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Abstract. The aim of this paper is to present an evolutionary process based
on genetic algorithms and evolution strategies for learning the Fuzzy Logic Con-
troller Knowledge Base from examples. The performance of the method proposed
is shown by measuring the accuracy of the Fuzzy Logic Controllers designed in
the modeling of two three-dimensional control surfaces derived from two math-
ematical functions presenting different characteristics. The results obtained by
a method based on the Wang and Mendel’s Knowledge Base generation process
are also shown, allowing to compare both processes.
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1 Introduction

Fuzzy logic controllers (FLCs), initiated by Mamdani and Assilian in the work
[17], are now considered as one of the most important applications of fuzzy
set theory. FLCs are knowledge-based controllers that make use of the known
knowledge of the process, expressed in the form of fuzzy linguistic control rules
collected in a knowledge base (KB), to control it (for more information about
FLCs see [8, 16]). The advantage of this approach with respect to classical Con-
trol Theory is that it has no necessity of expressing the relationships existing in
the system by means of a mathematical model, which constitutes a very diffi-
cult task in many real situations presenting nonlinear characteristics or complex
dynamics.

Several tasks have to be performed in order to design an intelligent control
system of this kind for a concrete application. One of the most important and
difficult ones is the extraction of the expert known knowledge of the controlled
system. The difficulty presented by the human process operators to express their
knowledge in form of control rules has made the researches to develop automatic
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techniques for performing this task. In the last few years, many different ap-
proaches have been presented taking the Genetic Algorithms as a base, obtaining
the so called Genetic Fuzzy Systems (GFSs). In this paper we present a hybrid
genetic algorithm-evolution strategy process for designing GFSs by learning the
KB from examples. The process performance is shown by using it to develop
a fuzzy modeling of two three-dimensional control surfaces derived from two
mathematical functions.

The method proposed consists of the following three steps, maintaining the
generic structure used in [13]:

1. A genetic generation process for generating fuzzy control rules, with a gen-
erating method based on Evolutionary Algorithms, and a covering method
of the system behaviour example set. This process allows us to obtain a set
of rules covering the training set in an adequate form.

2. A genetic simplification process for simplifying rules; based on a binary coded
Genetic Algorithm and a measure of the FLC performance in the control of
the system being identified. It will save the overlearning that the previous
component may cause.

3. A genetic tuning process, based on a Real Coded Genetic Algorithm and
a measure of the FL.C performance. It will give the final KB as output by
tuning the membership functions for each fuzzy control rule.

In order to do this, we arrange the paper as follows. Section 2 presents a
short introduction to Evolutionary Algorithms and GFSs. Some preliminaries
about the FLC KB type considered are discussed in Section 3. The three stages
of the proposed learning process are introduced respectively in Sections 4, 5 and
6; while Section 7 shows its application to the fuzzy modeling of the commented
functions. Finally, some conclusions are pointed out in Section 8.

2 Evolutionary Algorithms and Genetic Fuzzy Systems

FEvolutionary Computation (EC) uses computational models of evolutionary pro-
cesses as key elements in the design and implementation of computer-based prob-
lem solving systems. There are a variety of evolutionary computational models
that have been proposed and studied which are referred as Evolutionary Algo-
rithms (EAs). There have been three well-defined EAs which have served as the
basis for much of the activity in the field: Genetic Algorithms (GAs), Fvolution
Strategies (ESs), and Evolutionary Programming (EP).

An EA maintains a population of trial solutions, imposes random changes to
these solutions, and incorporates selection to determine which ones are going to
be maintained in future generations and which will be removed from the pool of
the trials. But there are also important differences between them. GAs emphasize
models of genetic operators as observed in nature, such as crossover (recombina-
tion) and point mutation, and apply these to abstracted chromosomes. ESs and
EP emphasize mutational transformations that maintain the behavioral linkage
between each parent and its offspring.



Each individual in the population receives a measure of its fitness in the en-
vironment. Selection focuses attention on high fitness individuals, thus making
use of the available fitness information. Recombination and mutation perturb
those individuals, providing general heuristics for exploration. Although sim-
plistic from a biologist’s viewpoint, these algorithms are sufficiently complex to
provide robust and powerful adaptive search mechanisms.

Natural evolution is a most robust yet efficient problem-solving technique.
Evolutionary Computation can likewise made robust. The same procedures may
be applied to diverse problems with relatively little reprogramming [9].

In the following we briefly review the GAs and the ESs, both of which shall
be used in this contribution.

2.1 Genetic Algorithms

G As are theoretically and empirically proven to provide robust search in complex
spaces, thereby offering a valid approach to problems requiring efficient and
effective search. The basic principles of the GAs were first laid down rigorously
by Holland [15], and are well described in many texts such as [10, 18].

Any GA starts with a population of randomly generated solutions, chro-
mosomes, and advances toward better solutions by applying genetic operators,
modeled on the genetic processes occurring in nature. In these algorithms we
maintain a population of solutions for a given problem; this population under-
goes evolution in the form of natural selection. In each generation, relatively
good solutions reproduce to give offspring that replace the relatively bad solu-
tions which die. An evaluation or fitness function plays the role of the environ-
ment to distinguish between good and bad solutions. The process of going from
the current population to the next population constitutes one generation in the
execution of a GA.

Although there are many possible variants of the basic GA, the fundamental
underlying mechanism operates on a population of chromosomes or individuals
(representing possible solutions to the problem) and consists of three operations:

1. evaluation of individual fitness,
2. formation of a gene pool (intermediate population), and
3. recombination and mutation.

It is generally accepted that a GA must take into account the five following
components for solving a problem:

1. A genetic representation of the problem solutions,

2. a way to create an nitial population of solutions,

3. an evaluation function which gives the fitness of each individual

4. genetic operators that alter the genetic composition of children during repro-
duction, and

5. wvalues for the parameters that the GA uses (population size, probabilities of
applying genetic operators, etc.).



2.2 Evolution Strategies

ESs were developed with a strong focus on building systems capable of solving
difficult read-valued parameter optimization problems. The natural representa-
tion was a vector or real-valued genes which were manipulated primarily by
mutation operators designed to perturb the real-valued parameters in useful
ways.

