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1. Introduction

In this chapter, we deal with the identification of linguistic fuzzy models (or
Mamdani fuzzy models) for multiple-input/single-output (MISO) systems.
We consider a variant of the classical linguistic fuzzy model in which there
does not exist a pre-determined relationship between the linguistic values of
the input and output variables and the membership functions used to define
the meaning (semantics) of these linguistic values. We call this type of a
linguistic fuzzy model an approzimative linguistic fuzzy model [4, 10].

Once an approximative linguistic fuzzy model has been chosen to repre-
sent a MISO system, the next step is to determine its structure and estimate
its parameters. This is done in three steps. First we obtain a initial model
structure and parameters. That is, we generate an initial set of fuzzy rules (or
initial fuzzy rule base) and initial membership functions for the antecedent
and consequent parts of the fuzzy rules. Second, the initial fuzzy rule base
is simplified by removing redundant fuzzy rules and thus, the final structure
of the approximative linguistic fuzzy model is determined. Third, we deter-
mine the final membership functions so that to maximize the accuracy of the
approximative linguistic fuzzy model. Therefore, the proposed identification
technique deals with both structure and parameter identification, and is based
on learning from available input-output data.

The learning techniques used for the purpose of the identification of
fuzzy models normally deal with the problem of designing and optimizing
a fuzzy rule base and/or the parameters of membership functions using on-
and/or off-line input-output data. These techniques include inductive learn-
ing [13, 38], descent methods [31], neural networks [26, 28], clustering tech-
niques [39], genetic algorithms [6] (section 3.13), etc. On the other hand, a
large class of methods known under the name of evolutionary computation
(EC) use computational models of evolutionary processes as key elements in
the design and implementation of identification and optimization algorithms.
There is a variety of evolutionary computational models referred to as evo-
lutionary algorithms (EAs). There are three well-defined EAs which serve
as the basis for much of the activity in the field of EC: Genetic Algorithms
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(GAs), Fvolution Strategies (ESs), Evolutionary Programming (EP), and Ge-
netic Programming (GP). In this chapter, we make use the first two types of
EAs.

The most well known EAs are the GAs, i.e., search algorithms that use
operations found in natural genetics to guide the search in complex search
spaces. GAs are have been theoretically and empirically proven to have ro-
bust and computationally efficient search capabilities. They also have been
demonstrated to be a powerful tool for automating the construction of the
fuzzy rule bases, since learning and self-organization may be considered in a
lot of cases as optimization and/or efficient search problems. The GAs based
approaches used in the context of automating and optimizing the construc-
tion of fuzzy rule bases are known under the name of genetic fuzzy systems
(GFSs) [4]. A short description of these approaches is included in Sect. 2.
Using the more general term evolutionary instead of genetic they are also
called evolutionary fuzzy systems.

The identification method presented in this chapter uses GAs, and can
be described as three-stage inductive learning process. These three stages are
the following:

1. GAs based generation of approximative fuzzy rules, based either on prior
fuzzy partions of the domains of the input and output variables, or no
prior fuzzy partitions at all. In the first case, ESs are used for a local
tuning of the fuzzy rules. At this stage the initial fuzzy model structure
and parameters are obtained.

2. GAs based simplification of the initial fuzzy rule base, thereby avoiding
possible overlearning, and removing redundant fuzzy rules. At this stage
the final model structure is obtained, i.e., all the fuzzy rules constituting
the approximative linguistic fuzzy model.

3. GAs based tuning for adjusting the membership functions in the fuzzy
rules using fitness criteria. At this last stage, the final model parameters
are estimated.

In addition, the genetic fuzzy identification method (GFIM) presented in
this chapter, permits the incorporation of prior, qualitative knowledge, and
is able of blending this knowledge with the available input-output data.

The remaining part of this chapter is structured as follows. Section 2 serves
as a brief introduction to EAs and GFSs. Section 3 considers the fuzzy model
identification problem. Section 4 is devoted to the genetic fuzzy identification
method. Section 5 contains an example illustrating the application of GFIM.
Some practical aspects and concluding remarks are presented in Section 6.

2. Evolutionary Algorithms and Genetic Fuzzy Systems

In the following we briefly review the GAs and the ESs, both of which shall
be used in this contribution.
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2.1 Genetic Algorithms

GAs are both theoretically and empirically proven to provide the means for
efficient search in complex spaces [17].

Any GA starts with a population of randomly generated solutions, chro-
mosomes, and advances towards better solutions by applying genetic opera-
tors such as crossover (recombination) and point mutation. These algorithms
maintain a population of solutions for a given problem. The population un-
dergoes “evolution” in a form that resembles natural selection. In each gen-
eration, relatively good solutions reproduce to give “birth” to offsprings that
replace relatively bad solutions which in turn eventually “die”. Fitness cri-
teria play the role of the environment to distinguish between good and bad
solutions. The process of going from the current population to the next pop-
ulation constitutes one generation in the execution of a GA.

Although there are many possible variants of the basic GA, its funda-
mental underlying mechanism operates on a population of chromosomes (in-
dividuals) representing possible solutions to a problem, and consists of three
basic operations:

1. Evaluation of chromosome’s fitness.
2. Formation of a chromosome pool (intermediate population).
3. Recombination and mutation.

The structure of a GA is the following:

Procedure Genetic Algorithm
begin (1)
t = 0;
initialize P(t);
evaluate P(t);
While (Not termination-condition) do
begin (2)
t=1+1;
select P(t) from P(t — 1);
recombine P(t);
evaluate P(t);
end (2)
end (1)

A fitness function must be constructed for each particular problem to be
solved. Given a particular chromosome, the fitness function returns a single
numerical fitness score which is proportional to the utility, or the adaptation
ability, of this same chromosome.

There are a number of ways to perform selection. One might view the
population as a mapping onto a roulette wheel, where each chromosome is
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represented by a space that is proportional to its fitness. By repeatedly spin-
ning the roulette wheel, chromosomes are chosen using stochastic sampling
with replacement to form the intermediate population. The selection proce-
dure proposed in [3], and called stochastic universal sampling is one of the
most efficient. Here the number of offsprings of any population is bound by
the floor and ceiling of the expected number of offsprings. After selection has
been carried out, the construction of the intermediate population is complete
and recombination and mutation can occur.

The crossover operator combines the features of two parent populations
to form two similar offsprings. It is applied at a random position with a prob-
ability of performance, the so called crossover probability, P.. The mutation
operator arbitrarily alters one or more components of a selected population
S0 as to increase the structural variability of the population. Each position
of each chromosome vector in the population undergoes a random change
according to a probability defined by a mutation rate, the so called mutation
probability, Pp,.

The next figures illustrate the basic operations: reproduction, crossover,
and mutation.

Fig. 2.1. Evaluation
and contribution to
the chromosome pool.

Fig. 2.2. Recombination (one-point crossover).

Fig. 2.3. Mutation.
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The basic principles of the GAs were first laid down rigorously by Holland
[25], and are well described in many texts such as [17, 30].

Binary coded strings as solutions for the representation problem have
been extensively used. But GAs are not solely dependent on the use of bit
strings. Nonbinary representations which are more suitable for a variety of
application problems have emerged. One of the most important nonbinary
representations is the real numbers representation which seems particularly
natural when dealing with optimization problems with variables in continuous
search spaces. In this context, a chromosome is a vector of floating point
numbers whose size is kept the same as the length of the vector. GAs based
on real numbers representation are called real-coded GAs (RCGAs). RCGAs
have been mainly used for numerical optimization in continuous domains.
Using real coding, the representation of the chromosomes is very close to the
natural formulation of many problems, e.g., there are no differences between
the genotype (coding) and the phenotype (search space). The use of real coding
also makes easier the design of other operators incorporating problem specific
knowledge. RCGAs provide greater precision especially in the case of large
domains where binary coding would require prohibitively long representation
[24, 30].

