
10Evolutionary Learning Processesfor Data Analysis in ElectricalEngineering ApplicationsOSCAR CORD�ON1, FRANCISCO HERRERA1, LUCIANO S�ANCHEZ21 Department of Computer Science and Arti�cial Intelligence.University of Granada, 18071 - Granada, Spain.E-mail: ocordon, herrera@decsai.ugr.es2 Department of Computer Science.University of Oviedo. Oviedo, Spain.E-mail: luciano@lsi.uniovi.es10.1 INTRODUCTIONIn Spain, electrical industries do not charge the energy bill directly to the �nal user,but they share the ownership of an enterprise (called R.E.E., Red El�ectrica de Espa~na)which gets all payments and then distributes them according to some complex criteria(amount of power generation of every company, number of customers, etc.)Recently, some of these companies have asked to redistribute the maintenance costsof the network. Since maintenance costs depend on the total length of electrical line eachcompany owns, and on their kind (high, medium, urban low and rural low voltage)it was necessary to know the exact length of every kind of line each company wasmaintaining.High and medium voltage lines can be easily measured. But low voltage line iscontained in cities and villages, and it would be very expensive to measure it. Thiskind of line uses to be very convoluted and, in some cases, one company may servemore than 10000 small nuclei. An indirect method for determining the length of line isSample Contributed BookEditor Jenny Smith c1997 John Wiley & Sons Ltd.cbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)



2 O. CORD�ON, F. HERRERA AND L. S�ANCHEZneeded.Data Analysis (DA) can be considered as a process in which starting from some givendata sets, information about the respective application is generated. In this sense, DAcan be de�ned as a search for structure in data. Since in our problem there is a needto �nd a relationship between the population and size of a certain area and the lengthof line in it, making use of some known data, that may be employed to predict the reallength of line in any other village, it is clear that it may be solved by means of DAtechniques.In this work we will analyze two di�erent approaches that make use of theEvolutionary Algorithms (EAs) in the �eld of DA, the use of Genetic AlgorithmProgram (GA-P) [HD95] techniques for symbolic regression and the use of GeneticAlgorithms (GAs) [Gol89] and Evolution Strategies (ESs) [Sch95] to design Mamdaniand TSK-type Fuzzy Rule-Based Systems (FRBSs) [BD95, DHR93]. We will considerthese two approaches to solve the introduced problem.The paper is set up as follows. In Section 2, we introduce the use of the EAsin the �eld of DA and present the GA-P and Genetic Fuzzy Rule-Based Systems(GFRBSs) [CH95]. Sections 3 and 4 are devoted to present the two di�erent approachescommented, the use of GA-P algorithms for symbolic regression problems and the useof GAs and ESs to design FRBSs. In Section 5, the introduced Electrical Engineeringproblem is tackled by means of the proposed techniques and their performance iscompared to the one obtained by some classical methods. Finally, some concludingremarks are pointed out.10.2 EVOLUTIONARY ALGORITHMS FOR DATA ANALYSIS10.2.1 FrameworkIn DA, objects described by some attributes are considered and the speci�c values ofthe attributes are the data to be analyzed. Objects can be, for example, things, timeseries, process states, and so on. The overall goal is to �nd structure (information)about these data. This leads to a complexity reduction in the considered applicationwhich allows us to obtain improved decisions based on the gained information.The application of DA has a wide range and occurs in diverse areas where di�erentproblem formulations exist.Di�erent algorithmic methods for DA have been suggested in the literature, asclustering algorithms, regression techniques, neural netwoks, FRBSs, EAs, etc.As regards the DA in the light of EAs, a representation of the information structure isconsidered and evolved until having an abstraction and generalization of the problem,reected in the �tness function. For example, in [Gre94] di�erent approaches forlearning in the framework of GAs are to be found.Recently a lot of research e�orts have been directed towards the combinationof di�erent methods for DA. In this way, EAs have been combined with di�erenttechniques either to optimize their parameters acting as evolutionary tuning processesor to obtain hybrid DA methods, for example, evolutionay-neural processes [WS92],evolutionary regression models [Koz92] and evolutionary fuzzy sytems [HV96].Next, we briey introduce two speci�c hybrid approaches, the GA-P to performsymbolic regressions and GFRBSs. Two particular developments in each �eld will becbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)
