
Identi�cation of Linguistic Fuzzy Models byMeans of Genetic Algorithms�Oscar Cord�on and Francisco HerreraDept. of Computer Science and Arti�cial Intelligence. E.T.S.I. Informatica.University of Granada. 18071 - Granada. Spain.1. IntroductionIn this chapter, we deal with the identi�cation of linguistic fuzzy models (orMamdani fuzzy models) for multiple-input/single-output (MISO) systems.We consider a variant of the classical linguistic fuzzy model in which theredoes not exist a pre-determined relationship between the linguistic values ofthe input and output variables and the membership functions used to de�nethe meaning (semantics) of these linguistic values. We call this type of alinguistic fuzzy model an approximative linguistic fuzzy model [4, 10].Once an approximative linguistic fuzzy model has been chosen to repre-sent a MISO system, the next step is to determine its structure and estimateits parameters. This is done in three steps. First we obtain a initial modelstructure and parameters. That is, we generate an initial set of fuzzy rules (orinitial fuzzy rule base) and initial membership functions for the antecedentand consequent parts of the fuzzy rules. Second, the initial fuzzy rule baseis simpli�ed by removing redundant fuzzy rules and thus, the �nal structureof the approximative linguistic fuzzy model is determined. Third, we deter-mine the �nal membership functions so that to maximize the accuracy of theapproximative linguistic fuzzy model. Therefore, the proposed identi�cationtechnique deals with both structure and parameter identi�cation, and is basedon learning from available input-output data.The learning techniques used for the purpose of the identi�cation offuzzy models normally deal with the problem of designing and optimizinga fuzzy rule base and/or the parameters of membership functions using on-and/or o�-line input-output data. These techniques include inductive learn-ing [13, 38], descent methods [31], neural networks [26, 28], clustering tech-niques [39], genetic algorithms [6] (section 3.13), etc. On the other hand, alarge class of methods known under the name of evolutionary computation(EC) use computational models of evolutionary processes as key elements inthe design and implementation of identi�cation and optimization algorithms.There is a variety of evolutionary computational models referred to as evo-lutionary algorithms (EAs). There are three well-de�ned EAs which serveas the basis for much of the activity in the �eld of EC: Genetic Algorithms� This paper has been partially supported by CICYT PB96-0778



2 Oscar Cord�on and Francisco Herrera(GAs), Evolution Strategies (ESs), Evolutionary Programming (EP), and Ge-netic Programming (GP). In this chapter, we make use the �rst two types ofEAs.The most well known EAs are the GAs, i.e., search algorithms that useoperations found in natural genetics to guide the search in complex searchspaces. GAs are have been theoretically and empirically proven to have ro-bust and computationally e�cient search capabilities. They also have beendemonstrated to be a powerful tool for automating the construction of thefuzzy rule bases, since learning and self-organization may be considered in alot of cases as optimization and/or e�cient search problems. The GAs basedapproaches used in the context of automating and optimizing the construc-tion of fuzzy rule bases are known under the name of genetic fuzzy systems(GFSs) [4]. A short description of these approaches is included in Sect. 2.Using the more general term evolutionary instead of genetic they are alsocalled evolutionary fuzzy systems.The identi�cation method presented in this chapter uses GAs, and canbe described as three-stage inductive learning process. These three stages arethe following:1. GAs based generation of approximative fuzzy rules, based either on priorfuzzy partions of the domains of the input and output variables, or noprior fuzzy partitions at all. In the �rst case, ESs are used for a localtuning of the fuzzy rules. At this stage the initial fuzzy model structureand parameters are obtained.2. GAs based simpli�cation of the initial fuzzy rule base, thereby avoidingpossible overlearning, and removing redundant fuzzy rules. At this stagethe �nal model structure is obtained, i.e., all the fuzzy rules constitutingthe approximative linguistic fuzzy model.3. GAs based tuning for adjusting the membership functions in the fuzzyrules using �tness criteria. At this last stage, the �nal model parametersare estimated.In addition, the genetic fuzzy identi�cation method (GFIM) presented inthis chapter, permits the incorporation of prior, qualitative knowledge, andis able of blending this knowledge with the available input-output data.The remaining part of this chapter is structured as follows. Section 2 servesas a brief introduction to EAs and GFSs. Section 3 considers the fuzzy modelidenti�cation problem. Section 4 is devoted to the genetic fuzzy identi�cationmethod. Section 5 contains an example illustrating the application of GFIM.Some practical aspects and concluding remarks are presented in Section 6.2. Evolutionary Algorithms and Genetic Fuzzy SystemsIn the following we brie
y review the GAs and the ESs, both of which shallbe used in this contribution.