It is generally accepted that a GA must take into account the five following
components in solving any given problem:

1. A genetic representation of the problem solutions.

2. A way to create an initial population of solutions.

3. An evaluation function which computes the fitness of each chromosome.

4. Genetic operators that alter the genetic composition of offsprings during
reproduction.

5. Values for the parameters that the GA uses (population size, probabilities
for applying genetic operators, etc.).

Numerous GA applications have been presented over the last years. Some
of these can be classified as numerical function optimization, combinatorial
optimization, image processing, fuzzy control and classification, engineering
processes, biology, artificial life, machine learning, etc. There is an exception-
ally large number of applications of GAs for the design of learning systems
[18] and learning fuzzy systems [4, 20]. The interested reader can find free
GAs software in [16].

2.2 Evolution Strategies

ESs were developed with a strong focus on building systems capable of solving
difficult real-valued parameter optimization problems. The natural represen-
tation is a vector or real-valued chromosomes which are manipulated primar-
ily by mutation operators designed to perturb their real-valued parameters
in a purposeful way.



6 Oscar Cordén and Francisco Herrera

ESs were initially developed by Rechenberg and Schwefel in 1964 as exper-
imental optimization techniques. The first ES algorithm, the so-called (1+1)-
ES, was based on working with only two individuals per generation, one par-
ent and one descendent (ofspring). Other more complex versions, based on
considering higher number of parents (¢ > 1) and descendents (A > 1), have
appeared in last few years years. These constitute the so called (& + A)-ES
and (g, A)-FS ESs algorithms. Also several new generalized ESs have been
successfully developed [2, 33].

Without lack of generality, we will use in this chapter (1+1)-ES, the most
simple ES algorithm. In the following we briefly describe this particular ES
algorithm [2, 33]

(1+1)-ES is based on representing the possible optimization problem so-
lution as a real coded string. This parent string is evolved by applying a
mutation operator over each one of its components. The mutation strength
is determined by a parameter o, the standard deviation of a normally dis-
tributed random variable. This parameter is associated with the parent and
is evolved in each step of the optimization process. If the evolution has been
successfull, the offspring obtained by mutation is better adapted than its par-
ent. Then the descendent substitutes the parent in the next generation. The
individual adaptation is measured by using a fitness function. The process is
iterated until a finishing condition is satisfied.

The main component of the ES algorithm is the mutation operator, mut.
It is composed of two components: mu,, which updates the value of the pa-
rameter o, and mu,, which evolves the real coded string. The first component
is based on Rechenberg’s 1/5-success rule, which evolves the standard devi-
ation according to the current value of the relative frequency p of successful
mutations in the following way

g
G

o' =mu,(0) =4 5. 1/, ifp<

if p>

=

(2.1)

Gi= U=

o, if p=

The second component mutates each element of the real coded string by
adding normally distributed variations with standard deviation ¢’ to it

' =mug () = (214 21,y 2o + 2) (2.2)

where z; ~ N;(0,0'?).
The final algorithm structure is as follows

Procedure Evolution Strategy (1+1)
begin (1)

t = 0;

initialize P(t) + (xz,0);

evaluate f(z);
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While (Not termination-condition) do
begin (2)
t=1+1;
(z',0") « mut(x, 0);
evaluate f(x');
If Better (f(z'), f(2))
then P(t+ 1) « (2',0")
else P(t+ 1) « P(t).
end (2)
end (1)

ES software is provided in [33].

2.3 Genetic Fuzzy Systems

In many cases, the identification of a fuzzy model may be considered as an
optimization or a search process. GAs have the ability to explore and exploit
a given complex search space using an available performance measure and are
known to be capable of finding near optimal solutions in such a search space.
The prior knowledge one may wish to use, in addition to input-output data,
may be in the form of known linguistic variables, fuzzy membership function
parameters, fuzzy rules, number of rules, etc. The generic code structure and
independent performance features of GA make them suitable candidates for
incorporating this type of prior knowledge.

These properties of GAs make them suitable candidates for the design and
optimization of fuzzy rule bases. In particular, the design, learning, and tun-
ing of fuzzy rule have produced quite promising results. Figure 2.4 illustrates
this idea.

GAs are applied to modify/learn the model parameters, i.e., the shapes
of the membership functions stored in the fuzzy data base, and/or the model
structure, i.e., the fuzzy rules composing the fuzzy rule base. It is possible
to distinguish three different groups of genetic fuzzy model design approaches
according to the type of fuzzy identification performed in the learning pro-
cess. They are briefly described in the following subsections. For a detailed
description see [4] and for an extensive bibliography see [6] (section 3.13).
Different approaches may be found in [20].

2.4 Genetic Estimation of the Fuzzy Model Parameters (DB)

A fuzzy model has a number of parameters, such as the shapes of the mem-
bership functions, the scaling factors, the number of the linguistic values in
the term sets associated with the linguistic variables from the fuzzy rules.
All these fuzzy model parameters consitute the fuzzy data base (DB) of the
fuzzy model and the fuzzy model quality is highly dependent on all of them
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Fig. 2.4. Genetic Fuzzy Systems.

[14, 19, 27, 37]. Therefore, the proper definition of the membership functions
is an important task in fuzzy model identification. The parameter estima-
tion method using GAs tunes the membership functions by adjusting their
parameters according to a given fitness function.

Several methods have been proposed in order to construct the DB using
GAs. All of them are based on the existence of a given set of fuzzy rules (or
rule base (RB) defining the fuzzy model structure) and an initial definition
of the model parameters. Each chromosome involved in the evolution process
represents a different DB definition, i.e., each chromosome will contain a
coding of the membership functions. A chromosome’s degree of adaptation is
measured using a fitness function. This fitness function is based on the quality
of the fuzzy model, represented by the given RB, and the model parameters
encoded in the chromosome.

2.5 Genetic Derivation of the Fuzzy Model Structure (RB)

All the methods belonging to this family assume that the model parameters
are known in advance, i.e., they suppose the existence of a DB. Different GAs
-based methods for the derivation of the fuzzy model structure exist, depend-
ing on the representation chosen for RB: a set of fuzzy rules, a decision table,
or a relational matrix. Most of these methods consider an RB represented in
the form of a decision table (also called look-up table). As it is well known, a
RB consisting of fuzzy rules with n input variables and a single output vari-
able may be represented by using an n-dimensional decision table, where each
dimension corresponds to one input variable. Table 2.1 shows an example of a
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decision table for the control of an inverted pendulum. Every dimension has
associated an array containing the linguistic values of the particular input
variable. A cell in the decision table contains the linguistic value which the
output variable takes for the combination of the linguistic values of the input
variables corresponding to this cell. Therefore, each cell represents a fuzzy
rule that may belong to the final model structure.

Table 2.1. Decision table for the control of inverted pendulum.

Angle NL NM NS ZR PS PM PL

Change NS NS ZR
of ZR NM ZR PM
Angle PS ZR PS

The above structure is encoded in the individuals (chromosomes) forming
the GA population. If there are empty cells in the decision table, then it is not
possible to derive a fuzzy model structure with an optimal number of rules
because for this purpose, all the possible fuzzy rules have to be considered.

2.6 Genetic Learning of the Fuzzy Model Structure and
Parameters (RB and DB)

There is a multiplicity of approaches in genetic learning all aimed at the
identification of the fuzzy model structure and parameters.

