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techniques for performing this task. In the last few years, many di�erent ap-proaches have been presented taking the Genetic Algorithms as a base, obtainingthe so called Genetic Fuzzy Systems (GFSs). In this paper we present a hybridgenetic algorithm-evolution strategy process for designing GFSs by learning theKB from examples. The process performance is shown by using it to developa fuzzy modeling of two three-dimensional control surfaces derived from twomathematical functions.The method proposed consists of the following three steps, maintaining thegeneric structure used in [13]:1. A genetic generation process for generating fuzzy control rules, with a gen-erating method based on Evolutionary Algorithms, and a covering methodof the system behaviour example set. This process allows us to obtain a setof rules covering the training set in an adequate form.2. A genetic simpli�cation process for simplifying rules, based on a binary codedGenetic Algorithm and a measure of the FLC performance in the control ofthe system being identi�ed. It will save the overlearning that the previouscomponent may cause.3. A genetic tuning process, based on a Real Coded Genetic Algorithm anda measure of the FLC performance. It will give the �nal KB as output bytuning the membership functions for each fuzzy control rule.In order to do this, we arrange the paper as follows. Section 2 presents ashort introduction to Evolutionary Algorithms and GFSs. Some preliminariesabout the FLC KB type considered are discussed in Section 3. The three stagesof the proposed learning process are introduced respectively in Sections 4, 5 and6; while Section 7 shows its application to the fuzzy modeling of the commentedfunctions. Finally, some conclusions are pointed out in Section 8.2 Evolutionary Algorithms and Genetic Fuzzy SystemsEvolutionary Computation (EC) uses computational models of evolutionary pro-cesses as key elements in the design and implementation of computer-based prob-lem solving systems. There are a variety of evolutionary computational modelsthat have been proposed and studied which are referred as Evolutionary Algo-rithms (EAs). There have been three well-de�ned EAs which have served as thebasis for much of the activity in the �eld: Genetic Algorithms (GAs), EvolutionStrategies (ESs), and Evolutionary Programming (EP).An EA maintains a population of trial solutions, imposes random changes tothese solutions, and incorporates selection to determine which ones are going tobe maintained in future generations and which will be removed from the pool ofthe trials. But there are also important di�erences between them. GAs emphasizemodels of genetic operators as observed in nature, such as crossover (recombina-tion) and point mutation, and apply these to abstracted chromosomes. ESs andEP emphasize mutational transformations that maintain the behavioral linkagebetween each parent and its o�spring.



Each individual in the population receives a measure of its �tness in the en-vironment. Selection focuses attention on high �tness individuals, thus makinguse of the available �tness information. Recombination and mutation perturbthose individuals, providing general heuristics for exploration. Although sim-plistic from a biologist's viewpoint, these algorithms are su�ciently complex toprovide robust and powerful adaptive search mechanisms.Natural evolution is a most robust yet e�cient problem-solving technique.Evolutionary Computation can likewise made robust. The same procedures maybe applied to diverse problems with relatively little reprogramming [9].In the following we briey review the GAs and the ESs, both of which shallbe used in this contribution.2.1 Genetic AlgorithmsGAs are theoretically and empirically proven to provide robust search in complexspaces, thereby o�ering a valid approach to problems requiring e�cient ande�ective search. The basic principles of the GAs were �rst laid down rigorouslyby Holland [15], and are well described in many texts such as [10, 18].Any GA starts with a population of randomly generated solutions, chro-mosomes, and advances toward better solutions by applying genetic operators,modeled on the genetic processes occurring in nature. In these algorithms wemaintain a population of solutions for a given problem; this population under-goes evolution in the form of natural selection. In each generation, relativelygood solutions reproduce to give o�spring that replace the relatively bad solu-tions which die. An evaluation or �tness function plays the role of the environ-ment to distinguish between good and bad solutions. The process of going fromthe current population to the next population constitutes one generation in theexecution of a GA.Although there are many possible variants of the basic GA, the fundamentalunderlying mechanism operates on a population of chromosomes or individuals(representing possible solutions to the problem) and consists of three operations:1. evaluation of individual �tness,2. formation of a gene pool (intermediate population), and3. recombination and mutation.It is generally accepted that a GA must take into account the �ve followingcomponents for solving a problem:1. A genetic representation of the problem solutions,2. a way to create an initial population of solutions,3. an evaluation function which gives the �tness of each individual,4. genetic operators that alter the genetic composition of children during repro-duction, and5. values for the parameters that the GA uses (population size, probabilities ofapplying genetic operators, etc.).



2.2 Evolution StrategiesESs were developed with a strong focus on building systems capable of solvingdi�cult read-valued parameter optimization problems. The natural representa-tion was a vector or real-valued genes which were manipulated primarily bymutation operators designed to perturb the real-valued parameters in usefulways.ESs were initially developed by Rechenberg and Schwefel in 1964 as experi-mental optimization techniques. The �rst ES algorithm, the so-called (1+1)-ES,was based on working with only two individuals per generation, one parent andone descendent. Other more complex variants, based on considering a high num-ber of parents (� > 1) and descendents (� > 1) have appeared in later years,constituting the so called (� + �) � ES. In the last few years, several new gen-eralized ESs have been succesfully developed [1, 19].Without a lack of generality, in this paper we work with the (1+1)-ES, themost simple ES model. In the following we briey describe this scheme [1, 19]:(1+1)-ES is based on encoding the possible optimization problem solutioninto a real coded string. This parent string is evolved by applying a mutationoperator over each one of its components. The mutation strength is determinedby a value �, a standard deviation of a normally distributed random variable.This parameter is associated to the parent and it is evolved in each process stepas well. If the evolution has been performed successfully, the o�spring obtainedby mutation is better adapted than its parent, then the descendent substitutesit in the next generation. The individual adaptation is measured by using a�tness function. The process is iterated until a determined �nishing condition issatis�ed.As may be observed, the main component of the model is the mutationoperator, mut. It is composed of two components, mu�, which updates thevalue of the parameter �, and mux, which evolves the real coded string. The�rst one is based on Rechenberg's 1/5-success rule, which evolves the standarddeviation according to the current value of the relative frequency p of succesfulmutations, in the following way:�0 =mu�(�) = 8<: �npc , if p > 15� � npc, if p < 15�, if p = 15The second one mutates each component of the real coded string by addingnormally distributed variations with standard deviation �0 to it:x0 =mux(x) = (x1 + z1; : : : ; xn + zn)where zi � Ni(0; �02).The �nal algorithm process is the following:Procedure Evolution Strategy (1+1)begin (1)