ESs were initially developed by Rechenberg and Schwefel in 1964 as experi-
mental optimization techniques. The first ES algorithm, the so-called (1+1)-ES,
was based on working with only two individuals per generation, one parent and
one descendent. Other more complex variants, based on considering a high num-
ber of parents (g > 1) and descendents (A > 1) have appeared in later years,
constituting the so called (4 + A) — ES. In the last few years, several new gen-
eralized ESs have been succesfully developed [1, 19].

Without a lack of generality, in this paper we work with the (1+1)-ES, the
most simple ES model. In the following we briefly describe this scheme [1, 19]:

(1+1)-E5 is based on encoding the possible optimization problem solution
into a real coded string. This parent string is evolved by applying a mutation
operator over each one of its components. The mutation strength is determined
by a value o, a standard deviation of a normally distributed random variable.
This parameter 1s associated to the parent and it is evolved in each process step
as well. If the evolution has been performed successfully, the offspring obtained
by mutation is better adapted than its parent, then the descendent substitutes
it in the next generation. The individual adaptation is measured by using a
fitness function. The process is iterated until a determined finishing condition is
satisfied.

As may be observed, the main component of the model is the mutation
operator, mut. It 1s composed of two components, mu,, which updates the
value of the parameter ¢, and mu,, which evolves the real coded string. The
first one is based on Rechenberg’s 1/5-success rule, which evolves the standard
deviation according to the current value of the relative frequency p of succesful
mutations, in the following way:

e iftp> g

i

o =mu,(0) =40/ ifp<t
U,ifp:%

The second one mutates each component of the real coded string by adding
normally distributed variations with standard deviation ¢ to it:

i

v =mug(x) = (21 +21,...,850 + 2p)

where z; ~ N;(0, 012).
The final algorithm process is the following:

Procedure Evolution Strategy (1+1)
begin (1)



t = 0;
inttialize P(t) — (z,0);
evaluate f(z);
While (Not termination-condition) do
begin (2)
t=1t+1;
(l‘l, O'I) — mut(x, 0);
evaluate f(a:l);
If Better (f(z'), f(x))
then P(t+ 1) — (l‘l, O'I)
else P(t+ 1) — P(t).
end (2)
end (1)

2.3 Genetic Fuzzy Systems

The KB is the FLC component comprising the expert knowledge known about
the controlled system. So it is the only component of the FLC depending on the
concrete application and it makes the accuracy of the FLC depends directly on
its composition. It is comprised of two components, a Data Base (DB), contain-
ing the definitions of the fuzzy control rules linguistic labels, and a Rule Base
(RB), constituted by the collection of fuzzy control rules representing the expert
knowledge.

The KB derivation is the only task that have to be performed in order to
design an FLC directly depending on the controlled system and it presents a
significative importance in the design process [5, 8, 16]. It is known that the
more used method for performing this task is based directly on extracting the
expert experience from the human process operators. The problem arises when
these are not able to express their knowledge in terms of fuzzy control rules.
In order to avoid this drawback, researches have been investigating automatic
learning methods for designing FLCs by deriving automatically an appropiate
KB for the controlled system without necessity of its human operator.

GAs have been demonstrated to be a powerful tool for automating the defini-
tion of the KB, since adaptative control, learning, and self-organization may be
considered in a lot of cases as optimization or search processes. Their advantages
have extended the use of GAs in the development of a wide range of approaches
for designing FLCs over the last few years. In particular, the application to the
design, learning and tuning of KBs have produced quite promising results. These
approaches can receive the general name of Genetic Fuzzy Systems (GFSs) [4].
Figure 1 shows this idea.

Using the more general term “evolutionary” instead of “genetic” (when an
FA is used instead of a GA) they may be called Evolutionary Fuzzy Systems.

GAs are applied to modify/learn the DB and/or the RB. It is possible to
distinguish three different groups of genetic FLC design processes according to
the KB component included in the learning process. These ones are the following:
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Fig. 1. Genetic fuzzy systems

1. Genetic definition of the Fuzzy Logic Controller Data Base
2. Genetic derwation of the Fuzzy Logic Controller Rule Base
3. Genetic learning of the Fuzzy Logic Controller Knowledge Base

For a wider description see [4] and for an extensive bibliography see [6] (sec-
tion 3.13).

In this paper we present a GFS design method belonging to the third above-
mentioned family. In this way, making use of our process it will be possible to au-
tomatically generate a complete FLC KB when a training set formed by numer-
ical input-output (state-control) problem variable pairs experimentally recorded
is available.

3 Preliminaries

In this work, we shall focus on Mamdani’s model for Multiple Input-Single Out-
put (MISO) systems, where the knowledge base of a fuzzy controller consists
of a collection of fuzzy rules (with the logical connective ALSO between them)
describing the control actions in the form:

R; . IF #y 18 A;; and ... and @, is A;, THEN y 1s B,

where z1,...,x, and y are the process state variables and the control variable
respectively; and A;q, ..., A;n, B are fuzzy sets in the universes of discourse
Uy, .., Up, V.

These fuzzy sets are characterized by their membership functions



A”(B) : U](V) — [0, 1], _] = 1, ey .

In our study we consider every fuzzy set associated with a normalized trian-
gular membership function. A computational way to characterize it is by using a
parametric representation achieved by means of the 3-tuple (a;;, bij, ci;), (a5, by,
&), Jj=1,..,n.

We assume that we have a description of the control strategy in the form
of an input-output data set without noise which we shall use as a base in our
learning process for obtaining the KB.

The classical Mamdani model is a linguistic model based on collections of
IF—THEN rules with fuzzy quantities associated with linguistic labels, and the
fuzzy model is essentially a qualitative expression of the system. A KB in which
the fuzzy sets giving meaning (semantic) to the linguistic labels are uniformly
defined for all rules included in the RB constitutes a descriptive approach since
the linguistic labels represent a real world semantic.

It can be considered a KB for which fuzzy rules either present different mean-
ing for the same linguistic terms or the fuzzy quantities have not any associated
linguistic label. In this case, the KB and the FLC using it, present a different
philosophy, the approach is approzimative [4]. In this second approach we say
that the rules present free semantic.