Amongst these some use variable chromosomal length, others use fixed
chromosomal lenght encoding a fixed number of fuzzy rules together with the
membership functions defining the linguistic values of the input and output
variables, others use chromosomes each encoding a single fuzzy rule and its
corresponding membership functionparameters etc.

Many of these approaches define the fitness function simply as an error
measure, whereas others include a variety of objectives to be optimized in
order to obtain more robust fuzzy models.

3. The Fuzzy Model Identification Problem

As we have mentioned earlier, in this chapter we focus on the linguistic type
fuzzy model for MISO systems, where the structure of the fuzzy model con-
sists of a collection of Mamdani-type of fuzzy rules (with the logical connec-
tive ALSO between the fuzzy rules). Thus each fuzzy rule is of the form
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R;: If x4 is A;; and ...and z, is A;, then y is B

where x1, ..., x, are input variables , y is the output variable and A;q,..., A;5,,
B are the linguistic values of the input and output variables in the i-th fuzzy
rule The input and output variables take their values in the universes of
discourse Uy, ...,U,, and V respectively. The meaning (semantics) of the
linguistic values is characterized by the membership functions pi4,,(x;) and
ip,(y) defined on the universes of discourse U and V respectively. In this
chapter we consider triangular membership functions. A computationally ef-
ficient way to characterize this type of membership functions is by using
a parametric representation achieved by means of the 3-tuple (a;;, bij, ¢ij),
(aiabiaci)a .7 = 17"'777“

The number of linguistic values for each input and output variable, the
scaling factors, and the shapes of the membership functions constitute the
fuzzy model parameters or DB. In [1] the following can be found about the
linguistic fuzzy model:

“This representation is suitable for incorporating a priori knowledge by formu-
lating the typical input-output situations in terms of rules. Since there is no struc-
ture assumed, virtually any system can be represented by the linguistic model. For
this flexibility one has to pay by exponentially increasing model complexity, i.e.,
many rules may be needed to approximate a system to a given degree of accuracy,
especially with many input variables. Also, the identification of the linguistic model
from numerical data is not straightforward because one has to estimate both the
membership functions and the relation between them (the rules). It is not trivial
to estimate the membership functions from the data, since without any prior infor-
mation one does not know where the ‘important points’ lie. Once the membership
functions are found, rules can be identified quite easily.”

The above difficulties can be said to motivate our particular identification
strategy: once initial fuzzy model parameters have been derived and then the
corresponding initial fuzzy model structure has been identified, the quality of
the so obtained initial fuzzy model may be improved by deriving final fuzzy
model parameters using the already identified initial fuzzy model structure.

In applying this identification strategy we consider an input-output data
set without noise. This data set F, is composed of p numerical input-output
tuples e, € Ep, called examples, each example having the form

er = (ext,. . ext eyt | L=1,...,p. (3.1)

In a conventional linguistic fuzzy model the set of linguistic values taken
by the input and output variables is defined in advance. Furthermore, the
meaning (semantics) of each linguistic value A;; is determined by the mem-
bership function p14,,(x;) and one and the same linguistic value may appear
in a number of fuzzy rules. However, in every fuzzy rule in which this lin-
guistic value appears it has the same semantics, i.e., the same membership
function. We call this type of linguistic fuzzy model a descriptive linguistic
fuzzy model since a given membership function describes the semantics of an
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a priori defined linguistic value and furthermore, one and the same linguis-
tic value has the same semantics in all fuzzy rules in the RB in which it is
encountered.

In this chapter we consider a linguistic fuzzy model in which the input
and output variables variables do not take a priori defined linguistic values.
This type of a linguistic fuzzy model is called an approzimative linguistic
fuzzy model [4, 10]. When considering this type of fuzy model we say that
the fuzzy rules have free semantics. The difference between the descriptive
and the approximative linguistic fuzzy models is illustrated is in Figure 3.1.

Fig. 3.1. Descriptive versus approximative linguistic fuzzy models.

For the purpose of identification we consider fuzzy rules with free seman-
tics, i.e., no a priori defined linguistic values are associated with the input
and output variables from the fuzzy rules. However, we further consider two
types of free semantics:

1. Unconstrained free semantics. The identification method proceeds by
learning the fuzzy rules and the initial shapes of the membership func-
tions associated with these rules. This is done without any prior fuzzy
partitioning being available. That is, no restrictions are placed on the
membership functions locations and shapes.

2. Constrained free semantics. The identification method uses an initial
fuzzy partitioning of the domains of the input and output variables par-
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tition and the initial membership function parameters are locally (on a
rule by rule basis) adjusted during the identification process.

In the case of constrained free semantics, each universe of discourse, U,
is partitioned into a finite number of overlapping regions each region labeled
by a linguistic value. For instance, if X is a variable taking its values in U
and denoting temperature, then one may define Ay as “low temperature,”
A;(1 < i< r)as “medium temperature,” and A, as “high temperature,” etc.

These referential linguistic values are characterized by their membership
functions pyu,(u) : U = [0,1],7 = 1,...,7. To ensure good performance of
the fuzzy model it is essential that all the referential membership functions
are normal and convex ones, and should satisfy the following completeness
condition

Yu e U 3j, 1 <j <, such that ps;(u) >4

where J is a fixed threshold, called the completeness degree of a universe of
discourse. Figure 3.2 shows an example of a fuzzy partitioning with § = 0.5.

Fig. 3.2. Graphical repre-
sentation of a fuzzy parti-
tioning.

Based on this type of fuzzy partitioning , an interval of performance is
associated with each one of the three parameters (a;, bt, ¢;) defining the mem-
bership functions ji4,(+)

by —a by —a
[af af] = [ar = = a0 + =] (3.2)
by —a ¢ — b
[bf, b}] = [by — ——5—, by + ———] (3.3)
2 2
—b —b
[Cfac” = [Ct _ o 9 t,Ct o 5 t] (34)

These intervals of performance are then used for locally adjusting the
membership functions parameters during identification. Figure 3.3 shows the
intervals of performance associated with each one of the parameters.
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Fig. 3.3. Membership function
and intervals of performance.

Therefore, the fuzzy rules identified will have their semantics within the
performance intervals established by the initial fuzzy partitioning. As already
mentioned, the identification procedure is concerned with

— the fuzzy model structure identification which allows us to obtain the RB,
and
— the fuzzy model parameters estimation which allows us to obtain the DB.

The phases of genetic simplification and tuning involved in the identifi-
cation of the approximative linguistic fuzzy model use the following fuzzy
logic operations and an inference procedure [37]. Consider an input vector
x = (£1,...,%,) and a fuzzy RB constituted by m linguistic fuzzy rules R;,
1=1,...,m,

If Xy;1is A;; and ...and X4, is A1, then Y is B;

If X,,1is A,,1 and ...and X,,, is A,,, then Y is B,,

1 The logical and connective is used to connect the antecedents in each
individual rule. This connective is interpreted by the min operator

pa,(x) = min(pa, (21), pan(T2)s -5 pa,, (Tn))- (3.5)

2 The if-then fuzzy implication is defined as a conjunction of the mem-
bership functions from the antecedent and consequent part of an if-then
fuzzy rule. It is interpreted by the min operator

pp, (X, y) = min(pa, (x), ps, (y)- (3.6)

3 The logical connective also aggregating the fuzzy rules is given as the
weighted sum of the defuzzified values of the output upg,/(y) of each indi-
vidual fuzzy rule. The final defuzzified output, y, generated by the fuzzy
model, is computed as [11]

Z;n:l pa,(x) - CG(NB;(@/))
Dy pa, (%)

where CG(pp:(y)) is the center of gravity of the fuzzy set Bj.