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Figure 10.1 Member of population, GA-P algorithmspresented in Sections 4 and 5.10.2.2 GA-P for symbolic regressionGenetic Programming (GP) [Koz92] has emerged as an e�ective mean of automaticallygenerating computer programs to solve a variety of problems in many di�erent problemdomains, including the discovery of empirical formulae from numerical data.GP methods generate symbolic expressions and can perform symbolic regressions.However, the way in which GP perform symbolic regressions is quite restrictive; thestructure of an expression can be changed by crossover and mutation operations, butthe value of the constants embedded in it |generated by the implementation programwhen the GP starts| can only be altered by mutations.The GA-P [HD95] performs symbolic regression by combining the traditional GAswith the GP paradigm to evolve complex mathematical expressions capable of handlingnumeric and symbolic data. The GA-P combines GAs and GP, with each populationmember consisting of both a string and an expression as it is shown in Figure 10.1.The GP part of the GA-P evolves the expression. The GA part concurrently evolvesthe coe�cients used in the expressions. Most of the GA-P's elements are the same asin either of the traditional genetic techniques.The GA-P and GP make selection and child generation similarly, except that theGA-P's structure requires separate crossover and mutation operators for the expressionand coe�cient string components. In the GA-P, crossover and mutation take placeindependently for the coe�cient string and the expressional component. Mutation andcrossover rates for the coe�cient string (using traditional GAmethods) are independentfrom the rates for the expressional part (using standard GP methods).By fusing the GA's capability of value optimization and the GP's capability ofcreating mathematical equations, it is improved the ability to describe the data.Therefore, the GA-P is a powerful DA tool.A complete description of GA-P can be found in [HD95].cbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)



4 O. CORD�ON, F. HERRERA AND L. S�ANCHEZ10.2.3 Genetic Fuzzy Rule-Based SystemsNowadays, one of the most important applications of the Fuzzy Set Theory suggestedby Zadeh in 1965 [Zad65] are the FRBSs. These kind of systems constitute anextension of the classical Rule-Based Systems because they deal with fuzzy rulesinstead of classical logic rules. Thanks to this, they have been succesfully appliedto a wide range of problems presenting uncertainty and vagueness in di�erent ways[BD95, Ped96, Wan94, YZ92].An FRBS presents two main components: 1) the Inference System, which puts intoe�ect the fuzzy inference process needed to obtain an output from the FRBS when aninput is speci�ed, and 2) the Knowledge Base (KB) representing the known knowledgeabout the problem being solved, composed of the Rule Base (RB) constituted bythe collection of fuzzy rules, and of the Data Base (DB) containing the membershipfunctions de�ning their semantics.There exist two di�erent kinds of fuzzy rules in the literature according to theexpresion of the consequent:1. Mamdani-type fuzzy rules consider a linguistic variable in the consequent[DHR93]: IF X1 is A1 and ... and Xn is An THEN Y is Biwith X1; : : : ; Xn and Y being the input and output linguistic variables,respectively, and A1; : : : ; An and B being linguistic labels, each one of themhaving associated a fuzzy set de�ning its meaning.2. TSK fuzzy rules are based on representing the consequent as a polynomialfunction of the inputs [TS85]:IF X1 is A1 and ... and Xn is An THEN Y = p1 �X1 + : : :+ pn �Xn + p0with X1; : : : ; Xn and Y being the input and output linguistic variables,respectively, and p0; p1; : : : ; pn being real-valued weigths.Knowledge-based methods are sutiable for fuzzy DA. In this approach, fuzzy If-Thenrules are formulated and a process of fuzzi�cation, inference and defuzzi�cation leadsto the �nal decision. Di�erent e�orts have been made to obtain an improvement onsystem performance by incorporating learning mechanisms to modify the rules and/ormembership functions in the knowledge base (KB).With the aim of solving this problem, in the last few years, many di�erent approacheshave been presented taking EAs, usually GAs, as a base, to automatically derive theKB, constituting the so called GFRBSs [CH95]. GFRBSs are considered nowadaysas an important branch of the Soft Computing area [Bon97]. The promising resultsobtained by the EAs in the learning or tuning of the KB have extended the use of thesealgorithms in the last few years (see [CHL97a, CHL97b]).It is possible to distinguish among three di�erent groups of GFRBSs depending onthe KB components included in the learning process: DB, RB, or both, i.e., KB [CH95].The third group may be divided in two di�erent subgroups depending on wheter the KBlearning is performed in a single process or in di�erent stages. For a wider descriptionof each GFRBS group see [CH95, CH97b], and for an extensive bibliography see[CHL97a], Section 3.13. Di�erent approaches may be found in [CH95, HV96].cbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)