t = 0;initialize P (t) (x; �);evaluate f(x);While (Not termination-condition) dobegin (2)t = t+ 1;(x0 ; �0) mut(x; �);evaluate f(x0 );If Better (f(x0 ); f(x))then P (t+ 1) (x0 ; �0)else P (t+ 1) P (t).end (2)end (1)2.3 Genetic Fuzzy SystemsThe KB is the FLC component comprising the expert knowledge known aboutthe controlled system. So it is the only component of the FLC depending on theconcrete application and it makes the accuracy of the FLC depends directly onits composition. It is comprised of two components, a Data Base (DB), contain-ing the de�nitions of the fuzzy control rules linguistic labels, and a Rule Base(RB), constituted by the collection of fuzzy control rules representing the expertknowledge.The KB derivation is the only task that have to be performed in order todesign an FLC directly depending on the controlled system and it presents asigni�cative importance in the design process [5, 8, 16]. It is known that themore used method for performing this task is based directly on extracting theexpert experience from the human process operators. The problem arises whenthese are not able to express their knowledge in terms of fuzzy control rules.In order to avoid this drawback, researches have been investigating automaticlearning methods for designing FLCs by deriving automatically an appropiateKB for the controlled system without necessity of its human operator.GAs have been demonstrated to be a powerful tool for automating the de�ni-tion of the KB, since adaptative control, learning, and self-organization may beconsidered in a lot of cases as optimization or search processes. Their advantageshave extended the use of GAs in the development of a wide range of approachesfor designing FLCs over the last few years. In particular, the application to thedesign, learning and tuning of KBs have produced quite promising results. Theseapproaches can receive the general name of Genetic Fuzzy Systems (GFSs) [4].Figure 1 shows this idea.Using the more general term "evolutionary" instead of "genetic" (when anEA is used instead of a GA) they may be called Evolutionary Fuzzy Systems.GAs are applied to modify/learn the DB and/or the RB. It is possible todistinguish three di�erent groups of genetic FLC design processes according tothe KB component included in the learning process. These ones are the following:
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EnviromentFig. 1. Genetic fuzzy systems1. Genetic de�nition of the Fuzzy Logic Controller Data Base2. Genetic derivation of the Fuzzy Logic Controller Rule Base3. Genetic learning of the Fuzzy Logic Controller Knowledge BaseFor a wider description see [4] and for an extensive bibliography see [6] (sec-tion 3.13).In this paper we present a GFS design method belonging to the third above-mentioned family. In this way, making use of our process it will be possible to au-tomatically generate a complete FLC KB when a training set formed by numer-ical input-output (state-control) problem variable pairs experimentally recordedis available.3 PreliminariesIn this work, we shall focus on Mamdani's model for Multiple Input-Single Out-put (MISO) systems, where the knowledge base of a fuzzy controller consistsof a collection of fuzzy rules (with the logical connective ALSO between them)describing the control actions in the form:Ri : IF x1 is Ai1 and ... and xn is Ain THEN y is B,where x1; :::; xn and y are the process state variables and the control variablerespectively; and Ai1; :::; Ain, B are fuzzy sets in the universes of discourseU1; :::; Un, V .These fuzzy sets are characterized by their membership functions