(3.7)
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The Genetic Fuzzy Identification Method

The GFIM is based on work presented in [5, 21, 22, 23]. It is composed by
the following three parts:

I

II

II1

A genetic fuzzy rules construction method based on EAs, and a covering
method for the input-output example set. This part results in an initial
fuzzy model structure and parameters, i.e., a set of approximative fuzzy
rules with their associated fuzzy sets covering the training input-output
data set in an adequate manner.

A genetic simplification of fuzzy rules, based on a binary coded GA and a
fuzzy model performance measure. This part has the purpose of avoiding
overlearning and removing redundant fuzzy rules.

A genetic tuning of fuzzy model parameters, based on a RCGA and a
fuzzy model performance measure. This part results in a final fuzzy model
by tuning the membership functions for each fuzzy rule, i.e., it will es-
timate the final fuzzy model parameters taking into account the fuzzy
model structure identified in the previous part.

Therefore, the first two parts form the genetic structure identification part

of GIFM and provide the fuzzy model structure or RB together with initial
fuzzy model parameters. The third part of GFIM adjusts the DB parameters
giving us the final fuzzy model parameters.

The GIFM may be used in a number of ways according to the information

available about the system under identification:

1.

Available ezample set: The GFIM is applied for identifying a fuzzy model
with unconstrained free semantics. No restrictions are imposed on the
membership functions of inputs and outputs.

. Available example set and a fuzzy partition: When initial fuzzy partitions

(initial fuzzy model parameters) are available for all inputs and outputs,
the GFIM is applied for constructing a RB using the initial fuzzy partitions
and then locally tuning the membership functions associated with the
identified fuzzy rules by means of an ES. Hence, the initial fuzzy partitions
are used to guide the genetic search, restricting the shapes and the domains
in which each one of the membership functions involved can be locally
adjusted.

. Awailable partial RB and an example set: In this case a fuzzy partition-

ing may or may not be available. Furthermore, an incomplete linguistic
fuzzy model has been derived by a human expert. In this case the GIFM
augments the partial RB with fuzzy rules learned from the example set,
and then genetic simplification is applied to obtain the final fuzzy model
structure. Finally, genetic tuning is applied for adjusting the membership
functions of the final RB, thus obtaining the final fuzzy model parameters.
Available RB: In this case a complete linguistic fuzzy model is made avail-
able i.e., the fuzzy model structure and parameters are derived from a
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human expert. Then, genetic tuning process, is used to obtain a more
accurate fuzzy model by adjusting the already available fuzzy model pa-
rameters.

In the next sections we describe the three parts of the GFIM. First, we
will present some requirements with respect to the RB.

4.1 Requirements

For identifying a set of fuzzy rules R;, describing the structure of a linguistic
fuzzy model, one has to “cover” all possible input-output pairs, e, € F,, so
that the so called completeness property [14, 27] is achieved. The formulation
of this requirement requires a constant 7 € [0, 1], the nonempty union of the
membership functions p4,(+), p,(+), and is formulated as

Crler) = U Ri(e)>7 (=1,...,p, (4.1)

Ri(ez) = * ﬂA,(e$Z)aﬂB,(eyz))a
pa, (ex’) = #(pa, (exh)s . pa, (exy,)),

where # is a t-norm, and R;(e;) is the compatibility degree between the rule
R; and the example e,.

Given a set of fuzzy rules R;, the covering value of an example e, is defined
as

T

CVR(ez) = ZRi(ez), (4.2)

i=1
and we require that
CVpg(e)) >e £=1,...,p. (4.3)

The set of fuzzy rules must satisfy both of the conditions presented above,
i.e., it has to have the completeness property and an adequate covering value.

4.2 Genetic Construction of Fuzzy Rules

The different parts of the genetic fuzzy rules construction method have been
presented in [5, 22, 23]. In this chapter we describe their integration.

The genetic fuzzy rules construction consists of a construction method
together with a covering method, both working on a given set of examples.

— The construction method is realized by means of a GA encoding of a sin-
gle fuzzy rule in each chromosome. The GA finds the best fuzzy rule in
every run over the set of examples according to GA fitness function. When
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constrained free semantics is considered, an ES is used for locally tuning
the best fuzzy rules obtained during the iterations involved in the genetic
search.

— The covering method is realized as an iterative process. It allows the con-
struction of a set of fuzzy rules such that they cover the set of examples.
In each iteration, the construction method chooses the best chromosome
(fuzzy rule), considers the relative covering value this fuzzy rule has with
respect to the example set, and removes the examples with a covering value
greater than e.

The above methods were separately presented in [22] and [5]. Here we
introduce a new fitness criterion for the case of free semantics. This is the so
called niche interaction rate which defines the degree of overlapping between
a newly constructed fuzzy rule and the previously constructed fuzzy rules.
This fitness criterion was introduced in the case of constrained semantics in
[5]. We also introduce some modifications to the fitness criteria presented in
[22]. The first subsection presents these fitness criteria, the next two sections
describe identification with constrained and unconstrained free semantics and
covering methods, and the sections after consider the covering method, ge-
netic simplification, and genetic tuning.

4.2.1 Fitness Criteria. The fitness functions employed in GFIM are de-
signed according to different fitness criteria.

High frequency value. The frequency of a fuzzy model rule, R;, on the set of
examples, F,, is defined as

P

> Rier) (4.4)

=1

1
Ve (R;)) = —
» (Ri) 5
where R;(e¢) is the compatibility degree between R; and e;.

High average covering degree on positive examples. The set of positive exam-
ples for R; with compatibility degree greater than or equal to w is defined
as

Ef(Ri) = {ec € Ep/Rifer) > w} (4.5)

where n} (R;) is equal to |EJ (R;)|. The average covering degree on E} (R;)
can be defined as

Go(Ri)= Y Riled)/nf(Ri). (4.6)

ec€EX (R))
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Small negative ezample set. The set of the negative examples for R; is defined
as

E~(R;) ={e; € B,/Ri(e) =0 and A;(ex’) > 0}. (4.7)

An example is considered negative for a fuzzy rule when it better matches
some other fuzzy rule with the same antecedent (if-part), but a different
consequent (then-part). The negative examples are always considered on the
complete training set of examples.

With ny = |E~(R;)| being the number of negative examples, the penalty
function on the negative examples set is

1 if ng, <k-n}t(R;)

=Y — 1
gn(Ri™) = — T otherwise (4.8)
ng, — kng (R;) + exp(1)

where we permit, up to a percentage of the number of positive examples,
k-nt(R;), a number of negative examples per fuzzy rule without any penalty.
This percentage is determined by the parameter k € [0, 1].

Small membership function width. The variable width (RW) of a fuzzy rule
R; is defined as

1 <~ WVRy;
RW; = E; DW]»] (4.9)
where
WVR;; = ci; — ¢ (4.10)
and (c}j,c?j,c?j), j=1,...,h = n+ 1, are the parameters associated with

membership function. DW; is the domain interval width per input/output
variable.

We define the membership width rate, MWR, of the rule R; as a function
of RW;

MWR(R;) = g(RW) (4.11)

where the function ¢ represents requirements with respect to the size of the
width. We require a small width by considering the function

(4.12)
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Highly symmetrical membership functions.. The rate of symmetry is defined
in order to achieve the symmetry of a membership function and to prevent
the bad covering of extreme points. It is defined as

1
RS(Ri) = — (4.13)
where
i _ J
d'= max {di}, (4.14)
with
. & &
d! :max{%,%} (4.15)
diy diy
and
dl, = c?j — c}j, dl, = c?j — c?j. (4.16)

Clearly, RS < 1, and if the membership function is symmetric, then
RS =1.