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xFigure 10.2 Linear and interval estimation10.3 INTERVAL-VALUED GA-P FOR SYMBOLIC REGRESSIONIn this Section we will introduce a modi�ed version of the GA-P method, which we willcall Interval GA-P. This approach |initially developed to solve an speci�c symbolicregression problem, [San97b]| is characterized by using interval values, instead ofpunctual ones, and by combining GA-P with local optimization techniques as well.Regression analysis is concerned with the approximation of observed data by afunction, when some variables (outputs) depend on other (inputs). Let the outputY be a random variable that will be estimated on the basis of the input variableX = (X1; : : : ; Xn). Usually, we understand that the regression analysis involves �ndinga function g, such that g(X) is an admissible estimation of E(Y jX). If the structureof g is unknown, the problem is named symbolic regression.Symbolic regression produces a punctual estimation; anyway, sometimes it isnecessary to obtain the margins in which we expect the output Y is, when the inputvariables Xi are known. Now, we should not look for a function g, but a multi-valuedmapping �� : Im(X) �! I(IR), where I(IR) is the set formed by all closed intervals inIR, such that the random set �� �X : 
 �! I(IR) veri�esPf! 2 
 j Y (!) 2 �� �X(!)g � 1� �for a given value of �.We can assess this interval prediction in some di�erent ways. We think that it isreasonable to admit that, given a value for �, the shorter �� is, the better it is. So, ifwe de�ne �� �X = [g� �X; g+ �X]for two continuous functions g+ and g� (see Figure 10.2) the margin of validity willbe better when E(g+ �X � g� �X)is as low as possible, constrained byPf! 2 
 j g� �X(!) < Y (!) < g+ �X(!))g � 1� �:cbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)



6 O. CORD�ON, F. HERRERA AND L. S�ANCHEZIn other words, given a regionR(g+;g�) = f(x; y) 2 IRd+1 j g�(x) < y < g+(x)git must be true that Pf! 2 
 j (X;Y )(!) 2 R(g+;g�)g � 1� �:Let us suppose now that g+ y g� also depend on a function h� : IRd �! IR in thefollowing way:[g�(x); g+(x)] = ft 2 IR j t = h�(x); � 2 [��1 ; �+1 ]� : : :� [��m; �+m]gwhere the expression of h� is known except for the value of m parameters �i, and h�is continuous with respect to � and x (so g+ and g� will also be continuous functions,as we had proposed). Then, for a random sample of size N , obtained from the randomvector (X;Y ), ((X1; Y1); : : : ; (XN ; YN ))we de�ne ��i and �+i to be the values that minimize1N NXi=1(g+(Xi)� g�(Xi))constrained by 1� � � 1N NXi=1 IR(g+;g�)(Xi; Yi)for a given value of �. Notice that � 6= �; once chosen a value for �, we can only estimate� by means of a second sample((X01; Y 01); : : : ; (X0M ; Y 0M));independent from the �rst one, by means of�̂M = 1� 1M MXi=1 IR(g+;g�)(X0i ; Y 0i ):The random variable �̂M follows a binomial distribution with parameters M and �and, by the strong law of the large numbers, it converges almost surely to the value �when M !1.In any case, to minimizeE(g+ � X�g��X) with respect to the imposed constraintswe should apply non linear constrained optimization techniques (say, for instance, nonlinear programming). And we cannot forget that the calculus is based in the knowledgeof h�. Both problems (the search of the analytic expression of h and the values for �+iand ��i ) can be simultaneously solved by applying (with some modi�cations) the GA-Ptechnique.The adequacy of function h to a set of points is de�ned by the separation betweeng+ and g�, and both were de�ned in terms of h:[g�(x); g+(x)] = ft 2 IR j t = h�(x); � 2 [��1 ; �+1 ]� : : :� [��m; �+m]gcbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)