Aij(B) : Uj(V )! [0; 1]; j = 1; :::; n:In our study we consider every fuzzy set associated with a normalized trian-gular membership function. A computational way to characterize it is by using aparametric representation achieved by means of the 3-tuple (aij; bij; cij), (ai; bi;ci), j = 1; :::; n.We assume that we have a description of the control strategy in the formof an input-output data set without noise which we shall use as a base in ourlearning process for obtaining the KB.The classical Mamdani model is a linguistic model based on collections ofIF�THEN rules with fuzzy quantities associated with linguistic labels, and thefuzzy model is essentially a qualitative expression of the system. A KB in whichthe fuzzy sets giving meaning (semantic) to the linguistic labels are uniformlyde�ned for all rules included in the RB constitutes a descriptive approach sincethe linguistic labels represent a real world semantic.It can be considered a KB for which fuzzy rules either present di�erent mean-ing for the same linguistic terms or the fuzzy quantities have not any associatedlinguistic label. In this case, the KB and the FLC using it, present a di�erentphilosophy, the approach is approximative [4]. In this second approach we saythat the rules present free semantic.We will center on this second approach. For the generation process we con-sider rules with a free semantic, without any linguistic syntaxis associated to therules, but based on an initial domain fuzzy partition. Using this approach wemay say that the rules present constrained free semantic.Each universe, U , contains a number of overlaping regions labeled with lin-guistic terms, forming a �nite set of fuzzy sets on U . For instance, if X is avariable on U for temperature, then one may de�ne A1 as "low temperature",Ai(1 < i < r) as "medium temperature" and Ar as "high temperature", etc.These referential fuzzy sets are characterized by their membership functionsAi(u) : U ! [0; 1]; i= 1; :::; r. To ensure the performance of the fuzzy model andto provide to uniform basis for further study, it is essential that all the referentialsets should be normal convex ones, and should satisfy the following completenesscondition: 8u 2 U 9j; 1 � j � r; such that Aj(u) � �and � is a �xed threshold, this being the completeness degree of the universes.Figure 2 shows an example of a fuzzy partition with � = 0:5.The number of linguistic terms forming the fuzzy partition associated to eachlinguistic variable can be speci�ed by the GFS designer in order to obtain thedesired granularity level.Making use of this previous fuzzy partition, an interval of performance, de-�ned as follows, is associated to each one of the three points de�ning the mem-bership functions At(�), (at; bt; ct)
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4 The Genetic Generation ProcessAs it has been commented, the �rst stage consists of two processes, a generatingmethod of desirable fuzzy rules from examples and a covering method of the setof examples.1. The fuzzy rule generating method is developed by means of a GA encodinga single fuzzy rule in each chromosome. The GA �nds the best rule in everyrun over the set of examples according to the features included in the GA�tness function. An ES is used for locally tuning the best fuzzy control rulesobtained in the genetic search iterations.2. The covering method is developed as an iterative process. It allows a set offuzzy rules to be obtained covering the set of examples. In each iteration, itruns the generating method choosing the best chromosome (rule), considersthe relative covering value that this rule provokes over the example set andremoves the examples with a covering value greater than a value � providedby the controller designer.Next subsections present both methods in-depth.4.1 The Fuzzy Rule Generating ProcessThe generating method for fuzzy rules is developed by means of a special GA,where a chromosome encodes a fuzzy rule and an ES that locally tunes the fuzzyrules. We describe the EA components below.4.1.1 RepresentationA chromosome C encoding a candidate rule is composed of two di�erentparts, C1 and C2, each one corresponding to each one of the KB components.The �rst part of the chromosome encodes the linguistic rule (belonging to theRB), and the second one the meaning associated to each linguistic term involvedin the rule (belonging to the DB).In order to represent the �rst part there is a need to number the linguisticlabels belonging to each one of the linguistic variable term sets. A variable xitaking values in a term set T (xi) = fL1(xi); : : : ; Lni(xi)g has associated theordered set T 0(xi) = f1; : : : ; nig.On the other hand, the second part adopts the same representation employedin the unconstrained free semantic generating process presented in [13]. Each oneof the triangular membership functions composing the rule, Li(xj), is encodedby means of its associated 3-tuple (aLi(xj); bLi(xj ); cLi(xj)).Hence, the following generic ruleIF x1 is Li1(x1) ... and xn is Lin(xn) THEN y is Lin+1 (y)is encoded into a chromosome C with the following form:



C1 = (i1; : : : ; in; in+1)C2 = (aLi1 (x1); bLi1 (x1); cLi1(x1); : : : ; aLin (xn); bLin (xn); cLin (xn);aLin+1 (y); bLin+1 (y); cLin+1 (y))C = C1C2Now, the fundamental underlying mechanisms of a GA, formation of an initialgene pool, �tness function, and genetic operators are developed.4.1.2 Initial Gene PoolA third of the initial gene pool is created making use of the examples con-tained in the training set, Ep, and other third is initiated totally at random.The initialization of the individuals belonging to remainder third takes commoncharacteristics with the other two. The �rst part of them is initiated from theexamples, and the second one at random.With M being the GA population size and t = minfjEpj; M3 g, let t examplesbe generated at random fromEp. Then, the initial population generation processis performed in three steps as follows:1. Making use of the existing linguistic variable primary fuzzy partitions, gener-ate t individuals by taking the rule best covering each one of the t randomlyobtained examples. Initiate C1 and C2 by coding respectively the rule lin-guistic terms and their meaning in the way commented on above.2. Generate another t individuals initiating C1 in the same way followed in theprevious step, and computing the values of C2 at random, each gene varyingin its respective interval.3. Generate the remaining M � 2 � t individuals by computing at random thevalues of the �rst part, C1, and making use of these for randomly generatingthe C2 part, each gene varying in its respective interval.4.1.3 Evaluation of Individual FitnessThe �tness function measuring the adaptation of each rule of the populationis a multiobjective function based on several criteria. We present some requeri-ments and the commented criteria below.Requeriments: For generating a set of rules R describing the behaviour of asystem, it is necessary to establish a condition for it. This is the requirement ofcovering all possible situation-action pairs, el 2 Ep, the completeness property[8, 16]. This may be formalized for a constant � 2 [0; 1], it requires the non-zerounion of fuzzy sets Ai(�), Bi(�), i = 1; :::; T , T = jRj, and is formulated by thefollowing expressions:



CR(el) = [i=1::T Ri(el) � � ; l = 1; :::; pRi(el) = �(Ai(exl); Bi(eyl))Ai(exl) = �(Ai1(exl1); :::; Ain(exln))where � is a t-norm, and Ri(el) is the compatibility degree between the rule Riand the example el .Given a set of rules R, the covering value of an example el is de�ned asCVR(el) = TXi=1 Ri(el)and we require the following conditionCVR(el) � � l = 1; :::; p:A good set of rules must satisfy both the conditions presented above, to verifythe completeness property and to have an adequate �nal covering value.High frequency value [13]: The frequency of a fuzzy control rule, Ri, throughthe set of examples, Ep, is de�ned as:	Ep (Ri) = Ppl=1 Ri(el)pwith Ri(el) being the compatibility degree between the rule Ri and the exampleel.High average covering degree over positive examples [13]: The set ofpositive examples to Ri with compatibility degree greater than or equal to ! isde�ned as: E+! (Ri) = fel 2 Ep=Ri(el) � !gwith n+! (Ri) being equal to jE+! (Ri)j. The average covering degree on E+! (Ri)can be de�ned as: G!(Ri) = Xel2E+! (Ri)Ri(el)=n+! (Ri):



