�cial Intelligence, University of Granada, Granada, Spain.[CHP95b] Cord�on O., Herrera F., and Peregr��n A. (July 1995) T-norms versusimplication functions as implication operators in fuzzy control. To appearin Proc. Sixth International Fuzzy Systems Association World Congress(IFSA'95).[CV93] Cooper M. G. and Vidal J. J. (1993) Genetic design of fuzzy logiccontrollers. In Proc. Second International Conference on Fuzzy Theory andTechnology (FTT'93). Durham.[DHR93] Driankov D., Hellendoorn H., and Reinfrank M. (1993) An Introductionto Fuzzy Control. Springer-Verlag.[FTH94] Fathi-Torbaghan M. and Hildebrand L. (July 1994) Evolutionarystrategies for the optimization of fuzzy rules. In Proc. Fifth InternationalConference on Information Processing and Management of Uncertainty inKnowledge Based Systems (IPMU'94), pages 671{674. Paris.Sample Contributed BookEditor Jenny Smith c
1993 John Wiley & Sons Ltd.cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



24 REFERENCES[GS92] Geyer-Schulz A. (1992) Fuzzy classi�er systems. In Lowen R. (ed) FuzzyLogic: State of the Art. Kluwer Academic Publishers, Dordretch.[GSR94] George S. M., Saxena A., and Rambabu P. (September 1994) Geneticalgorithm in the aid of fuzzy rule deduction. In Proc. Second EuropeanConference on Soft Computing and Intelligent Technologies (EUFIT'94), pages1130{1133. Aachen.[HLV94] Herrera F., Lozano M., and Verdegay J. L. (July 1994) Generating fuzzyrules from examples using genetic algorithms. In Proc. Fifth InternationalConference on Information Processing and Management of Uncertainty inKnowledge Based Systems (IPMU'94), pages 675{679. Paris.[HLV95a] Herrera F., Lozano M., and Verdegay J. L. (February 1995) A learningprocess for fuzzy control rules using genetic algorithms. Technical ReportDECSAI-95108, University of Granada, Department of Computer Science andArti�cial Intelligence, University of Granada, Granada, Spain.[HLV95b] Herrera F., Loz-ano M., and Verdegay J. L. (1995) Tuning fuzzy logic controllers by geneticalgorithms. International Journal of Approximate Reasoning 12: 293{315.[HMB93] Harris C. J., Moore C. G., and Brown M. (1993) Intelligent Control.Aspects of Fuzzy Logic and Neural Nets. World Scienti�c Publishing.[HP94] Ho�mann F. and P�ster G. (September 1994) Automatic designof hierarchical fuzzy controllers using genetic algorithms. In Proc.Second European Conference on Soft Computing and Intelligent Technologies(EUFIT'94), pages 1516{1522. Aachen.[HP95] Ho�mann F. and P�ster G. (July 1995) A new learning method for thedesign of hierarchical fuzzy controllers using messy genetic algorithms. Toappear in Proc. Sixth International Fuzzy Systems Association World Congress(IFSA'95).[HT94] Hwang W. R. and Thompson W. E. (June 1994) Design of fuzzy logiccontrollers using genetic algorithms. In Proc. Third IEEE InternationalConference on Fuzzy Systems (FUZZ-IEEE'94), pages 1383{1388. Orlando.[HTS93] Hu H.-T., Tai H.-M., and Shenoi S. (1993) Fuzzy controller design usingcell mappings and genetic algorithms. In Proc. Second International Conferenceon Fuzzy Theory and Technology (FTT'93). Durham.[IFSA95] Ishigami H., Fukuda T., Shibata T., and Arai F. (May 1995)Structure optimization of fuzzy neural networks by genetic algorithm.Fuzzy Sets and Systems 71(3): 257{264.[Kar91a] Karr C. (March 1991) Applying genetics. AI Expert pages 38{43.[Kar91b] Karr C. (February 1991) Genetic algorithms for fuzzy controllers.AI Expert pages 26{33.[KB93] Kropp K. and Baitinger U. G. (September 1993) Optimization of fuzzylogic controller inference rules using a genetic algorithm. In Proc. FirstEuropean Congress on Fuzzy and Intelligent Technologies (EUFIT'93), pages1090{1096. Aachen.[KKS85] Kiszka J. B., Kochanska M. E., and Sliwomska D. S. (January 1985)The in