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+],  x ∈ [x-,x+]}Figure 10.3 Interval arithmetic GA-P algorithmsthat is, to �nd the value of g+(x) we should �nd the maximum of h inside the allowedrange for its parameters,g+(x) = maxIR fh�(x); � 2 [��1 ; �+1 ]� : : :� [��m; �+m]g:The same thing could be said of g�. Fortunately, numerical calculus of this minimumand this maximum can be avoided if we choose an adequate representation for theexpressional part of the GA-P algorithm.The proposed representation is based in the use of interval arithmetic to perform alloperations involved in the expressional part (see Figure 10.3). That is, we codify thefunction in a tree, whose terminal nodes represent intervals [��i ; �+i ] (that will containthe unknown values of the parameters). The internal nodes represent unary intervaloperations Ou(A) = fx 2 IR j x = ou(t) ^ t 2 Agor binary operationsOb(A;B) = fx 2 IR j x = ob(t; u) ^ t 2 A; u 2 Bgwhere A;B 2 I(IR), oa : IR �! IR and ob : IR� IR �! IR. Then, the evaluation of theexpressional part in an input value (point or interval) will be an interval. Moreover, bychoosing operators Ou and Ob such that their evaluation depends only on the extremesof their arguments, the number of operations needed to evaluate the length of �(g+;g�)will be proportional to the number of operations needed to evaluate h(x), so time ofconvergence will be proportional to conventional algorithms'.A description on the unary and binary operators and the remaining characteristicsof the algorithm are to be found in [San97b].cbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)



8 O. CORD�ON, F. HERRERA AND L. S�ANCHEZ10.4 GENETIC ALGORITHMS AND EVOLUTION STRATEGIES TODESIGN FUZZY RULE-BASED SYSTEMSIn this section, we analyze two di�erent approaches for designing FRBSs by meansof EAs that may be employed as DA techniques. In the �rst one, a GA will be usedto re�ne a preliminary de�nition of a Mamdani-type KB, while in the second one, a(�; �) � ESs is considered to automatically derive a whole de�nition of a TSK-typeKB.10.4.1 Using Genetic Algorithms to Improve a Preliminary De�nition of aMamdani-Type Knowledge BaseIn this �rst approach, EAs are considered to improve a previous de�nition of aKB. Thus, we are working with a GFRBS belonging to the �rst group mentionedin Section 2. These evolutionary methods are commonly known as evolutionary tuningprocesses, and many of them are to be found in the specialized literature (see [CHL97a],Section 3.13, and [CHL97b], Section 13). They all deal with the problem of re�ninga preliminary KB obtained from the linguistic information given by human experts,from an automatic learning process based on the numerical information available, orfrom a method combining both types of information [Wan94].These kinds of processes may work over di�erent DB components and adjust itsprevious de�nition by adapting it. The components that may be involved in theevolutionary tuning process are the following:� The de�nitions of the fuzzy rule membership functions collected in the DB.� The scaling factors.� The gain of the di�erent fuzzy partitions considered.In this subsection we �rst present a very known inductive algorithm to deriveMamdani-type KBs, the Wang and Mendel's (WM) one [WM92], that is consideredto generate a preliminary de�nition of the KB to solve any problem. Then, we willbriey introduce a genetic tuning process for adjusting the fuzzy membership functionsof the di�erent fuzzy partitions considered in the obtained KB [CHL96, CH97b]. Thecombination of both single methods in a two-stage process will allow us to automaticallydesign high-performance Mamdani-type FRBSs. Anyway, it must be noted again thatthe proposed genetic tuning process may be used in combination with any othergeneration process able to obtain a preliminary de�nition of the KB.The Wang and Mendel's Rule Base Generation ProcessThe inductive KB generation process presented in [WM92] has been widely knownbecause of its simplicity and good performance. It is based on working with an input-output data set representing the behaviour of the problem being solved and witha previous de�nition of the DB composed of the input and output primary fuzzypartitions used. The fuzzy rule structure considered is the usual Mamdani-type rulewith n input variables and one output variable presented in Section 2.The generation of the fuzzy rules of this kind is performed by putting into e�ect thethree following steps:cbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)
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0.5Figure 10.4 Graphical representation of a possible fuzzy partition1. To generate a preliminary linguistic rule set: This set will be composed ofthe fuzzy rule best covering each example (input-ouput data pair) existingin the input-output data set. The composition of these rules is obtained bytaking a speci�c example, i.e., a n + 1-dimensional real array (n values forthe input variables and one for the output one), and setting each one of therule variables to the linguistic label associated to the fuzzy set best coveringevery array component.2. To give an importance degree to each rule: Let R = If X1 is A and X2 isB then Y is C be the linguistic rule generated from the example (x1; x2; y)in a problem in which three variables, two input and one output ones, areinvolved. The