We will center on this second approach. For the generation process we con-
sider rules with a free semantic, without any linguistic syntaxis associated to the
rules, but based on an initial domain fuzzy partition. Using this approach we
may say that the rules present constrained free semantic.

Each universe, U, contains a number of overlaping regions labeled with lin-
guistic terms, forming a finite set of fuzzy sets on U. For instance, if X is a
variable on U for temperature, then one may define A, as ”low temperature”,
Ai(1 < i< r)as”medium temperature” and A, as ”high temperature”, etc.

These referential fuzzy sets are characterized by their membership functions
Ai(u): U —[0,1],i=1, ..., 7. To ensure the performance of the fuzzy model and
to provide to uniform basis for further study, it is essential that all the referential
sets should be normal convex ones, and should satisfy the following completeness
condition:

YueU 3j, 1 <j <wr, such that 4;(u) > &

and 6 is a fixed threshold, this being the completeness degree of the universes.
Figure 2 shows an example of a fuzzy partition with é = 0.5.

The number of linguistic terms forming the fuzzy partition associated to each
linguistic variable can be specified by the GFS designer in order to obtain the
desired granularity level.

Making use of this previous fuzzy partition, an interval of performance, de-
fined as follows, is associated to each one of the three points defining the mem-
bership functions A:(+), (as, b, ¢1)
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Fig. 2. Graphical representation of a possible fuzzy partition
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for locally adjusting their parameters during the generating process. Figure 3
shows the intervals of performance associated to each one of the parameters.

Fig. 3. Membership function and intervals of performance for the generating process

Therefore the fuzzy control rules generated will have their semantic within the
performance interval established by the fuzzy partition membership functions.



4 The Genetic Generation Process

As it has been commented, the first stage consists of two processes, a generating
method of desirable fuzzy rules from examples and a covering method of the set
of examples.

1. The fuzzy rule generating method is developed by means of a GA encoding
a single fuzzy rule in each chromosome. The GA finds the best rule in every
run over the set of examples according to the features included in the GA
fitness function. An ES is used for locally tuning the best fuzzy control rules
obtained in the genetic search iterations.

2. The covering method is developed as an iterative process. It allows a set of
fuzzy rules to be obtained covering the set of examples. In each iteration, 1t
runs the generating method choosing the best chromosome (rule), considers
the relative covering value that this rule provokes over the example set and
removes the examples with a covering value greater than a value € provided
by the controller designer.

Next subsections present both methods in-depth.

4.1 The Fuzzy Rule Generating Process

The generating method for fuzzy rules is developed by means of a special GA,
where a chromosome encodes a fuzzy rule and an ES that locally tunes the fuzzy
rules. We describe the EA components below.

4.1.1 Representation

A chromosome C' encoding a candidate rule is composed of two different
parts, 7 and C5, each one corresponding to each one of the KB components.
The first part of the chromosome encodes the linguistic rule (belonging to the
RB), and the second one the meaning associated to each linguistic term involved
in the rule (belonging to the DB).

In order to represent the first part there is a need to number the linguistic
labels belonging to each one of the linguistic variable term sets. A variable z;
taking values in a term set T'(z;) = {Li(#),..., Ln,(2;)} has associated the
ordered set T"(2;) = {1,...,n;}.

On the other hand, the second part adopts the same representation employed
in the unconstrained free semantic generating process presented in [13]. Each one
of the triangular membership functions composing the rule, L;(z;), is encoded
by means of its associated 3-tuple (ar,(v;),bL,(x;) CLi(x;))-

Hence, the following generic rule

IF 21 is Ly (1) ... and 2, is L;, () THEN yis L;, ., (y)

is encoded into a chromosome C' with the following form:



C1 = (i1, -y i, bng1)
CZ = (aLzl(l'l)a bLn(l'l)’ an(l'l)’ R aL,n(xn)a bL’n(x")’ cLl"(xn)’
aL,n_‘_1 (y)» bLG_H(y)’ cLln+1(y))

C'=C1Cy

Now, the fundamental underlying mechanisms of a GA | formation of an initial
gene pool, fitness function, and genetic operators are developed.

4.1.2 Initial Gene Pool

A third of the initial gene pool is created making use of the examples con-
tained in the training set, £}, and other third is initiated totally at random.
The initialization of the individuals belonging to remainder third takes common
characteristics with the other two. The first part of them is initiated from the
examples, and the second one at random.

With M being the GA population size and ¢ = min{|E,|, %}, let ¢ examples
be generated at random from F£j,. Then, the initial population generation process
is performed in three steps as follows:

1. Making use of the existing linguistic variable primary fuzzy partitions, gener-
ate ¢ individuals by taking the rule best covering each one of the ¢ randomly
obtained examples. Initiate C; and C5 by coding respectively the rule lin-
guistic terms and their meaning in the way commented on above.

2. Generate another ¢ individuals initiating C'; in the same way followed in the
previous step, and computing the values of C5 at random, each gene varying
in its respective interval.

3. Generate the remaining M — 2 -1 individuals by computing at random the
values of the first part, C'l, and making use of these for randomly generating
the C5 part, each gene varying in its respective interval.

4.1.3 Evaluation of Individual Fitness

The fitness function measuring the adaptation of each rule of the population
is a multiobjective function based on several criteria. We present some requeri-
ments and the commented criteria below.

Requeriments: For generating a set of rules R describing the behaviour of a
system, 1t 1s necessary to establish a condition for 1t. This is the requirement of
covering all possible situation-action pairs, e; € Ej, the completeness property
[8, 16]. This may be formalized for a constant 7 € [0, 1], it requires the non-zero
union of fuzzy sets A;(), Bi(-), i = 1,....,T,T = |R|, and is formulated by the
following expressions:



Ai(eg;l) = *(A“(ea:ll), oy Am(exil))

where # is a t-norm, and R;(e;) is the compatibility degree between the rule R;
and the example e;.
Given a set of rules R, the covering value of an example e; is defined as

T

CVR(el) = Z Ri(el)

i=1

and we require the following condition

CVr(e)>e 1=1,..,p.

A good set of rules must satisfy both the conditions presented above, to verify
the completeness property and to have an adequate final covering value.

High frequency value [13]: The frequency of a fuzzy control rule, R;, through
the set of examples, F,, is defined as:

Wy (Ri) = lelfi(ﬁ)

with R;(e;) being the compatibility degree between the rule R; and the example
cr.