Small negative example set [11]: The set of the negative examples for Ri isde�ned as: E�(Ri) = fel 2 Ep=Ri(el) = 0 and Ai(exl) > 0g:An example is considered negative for a rule when it better matches some otherrule that has the same antecedent but a di�erent consequent. The negative ex-amples are always considered over the complete training set.With n�Ri = jE�(Ri)j being the number of negative examples, the penaltyfunction on the negative examples set will be:gn(Ri�) = ( 1 if n�Ri � k � n+! (Ri)1n�Ri�kn+! (Ri)+exp(1) otherwisewhere we permit up to a percentage of the number of positive examples, k �n+! (Ri), of negative examples per rule without any penalty. This percentage isdetermined by the parameter k 2 [0; 1].Low niche interaction rate: As it was commented in [4], there are di�erentapproaches for designing GFSs by learning the complete FLC KB. In manycases, the di�erence among them is the genetic representation employed. As ithave been presented in section 4.1.1, we work with chromosomes encoding asingle fuzzy control rule in the genetic generation process. This representationmakes the solution space to be strongly multimodal because each possible fuzzycontrol rule determines a peak in it.The problem is that when dealing with multimodal functions with peaks ofunequal value, simple GAs are characterized by converging to the best peak ofthe space (or to a space zone containing several of the best peaks) and to losean adequate individual sampling over other peaks in other space zones. Thisphenomena is called genetic drift and is not a correct behavior for several kindsof problems in which one may be interested in knowing the location of otherfunction optima. In our case, this fact will provoke the generation of a nonaccurated �nal KB not satisfying the completeness property due to the absenceof fuzzy control rules in space zones with a small reward in the �tness function.The niche and species concepts were introduced in order to overcome thisbehavior [7, 10]. As the great majority of the GA concepts, they are based ontraslating natural notions to the �eld of GAs. In nature, a niche is viewed as anorganism's task in the enviroment and a species is a collection of individuals withsimilar features. In this way, the formation of stable subpopulations of organismssurrounding separate niches by forcing similar individuals to share the availableresources is induced.One of the most usually employed methods for introducing niche and speciesin GAs is based on the individual �tness sharing [7, 10]. In this scheme, the popu-lation is divided in di�erent subpopulations (species) according to the similarityof the individuals. These subpopulations form niches in two possible solutionspaces: the gene and the decoded parameter ones, genotypic and phenotypic



sharing respectively. Acting as in nature, the individuals belonging to each nicheshare the associated payo� among them. A sharing function is de�ned to deter-mine the neighbourhood and degree of sharing for each string in the population.In [3] it is presented a multimodalproblem optimizationmethod for obtainingthe desired number of optima of multimodal functions that makes use of thecommented niche concept. The so called Sequential Niche Technique is based oniterate an unimodal function optimization process (concretelly, a GA) that givesa multimodal function optimumat each run. Each one of these optima constitutea niche center because they are respectively the best solutions found in di�erentspace zones. With the purpose of moving the search focus further away from thezones in which optima have been yet located for �nding new ones, a deratingfunction modifying the �tness landscape according to the distance between theindividuals and the previously located niches is used.In order to develop and adequate search in the fuzzy rule multimodal space,the generation process structure presented in [13] and used in this paper makesthe algorithm work in a similar way. A basic GA (fuzzy rule generating method)is iterated for a number of times, obtaining the best fuzzy control rule withrespect to the current training set state from each run performed. Then theinuence of this rule over this set is considered by running the covering method.This process mody�es the �tness landscape due to it removes the examples yetcovered in a desired degree from the training set, guiding the search focus toanother space zone.This work mode allows to carry over the knowledge learned in one run toeach subsequent one. After each run of the algorithm, the location of a new nicheis known and can be taken into account for the remaining runs. In this way, theproposed method works in an increasing way.The performance of this generation method have been demostrated at thesight of the results obtained in [13]. Anyway, the process may be improved mak-ing use newly of the niche concept and of the FLC working basis. It is knownthat the FLC accuracy is due to the interpolative reasoning they develop. Aconcrete process state usually �res more than one fuzzy control rule and theinteraction among these rules is what allows the FLC to obtain the best controlaction for this state. In this way, the FLC performance and smoothness dependon the existence of an adequate interaction rate between the KB fuzzy controlrules at each problem space zone. Rules too close in the problem space causean undesirable overlearning due to their excessive interaction makes the inferredcontrol action move from the optimal one, while remote rules make the FLC losetheir interpolation capability, performing equally badly.The commented generation process allows to verify the completeness prop-erty, i. e., to obtain fuzzy rules in all the problem space zones in which thereexist examples but does not get a suitable interaction among them. It will bedesirable that neighbour fuzzy rules interact adequatelly in order to obtain ahigh performance KB. The adition of a new criterion to the generating method�tness function will alow to obtain the desired behavior. Individuals encodingfuzzy control rules which are very close to one of the rules previously generated(i. e., individuals located in the same niche) will be penalized (they are very near