importance degree associated to it will be obtained as follows:G(R) = �A(x1) � �B(x2) � �C(y)3. To obtain a �nal RB by using the preliminary rule set: In the case in whichall the rules in the preliminary set presenting the same antecedent values haveassociated the same consequent one, this linguistic rule is automatically put(only once) into the �nal RB. On the other hand, if there are conictive rules,i.e., rules with the same antecedent and di�erent consequent values, the ruleconsidered for the �nal RB will be the one with higher importance degree.A Genetic Tuning Process for Adjusting the Fuzzy Membership Functionsin a Data BaseAs all the GFRBSs in the same family, the genetic tuning process presented in[CHL96, CH97b] is based on the existence of a previous de�nition of the whole KB,i.e., an initial DB and an RB composed of T Mamdani-type fuzzy rules, called R.Each chromosome forming the genetic population will encode a di�erent DBde�nition that will be combined with the existing RB to evaluate the individualadaption.The GA designed for the tuning process presents real coding issue, uses the stochasticuniversal sampling [Bak87] as a selection procedure and Michaelewicz's non-uniformmutation operator [Mic96]. As regards the crossover operator, the max-min-arithmeticalone [HLV95, HLV97], which makes use of fuzzy tools in order to improve the GAbehaviour, is employed.The primary fuzzy sets considered in the initial linguistic variables fuzzy partitionsare triangular-shaped (see Figure 10.4). Thus, each one of the membership functionscbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)
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EVOLUTIONARY LEARNING PROCESSES FOR DATA ANALYSIS 11E(Cj) = 12jETDS j Xel2ETDS(eyl � S(exl))2with S(exl) being the output value obtained from the FRBS using the KB R(Cj),comprising the initial RB de�nition, R, and the DB encoded in the chromosome Cj,when the input variable values are exl = (exl1; : : : ; exln), and eyl is the known desiredvalue.The second �tness function de�nition is based on considering the completenessproperty, an important property of KBs [DHR93]. This condition is ensured by forcingevery example contained in the training set to be covered by the considered KB to adegree greater than or equal to � ,CR(Cj )(el) = [j=1::T Rj(el) � � , 8el 2 ETDS and Rj 2 R(Cj)where � 2 [0; 1] is the minimal training set completeness degree, a value provided bythe system designer.Therefore, we de�ne a training set completeness degree of R(Cj) over the set ofexamples ETDS as TSCD(R(Cj); ETDS) = \el2ETDSCR(Cj)(el)and the �nal �tness function penalizing the lack of the completeness property is:F (Cj) = � E(Cj) if TSCD(R(Cj); ETDS) � �12Pel2ETDS (eyl)2 otherwise.10.4.2 Using Evolution Strategies to Derive a TSK Knowledge BaseIn this second approach, we will consider a GFRBS that belongs to the third saidgroup, the ones learning the complete KB. We are going to work with an evolutionarylearning process presented in [CH97a], which is able to generate a whole de�nition ofa TSK KB from examples.The GFRBS is based on an iterative algorithm that equally divides the input spaceinto a number of fuzzy subspaces and studies the existence of data in them. Eachtime data are located in a speci�c fuzzy input subspace, the process applies a TSKrule consequent learning method to determine the existing partial linear input-outputrelation, taking the data located in this input subspace as a base. The latter methodis based on a (�; �)-ES using a new TSK rule consequent coding scheme, the angularcoding, that was proposed in [CH97a], and a local measure of error, and takes intoaccount the knowledge contained in this training data subset to improve the searchprocess.Next subsections will introduce the di�erent process components. First of all, theTSK rule consequent learning method is introduced. Then we propose the use of theknowledge contained in the training data set to improve the search process. Finallywe present the algorithm of the whole generation process, which makes use of the twoprevious aspects.cbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)