Low niche interaction rate. This criterion is introduced in [5]. Let N; =
(N;z, N;y) be the centers of the fuzzy rules (niches) determined until now
(i =1,...,d, where d is the number of runs of the construction method). Let
C' be a chromosome from the current population. Then the niche interaction
rate penalizes the fitness score associated with C' in the following way

LNIR(C)) = 1 — NIR(C), (4.17)
NIR(C) = miax{hi}, (4.18)
hi = x(A(N;z), B(N;y)), i =1,...,d, (4.19)
A(N;z) = (A1 (Nse1), - ., Ap (Niy), (4.20)
C ~ R;: If z1is A and ...and z, is A, then yis B. (4.21)

Hence LNIR(C') is defined on [0, 1]. Tt gives the maximum value (no pe-
nalization) when the fuzzy rule encoded in C' does not interact with any of
the fuzzy rules constructed previously. The minimum value (maximum pe-
nalization) is obtained when the fuzzy rule encoded in C' is identical to a
fuzzy rule constructed previously.

Therefore, the combination of the niche scheme and the covering method
will allow us to verify the two following fundamental aspects of the GFIM:

— GFIM will ensure that fuzzy rules are identified for each available example.
The completeness property is verified in this manner.
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— GFIM will maintain an adequate rule distribution in each one of the niches
existing in the space of examples. It is known that the good performance
of a fuzzy model is due to its interpolatation ability. A particular input
usually fires more than one fuzzy rule and the interaction between the si-
multaneously fired fuzzy rules is what allows the fuzzy model to determine
the best output for this particular input. Hence, an adequate interaction
rate between neighboring rules will improve the fuzzy model quality. Fuzzy
rules too close to each other may cause an undesirable overlearning due to
the fact that their excessive interaction makes the inferred output move
away from the optimal. Remote rules make the fuzzy model lose its inter-
polation capability.

4.2.2 Identification with Unconstrained Free Semantics. The con-
struction method for fuzzy rules is developed by means of a RCGA, where
each chromosome represents a fuzzy rule. The RCGA obtains the best fuzzy
rule according to a set of fitness criteria, which are included in the fitness

function of the RCGA. We describe the RCGA components [22] below.

Representation. In the RCGA population, a candidate chromosome C,, r =
1,..., M, represents a fuzzy rule

If #1is A,y and ...and =z, is A,, then y is B,

where the reals (a,;, brj, ¢rj, @;), (br, ¢;) are the parameter vectors of the
membership functions of A,;, j = 1,...,n, and B, respectively. () codes
these vectors as

(arla brlacrla ceeyQrn, brnacrnaara bracr)-

As was justified in [21], we propose approaching the identification problem
with real coded chromosomes together with special genetic operators devel-
oped for them. Then a fuzzy rule will be a chromosome vector coded as a
vector of floating point numbers [22].

Finally, we represent a population of M chromosomes (fuzzy rules) by C,
and it is set up as follows

C=(Cy,...,Cu). (4.22)

Now, the fundamental underlying mechanisms of a GA, formation of an
initial chromosome pool, fitness function, and genetic operators are intro-

duced.

Initial chromosome pool. We denote the domain of every input and output
variable as X; and Y, respectively. These domains are closed intervals of reals
denoted as U; and V/, respectively. Furthermore, we consider an extension of
these intervals in order to define the membership functions covering their ex-
treme values. The intervals will increase their width by 10% or more for each
extreme value. This permits us to cover the extreme values of the domains in
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an adequate form. In this way, the extended intervals are U; = [u}, u?] and
V = [vl, v?].

The initial chromosome pool is created partially from Ey C E, (¢ chro-
mosomes). The remaining (M — t chromosomes) are initialized randomly, as
follows:

— Let ¢t = min{|E,|, M/2}. We choose at random ¢ examples from E, and for
each example we determine the chromosome (fuzzy rule) belonging to the
initial chromosome pool as follows. Consider the example ¢‘ € E; and its
component ex§ € [uf, u?], Aex§ = min{ex§ — uf,ui — exf}. Let 5(ex§) be
a random value in the range [0, Aea:ﬁ]. Then we construct the membership
function by means of the triple

(ea:§ - 5(ex§), exf, ex§ + 5(ex§)).

The procedure is the same for the remaining components of e,.
— The remaining M — ¢ chromosomes of the initial population are chosen at
random, each chromosome in its respective interval,

Cr = (er1y .-y 0re), (4.23)
£=3-(n+1), with requirements ¢3z541 < 3542 < 3543, s = 0,...,n.

Fvaluation of chromosome fitness. As we commented earlier, we define the
fitness function either according to the five criteria employed in [22] or the
six ones presented in this work.

An evaluation function for the fuzzy rule R;, and therefore a fitness func-
tion for the associated chromosome C; is defined as

Zl(RZ') = WEP (RZ) -Gy (RZ) “On (RZ'_) . MWR(RZ') . RS(RZ'), (4.24)
Z3(R;) = Vg, (R:)-Gyw(Ri) gn(R;™)-MWR(R;)-RS (R;)-LNIR(R;).(4.25)

The objective in both of the above cases is the maximization of the fitness
function.

Genetic operators. During the GA reproduction phase we use two classi-
cal genetic operators, mutation and crossover. The ones selected are the
non-uniform mutation proposed by Z. Michalewicz [30], and the max-min-
arithmetical crossover used in [21]. A short description of them is given be-
low.

— Non-uniform mutation
If ¢t = (e1,.--yCky...,cH) is a chromosome and the element c; was se-
lected for this mutation (the domain of ¢ is [cxy, ckr]), the result is a vector
C'Hl = (e1,.. .,y oyem), with k € 1,..., H, and

, {ck—i—A(t,ckr—ck) Ha=0

G oL Allen o) fa=1 (4.26)
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where a is a random number that may have a value of zero or one, and
the function A(¢,y) returns a value in the interval [0, y]. This value is such
that the probability of A(¢, y) being close to 0 increases as ¢ increases

Alt,y) = y(1 — r=9)"), (4.27)

In the above expression, r is a random number in the interval [0,1], T
is the maximum number of generations, and b is a parameter chosen by
the user, which depends on the number of iterations. This property of the
probability of A(t, y) forces the non-uniform mutation operator to perform
uniform search in the initial chromosome space when t is small, and local
search for larger .
— Maz-min-arithmetical crossover

IfC = (1, ..,y .yeg)and Cf = (¢f, ..., ¢}, ..., %) are to be crossed,
we generate the following four offsprings,

CHHZ aCt 4 (1— a)Ct,
Oyt = aCy + (1 —a)Cy,,
O with eib! = min{e, ¢} 1,

O3t with ' = max{ex, ¢, }. (4.28)

This operator can use a parameter a which is either a constant, or a variable
whose value depends on the age of the population. The resulting descen-
dents are the two best of the four aforesaid offsprings.

With regard to the selection procedure, it is a stochastic universal sampling
[3], in which the number of offsprings is limited by the floor and ceiling of
the expected number of offsprings, together with an elitist selection.

4.2.3 Identification with Constrained Free Semantics. This construc-
tion method for fuzzy rules is developed by means of a special GA, where
a chromosome encodes a fuzzy rule, and an ES that locally tunes the fuzzy
rules. In the following, we describe this method. For more detail see [5].

Representation. Here, a chromosome C' is composed of two different parts, C
and (', each one corresponding to each one of the fuzzy model components.
The first part of the chromosome encodes the linguistic fuzzy rule (belonging
to the RB), and the second one the membership functions parameters for the
input and output variables involved in the fuzzy rule (belonging to the DB).