Genetic Fuzzy Identi�cation Process 32.1 Genetic AlgorithmsGAs are both theoretically and empirically proven to provide the means fore�cient search in complex spaces [17].Any GA starts with a population of randomly generated solutions, chro-mosomes, and advances towards better solutions by applying genetic opera-tors such as crossover (recombination) and point mutation. These algorithmsmaintain a population of solutions for a given problem. The population un-dergoes \evolution" in a form that resembles natural selection. In each gen-eration, relatively good solutions reproduce to give \birth" to o�springs thatreplace relatively bad solutions which in turn eventually \die". Fitness cri-teria play the role of the environment to distinguish between good and badsolutions. The process of going from the current population to the next pop-ulation constitutes one generation in the execution of a GA.Although there are many possible variants of the basic GA, its funda-mental underlying mechanism operates on a population of chromosomes (in-dividuals) representing possible solutions to a problem, and consists of threebasic operations:1. Evaluation of chromosome's �tness.2. Formation of a chromosome pool (intermediate population).3. Recombination and mutation.The structure of a GA is the following:Procedure Genetic Algorithmbegin (1)t = 0;initialize P (t);evaluate P (t);While (Not termination-condition) dobegin (2)t = t+ 1;select P (t) from P (t� 1);recombine P (t);evaluate P (t);end (2)end (1)A �tness function must be constructed for each particular problem to besolved. Given a particular chromosome, the �tness function returns a singlenumerical �tness score which is proportional to the utility, or the adaptationability, of this same chromosome.There are a number of ways to perform selection. One might view thepopulation as a mapping onto a roulette wheel, where each chromosome is



4 Oscar Cord�on and Francisco Herrerarepresented by a space that is proportional to its �tness. By repeatedly spin-ning the roulette wheel, chromosomes are chosen using stochastic samplingwith replacement to form the intermediate population. The selection proce-dure proposed in [3], and called stochastic universal sampling is one of themost e�cient. Here the number of o�springs of any population is bound bythe 
oor and ceiling of the expected number of o�springs. After selection hasbeen carried out, the construction of the intermediate population is completeand recombination and mutation can occur.The crossover operator combines the features of two parent populationsto form two similar o�springs. It is applied at a random position with a prob-ability of performance, the so called crossover probability, Pc. The mutationoperator arbitrarily alters one or more components of a selected populationso as to increase the structural variability of the population. Each positionof each chromosome vector in the population undergoes a random changeaccording to a probability de�ned by a mutation rate, the so called mutationprobability, Pm.The next �gures illustrate the basic operations: reproduction, crossover,and mutation. Fig. 2.1. Evaluationand contribution tothe chromosome pool.Fig. 2.2. Recombination (one-point crossover).Fig. 2.3. Mutation.