to the niche center and have to share their �tness with it). This will encourage anadequate exploitation of the space zones in which a niche have been yet located.A niche scheme is an adequate GA component in order to design the desiredcriterium. In this case, the most recommended sharing scheme seems to be aphenotypic one because using it we work directly with the fuzzy control rules.One of the most important drawbacks associated to the classical sharingscheme is that there exists need of knowning where each niche is and how big isit in order to allow the �tness sharing. This fact is approached assuming thatif two individuals are close together, within a distance known as niche radius,then their �tness must be shared. The problem is that in a big quantity of cases,although several methods have been proposed in order to determine its value(see [7]), the calculation of this radius is a very di�cult task.Fortunately, in our case it is easy to determine the location and size of thedi�erent existing niches. As we are working in the phenotypic space, each indi-vidual represents a fuzzy control rule formed by n input linguistic variables andan output one. Each variable takes as value a triangular-shaped fuzzy numberencoded in the string. Therefore, the center of the niche in the solution spacewill be an n + 1-dimensional point, each one of its components being the cor-responding triangular membership function modal point. Two individuals willshare their payo� if there is any interaction among the di�erent fuzzy numbersgiving value to the linguistic variables, i. e., if the fuzzy sets associated to thesame variable in both chromosomes overlap each one. Hence the algorithm doesnot present a �xed niche radius value as in the classical sharing scheme but thesize of the niche depends on the membership function shapes encoded in thedi�erent individuals.WithNi = (Nix;Niy) being the centers of the rules (niches) determined untilnow (i = 1; : : : ; d, where d is the number of generating process runs developed),and C is an individual from the current population, the low niche interactionrate penalizes the �tness associated to C in the following way:LNIR(C) = 1�NIR(C)NIR(C) = Maxifhighi = �(A(Nix); B(Niy)); i = 1; : : : ; dA(Nix) = �(A1(Nix1); : : : ; An(Niy))C � Ri : IF x1 is A1 and : : :and xn is An THEN y is BHence LNIR(C) is de�ned in [0; 1]. It gives the maximum value (no penal-ization) when the rule encoded in C does not interact with any of the rulesgenerated until now. The minimum value (maximum penalization) is obtainedwhen the rule encoded in C is equal to one of those generated previosly.The Figure 4 shows graphically a situation where there is interaction betweenthe rule encoded by C an any of the rules generated until now:The adition of the LNIR to the previous generation process makes twomodi�cations over the �tness landscape to be applied at each algorithm step. Thepurpose of these are to change the �tness payo� associated to the individuals in
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There is interaction between the rule encoded in C and one of the previouslyFig. 4. Interaction between the current rule and the predetermined onessubsequent runs, encouraging the exploration of new space zones and penalizingit on others in which a niche have been located. These modi�cations operate intwo di�erent levels:{ The covering method removes examples from the training data set, elimi-nating the payo� associated to the space zones where these examples werelocated. This constitutes a high level modi�cation due to it translate thesearch focus to other space zone. In this way, it encourage an adequate spaceexploration.{ When a niche has been located in a space zone but it continue being themost promising one, the new fuzzy rules that are going to be generated inthe same zone will interact with the ones generated until now. An adequateinteraction rate will be desirable in order to make best use of the advantagesof the FLC interpolative reasoning. It is put into e�ect by using a nichepenalizing function working in the aforecommented way: when closer is thenew rule to the previously generated ones, more penalized it is.In this case, this modi�cation constitute a low level one because the algo-rithm continues working in the same space zone but penalyzing the excesivecloseness to the niches located in it. It encourage an adequate space exploita-tion.Therefore, the �nal generation process will allow to verify the two following



fundamental aspects:{ The process will ensure fuzzy control rules to be obtained in each space zonein which the control problem is de�ned, that is, in each zone in which anyexample exists. The KB completeness is veri�ed in this way.{ In the same way, it will maintain an adequate rule distribution into each oneof the niches existing in the solution space. A suitable interaction among theKB fuzzy control rules is so obtained.An evaluation function to the rule Ri, and therefore a �tness function to theassociated chromosome Ci is de�ned as follows:Z(Ri) = 	Ep (Ri) �Gw(Ri) � gn(Ri�) �LNIR(Ri)with the objective of maximizing the �tness function.4.1.4 Genetic OperatorsDue to the special nature of the chromosomes involved in this generationprocess, the design of the genetic operators become a main task. There is needof remembering that the individuals encode two diferent information levels, a�rst part containing the rule linguistic terms (RB information), and a secondone coding the meaning associated to these labels (DB information). As thereexists a strong relationship between both parts, operators working cooperativelyin C1 and C2 are required in order to make best use of the representation used.It can be clearly observed that the existing relationship will present severalproblems if not handled adequately. For example, modi�cations in the �rst chro-mosome part have to be automatically reected in the second one. It makes nosense to modify the linguistic term and continue working with the previous la-bel meaning. On the other hand, there is need of developing recombination in acorrect way in order to obtain meaningful o�springs.Taking into account these aspects, several operators belonging to three ge-netic operator classes are going to be used: mutation, crossover, and evolutionstrategy.Mutation: Two di�erent operators are used, each one of them acting on a dif-ferent chromosome part. A short description of them is given below:{ As C2 corresponds to the individual representation employed in the freestructure generation process, the same mutation developed in this process isperformed on it. In this way, Michalewicz's non-uniform mutation operatoris employed [18].If Ctv = (c1; :::; ck; :::; cH) is a chromosome and the element ck was selectedfor this mutation (the domain of ck is [ckl; ckr]), the result is a vector Ct+1v =(c1; :::; c0k; :::; cH), with k 2 1; :::;H, and



c0k = � ck +4(t; ckr � ck) if a = 0,ck �4(t; ck � ckl) if a = 1,where a is a random number that may have a value of zero or one, and thefunction 4(t; y) returns a value in the range [0; y] such that the probabilityof 4(t; y) being close to 0 increases as t increases:4(t; y) = y(1 � r(1� tT )b)where r is a random number in the interval [0; 1], T is the maximumnumberof generations and b is a parameter chosen by the user, which determines thedegree of dependency with the number of iterations. This property causesthis operator to make an uniform search in the initial space when t is small,and a very local one in later stages.{ The mutation operator selected for C1 is similar to the one proposed byThrift in [21]. When a mutation on a gene belonging to the �rst part of thechromosome is going to be performed, a local modi�cation is developed bychanging the current linguistic term to the inmediately preceding or subse-quent one (the decision is made at random).When the label to be changed isthe �rst or last one in the term set, the only possible change is developed. Asit have been commented, a mutation in C1 provokes a change in C2. When alinguistic variable changes its value from one term to another, the meaningassociated to it is automatically updated in the second chromosome part tothe default values in the corresponding primary fuzzy partition.Crossover: As regards to the recombination process, two di�erent crossoveroperators are employed depending on the two parents' scope:{ If the rule encoded by both individuals is the same, then the genetic searchhas located a promising space zone that have to be adequatelly exploitated.This task is developed by applying the max-min-arithmetical crossover op-erator in C2 and obviously by maintaining the parent C1 values in the o�-spring. This crossover operator is proposed in [12] and works in the wayshown above.If Ctv = (c1; :::; ck; :::; cH) and Ctw = (c01; :::; c0k; :::; c0H) are to be crossed, thefollowing four o�spring are generatedCt+11 = aCtw + (1 � a)CtvCt+12 = aCtv + (1� a)CtwCt+13 with ct+13k = minfck; c0kgCt+14 with ct+14k = maxfck; c0kgThis operator can use a parameter a which is either a constant, or a variablewhose value depends on the age of the population. The resulting descendentsare the two best of the four aforesaid o�spring.