In order to represent the first part there is a need to number the lin-
guistic values belonging to each one of the term sets for the input and out-
put variables. A variable »; taking linguistic values in a term set T(xz;) =
{L1(xs), ..., Ln,(#;)} has associated with it the set 7"(x;) = {1,...,n;}. On
the other hand, the second part adopts the same representation as in the case
of unconstrained free semantics. Hence, the fuzzy rule
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If 21 is L; (1) and ...and x, is L;, (x,) then yis L; . (y)

is encoded into a chromosome C' of the following form

Cy = (i1, in,iny1),

C2 = (AL, (21)PL; (21)s CL, (w1)s+ =5 OLy, (20)3 DLy (20)5 €L, (20)
AL, )00, )9 €L, ()

C = 0. (4.29)

Initial chromosome pool. Part of the initial chromosome pool is obtained
making use of the examples contained in the training set, F,, and the re-
mainder of it is generated at random. However a third possibility can be
considered. With M being the GA population size and ¢ = min{|E,|, &}, let
t examples be selected at random from F,. Then, the initial population is
generated in three steps as follows:

1. Using fuzzy partitions, generate ¢ chromosomes by taking the fuzzy rule
which covers best each one of the t randomly selected examples. Initialize
C1 and C'y by coding the fuzzy rule linguistic values and their semantics.

2. Generate another ¢ chromosomes by initializing C in the same way as in
the previous step, and compute the values of C5 at random, letting each
chromosome vary in its respective interval.

3. Generate the remaining M — 2 -t chromosomes by computing at random
the values of (1, and making use of these for randomly generating the
C part, letting again each chromosome vary in its respective interval.

Fvaluation of chromosome fitness. Due to the fact that permitted chromo-
some variations are restricted to being performed in intervals smaller than
those considered in the case of unconstrained free semantics, several previ-
ously employed fitness criteria lose their meaning and others become nec-
essary. Hence, the membership function symmetricity and width rates are
not used anymore, but the niche interaction rate is required for obtaining an
adequate fuzzy rule interaction. The fitness function is finally defined in the
following way

Zg(RZ') = WEP (RZ) -Gy (RZ) “On (RZ'_) . LNIR(RZ'). (4.30)

Genetic operators. Due to the special nature of the chromosomes involved in
the case of constrained free semantics, the design of special genetic operators
is required. For a more detailed description of these see [5].

With respect to mutation, two different operators are used, each one of
them acting on a different chromosome part. Since C3 corresponds to the
representation employed in the case of unconstrained free semantics, the same
mutation operator designed for this case is used for (5. Thus, Michalewicz’s
non-uniform mutation operator is employed.
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The mutation operator selected for C is similar to the one proposed by
Thrift in [36]. When mutation for the Cy part of the chromosome is going
to be performed, a local modification is developed by changing the current
linguistic value to one of its neighboring linguistic values (the decision is
made at random). When the linguistic value to be changed is the first or
last one in the term set, the only possible change is to substitute it with its
right or left neighbor respectively. Obviously, a mutation in 7 provokes a
change in C3. When an input/output changes its linguistic value value from
one term to another, the semantics (membership function) associated with it
is automatically updated in the second part of the chromosome by the default
values in the corresponding fuzzy partitioning.

With regard to recombination, two different crossover operators are em-
ployed. If the fuzzy rule encoded by both parent chromosomes is the same,
then the max-min-arithmetical crossover operator is applied to Cy and ob-
viously the parent ' values are maintained in the offspring. On the other
hand, when the parent chromosomes encode different rules, it makes no sense
to apply this operator. Instead, a standard crossover operator is applied on
both parts of the parent chromosomes. This operator performs as follows. A
crossover point ¢p is randomly generated in C; and the two parent chromo-
somes are crossed at the ep-th and n + 1 + 3 - ¢p crossover points in each
chromosome part respectively. The crossover is thus performed in both chro-
mosome parts, C7 and Cy, thereby producing two meaningful offsprings.

Let us consideran example in order to clarify the standard crossover op-
erator. Since

Gy = (cla"'7CCp706p+17'"7cn+17a617b6170617"'7 (431)
ey bccpa Ceops Qeepyrs bccp+1 yCocpgrr s @epqrs bcn+1 s ccn+1)
and
o ’ r ’
c, = (cl,...,ccp,ccp_l_l,...,cn_l_l,aczl,bczl,cczl,..., (4.32)
ac’cp’bc’cp’cclcp’aclcp+1’bclcp+1’cclcp+1’""acln+1’bcln+1’ccln+1)

are the chromosomes to be crossed at the point cp, the two resulting offsprings
are

Ciy1 = (cl,...,ccp,c/cp_l_l,...,c;l_l_l,acl,bcl,ccl,..., (4.33)
aCCp’bccp7cccp7acizp+17bc::p+17ccizp+17"'7acln+17bcln+17ccln+1)7

t/+1 = (c’l,...,c’cp,ccp+1,...,cn+1,ac/17bc,l,cc/1,..., (4.34)
ae! bc’cpa Cel v eey bccpa Cecpyv sy Genyrs bcn+1 s ccn+1)-

The last genetic operator is based on (1+1)-ES. This optimization tech-
nique has been selected and integrated into the genetic recombination process
in order to perform a local tuning of the best chromosomes (fuzzy rules) ob-
tained in each run. Each time a GA is performed, the ES will be applied over
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a percentage « of the best chromosomes from the current genetic population
and will adjust their Cy parts.

The ES employed was briefly presented in Section 2.2. In our case, the step
size o can not be a single value because each one of the membership functions
encoded in the second part of the chromosome is defined over different uni-
verses of discourse and thus, requires mutations of a different order. Following
the modus operandi presented in [5], each parent component z; varying in the
interval of performance [z¢, 7] will have its own associated step size o; = o-5;
with s; = (27 — z%)/4. When the mutated value x;: z; + z; does not belong
to the interval of performance, it is assumed equal to the interval extent, x*
or z7, closer to x; + z.

The selection procedure is again based on Baker’s stochastic universal
sampling and elitist selection.

4.2.4 Covering method. The covering method is presented in detail in
[22]. Tt is developed as an iterative process that allows to obtain a set of
fuzzy rules covering the example set. In each iteration, it considers the relative
covering value the best fuzzy rule (chromosome) has for the given training
set, and removes from it the examples for which the covering value is greater
than e.

Let R® be the set of fuzzy rules provided by a human expert (expert
fuzzy rules). For any one of the cases of unconstrained free semantics and
constrained free semantics, the covering method proceeds as follows:

1. Initialization stage:
— Determines &, w and € .
— Merges the fuzzy rules in R® with the fuzzy rules , RY, which are
obtained via identification from inut-output data.
— Assigns CV[{] « CVpge(eg), £=1,...,p.
—If CV[{] > €, e from E,, { =1,...,pis removed.
2. Applies the specific construction method for the given set of examples
E,,
. Seelects the best chromosome C). encoding the fuzzy rule R,.
. Merges R, with R9.
5. For every e; € E, does
CV[{] « CV[{]+ Ry (e),
If CV[{] > € then remove it from E,.
6. If E, = () then Stop else return to Step 2.

H~ o

Since there may be similar fuzzy rules in RY, or a fuzzy from RY may be
similar to a fuzzy rule in R®, it is necessary to simplify the RB obtained .

4.3 Genetic Simplification

Due to the iterative nature of genetic identification, it may result in redundant
fuzzy rules and/or overlearning . This latter occurs when some examples are
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covered to degree higher than the desired one and in this case the performance
of the identified RB is negatively affected.