12 O. CORD�ON, F. HERRERA AND L. S�ANCHEZThe TSK rule consequent learning methodIn this method, the (�; �)-ES is considered to de�ne TSK rule consequent parameters.The dimension n of the object variable vector ~x is determined by the number of inputvariables in the problem being solved. When there are iv input variables, there aren = iv+1 parameters to learn in the TSK rule consequent. The ~x part of the individualsforming the (�; �)-ES population is built by encoding the possible values using theangular coding proposed in [CH97a]. This coding scheme is based on encoding theangle value associated to the TSK rule consequent parameters instead of the tangentone by means of the functionC : R! (��2 ; �2 ) ; C(y) = arctan(y)EA evolution is guided by a �tness function composed of a local measure of error.The expression of the measure used is the following:Xel2E hl � (eyl � S(exl))2where E is the set of input-output data pairs el = (exl1; : : : ; exliv; eyl) located in thefuzzy input subspace de�ned by the rule antecedent, hl = T (A1(exl1); : : : ; Aiv(exliv)) isthe matching between the antecedent part of the rule and the input part of the currentdata pair, exl, and S(exl) is the ouput provided by the TSK fuzzy rule when it receivesexl as input.The object variables of the individuals in the �rst population are generated in theway shown in the next subsection, taking into account the knowledge contained inthe input-output data set. As regards the composition of the remaining vectors, thecomponents of ~� are initiated to 0:001, and the ones in ~�, when considered, are set toarctan (1).Using available knowledge in the design processTo develop the knowledge-based generation of the initial population, we compute thefollowing indices and obtain the following set from the input-output data set E:ymed = Pel2E eyljEj ; ymin = minel2E feylg ; ymax = maxel2E feylghmax = maxel2E fhlg; E� = fel 2 E=hl � � � hmaxgTherefore, we generate the initial ES population in three steps as follows:1. Generate the ~x part of the �rst individual, ~x1, initiating parameters xi,i = 1; : : : ; iv, to zero, and parameter x0 to the angular coding of ymed.2. Generate the ~x part of the following  individuals, ~x2; : : : ; ~x+1, with  2f0; : : : ; � � 1g de�ned by the GFRBS designer, initiating parameters xi,i = 1; : : : ; iv, to zero, and x0 to the angular coding of a value computedat random in the interval [ymin; ymax].cbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)



EVOLUTIONARY LEARNING PROCESSES FOR DATA ANALYSIS 133. Generate the ~x part of the remaining � � ( + 1) individuals, ~x+2; : : : ; ~x�,initiating parameters xi, i = 1; : : : ; iv, to the angular coding of valuescomputed at random in the interval (��2 ; �2 ), and x0 to the angular codingof a value computed from a randomly selected element e in E� (� 2 [0:5; 1]is provided by the GFRBS designer as well) in such a way that e belongs tothe hyperplane de�ned by the TSK rule consequent generated. Thus, we shallensure that this hyperplane intersects with the swarm of points contained inE�, the most signi�cative ones from E.Since with small angular values, large search space zones are covered, it seemsinteresting to generate small values for the parameters xi in this third step.To do this, we make use of a modi�er function that assigns greater probabilityof appearance to the smaller angles according to a parameter q, also providedby the GFRBS designer. We use the following function:f : [0; 1]� f�1; 1g ! (��2 ; �2 ) ; f(x; z) = z � �2 � xqHence, the individual generation is performed as follows in this third step:For j =  + 2; : : : ; � doa) For i = 1; : : : ; iv doa.1) Generate y at random in [0; 1].a.2) Generate z at random in f�1; 1g.a.3) Set xi to f(y; z).b) Generate the value of x0:b.1) Select e at random from E�.b.2) Set x0 to ey�Pivk=1 C�1(xk)�exk, where C�1(�) = tan(�) is the inverseof C.Algorithm of the Evolutionary Generation ProcessThe generation process proposed is developed by means of the following steps:1. Consider a fuzzy partition of the input variable spaces obtained from theexpert information (if it is availaible) or by a normalization process. If thelatter is the case, perform a fuzzy partition of the input variable spacesdividing each universe of discourse into a number of equal or unequalpartitions, select a kind of membership function and assign one fuzzy set toeach subspace. In this paper, we will work with symmetrical fuzzy partitionsof triangular membership functions (see Figure 10.4).2. For each multidimensional fuzzy subspace obtained by combining theindividual input variable subspaces using the and conjunction do:(a) Build the set E0 composed of the input-ouput data pairs e 2 E that arelocated in this subspace.(b) If jE0 j 6= 0, i. e., if there is any data in this space zone, apply the TSK ruleconsequent learning method over the data set E0 to determine the partiallinear input-output relation existing in this subspace. Therefore, no rulesare considered in the fuzzy subspaces in which no data are located.(c) Add the generated rule to the KB.cbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)