{ When the parents encode di�erent rules, it makes no sense to apply theprevious operator because it will provoke the obtaining of disrupted descen-dents. This fact is due to the combination of two membership functionsassociated to di�erent linguistic labels makes the obtaining of two new fuzzysets not belonging to the intervals of performance determined by the initialfuzzy partition. This second case highly recommend the use of the infor-mation encoded by the parents for explorating the search space in order todiscover new promising zones. In this way, an standard crossover operator isapplied over both parts of the chromosomes. This operator performs as fol-lows: a crossover point cp is randomly generated in C1 and the two parentsare crossed at the cp-th and n + 1 + 3 � cp genes. The crossover is devel-oped this way in both chromosome parts, C1 and C2, thereby producing twomeaningful descendents.Let us look at an example in order to clarify the standard crossover applica-tion. Since Ct = (c1; : : : ; ccp; ccp+1; : : : ; cn+1; ac1; bc1 ; cc1; : : : ; accp ; bccp ; cccp ; accp+1 ;bccp+1 ; cccp+1 ; : : : ; acn+1 ; bcn+1 ; ccn+1) and C 0t = (c01; : : : ; c0cp; c0cp+1; : : : ; c0n+1;ac01 ; bc01; cc01 ; : : : ; ac0cp ; bc0cp ; cc0cp ; ac0cp+1 ; bc0cp+1 ; cc0cp+1 ; : : : ; ac0n+1 ; bc0n+1 ; cc0n+1) theindividuals to be crossed at point cp, the two resulting o�spring are:Ct+1 = (c1; : : : ; ccp; c0cp+1; : : : ; c0n+1; ac1 ; bc1; cc1 ; : : : ;accp ; bccp ; cccp ; ac0cp+1 ; bc0cp+1 ; cc0cp+1 ; : : : ; ac0n+1 ; bc0n+1 ; cc0n+1)C 0t+1 = (c01; : : : ; c0cp; ccp+1; : : : ; cn+1; ac01;bc01 ; cc01; : : : ;ac0cp ; bc0cp ; cc0cp ; accp ; bccp ; cccp ; : : : ; acn+1 ; bcn+1 ; ccn+1)Hence the complete recombination process will allow GA to follow an ade-quate exploration-exploitation rate in the genetic search. The expected behaviorconsists of an initial phase where a high number of standard crossovers and avery small of max-min-arithmetical ones (equal to zero in the great majorityof the cases) are developed. The genetic search will perform a wide explorationin this �rst stage, locating the promising zones and sampling the populationindividuals at them in several runs. In this moment a new phase begin, charac-terized by the increasing of the exploitation of these zones and the decreasing ofthe space exploration. Therefore the number of max-min-arithmetical crossoversrises a lot and the application of the standard crossover decreases. An exampleof this behavior is shown in section 7 (Figure 8).Evolution Strategy: The last genetic operator to be applied consists of an(1+1)-ES. This optimization technique has been selected and integrated intothe genetic recombination process in order to perform a local tuning of thebest population individuals (rules) in each run. Each time a GA generationis performed, the ES will be applied over a percentage � of the best di�erentpopulation individuals existing in the current genetic population. In this way,it allows to develop again a strong exploitation over the promising space zones



found in each generation by adjusting the C2 part values of the chromosomeslocated at them.The basis of the ES employed were briey presented in Section 2.2. Nowwe are going to describe the adaptation of this algorithm to our problem. Asit has been commented previously, the mutation strenght depends directly onthe value of the parameter �, which determines the standard deviation of thenormally distributed random variable zi. In our case, the step size � can notbe a single value because each one of the membership functions encoded in thesecond part of the chromosome is de�ned over di�erent universes and so requiredi�erent order mutations. Therefore, an step size �i = � � si for each componenthas already been used in the (1+1)-ES. Anyway the relations of all �i were�xed by the values si and only the common factor � is adapted following theassumptions presented in [1].Each parent component xi varying in the interval of performance [xli; xri ] willhave its own associated step size �i with si = xri�xli4 . Hence when � takes value 1at the �rst ES generation, the obtaining of a big quantity of zi normal values inthe interval [�xri�xli4 ; xri�xli4 ] is ensured. All these values, as the ones remaining inthe intervals [xli;�xri�xli4 ] and [xri�xli4 ; xri ], perform a succesful xi mutation (thatis, the corresponding xi + zi lies in the xi interval of performance). When thisvalue does not belong to the commented interval, the mutated value x0i is equalto the interval extent, xli or xri , closer to xi + zi.The Figure 5 summarizes the application scope of the genetic operators pro-posed:
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Non-uniform MutationFig. 5. Generating process genetic representation and operators'application scopeFinally, the following algorithm summarizes the whole process:1. Compute the value nc of individuals belonging to P (t) couples to be crossedtaking as base the value of the crossover rate Pc.2. While (nc > 0) do



(a) Select at random the parents to be crossed: .(b) If (C1(father) = C1(mother))then maintain C1 and perform max-min-arithmetical crossover on C2for obtaining the two descendentselse perform standard crossover on C1 and C2.(c) nc  nc � 1.3. Compute the value nm of genes to be mutateed taking as base the value ofthe mutation rate Pm.4. While (nm > 0) do(a) Select at random the parent and gene to be muted.(b) If (the gene belongs to C1)then perform Thrift's mutation on it at C1 and update the correspondingC2 piece of chromosome to represent adequatelly the initial mutatedgene meaningelse perform non-uniform mutation on the C2 gene.(c) nm  nm � 1.5. Compute the value nes  � �N of individuals to be applied the ES and sortdescendentlty the current population, taking into account only the di�erentchromosomes.6. While (nes > 0) do(a) Select the next parent to be mutated, begining at the population head.(b) Perform the ES on C2.(c) nes nes � 1.With regards to the selection procedure, it is Baker's stochastic universalsampling [2], in which the number of any structure o�spring is limited by theoor and ceiling of the expected number of o�spring, together with the elitistselection.4.2 The Covering MethodThe covering method was presented in [13]. It is developed as an iterative processthat allows to obtain a set of fuzzy rules covering the example set. In eachiteration, it runs the generating method, chooses the best chromosome (rule),considers the relative covering value this rule provokes over the training set, andremoves from it the examples with a covering value greater than �. The coveringmethod is developed as follows:1. Initialization:(a) To introduce k, ! and �.(b) To set the example covering degree CV [l] 0, l = 1; :::; p.(c) To initialize the �nal set of rules Bg to empty.