Genetic Fuzzy Identi�cation Process 5The basic principles of the GAs were �rst laid down rigorously by Holland[25], and are well described in many texts such as [17, 30].Binary coded strings as solutions for the representation problem havebeen extensively used. But GAs are not solely dependent on the use of bitstrings. Nonbinary representations which are more suitable for a variety ofapplication problems have emerged. One of the most important nonbinaryrepresentations is the real numbers representation which seems particularlynatural when dealing with optimization problems with variables in continuoussearch spaces. In this context, a chromosome is a vector of 
oating pointnumbers whose size is kept the same as the length of the vector. GAs basedon real numbers representation are called real-coded GAs (RCGAs). RCGAshave been mainly used for numerical optimization in continuous domains.Using real coding, the representation of the chromosomes is very close to thenatural formulation of many problems, e.g., there are no di�erences betweenthe genotype (coding) and the phenotype (search space). The use of real codingalso makes easier the design of other operators incorporating problem speci�cknowledge. RCGAs provide greater precision especially in the case of largedomains where binary coding would require prohibitively long representation[24, 30].It is generally accepted that a GAmust take into account the �ve followingcomponents in solving any given problem:1. A genetic representation of the problem solutions.2. A way to create an initial population of solutions.3. An evaluation function which computes the �tness of each chromosome.4. Genetic operators that alter the genetic composition of o�springs duringreproduction.5. Values for the parameters that the GA uses (population size, probabilitiesfor applying genetic operators, etc.).Numerous GA applications have been presented over the last years. Someof these can be classi�ed as numerical function optimization, combinatorialoptimization, image processing, fuzzy control and classi�cation, engineeringprocesses, biology, arti�cial life, machine learning, etc. There is an exception-ally large number of applications of GAs for the design of learning systems[18] and learning fuzzy systems [4, 20]. The interested reader can �nd freeGAs software in [16].2.2 Evolution StrategiesESs were developed with a strong focus on building systems capable of solvingdi�cult real-valued parameter optimization problems. The natural represen-tation is a vector or real-valued chromosomes which are manipulated primar-ily by mutation operators designed to perturb their real-valued parametersin a purposeful way.



6 Oscar Cord�on and Francisco HerreraESs were initially developed by Rechenberg and Schwefel in 1964 as exper-imental optimization techniques. The �rst ES algorithm, the so-called (1+1)-ES, was based on working with only two individuals per generation, one par-ent and one descendent (ofspring). Other more complex versions, based onconsidering higher number of parents (� > 1) and descendents (� > 1), haveappeared in last few years years. These constitute the so called (� + �)-ESand (�; �)-ES ESs algorithms. Also several new generalized ESs have beensuccessfully developed [2, 33].Without lack of generality, we will use in this chapter (1+1)-ES, the mostsimple ES algorithm. In the following we brie
y describe this particular ESalgorithm [2, 33](1+1)-ES is based on representing the possible optimization problem so-lution as a real coded string. This parent string is evolved by applying amutation operator over each one of its components. The mutation strengthis determined by a parameter �, the standard deviation of a normally dis-tributed random variable. This parameter is associated with the parent andis evolved in each step of the optimization process. If the evolution has beensuccessfull, the o�spring obtained by mutation is better adapted than its par-ent. Then the descendent substitutes the parent in the next generation. Theindividual adaptation is measured by using a �tness function. The process isiterated until a �nishing condition is satis�ed.The main component of the ES algorithm is the mutation operator,mut.It is composed of two components: mu�, which updates the value of the pa-rameter �, andmux, which evolves the real coded string. The �rst componentis based on Rechenberg's 1/5-success rule, which evolves the standard devi-ation according to the current value of the relative frequency p of successfulmutations in the following way�0 =mu�(�) = 8>>><>>>: �npc ; if p > 15� � npc; if p < 15�; if p = 15 . : (2.1)The second component mutates each element of the real coded string byadding normally distributed variations with standard deviation �0 to itx0 =mux(x) = (x1 + z1; : : : ; xn + zn) (2.2)where zi � Ni(0; �02).The �nal algorithm structure is as followsProcedure Evolution Strategy (1+1)begin (1)t = 0;initialize P (t) (x; �);evaluate f(x);