uence of some fuzzy implication operators on the accuracy of a fuzzymodel - parts i and ii. Fuzzy Sets and Systems 15: 111{128, 223{240.[Lee90] Lee C. C. (March 1990) Fuzzy logic in control systems: Fuzzy logic con-troller - parts i and ii. IEEE Transactions on Systems, Man and Cybernetics20(2): 404{435.[LM94] Liska J. and Melsheimer S. S. (June 1994) Complete design of fuzzylogic systems using genetic algorithms. In Proc. Third IEEE InternationalConference on Fuzzy Systems (FUZZ-IEEE'94), pages 1377{1382. Orlando.[LP94] Leitch D. and Probert P. (1994) Context depending coding in geneticalgorithms for the design of fuzzy systems. In Proc. IEEE/Nagoya UniversityWWW on Fuzzy Logic and Neural Networks/Genetic Algorithms. Nagoya.[LT93] Lee M. A. and Takagi H. (July 1993) Embedding apriori knowledge intocbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)



REFERENCES 25an integrated fuzzy system design method based on genetic algorithms. In Proc.Fifth International Fuzzy Systems Association World Congress (IFSA'93),pages 1293{1296. Seoul.[LW91] Liaw C. M. and Wang J. B. (July 1991) Design and implementationof a fuzzy controller for a high performance induction motor drive.IEEE Transactions on Systems, Man and Cybernetics 21(4): 921{929.[MA75] Mamdani E. H. and AssilianS. (1975) An experiment in linguistic systhesis with a fuzzy logic controller.International Journal of Man-Machine Studies 7: 1{13.[NHW92] Nomura H., Hayashi I., and Wakami N. (1992) A learning methodof simpli�ed fuzzy reasoning by genetic algorithm. In Proc. InternationalFuzzy Systems and Intelligent Control Conference (FSIC'92), pages 236{245.Louisville.[NL94] Ng K. C. and Lee Y. (June 1994) Design of sophisticated fuzzy logiccontrollers using genetic algorithms. In Proc. Third IEEE InternationalConference on Fuzzy Systems (FUZZ-IEEE'94), pages 1708{1712. Orlando.[PB93] Parodi A. and Bonelli P. (July 1993) A new approach to fuzzy classi�ersystem. In Proc. Fifth International Conference on Genetic Algorithms(ICGA'93), pages 223{230.[SFH95] Shijojima K., Fukuda T., and Hasegawa Y. (May 1995) Self-tuning fuzzymodeling with adaptive memebership function, rules, and hierachical structurebased on genetic algorithm. Fuzzy Sets and Systems 71(3): 295{309.[SK94] Satyadas A. and Krishnakumar K. (June 1994) Ga-optimized fuzzycontroller for spacecraft attitude control. In Proc. Third IEEE InternationalConference on Fuzzy Systems (FUZZ-IEEE'94), pages 1979{1984. Orlando.[SKG93] Surmann H., Kanstein A., and Goser K. (September 1993) Self-organizing and genetic algorithms for an automatic design of fuzzy control anddecision systems. In Proc. First European Congress on Fuzzy and IntelligentTechnologies (EUFIT'93), pages 1097{1104. Aachen.[Thr91] Thrift P. (1991) Fuzzy logic synthesis with genetic algorithms. In Proc.Fourth International Conference on Genetic Algorithms (ICGA'91), pages 509{513.[TS85] Takagi T. and Sugeno M. (January 1985)Fuzzy identi�cation of systems and its applications to modeling and control.IEEE Transactions on Systems, Man and Cybernetics 15(1): 116{132.[VM95] Velasco J. R. and Magdalena L. (July 1995) Genetic learning applied tofuzzy rules and fuzzy knowledge bases. To appear in Proc. Sixth InternationalFuzzy Systems Association World Congress (IFSA'95).[VR91a] Valenzuela-Rend�on M. (1991) The fuzzy classi�er system: A classi�ersystem for continuously varing variables. In Proc. Fourth InternationalConference on Genetic Algorithms (ICGA'91), pages 346{353.[VR91b] Valenzuela-Rend�on M. (1991) The fuzzy classi�er system: Motivationsand �rst results. In M�anner R. and Manderick B. (eds) Parallel Problem Solvingfrom Nature - PPSN II, pages 330{334. Springer-Verlag, Berlin.[Zad65] Zadeh L. A. (1965) Fuzzy sets. Information and Control 8: 358{353.[Zad73] ZadehL. A. (1973) Outline of a new approach to the analysis of complex systemsand decision processes. IEEE Transactions on Systems, Man and Cybernetics3: 28{44.cbook 2/9/1997 17:36|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)