14 O. CORD�ON, F. HERRERA AND L. S�ANCHEZ10.5 PRACTICAL APPLICATIONWe have mentioned that the development of the Interval GA-P Method was drivenby a practical symbolic regression problem. That work dealt with maintenance costestimation in some di�erent kinds of electrical lines, and one of its intermediate resultswas the de�nition of a model relating the lenght of line in a rural population with itscharacteristics. We think that this problem is well suited to numerically compare themodels we have de�ned, so we reproduce it here partially.We were provided with the measured line length, the number of inhabitants and themean distance from the center of the town to the three furthest clients in a sample of 495rural nuclei. Our objective was to relate the �rst variable (line length) with the othertwo ones (population, radius of village), �rst by classical methods, later by applyingthe DA techniques presented in this paper. Numerical results will be compared in thenext section.Our variables are named as shown in Table 10.1.Table 10.1 Notation considered for the problem variablesSymbol MeaningAi Number of clients in populationRi Radius of i population in the samplen Number of populations in the sampleli Line length, population i~li Estimation of li10.5.1 Application of classical methodsIn order to apply classical methods, we needed to make some hypothesis [San97a]. In thepopulations that are being studied, electrical networks are star-shaped and arrangedin sectors. A main line passes near all clients inside them, and clients are connected tothese main lines by small segments (see Figure 10.6).To build a theoretical simpli�ed model we have admitted that:� A population comprises si sectors. Each sector covers an angle 2�i. All sectorsin the same population cover the same angle. Each sector is served by oneoutput of the only transformation center in the village.� All sectors in a population have the same radius, Ri.� Clients are uniformly distributed inside every sector.� Inside a sector, the electrical line comprises a main nerve of length Ri and somany branches as consumers.If we admit that customers are uniformly distributed, we can approximate the totallength by multiplying the mean distance between one of them and the nerve by thenumber of inhabitants. Let us name this mean distance di for population i, and let thesector be 2�i wide. Thencbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)



EVOLUTIONARY LEARNING PROCESSES FOR DATA ANALYSIS 15
Figure 10.6 Models of some kind of nucleidi = 2(1� cos�i)3�i Riso cable length will be~li = si(Ri + Aisi di) = siRi +Ai 2(1� cos�i)3�i Ri10.5.2 Classical regression adjustIf the angles �i and the numbers si were similar enough between them, we couldregard them as constants and estimate them by the parameters �i = � y si = s of aleast squares linear regression ~li=Ri = s+ k(�)Ai:to a set of pairs (x; y) = (Ai; li=Ri).We can get a better adjust by allowing a certain dependence between the number ofsectors, their angles and the number of inhabitants. This can be done by dividing thesample into classes or by mean of a change of variables. Both cases were studied, andthe best adjust was obtained with the model~liRi = k1Ak2i10.5.3 GA-P and Interval GA-P adjustLet us apply GA-P algorithms to check whether we can obtain a formula that iscomparable in complexity with the last one, while getting better adjust to the realcbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)



16 O. CORD�ON, F. HERRERA AND L. S�ANCHEZTable 10.2 Parameter values considered for the GA-P processParameter DecisionPopulation size 100Maximum number of generations 1000 (steady state)Parent selection (See text)GA Part encoding RealGA Crossover operator Two pointsGP Crossover operation Subexpression exchange,not context-dependantGA Cross. probability 0.9GP Cross. prob. internal nodes 0.9GP Cross. prob. leaves 0.1GA Mutation probability 0.01GP Mutation probability 0.01Expressional part limited to 20 nodesComplexity individuals initial pop. 20 nodesMaximum number of parameters 10Enrichment initial population 1000 individualsEdition probability 0Encapsulation probability 0Permutation probability 0Decimation NoADFs maximum 0Local GA optimization Nelder and Mead's simplexdata. We will de�ne \simple expression" as a formula that can be codi�ed in a treewith no more than 20 nodes and depending on no more than 10 parameters. Binaryoperations will be sum, subtraction, product, quotient and power. The unary operationwill be the square root. Other decisions (whose meaning is well known, see for instance[HD95, KR94, Mic96]) are shown in the Table 10.2.We randomly select three individuals every generation. The worst one of them isreplaced with the best descendent of the crossover of the remaining ones. Observe thatthis strategy is elitist and steady state.10.5.4 GFRBS fuzzy modelingTo solve the problem by means of the GFRBSs proposed, we have considered theparameter values shown in Tables 10.3 and 10.4. In both cases, the initial DBconsidered is constituted by some primary equally partitioned fuzzy partitions formedby seven linguistic terms with triangular-shaped fuzzy sets giving meaning to them(as shown in Figure 10.4), and the adequate scaling factors to translate the genericuniverse of discourse into the one associated with each problem variable.cbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)