The genetic simplification was proposed in [23]. It is based on a binary
coded GA, in which the selection of chromosomes is performed by using
the stochastic universal sampling procedure together with an elitist selection
scheme. Also, recombination is put into effect by using the classical binary
multipoint crossover (performed on two points) and uniform mutation oper-
ators.

The coding scheme generates fixed-length chromosomes. Let us now con-
sider the fuzzy rules in the RB, constructed at the previous step and num-
bered from 1 to m. An m-bit string C' = (¢1,...,¢m) represents a subset of
candidate fuzzy rules that is to be obtained as the output, B, of genetic
simplification, and such that

If ¢; =1 then R; € B® else R; ¢ B°.

The initial population of chromosomes is obtained by introducing a chro-
mosome representing the complete rule set RY, that is, ¢; = 1 for all i. The
remaining chromosomes are selected at random.

The fitness function, E(-) is based on an application-specific measure,
usually employed in the design of GFSs: the mean square error (SE) over a
training data set, Erpg, given as

! > (eyt = S(ext))? (4.35)

EB(C)) = g

2|ETDS| e¢€ETps
where S(ex’) is the output value obtained from the identified fuzzy model
using the model structure (RB) coded in C;, R(C}), when the input values
are ez, and ey’ is the known desired output value.

During genetic simplification, there is a need to keep the completeness
property considered previously: the model must always be able to infer a
proper output for every system input. We will ensure this condition by forcing
every example contained in the training set to be covered by the encoded RB

in a degree greater than or equal to 7,
Cricyylee) = |J Rjlee) > 7, Ve € Erps and R; € R(C;)  (4.36)
j=1..T

where 7 is the degree of completeness of the minimal training set used for
genetic simplification. Usually, 7 is less than or equal to w, the compati-
bility degree used in the identification. Therefore, we define a training set
completeness degree of R(C;) on the set of examples Erpg as

TSCD(R(Cy), Erps)= (| Cricy(ee)- (4.37)
es€EETDS

The fitness function, penalizing the lack of the completeness property is
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E(C]) if TSCD(R(Cj),ETps) Z T
F(Cy) = % > (ey’)? otherwise. (4.38)
et€ETDs

4.4 Genetic Tuning

Genetic tuning process is presented in-depth in [21]. It is based on the ex-
istence of an initial fuzzy model, that is, an initial estimation of the model
parameters (DB), and initially identified fuzzy model structure defined by a
RB and composed by m fuzzy rules.

Each chromosome forming the genetic population encodes the whole RB,
R?, with different fuzzy model parameters associated with it.

The GA designed for the tuning uses real numbers coding , stochastic uni-
versal sampling as selection procedure, and Michaelewicz’s non-uniform mu-
tation operator. The crossover operator, max-min-arithmetical, is employed
again.

As we commented before, the membership functions have a triangular
form. Thus, each one of them has an associated parametric representation
based on a triple of real values. Each one of the fuzzy rules will be encoded
in parts of the chromosome C;, i = 1,...,m, in the following way

Crs = (aila bi1, €ity - -+ Qiny bin, Cin, @i, by, ci)' (4'39)

Therefore the complete RB with an associated DB is represented by a
complete chromosome C,

Cr=Cr1 Cry ... Crom. (4.40)

Each chromosome in the population represents a complete fuzzy model
i.e., both RB and DB. In particular, all of them encode the identified RB, R?,
i.e., the model structure identified in the previous two stages, and the only
difference between the different chromosomes are the different membership
functions, that is, the different DBs.

The initial fuzzy model is encoded directly into a chromosome, denoted
as (1. The remaining ones are generated by associating an interval of per-
formance, [cf, ch] to every ¢, in Cp, h=1...(n+1)-m-3. Each interval of
performance will be the interval of adjustment for the corresponding variable,
ey € [ch,ch].

If (t mod 3) = 1 then ¢; is the left value of the support of a membership
function. The latter one is defined by the three parameters (¢, cry1, Cry2)
and the intervals of performance are

Cip1—¢C Cip1 — €

e € [ef, ] = [or — =T e+ =], (4.41)
Ct41 — Ct Ct42 — Ct41

Ci41 € [Cf+176§+1] = [cr41 — T,Ct+1 + f], (4.42)
Ci+2 — Ci41 Ct43 — Ct42

Ciy2 € [Cf+270;+2] = [ci42 — fact-ﬁZ + f] (4.43)
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Figure 4.1 shows these intervals of performance.

Therefore, we create a population of chromosomes containing C7 as its
first individual and where the remaining ones are initiated randomly, with
each one being in its respective interval of performance.

Fig. 4.1. Membership func-
tion and intervals of perfor-
mance for genetic tuning.

The fitness function of a chromosome is defined by using the training
input-output data set, Frpg, and a specific error measure, the mean square
error. In this way, the adaptation value associated with a chromosome is
obtained by computing the error between the outputs given by the fuzzy
model contained in the chromosome and the outputs contained in the training
input-output data set. The fitness function is given as

! > (eyt = S(ext))?. (4.44)

FC)= —
( ) 2|ETDS| et€ETDs

4.5 Summary of the Identification Procedure

This section summarizes the presented GFIM, showing some guidelines for
its use idepending on the information available about the system under iden-
tification.

I. Available knowledge. Once the input-output data set is available,
the existence of any other kind of prior knowledge for the purpose of
identification should be studied: the possibility of defining the model
parameters (in the sense of initial fuzzy partitions), the availability of a
partial fuzzy model (in the sense of an incomplete RB with or without
an initial definition of the DB), or a complete one (in the sense of a
complete RB and an initial definition of the DB).

II. Using the GFIM. Once the the existing knowledge is made available,
the particular identification method to be applied has to be chosen.
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. No prior knowledge: In this case, we only have the input-output data

set for performing identification. Therefore, the unconstrained free se-
mantics type of identification is first applied for obtaining an initial
definition of the fuzzy model structure and parameters. Genetic sim-
plification is then applied for identifying the final fuzzy model struc-
ture. Finally, genetic tuning obtains the final fuzzy model parameters.

. Initial fuzzy model parameters: When initial fuzzy partitions, a very

preliminary definition of the model parameters, are provided, the over-
all learning process is applied for identifying a fuzzy model taking the
previous semantics as a base. The only change with respect to the
previous case is that the genetic construction method used will be the
constrained free semantics one.

. Partial fuzzy model: When an incomplete linguistic fuzzy model has

been derived from a human expert, the GFIM permits the incorpo-
ration of this partial RB by merging it with the one obtained from
genetic identification (constrained or unconstrained free semantics ).
Genetic simplification and tuning are then applied for obtaining the
final model structure and parameters.

. Complete fuzzy model: When a complete linguistic fuzzy model has

been derived from an expert, i.e., the fuzzy model structure and the
fuzzy model parameters are both available, genetic tuning may be
used to obtain a more accurate fuzzy model by adjusting the available
fuzzy model parameters.

Model validation. The GFIM proposed takes into account some fuzzy
rule base properties in order to guarantee good quality linguistic fuzzy
models. Thus, the analysis of how well the fuzzy rules cover the data
space should be done with care since a bad coverage decreases the quality
of the linguistic fuzzy model. Anyway, there is always the need to validate
the identified fuzzy model through numerical simulation and comparisons
with system data in order to improve its validity.

To conclude this section we would like to note here that any other type of

membership functions may be incorporated in the GFIM with minor modi-
fications. Furthermore, in [7] a different GFIM for the case of unconstrained
free semantics is presented where the construction method for fuzzy rules uses
an inductive algorithm and an ES. The structure of this GFIM may be used
for identifying another type of a linguistic fuzzy model, namely a descriptive
linguistic fuzzy model [8, 10].