High average covering degree over positive examples [13]: The set of
positive examples to R; with compatibility degree greater than or equal to w is

defined as:
EX(R;) = {e1 € Ep/Ri(er) > w}

with n}(R;) being equal to |EF(R;)|. The average covering degree on EJ (R;)
can be defined as:

Gu(R)= > Ri(er)/n}(R:).

ere EY(Ry)



Small negative example set [11]: The set of the negative examples for R; is

defined as:
E7(R;) ={e1 € E,/Ri(e1) = 0 and Ai(exl) > 0}.

An example is considered negative for a rule when it better matches some other
rule that has the same antecedent but a different consequent. The negative ex-
amples are always considered over the complete training set.

With n = [E7(R;)| being the number of negative examples, the penalty
function on the negative examples set will be:

(1’:7) 1 ifnl_“’ugk'nj:(Ri)
gn(ft; ) = . .
”Ez_knt(Rl)-l-exp(l) otherwise

where we permit up to a percentage of the number of positive examples, &k -
n}t(R;), of negative examples per rule without any penalty. This percentage is
determined by the parameter k € [0, 1].

Low niche interaction rate: As it was commented in [4], there are different
approaches for designing GFSs by learning the complete FLC KB. In many
cases, the difference among them is the genetic representation employed. As it
have been presented in section 4.1.1, we work with chromosomes encoding a
single fuzzy control rule in the genetic generation process. This representation
makes the solution space to be strongly multimodal because each possible fuzzy
control rule determines a peak in it.

The problem is that when dealing with multimodal functions with peaks of
unequal value, simple GAs are characterized by converging to the best peak of
the space (or to a space zone containing several of the best peaks) and to lose
an adequate individual sampling over other peaks in other space zones. This
phenomena is called genetic drift and is not a correct behavior for several kinds
of problems in which one may be interested in knowing the location of other
function optima. In our case, this fact will provoke the generation of a non
accurated final KB not satisfying the completeness property due to the absence
of fuzzy control rules in space zones with a small reward in the fitness function.

The niche and species concepts were introduced in order to overcome this
behavior [7, 10]. As the great majority of the GA concepts, they are based on
traslating natural notions to the field of GAs. In nature, a niche is viewed as an
organism’s task in the enviroment and a species is a collection of individuals with
similar features. In this way, the formation of stable subpopulations of organisms
surrounding separate niches by forcing similar individuals to share the available
resources 1s induced.

One of the most usually employed methods for introducing niche and species
in GAs is based on the individual fitness sharing [7, 10]. In this scheme, the popu-
lation is divided in different subpopulations (species) according to the similarity
of the individuals. These subpopulations form niches in two possible solution
spaces: the gene and the decoded parameter ones, genotypic and phenotypic



sharing respectively. Acting as in nature, the individuals belonging to each niche
share the associated payoff among them. A sharing function is defined to deter-
mine the neighbourhood and degree of sharing for each string in the population.

In [3] it is presented a multimodal problem optimization method for obtaining
the desired number of optima of multimodal functions that makes use of the
commented niche concept. The so called Sequential Niche Technique is based on
iterate an unimodal function optimization process (concretelly, a GA) that gives
a multimodal function optimum at each run. Each one of these optima constitute
a niche center because they are respectively the best solutions found in different
space zones. With the purpose of moving the search focus further away from the
zones in which optima have been yet located for finding new ones, a derating
function modifying the fitness landscape according to the distance between the
individuals and the previously located niches is used.

In order to develop and adequate search in the fuzzy rule multimodal space,
the generation process structure presented in [13] and used in this paper makes
the algorithm work in a similar way. A basic GA (fuzzy rule generating method)
is iterated for a number of times, obtaining the best fuzzy control rule with
respect to the current training set state from each run performed. Then the
influence of this rule over this set is considered by running the covering method.
This process modyfies the fitness landscape due to it removes the examples yet
covered in a desired degree from the training set, guiding the search focus to
another space zone.

This work mode allows to carry over the knowledge learned in one run to
each subsequent one. After each run of the algorithm, the location of a new niche
is known and can be taken into account for the remaining runs. In this way, the
proposed method works in an increasing way.

The performance of this generation method have been demostrated at the
sight of the results obtained in [13]. Anyway, the process may be improved mak-
ing use newly of the niche concept and of the FLC working basis. It 1s known
that the FLC accuracy is due to the interpolative reasoning they develop. A
concrete process state usually fires more than one fuzzy control rule and the
interaction among these rules is what allows the FLC to obtain the best control
action for this state. In this way, the FLC performance and smoothness depend
on the existence of an adequate interaction rate between the KB fuzzy control
rules at each problem space zone. Rules too close in the problem space cause
an undesirable overlearning due to their excessive interaction makes the inferred
control action move from the optimal one, while remote rules make the FLC lose
their interpolation capability, performing equally badly.

The commented generation process allows to verify the completeness prop-
erty, 1. e., to obtain fuzzy rules in all the problem space zones in which there
exist examples but does not get a suitable interaction among them. It will be
desirable that neighbour fuzzy rules interact adequatelly in order to obtain a
high performance KB. The adition of a new criterion to the generating method
fitness function will alow to obtain the desired behavior. Individuals encoding
fuzzy control rules which are very close to one of the rules previously generated
(i. e., individuals located in the same niche) will be penalized (they are very near



to the niche center and have to share their fitness with it). This will encourage an
adequate exploitation of the space zones in which a niche have been yet located.

A niche scheme is an adequate GA component in order to design the desired
criterium. In this case, the most recommended sharing scheme seems to be a
phenotypic one because using it we work directly with the fuzzy control rules.

One of the most important drawbacks associated to the classical sharing
scheme 1s that there exists need of knowning where each niche is and how big is
it in order to allow the fitness sharing. This fact is approached assuming that
if two individuals are close together, within a distance known as niche radius,
then their fitness must be shared. The problem is that in a big quantity of cases,
although several methods have been proposed in order to determine its value
(see [7]), the calculation of this radius is a very difficult task.