EVOLUTIONARY LEARNING PROCESSES FOR DATA ANALYSIS 17Table 10.3 Parameter values considered for the genetic tuning processParameter DecisionPopulation size 61Maximum number of generations 1000Non-uniform mutation parameter b 5Max-min-arithmetical parameter a 0.35Crossover probability 0.6Mutation probability 0.1Fitness function ETable 10.4 Parameter values considered for the TSK GFRBSParameter DecisionNumber of parents � 15Number of descendents � 100Maximum number of generations 500Parameter  0:2 � � = 3Parameter � 0.7Parameter q 5Recombination operators considered ~r (3; 2; 0)Number of parents considered for recombination ~� (�; �; 1)Table 10.5 Results obtained in the problem being solvedMethod Training Test ComplexityLinear 287775 209656 7 nodes, 2 par.Exponential 232743 197004 7 nodes, 2 par.2th order polynomial 235948 203232 25 nodes, 6 par.3rd order polynomial 235934 202991 49 nodes, 10 par.3 layer perceptron 2-25-1 169399 167092 102 par.GA-P 183693 159837 20 nodes, 3 par.Interval GA-P 192908 158737 16 nodes, 3 par.WM fuzzy model 175337 180102 13 rulesTSK fuzzy model 162609 148514 20 rulescbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)



18 O. CORD�ON, F. HERRERA AND L. S�ANCHEZ10.5.5 Comparison between methodsTo compare classical method, GA-P technique and GFRBS fuzzy modeling we havedivided the sample into two sets comprising 396 and 99 samples. SE values over thesetwo sets are labeled training and test. In this case, we de�ne SE as12 �N NXi=1(~li � li)2and the column complexity contains the number of parameters and the number of nodesin the parse tree of the expression, as well as the number of rules in the KB of everygenerated fuzzy model.The parameters of the polynomial models were �tted by Levenberg-Marquardt;exponential and linear models were �tted by linear least squares and the multilayerperceptron was trained with the QuickPropagation algorithm. The number of neuronsin the hidden layer was chosen to minimize the test error.We can observe that fuzzy models and GA-P techniques clearly outperform classicalnon linear regression methods, being equal or superior to neural networks. This resulthas great signi�cance, because it means that neural network performance can beachieved with a model with a high descriptive power. WM fuzzy models provide themost comprehensive explanation of its functioning, and should be used when a human-readable, rule based, description of the problem is needed. In this case, the geneticbased method has found a very simple structure, comprising only 13 rules.When a mathematical formula is preferred to the rule bank, GA-P methods providea suitable expression where the user can select the balance between complexity andprecision. We observed that usually Interval GA-P �nds a simpler expression thatpunctual GA-P, besides its convergence is somewhat slower. Observe that IntervalGA-P is not intended to provide an estimation but a range of values in which theoutput is, with a probability higher than a preselected value. The number collected inthe table is the scoring achieved by a punctual model formed when every interval ofparameters is replaced by its mean point in the �nal model.By last, observe that the best precision can only be obtained if we choose the lessdescriptive of fuzzy models, TSK. This model has a high complexity (20 rules) andde�nitely it is the selection that should be made when the precision is more importantthan the easiness of explanation. Anyway, this fuzzy model has associated a higher levelof description than neural network models, because of the possibility of interpretingthe antecedent part of the fuzzy rules.10.6 CONCLUDING REMARKSIn this contribution we have presented the application of two hybrid EA-based DAmethods, the Interval GA-P for symbolic regression and GFRBSs, in a real-worldElectrical Engineering problem.Both techniques have demonstrated to be powerful DA tools capable of makingabstraction on the data with good generalization properties in view of the resultsobtained in the application tackled. The �rst one allows us to obtain expressions withalgebraic operators while the second one is able to generate KBs giving a linguisticlocal description of the problem.cbook2e 4/8/1997 14:06|PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)
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