2. Over the set of examples Ep, to apply the generating method.3. To select the best chromosome Cr encoding the fuzzy rule Rr.4. To introduce Rr in Rg.5. For every el 2 Ep do(a) CV [l] CV [l] + Rr(el),(b) If CV [l] � � then remove it from El.6. If Ep = ; then Stop else return to Step 2.Since two similar rules may be obtained, it is necessary to simplify the com-plete KB obtained from the previous process for deriving the �nal KB, therebyallowing the system to be controlled.5 The Genetic Simpli�cation ProcessDue to the iterative nature of the genetic generation process, an overlearningphenomenon may appear. This occurs when some examples are covered at ahigher degree than the desired one and it makes the obtained RB perform worse.In order to solve this problem and improve its accuracy, it is necessary to simplifythe rule set obtained from the previous process for deriving the �nal RB allowingthe system to be controlled.The simpli�cation process used was proposed in [13]. It is based on a bi-nary coded GA, in which the selection of the individuals is developed using theaforementioned stochastic universal sampling procedure together with an elitistselection scheme, and the recombination is put into e�ect by using the classicalbinary multipoint crossover (performed at two points) and uniform mutationoperators.The coding scheme generates �xed-length chromosomes. Considering therules cointained in the rule set derived from the previous step counted from1 to m, an m-bit string C = (c1; :::; cm) represents a subset of candidate rules toform the RB �nally obtained as this stage output, Bs, such that,If ci = 1 then Ri 2 Bs else Ri 62 BsThe initial population is generated by introducing a chromosome representingthe complete previously obtained rule set Rg, that is, with all ci = 1. Theremaining chromosomes are selected at random.As regards to the �tness funtion, E(�) it is based on an application-speci�cmeasure usually employed in the design of GFSs, the medium square error (SE)over a training data set, ETDS , which is represented by the following expression:E(Cj) = 12jETDSj Xel2ETDS(eyl � S(exl))2 ;where S(exl) is the output value obtained from the FLC using the RB coded inCj, R(Cj), when the state variables values are exl, and eyl is the known desiredvalue.



Anyway, there is a need to keep the control rule completeness property con-sidered in the previous stage. An FLC must always be able to infer a propercontrol action for every process state. We will ensure this condition by forcingevery example contained in the training set to be covered by the encoded RB ata degree greater than or equal to � ,CR(Cj)(el) = [j=1::T Rj(el) � � , 8el 2 ETDS and Rj 2 R(Cj) ;where � is the minimal training set completeness degree acepted in the simpli-�cation process. Usually, � is less than or equal to !, the compatibility degreeused in the generation process.Therefore, we de�ne a training set completeness degree of R(Cj) over the setof examples ETDS asTSCD(R(Cj); ETDS) = \el2ETDSCR(Cj)(el)The �nal �tness function penalizing the lack of the completeness property is:F (Cj) = �E(Cj) if TSCD(R(Cj); ETDS) � �12Pel2ETDS(eyl )2 otherwise.6 The Genetic Tuning ProcessThe genetic tuning process was presented in-depth in [12]. The process is basedon the existence of a previous complete KB, that is, an initial DB de�nition anda RB constituted by m fuzzy control rules.Each chromosome forming the genetic population will encode a complete KB.Each one of them contains the RB Rs with a di�erent DB associated with it.The GA designed for the tuning process presents a real coding issue, uses thestochastic universal sampling as selection procedure and Michaelewicz's non-uniform mutation operator. As regards to the crossover operator, the max-min-arithmetical is employed again.As we commented before, the membership functions are triangular-shaped.Thus, each one of them has an associated parametric representation based ona 3-tuple of real values. Each one of the rules will be encoded in pieces of thechromosome Cri, i = 1; : : : ;m, in the following way:Cri = (ai1; bi1; ci1; : : : ; ain; bin; cin; ai; bi; ci)Therefore the complete RB with an associated DB is represented by a completechromosome Cr: Cr = Cr1 Cr2 ::: CrmAs may be seen, each individual in the population represents a complete KB.More concretely, all of them encode the derived system RB Rs and the di�erence



between them are the fuzzy control rule membership functions, that is, the DBde�nition.The initial gene pool is created from the initial KB. This KB is encodeddirectly into a chromosome, denoted as C1. The remaining individuals are gen-erated by associating an interval of performance, [clh; crh] to every gene ch in C1,h = 1 : : : (n + 1) � m � 3. Each interval of performance will be the interval ofadjustment for the correspondent variable, ch 2 [clh; crh].If (t mod 3) = 1 then ct is the left value of the support of a fuzzy number.The fuzzy number is de�ned by the three parameters (ct, ct+1, ct+2) and theintervals of performance are the following:ct 2 [clt; crt ] = [ct � ct+1�ct2 ; ct + ct+1�ct2 ]ct+1 2 [clt+1; crt+1] = [ct+1 � ct+1�ct2 ; ct+1 + ct+2�ct+12 ]ct+2 2 [clt+2; crt+2] = [ct+2 � ct+2�ct+12 ; ct+2 + ct+3�ct+22 ]Figure 6 shows these intervals.
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t+2Fig. 6. Membership function and intervals of performance for the tuning processTherefore, we create a population of chromosomes containing C1 as its �rstindividual and the remaining ones initiated randomly, with each gene being inits respective interval of performance.The �tness function of a chromosome is de�ned by using a training input-output data set, ETDS , and a concrete error measure, the medium square errorin our proposal. In this way, the adaptation value associated to an individual isobtained by computing the error between the outputs given by the FLC usingthe KB encoded in the chromosome and those contained in the training dataset. The �tness function is represented by the following expression:E(C) = 12jETDSj Xel2ETDS(eyl � S(exl))2