Fortunately, in our case it is easy to determine the location and size of the
different existing niches. As we are working in the phenotypic space, each indi-
vidual represents a fuzzy control rule formed by n input linguistic variables and
an output one. Each variable takes as value a triangular-shaped fuzzy number
encoded in the string. Therefore, the center of the niche in the solution space
will be an n 4+ 1-dimensional point, each one of its components being the cor-
responding triangular membership function modal point. Two individuals will
share their payoff if there is any interaction among the different fuzzy numbers
giving value to the linguistic variables, 1. e., if the fuzzy sets associated to the
same variable in both chromosomes overlap each one. Hence the algorithm does
not present a fixed niche radius value as in the classical sharing scheme but the
size of the niche depends on the membership function shapes encoded in the
different individuals.

With N; = (N;z, N;y) being the centers of the rules (niches) determined until
now (i = 1,...,d, where d is the number of generating process runs developed),
and C is an individual from the current population, the low niche interaction
rate penalizes the fitness associated to C'in the following way:

LNIR(C)=1-NIR(C)
NIR(C) = Max;{h;}
hi = #(A(N;z), B(N;y), i =1,...,d
A(N;z) = (A1 (Nyx1), ..., Ap(Niy)
C~R;:IF 2118 Ay and ...and x, 1s A, THEN yis B

Hence LNIR(C) is defined in [0, 1]. Tt gives the maximum value (no penal-
ization) when the rule encoded in C' does not interact with any of the rules
generated until now. The minimum value (maximum penalization) is obtained
when the rule encoded in C' is equal to one of those generated previosly.

The Figure 4 shows graphically a situation where there is interaction between
the rule encoded by C' an any of the rules generated until now:

The adition of the LNIR to the previous generation process makes two
modifications over the fitness landscape to be applied at each algorithm step. The
purpose of these are to change the fitness payoff associated to the individuals in



A /\ 1 i
Ny X4 Ny X, Niy .
‘ /\ | R
Ng X1 Ng Xn NgV

Thereisinteraction between the rule encoded in C and one of the previously
generated in the following case:

Fig. 4. Interaction between the current rule and the predetermined ones

subsequent runs, encouraging the exploration of new space zones and penalizing
it on others in which a niche have been located. These modifications operate in
two different levels:

— The covering method removes examples from the training data set, elimi-
nating the payoff associated to the space zones where these examples were
located. This constitutes a high level modification due to it translate the
search focus to other space zone. In this way, it encourage an adequate space
exploration.

— When a niche has been located in a space zone but it continue being the

most promising one, the new fuzzy rules that are going to be generated in
the same zone will interact with the ones generated until now. An adequate
interaction rate will be desirable in order to make best use of the advantages
of the FLC interpolative reasoning. It is put into effect by using a niche
penalizing function working in the aforecommented way: when closer is the
new rule to the previously generated ones, more penalized it is.
In this case, this modification constitute a low level one because the algo-
rithm continues working in the same space zone but penalyzing the excesive
closeness to the niches located in it. It encourage an adequate space exploita-
tion.

Therefore, the final generation process will allow to verify the two following



fundamental aspects:

— The process will ensure fuzzy control rules to be obtained in each space zone
in which the control problem is defined, that is, in each zone in which any
example exists. The KB completeness is verified in this way.

— In the same way, it will maintain an adequate rule distribution into each one
of the niches existing in the solution space. A suitable interaction among the
KB fuzzy control rules is so obtained.

An evaluation function to the rule R;, and therefore a fitness function to the
assoclated chromosome Cj is defined as follows:

Z(RZ') = WEP (RZ) -Gy (RZ) ~gn(Rf) ~LNIR(RZ')

with the objective of maximizing the fitness function.

4.1.4 Genetic Operators

Due to the special nature of the chromosomes involved in this generation
process, the design of the genetic operators become a main task. There is need
of remembering that the individuals encode two diferent information levels, a
first part containing the rule linguistic terms (RB information), and a second
one coding the meaning associated to these labels (DB information). As there
exists a strong relationship between both parts, operators working cooperatively
in C7 and (5 are required in order to make best use of the representation used.

It can be clearly observed that the existing relationship will present several
problems if not handled adequately. For example, modifications in the first chro-
mosome part have to be automatically reflected in the second one. It makes no
sense to modify the linguistic term and continue working with the previous la-
bel meaning. On the other hand, there is need of developing recombination in a
correct way in order to obtain meaningful offsprings.

Taking into account these aspects, several operators belonging to three ge-
netic operator classes are going to be used: mutation, crossover, and evolution
strategy.

Mutation: Two different operators are used, each one of them acting on a dif-
ferent chromosome part. A short description of them is given below:

— As (5 corresponds to the individual representation employed in the free
structure generation process, the same mutation developed in this process is
performed on it. In this way, Michalewicz’s non-uniform mutation operator
is employed [18].

If Cf = (e1, ..., ¢k, ...,ch) is a chromosome and the element c; was selected
for this mutation (the domain of ¢ is [cgi, cgr]), the result is a vector CIH! =
(c1y .oy Chy ooy cr), with k € 1,..., H, and



e + At ey — cp) if a =0,
b Ck—A(t,Ck—Ckl) ifa:l,

where a is a random number that may have a value of zero or one, and the
function A(?,y) returns a value in the range [0, y] such that the probability
of A(t,y) being close to 0 increases as t increases:

Alt,y) = y(1 — v

where 7 is a random number in the interval [0, 1], T" is the maximum number
of generations and b is a parameter chosen by the user, which determines the
degree of dependency with the number of iterations. This property causes
this operator to make an uniform search in the initial space when ¢ is small,
and a very local one in later stages.

— The mutation operator selected for C7 is similar to the one proposed by
Thrift in [21]. When a mutation on a gene belonging to the first part of the
chromosome is going to be performed, a local modification is developed by
changing the current linguistic term to the inmediately preceding or subse-
quent one (the decision is made at random). When the label to be changed is
the first or last one in the term set, the only possible change is developed. As
it have been commented, a mutation in C provokes a change in C's. When a
linguistic variable changes its value from one term to another, the meaning
assoclated to it is automatically updated in the second chromosome part to
the default values in the corresponding primary fuzzy partition.