Genetic Fuzzy Identi�cation Process 7While (Not termination-condition) dobegin (2)t = t+ 1;(x0; �0) mut(x; �);evaluate f(x0);If Better (f(x0); f(x))then P (t+ 1) (x0; �0)else P (t+ 1) P (t).end (2)end (1)ES software is provided in [33].2.3 Genetic Fuzzy SystemsIn many cases, the identi�cation of a fuzzy model may be considered as anoptimization or a search process. GAs have the ability to explore and exploita given complex search space using an available performance measure and areknown to be capable of �nding near optimal solutions in such a search space.The prior knowledge one may wish to use, in addition to input-output data,may be in the form of known linguistic variables, fuzzy membership functionparameters, fuzzy rules, number of rules, etc. The generic code structure andindependent performance features of GA make them suitable candidates forincorporating this type of prior knowledge.These properties of GAs make them suitable candidates for the design andoptimization of fuzzy rule bases. In particular, the design, learning, and tun-ing of fuzzy rule have produced quite promising results. Figure 2.4 illustratesthis idea.GAs are applied to modify/learn the model parameters, i.e., the shapesof the membership functions stored in the fuzzy data base, and/or the modelstructure, i.e., the fuzzy rules composing the fuzzy rule base. It is possibleto distinguish three di�erent groups of genetic fuzzy model design approachesaccording to the type of fuzzy identi�cation performed in the learning pro-cess. They are brie
y described in the following subsections. For a detaileddescription see [4] and for an extensive bibliography see [6] (section 3.13).Di�erent approaches may be found in [20].2.4 Genetic Estimation of the Fuzzy Model Parameters (DB)A fuzzy model has a number of parameters, such as the shapes of the mem-bership functions, the scaling factors, the number of the linguistic values inthe term sets associated with the linguistic variables from the fuzzy rules.All these fuzzy model parameters consitute the fuzzy data base (DB) of thefuzzy model and the fuzzy model quality is highly dependent on all of them
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Fig. 2.4. Genetic Fuzzy Systems.[14, 19, 27, 37]. Therefore, the proper de�nition of the membership functionsis an important task in fuzzy model identi�cation. The parameter estima-tion method using GAs tunes the membership functions by adjusting theirparameters according to a given �tness function.Several methods have been proposed in order to construct the DB usingGAs. All of them are based on the existence of a given set of fuzzy rules (orrule base (RB) de�ning the fuzzy model structure) and an initial de�nitionof the model parameters. Each chromosome involved in the evolution processrepresents a di�erent DB de�nition, i.e., each chromosome will contain acoding of the membership functions. A chromosome's degree of adaptation ismeasured using a �tness function. This �tness function is based on the qualityof the fuzzy model, represented by the given RB, and the model parametersencoded in the chromosome.2.5 Genetic Derivation of the Fuzzy Model Structure (RB)All the methods belonging to this family assume that the model parametersare known in advance, i.e., they suppose the existence of a DB. Di�erent GAs-based methods for the derivation of the fuzzy model structure exist, depend-ing on the representation chosen for RB: a set of fuzzy rules, a decision table,or a relational matrix. Most of these methods consider an RB represented inthe form of a decision table (also called look-up table). As it is well known, aRB consisting of fuzzy rules with n input variables and a single output vari-able may be represented by using an n-dimensional decision table, where eachdimension corresponds to one input variable. Table 2.1 shows an example of a



Genetic Fuzzy Identi�cation Process 9decision table for the control of an inverted pendulum. Every dimension hasassociated an array containing the linguistic values of the particular inputvariable. A cell in the decision table contains the linguistic value which theoutput variable takes for the combination of the linguistic values of the inputvariables corresponding to this cell. Therefore, each cell represents a fuzzyrule that may belong to the �nal model structure.Table 2.1. Decision table for the control of inverted pendulum.Angle NL NM NS ZR PS PM PLNLNMChange NS NS ZRof ZR NM ZR PMAngle PS ZR PSPMPLThe above structure is encoded in the individuals (chromosomes) formingthe GA population. If there are empty cells in the decision table, then it is notpossible to derive a fuzzy model structure with an optimal number of rulesbecause for this purpose, all the possible fuzzy rules have to be considered.2.6 Genetic Learning of the Fuzzy Model Structure andParameters (RB and DB)There is a multiplicity of approaches in genetic learning all aimed at theidenti�cation of the fuzzy model structure and parameters.Amongst these some use variable chromosomal length, others use �xedchromosomal lenght encoding a �xed number of fuzzy rules together with themembership functions de�ning the linguistic values of the input and outputvariables, others use chromosomes each encoding a single fuzzy rule and itscorresponding membership functionparameters etc.Many of these approaches de�ne the �tness function simply as an errormeasure, whereas others include a variety of objectives to be optimized inorder to obtain more robust fuzzy models.3. The Fuzzy Model Identi�cation ProblemAs we have mentioned earlier, in this chapter we focus on the linguistic typefuzzy model for MISO systems, where the structure of the fuzzy model con-sists of a collection of Mamdani-type of fuzzy rules (with the logical connec-tive ALSO between the fuzzy rules). Thus each fuzzy rule is of the form