7 Application of the learning process to the fuzzymodeling of two three-dimensional mathematical functionsIn order to analyze the accuracy of the method proposed, we have selectedtwo n-dimensional mathematical functions for using them to derive theoreticalthree-dimensional control surfaces. The mathematical functions and the variableuniverses of discourse considered are shown below. The spherical model, F1, isan unimodal function while the generalized Rastrigin function, F2, is a stronglymultimodal one, as may be observed in their graphical representations (Figure7). F1(x1; x2) = x21 + x22;x1; x2 2 [�5; 5]; F1(x1; x2) 2 [0; 50]F2(x1; x2) = x21 + x22 � cos(18x1)� cos(18x2);x1; x2 2 [�1; 1]; F2(x1; x2) 2 [2; 3:5231]
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4Fig. 7. Graphical representations of F1 and F2Two di�erent ways of fuzzy modeling of these surfaces are going to be com-pared by using the following both design methods:1. a two-stage method based on obtaining a complete KB by deriving the RBby means of the widely employed Wang and Mendel's (WM) method [22]and de�ning the DB by means of the genetic tuning method constituting thethird stage of the method proposed, and2. the GFS design method proposed in this paper.For each one of the functions, a training data set uniformly distributed inthe three-dimensional de�nition space has been obtained experimentally. In thisway, two sets with 1681 values have been generated by taking 41 values for eachone of the two state variables considered to be uniformly distributed in theirrespective intervals.



Two other data sets have been generated for their use as test sets for evalu-ating the performance of the learning method, avoiding any possible bias relatedto the data in the training set. The size of these data sets is a percentage of thecorresponding training set one, a ten percent to be precise. The data are obtainedby generating at random the state variable values into the concrete universes ofdiscourse for each one of them, and computing the associated output variablevalue. Hence two test sets formed by 168 data are used to measure the accuracyof the FLCs designed by computing the medium square error for them.The initial DB used in the generating process is constituted by three primaryfuzzy partitions (two corresponding to the state variables and one associated tothe control one) formed by seven linguistic terms with triangular-shaped fuzzysets giving meaning to them (as shown in Figure 2), and the adequate scalingfactors to traslate the generic universe of discourse into the one associated witheach problem variable.The following parameter values, corresponding to the �rst two stages, arecombined for determining the di�erent runs of the method to be carried out:� = f1; 1:5g, ! = 0:05, k = 0:1 and � = f0:25; 0:5g. It leads to an overall of4 runs per function. With respect to the remaining parameters, the t-norm �used in the rule generation process is the Minimum, the generating process GAsruns over 50 generations, the ES is applied until there is no improvement in 25generations over a percentage � = 20% of the population individuals (the param-eter c of the 1=5-success rule is equal to 0:9); and the genetic simpli�cation andtuning processes run over 500 and 1000 generations, respectively. In all cases,the population is formed by 61 individuals, the value of the non-uniform muta-tion parameter b is 5:0, and the crossover and mutation rates are, respectively,Pc = 0:6 and Pm = 0:1 (this last one per indiviual). The max-min-aritmethicalcrossover parameter a takes the value 0:35.Finally, as regards to the FLC reasoning method employed, we have selectedthe Minimum t-norm playing the role of the implication and conjunctive opera-tors, and the Center of Gravity weighted by the matching strategy acting as thedefuzzi�cation operator [5].The results obtained in the di�erent experiments are collected in the follow-ing tables where #R stands for the number of rules of the corresponding KB.Each table last row shows the results obtained by the WM-based method in thecorresponding function. Analyzing these results, the good behavior presentedby the proposed method can be observed. All the GFSs designed using it aremore accurated in a high degree than the ones based on the WM RB generationmethod in the fuzzy modeling of both functions.Finally, a graphical representation of the behavior of the crossover operatorsused is shown in Figure 8. As it was commented in section 4.1.4, the expectedbehavior consists of an initial phase where a high number of standard crossoversand a very small of max-min-arithmetical ones are developed, and a secondphase where the number of max-min-arithmetical crossovers rises a lot and theapplication of the standard crossover decreases. The �gure, drawn making useof the data collected in the run 56 of the experiment developed with parameters� = 1:5 and � = 0:5 (the FLC obtained presenting best behavior in the fuzzy



Table 1. Results obtained in the fuzzy modeling of function F1Parameters Generation Simpli�cation Tuning� ! � #R SE #R SE SE1.0 0.05 0.25 70 1.992471 58 1.630508 0.6986041.0 0.05 0.5 70 1.992471 63 1.770926 0.6631831.5 0.05 0.25 98 2.411402 67 1.779137 0.6968691.5 0.05 0.5 98 2.411402 73 2.130197 1.118251W M 49 4.651811 0.950740Table 2. Results obtained in the fuzzy modeling of function F2Parameters Generation Simpli�cation Tuning� ! � #R SE #R SE SE1.0 0.05 0.25 251 0.288433 190 0.244648 0.2142981.0 0.05 0.5 251 0.288433 206 0.266778 0.2307631.5 0.05 0.25 346 0.268026 232 0.213960 0.1952331.5 0.05 0.5 346 0.268026 253 0.232196 0.210177W M 49 2.094091 1.218088modeling of function F2), shows clearly this behavior.
0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50

standard crossovers
max-min-arithmetical crossovers

Fig. 8. Number of crossovers per generation in a run of one experiment developed
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