Crossover: As regards to the recombination process, two different crossover
operators are employed depending on the two parents’ scope:

— If the rule encoded by both individuals is the same, then the genetic search
has located a promising space zone that have to be adequatelly exploitated.
This task is developed by applying the max-min-arithmetical crossover op-
erator in (s and obviously by maintaining the parent C values in the off-
spring. This crossover operator is proposed in [12] and works in the way
shown above.

If CY = (e1, ..oy hy ooy crr) and C, = (), ..., ¢}, ..., ¢) are to be crossed, the
following four offspring are generated

Cith = aCt + (1 - a)C}
O3t =aCt + (1 - a)C)
O with ef! = min{eg, ¢} }
O with ¢fF! = max{eg, ¢, }

This operator can use a parameter a which 1s either a constant, or a variable
whose value depends on the age of the population. The resulting descendents
are the two best of the four aforesaid offspring.



— When the parents encode different rules, it makes no sense to apply the
previous operator because it will provoke the obtaining of disrupted descen-
dents. This fact is due to the combination of two membership functions
associated to different linguistic labels makes the obtaining of two new fuzzy
sets not belonging to the intervals of performance determined by the initial
fuzzy partition. This second case highly recommend the use of the infor-
mation encoded by the parents for explorating the search space in order to
discover new promising zones. In this way, an standard crossover operator is
applied over both parts of the chromosomes. This operator performs as fol-
lows: a crossover point cp is randomly generated in Cy and the two parents
are crossed at the ep-th and n + 1+ 3 - ¢p genes. The crossover i1s devel-
oped this way in both chromosome parts, C; and C', thereby producing two
meaningful descendents.

Let us look at an example in order to clarify the standard crossover applica-

tion. Since Cy = (€1, -+, Cep, Coptiy - -+ Cnbls Goyy Doy s Copy o -y Ueops Doy Cooyr Beopyn s
7 7 7 7 7

bccp+1 ’ cccp+1’ sy acn+1’bcn+1’ccn+1) and Ct = (cla sy ccpa ccp+1a sy cn+1a

arbier oo a by e a b c. S b c. the

cy7 ey ey P Cep? TCop’ TCep’ T Copy1’ Copyr’ Coptr’ P g1’ Cngr’ cn+1)

individuals to be crossed at point ¢p, the two resulting offspring are:

i i

Cra1 = (€155 Copy Copyts v Crgs Gy beys Cops oy
a b C a i b C i N b C i
Cop? TCep? Tep? Te 1) Tlopqn’ Copi1] P g1 G’ cn+1)
1 1 1
Ct+1:(cla"'accpaccz7+1a'~~’Cn+1aac’1,bc,acc’la“'a
1
aclcp ’ bclcp’ cclcp’ accp ’ bccp’ cccp’ A acn+1 ’ b0n+1 ’ ccn+1)

Hence the complete recombination process will allow GA to follow an ade-
quate exploration-exploitation rate in the genetic search. The expected behavior
consists of an initial phase where a high number of standard crossovers and a
very small of max-min-arithmetical ones (equal to zero in the great majority
of the cases) are developed. The genetic search will perform a wide exploration
in this first stage, locating the promising zones and sampling the population
individuals at them in several runs. In this moment a new phase begin, charac-
terized by the increasing of the exploitation of these zones and the decreasing of
the space exploration. Therefore the number of max-min-arithmetical crossovers
rises a lot and the application of the standard crossover decreases. An example
of this behavior is shown in section 7 (Figure 8).

Evolution Strategy: The last genetic operator to be applied consists of an
(1+1)-E5. This optimization technique has been selected and integrated into
the genetic recombination process in order to perform a local tuning of the
best population individuals (rules) in each run. Each time a GA generation
is performed, the ES will be applied over a percentage « of the best different
population individuals existing in the current genetic population. In this way,
it allows to develop again a strong exploitation over the promising space zones



found in each generation by adjusting the C5 part values of the chromosomes
located at them.

The basis of the ES employed were briefly presented in Section 2.2. Now
we are going to describe the adaptation of this algorithm to our problem. As
it has been commented previously, the mutation strenght depends directly on
the value of the parameter o, which determines the standard deviation of the
normally distributed random variable z;. In our case, the step size ¢ can not
be a single value because each one of the membership functions encoded in the
second part of the chromosome is defined over different universes and so require
different order mutations. Therefore, an step size o; = o - s; for each component
has already been used in the (7+1)-ES. Anyway the relations of all o; were
fixed by the values s; and only the common factor ¢ is adapted following the
assumptions presented in [1].

Each parent component x; varying in the interval of performance [z

o

l Gl will
. . . . T —

have its own associated step size o; with s; = ———. Hence when o takes value 1

at the first ES generation, the obtaining of a big quantity of z; normal values in
zt el—

. T — xl . R .
the interval [—-—5—, =——] is ensured. All these values, as the ones remaining in

the intervals [z}, —x:;xl’] and [x:;xl’ , 7], perform a succesful z; mutation (that
is, the corresponding #; + z lies in the z; interval of performance). When this
value does not belong to the commented interval, the mutated value x; is equal
to the interval extent, ! or 7, closer to z; + z;.

The Figure 5 summarizes the application scope of the genetic operators pro-

posed:

Cl Cn CI’H‘la aC aC

1 n n n n+1

n+1 n+1

Max-Min-Arithmetical Crossover
Non-uniform Mutation
Evolution Strategy

Simple Crossover
Thrift’s Mutation

Fig.5. Generating process genetic representation and operators’application scope

Finally, the following algorithm summarizes the whole process:

1. Compute the value n. of individuals belonging to P(t) couples to be crossed
taking as base the value of the crossover rate P..

2. While (n.>0)do



(a) Select at random the parents to be crossed: .

(b) It (Cy(father) = Ci(mother))
then mawmtain C1 and perform maz-min-arithmetical crossover on Cs
for obtaining the two descendents
else perform standard crossover on Cy and Cs.

(¢) ne—ne—1.

. Compute the value n,, of genes to be mutateed taking as base the value of
the mutation rate P,,.

. While (n, >0} do

(a) Select at random the parent and gene to be muted.

(b) If (the gene belongs to Cy)
then perform Thrift’s mutation on it at Cy and update the corresponding
C5 piece of chromosome to represent adequatelly the initial mutated
gene meaning
else perform non-uniform mutation on the Cs gene.