5. Example

In order to analyze the accuracy of the GFIM, we will show now how two
n-dimensional functions can be used to identify three-dimensional surfaces.
Three different ways of fuzzy model identification these will be compared:
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1. Two GFIMs for the case of unconstrained free semantics using the fitness
functions Z; and Zs respectively, and

2. The GFIM for the case of constrained free semantics using the fitness
function Zs.

The n-dimensional functions and the universes of discourse considered
are shown below. The spherical model, Fy, is an unimodal function, while the
generalized Rastrigin function, Fs, is a strongly multimodal one. These are
illustrated in (Figures 5.1 and 5.3).

Fy(x1,22) = x%—i—x%, (5.1)
T1,To € [—5,5], Fl(l‘l,l‘g) c [0,50]

Fy(rg,22) = x% + x% — cos(18x1) — cos(18x2), (5.2)
T1,To € [—1,1], Fg(l‘l,l‘g) c [2,35231]

For each function, an input-output training data set, uniformly dis-
tributed in the three-dimensional space has been obtained experimentally.
In this way, two sets with 1681 values have been generated by taking 41 val-
ues for each of the two state variables considered to be uniformly distributed
in their respective intervals.

Two other data sets have been generated for their use as test sets. These
are to be used for evaluating the performance of the learning method thus
avoiding any possible bias related to the data in the training set. The size of
these data sets is ten percent of the size of the corresponding training set.
The data is obtained by generating the state variables values randomly in
the concrete universes of discourse for each of them, and then computing the
associated output value. Hence, two test sets formed by 168 data are used to
measure the accuracy of the fuzzy models identified by computing the mean
square error for these fuzzy models.

The initial fuzzy model parameters used in the GFIM for the case of con-
strained free semantics are defined in terms of three initial fuzzy partitions
(two corresponding to the input variables and one associated with the out-
put). The fuzzy partitions have seven linguistic values and the semantics of
these is defined via the use of triangular membership functions (as shown in
Figure 3.1). Adequate scaling factors are used to translate the generic uni-
verse of discourse into the one that is associated with each system variable.

The following parameters, corresponding to the first two stages of the
identification, are combined for determining the number of runs for the three
different GFIMs: ¢ = 1.5, w = 0.05, k = 0.1 and 7 = {0.25,0.5}. This leads
to an overall of 2 runs per function and GFIM. The remaining parameters
used in the three GFIMs to be compared, are: the t-norm * used in the fuzzy
rule construction method is the min operator; GAs run over 50 generations
and the ES is applied until there is no improvement in 25 generations over
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a percentage o = 20% of the population of chromosomes (the parameter
¢ of the 1/5-success rule is equal to 0.9); genetic simplification and tuning
run over 500 and 1000 generations, respectively. In all cases, the population is
formed by 61 chromosomes, the value of the non-uniform mutation parameter
b is 5.0, and the crossover and mutation rates are P. = 0.6 and P, = 0.1
(this last one per indiviual) respectively. The max-min-aritmethical crossover
parameter a takes the value 0.35.

Finally, we use the min t-norm for representing fuzzy implication, and
the center of gravity as defuzzification operator [11].

The results obtained are shown in the tables below, each table is associ-
ated with both of the functions considered. The notation |R|, stands for the
number of fuzzy rules in the RB, while S £, stands for the medium square er-
ror obtained by the current fuzzy model on the corresponding test set at each
stage (x is equal to G, S, and T in the genetic construction, simplification
and tuning stages, respectively).

Table 5.1. Results obtained using the three proposed GFIMs for the fuzzy model
of the function F}

GFIM 7 |Rle SEq |Rls SEs SEr

0.25 108 5.823179 82 2.794654  0.929880
0.5 108 5.823179 82 3.423883  1.094663

0.25 180 17.448940 119 2.013139  0.994133
0.5 180 17.448940 119 2.662488  1.177372

0.25 98 2.411402 67 1.779137  0.696869
0.5 98 2.411402 73 2.130197  1.118251

W w [N ] —

Table 5.2. Results obtained using the three proposed GFIMs for the fuzzy model
of the function F5

GFIM |Rle SEq |Rls SEs SEr

0.25 250 0.398029 181 0.324123  0.290474
0.5 250 0.398029 196 0.344089  0.307614

0.25 345 0.393328 264 0.283268  0.265746
0.5 345 0.393328 275 0.359460  0.327285

0.25 346 0.268026 232 0.213960 0.195233
0.5 346 0.268026 253 0.232196  0.210177

W w [N ] —

To illustrate the performance of the proposed GFIM, some of the fuzzy
models obtained are shown in the following figures. The two fuzzy models
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depicted are the ones that best approximate each one of the functions con-
sidered, that is, the ones with the lowest mean square error. Figures 5.2
and 5.4 show the fuzzy models for the functions Fy and F5 which fuzzy mod-
els are obtained by means of the constrained free semantics GFIM using the
fitness function Z3 and = = 0.25.

Fig. 5.1. Graphical representation of Fi.

6. Practical Considerations and Concluding Remarks

This section summarizes the practical aspects of the proposed genetic iden-
tification method, pointing out its advantages and drawbacks.

6.1 Use of Prior Knowledge

As observed in Section 4, the GFIM can be used in different modes reflecting
the knowledge available about the system under identification. This offers
the possibility of using both prior expert knowledge as well as numerical
input-output data.

The main advantage of the fuzzy model considered is its ability to deal
with complex systems with strong nonlinearities. In [10], the GFIM is used for
the purpose of the identification of descriptive and approximative fuzzy mod-
els of three-dimensional functions. The approximative approach shows better
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Fig. 5.2. Graphical representation of the fuzzy model obtained for Fj.

Fig. 5.3. Graphical representation of F5.
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Fig. 5.4. Graphical representation of the fuzzy model obtained for Fs.

performance than the descriptive one in the case of more complex functions
(such as the function Fy considered in Section 5). The drawback that may
be associated with GFIM is the loss of interpretability of the approximative
fuzzy model obtained due to the lack of explicit linguistic values. However,
this may be justified by the higher modeling accuracy of this type of fuzzy
model.

6.2 Model Complexity

Another advantage of the GFIM presented is that the proposed learning pro-
cess allows the user to obtain the desired tradeoff between fuzzy model accu-
racy and complexity. The number of fuzzy rules in the RB may be modified
by the following factors:

1. The number of linguistic values in the initial fuzzy partitions used in the
case of constrained free semantics .

2. The value of the parameter €. The higher the value, the greater the number
of fuzzy rules and vice versa.

On the other hand, the identification of the fuzzy model structure is di-
rectly guided by the composition of the input-output data set. Therefore,
no fuzzy rules are obtained in the regions of the data space that are empty.
The necessary number of fuzzy rules is determined by the values of the pa-
rameter €. No redundancy may occur due to the low niche interaction rate
criterion. Genetic simplification allows us to obtain an adequate interaction
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rate between the fuzzy rules and avoids overlearning. Genetic simplification
is a drawback in the case when an adequate input-output data set can not
be obtained.

6.3 Robustness of the Identification Method

The robustness of GFIM is highly dependent on the input-output data avail-
able. Poor data results in an incomplete fuzzy model structure and a inade-
quate fuzzy rule interaction level. The presence of noise in the data will have
the same effect on the final fuzzy model.

6.4 Real-world Applications

In [21, 23], the proposed GFIM is applied to fuzzy controller design. Recently,
the method has been applied to a number of classification problems, obtaining
good results on laboratory data sets such as the Iris one [9]. The prediction
of economic time series is currently under investigation.
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