(¢) Nm — N, — 1.

. Compute the value n.s — o - N of individuals to be applied the ES and sort
descendentlty the current population, taking into account only the different
chromosomes.

. While (n.; > 0) do
(a) Select the next parent to be mutated, begining at the population head.
(b) Perform the ES on Cs.

(€) Nes — Nes — 1.

With regards to the selection procedure, it is Baker’s stochastic universal

sampling [2], in which the number of any structure offspring is limited by the
floor and ceiling of the expected number of offspring, together with the elitist
selection.

4.2 The Covering Method

The covering method was presented in [13]. It is developed as an iterative process
that allows to obtain a set of fuzzy rules covering the example set. In each
iteration, it runs the generating method, chooses the best chromosome (rule),
considers the relative covering value this rule provokes over the training set, and
removes from it the examples with a covering value greater than e. The covering
method is developed as follows:

1. Inwtialization:

(a) To introduce k, w and ¢.
(b) To set the example covering degree CV[l] — 0, { =1,...,p.
(¢) To initialize the final set of rules B9 to empty.



. Over the set of examples Ep, to apply the generating method.
. To select the best chromosome C', encoding the fuzzy rule R, .
. To wtroduce R, in RY.
. For every e; € E), do

(a) CV[l] = CV[l] + Rr(er),

(b) If CV[l] > € then remove it from Ej.
6. If E, = 0 then Stop else return to Step 2.

QU = W N

Since two similar rules may be obtained, it is necessary to simplify the com-
plete KB obtained from the previous process for deriving the final KB, thereby
allowing the system to be controlled.

5 The Genetic Simplification Process

Due to the iterative nature of the genetic generation process, an overlearning
phenomenon may appear. This occurs when some examples are covered at a
higher degree than the desired one and it makes the obtained RB perform worse.
In order to solve this problem and improve its accuracy, it is necessary to simplify
the rule set obtained from the previous process for deriving the final RB allowing
the system to be controlled.

The simplification process used was proposed in [13]. It is based on a bi-
nary coded GA, in which the selection of the individuals is developed using the
aforementioned stochastic universal sampling procedure together with an elitist
selection scheme, and the recombination is put into effect by using the classical
binary multipoint crossover (performed at two points) and uniform mutation
operators.

The coding scheme generates fixed-length chromosomes. Considering the
rules cointained in the rule set derived from the previous step counted from
1 to m, an m-bit string C' = (eq, ..., ¢m) represents a subset of candidate rules to
form the RB finally obtained as this stage output, B?, such that,

Ife; =1 then R; € B® else R; ¢ B?

The initial population is generated by introducing a chromosome representing
the complete previously obtained rule set RY, that is, with all ¢, = 1. The
remaining chromosomes are selected at random.

As regards to the fitness funtion, F(-) it is based on an application-specific
measure usually employed in the design of GFSs, the medium square error (SE)
over a training data set, Erpg, which is represented by the following expression:

LS (e - S(ea))?

B(CY) = g

2|ETDS| e€Erps
where S(ex') is the output value obtained from the FLC using the RB coded in
C;, R(C};), when the state variables values are ez, and ey’ is the known desired
value.



Anyway, there is a need to keep the control rule completeness property con-
sidered in the previous stage. An FLC must always be able to infer a proper
control action for every process state. We will ensure this condition by forcing
every example contained in the training set to be covered by the encoded RB at
a degree greater than or equal to 7,

CR(Cj)(el) = U Ri(er) >, Ve! € Erps and R; € R(C}) ,
j=1.T

where 7 is the minimal training set completeness degree acepted in the simpli-
fication process. Usually, 7 is less than or equal to w, the compatibility degree
used in the generation process.

Therefore, we define a training set completeness degree of R(C;) over the set
of examples Erpg as

TSCD(R(Cy), Erps)= [ Creopler)

e1€Erps

The final fitness function penalizing the lack of the completeness property is:

F(Cj) = {1E(C]) if TSCD(R(C]»)’ ETDS) >T

3D e Erps (ey')? otherwise.

6 The Genetic Tuning Process

The genetic tuning process was presented in-depth in [12]. The process is based
on the existence of a previous complete KB, that is, an initial DB definition and
a RB constituted by m fuzzy control rules.

Each chromosome forming the genetic population will encode a complete KB.
Each one of them contains the RB R® with a different DB associated with it.

The GA designed for the tuning process presents a real coding issue, uses the
stochastic universal sampling as selection procedure and Michaelewicz’s non-
uniform mutation operator. As regards to the crossover operator, the max-min-
arithmetical 1s employed again.

As we commented before, the membership functions are triangular-shaped.
Thus, each one of them has an associated parametric representation based on
a 3-tuple of real values. Each one of the rules will be encoded in pieces of the
chromosome C);, ¢ = 1,...,m, in the following way:

Cri = (aila bila Cily -« Qin, bina Cin, A, bia ci)

Therefore the complete RB with an associated DB is represented by a complete
chromosome C,:

Cr =Cr Cra ... Crpy

As may be seen, each individual in the population represents a complete KB.
More concretely, all of them encode the derived system RB R* and the difference



between them are the fuzzy control rule membership functions, that is, the DB
definition.

The initial gene pool is created from the initial KB. This KB is encoded
directly into a chromosome, denoted as €. The remaining individuals are gen-
erated by associating an interval of performance, [clh, ¢;] to every gene cp, in Cf,
h=1...(n+1) -m-3. Each interval of performance will be the interval of
adjustment for the correspondent variable, ¢, € [c}, c7].

If (t mod 3) = 1 then ¢; is the left value of the support of a fuzzy number.
The fuzzy number is defined by the three parameters (¢;, ¢i41, ¢i42) and the
intervals of performance are the following:

 r] _— Ci41—Ct Ct41—Ct

et € [ey, ¢f] = [er — 55— o + ]
Ci41—Ce Ci42—Ci41
5, G+ S

,Ct+2 +

cop1 € [ehyy, ] = e —
Copa € [Chya ¢hya) = [erqa —

Ci42—Ct41
2

Ct+3—0t+2]
2

Figure 6 shows these intervals.

Fig.6. Membership function and intervals of performance for the tuning process

Therefore, we create a population of chromosomes containing C; as its first
individual and the remaining ones initiated randomly, with each gene being in
its respective interval of performance.

The fitness function of a chromosome is defined by using a training input-
output data set, Erpg, and a concrete error measure, the medium square error
in our proposal. In this way, the adaptation value associated to an individual is
obtained by computing the error between the outputs given by the FLC using
the KB encoded in the chromosome and those contained in the training data
set. The fitness function is represented by the following expression:

E(O) = g 0 (e = S(ea!)?

ei€Erps



7 Application of the learning process to the fuzzy
modeling of two three-dimensional mathematical functions

In order to analyze the accuracy of the method proposed, we have selected
two n-dimensional mathematical functions for using them to derive theoretical
three-dimensional control surfaces. The mathematical functions and the variable
universes of discourse considered are shown below. The spherical model, FY, is
an unimodal function while the generalized Rastrigin function, Fs, 1s a strongly
multimodal one, as may be observed in their graphical representations (Figure

7).

Fi(z1,20) = 23 + 23,
r1,%9 € [—5,5],F1(l‘1,l‘2) S [0,50]

Fo(z1,22) = 23 + 23 — cos(1821) — cos(18x3),
T1,% € [—1, 1],F2(l‘1,l‘2) € [2,35231]

Q”Q’Q A,
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Fig. 7. Graphical representations of Fy and F;

Two different ways of fuzzy modeling of these surfaces are going to be com-
pared by using the following both design methods:

1. a two-stage method based on obtaining a complete KB by deriving the RB
by means of the widely employed Wang and Mendel’s (WM) method [22]
and defining the DB by means of the genetic tuning method constituting the
third stage of the method proposed, and

2. the GFS design method proposed in this paper.

For each one of the functions, a training data set uniformly distributed in
the three-dimensional definition space has been obtained experimentally. In this
way, two sets with 1681 values have been generated by taking 41 values for each
one of the two state variables considered to be uniformly distributed in their

respective intervals.



Two other data sets have been generated for their use as test sets for evalu-
ating the performance of the learning method, avoiding any possible bias related
to the data in the training set. The size of these data sets is a percentage of the
corresponding training set one, a ten percent to be precise. The data are obtained
by generating at random the state variable values into the concrete universes of
discourse for each one of them, and computing the associated output variable
value. Hence two test sets formed by 168 data are used to measure the accuracy
of the FLCs designed by computing the medium square error for them.

The 1nitial DB used in the generating process is constituted by three primary
fuzzy partitions (two corresponding to the state variables and one associated to
the control one) formed by seven linguistic terms with triangular-shaped fuzzy
sets giving meaning to them (as shown in Figure 2), and the adequate scaling
factors to traslate the generic universe of discourse into the one associated with
each problem variable.

The following parameter values, corresponding to the first two stages, are
combined for determining the different runs of the method to be carried out:
e = {1,1.5}, w = 0.05, k = 0.1 and 7 = {0.25,0.5}. Tt leads to an overall of
4 runs per function. With respect to the remaining parameters, the t-norm *
used in the rule generation process is the Minimum, the generating process GAs
runs over 50 generations, the ES is applied until there is no improvement in 25
generations over a percentage o = 20% of the population individuals (the param-
eter ¢ of the 1/5-success rule is equal to 0.9); and the genetic simplification and
tuning processes run over 500 and 1000 generations, respectively. In all cases,
the population is formed by 61 individuals, the value of the non-uniform muta-
tion parameter b is 5.0, and the crossover and mutation rates are, respectively,
P, = 0.6 and P, = 0.1 (this last one per indiviual). The max-min-aritmethical
crossover parameter a takes the value 0.35.

Finally, as regards to the FLC reasoning method employed, we have selected
the Minimum t-norm playing the role of the implication and conjunctive opera-
tors, and the Center of Gravity weighted by the matching strategy acting as the
defuzzification operator [5].

The results obtained in the different experiments are collected in the follow-
ing tables where #R stands for the number of rules of the corresponding KB.
Each table last row shows the results obtained by the WM-based method in the
corresponding function. Analyzing these results, the good behavior presented
by the proposed method can be observed. All the GFSs designed using it are
more accurated in a high degree than the ones based on the WM RB generation
method in the fuzzy modeling of both functions.

Finally, a graphical representation of the behavior of the crossover operators
used is shown in Figure 8. As it was commented in section 4.1.4, the expected
behavior consists of an initial phase where a high number of standard crossovers
and a very small of max-min-arithmetical ones are developed, and a second
phase where the number of max-min-arithmetical crossovers rises a lot and the
application of the standard crossover decreases. The figure, drawn making use
of the data collected in the run 56 of the experiment developed with parameters
¢ = 1.5 and 7 = 0.5 (the FLC obtained presenting best behavior in the fuzzy



Table 1. Results obtained in the fuzzy modeling of function Fy

Parameters

€ W

T #R

SE  #R SE

Generation Simplification Tuning

SE

1.0 0.05 0.25 70
1.0 0.05 0.5 70
1.5 0.05 0.25 98
1.50.050.5 98

1.992471 58 1.630508
1.992471 63 1.770926
2.411402 67 1.779137
2.411402 73 2.130197

0.698604
0.663183
0.696869
1.118251

w M 49

4.651811

0.950740

Table 2. Results obtained in the fuzzy modeling of function F%

Parameters Generation Simplification Tuning

r #R SE #R SE SE

1.0 0.05 0.25 251 0.288433 190 0.244648 0.214298
1.0 0.05 0.5 251 0.288433 206 0.266778 0.230763
1.5 0.05 0.25 346 0.268026 232 0.213960 0.195233
1.5 0.05 0.5 346 0.268026 253 0.232196 0.210177
w M 49 2.094091 1.218088

€ W

modeling of function Fy), shows clearly this behavior.
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Fig. 8. Number of crossovers per generation in a run of one experiment developed



8 Concluding Remarks

A method for designing GFSs by learning the KB from examples combining a
hybrid GA-ES generation and two GA-based simplification and tuning processes
has been presented. Its performance have been shown by applying it to the fuzzy
modeling of two three-dimensional control surfaces and compared with another
method based on the WM process obtaining good results.
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