10 Oscar Cord�on and Francisco HerreraRi: If x1 is Ai1 and : : :and xn is Ain then y is Bwhere x1; : : : ; xn are input variables , y is the output variable andAi1; : : : ; Ain,B are the linguistic values of the input and output variables in the i-th fuzzyrule The input and output variables take their values in the universes ofdiscourse U1; : : : ; Un, and V respectively. The meaning (semantics) of thelinguistic values is characterized by the membership functions �Aij (xj) and�Bi(y) de�ned on the universes of discourse U and V respectively. In thischapter we consider triangular membership functions. A computationally ef-�cient way to characterize this type of membership functions is by usinga parametric representation achieved by means of the 3-tuple (aij ; bij; cij),(ai; bi; ci), j = 1; : : : ; n.The number of linguistic values for each input and output variable, thescaling factors, and the shapes of the membership functions constitute thefuzzy model parameters or DB. In [1] the following can be found about thelinguistic fuzzy model:\This representation is suitable for incorporating a priori knowledge by formu-lating the typical input-output situations in terms of rules. Since there is no struc-ture assumed, virtually any system can be represented by the linguistic model. Forthis 
exibility one has to pay by exponentially increasing model complexity, i.e.,many rules may be needed to approximate a system to a given degree of accuracy,especially with many input variables. Also, the identi�cation of the linguistic modelfrom numerical data is not straightforward because one has to estimate both themembership functions and the relation between them (the rules). It is not trivialto estimate the membership functions from the data, since without any prior infor-mation one does not know where the `important points' lie. Once the membershipfunctions are found, rules can be identi�ed quite easily."The above di�culties can be said to motivate our particular identi�cationstrategy: once initial fuzzy model parameters have been derived and then thecorresponding initial fuzzy model structure has been identi�ed, the quality ofthe so obtained initial fuzzy model may be improved by deriving �nal fuzzymodel parameters using the already identi�ed initial fuzzy model structure.In applying this identi�cation strategy we consider an input-output dataset without noise. This data set Ep is composed of p numerical input-outputtuples e` 2 Ep, called examples, each example having the forme` = (ex1̀; : : : ; exǹ; ey`) ; ` = 1; : : : ; p: (3.1)In a conventional linguistic fuzzy model the set of linguistic values takenby the input and output variables is de�ned in advance. Furthermore, themeaning (semantics) of each linguistic value Aij is determined by the mem-bership function �Aij (xj) and one and the same linguistic value may appearin a number of fuzzy rules. However, in every fuzzy rule in which this lin-guistic value appears it has the same semantics, i.e., the same membershipfunction. We call this type of linguistic fuzzy model a descriptive linguisticfuzzy model since a given membership function describes the semantics of an



Genetic Fuzzy Identi�cation Process 11a priori de�ned linguistic value and furthermore, one and the same linguis-tic value has the same semantics in all fuzzy rules in the RB in which it isencountered.In this chapter we consider a linguistic fuzzy model in which the inputand output variables variables do not take a priori de�ned linguistic values.This type of a linguistic fuzzy model is called an approximative linguisticfuzzy model [4, 10]. When considering this type of fuzy model we say thatthe fuzzy rules have free semantics. The di�erence between the descriptiveand the approximative linguistic fuzzy models is illustrated is in Figure 3.1.
Fig. 3.1. Descriptive versus approximative linguistic fuzzy models.For the purpose of identi�cation we consider fuzzy rules with free seman-tics, i.e., no a priori de�ned linguistic values are associated with the inputand output variables from the fuzzy rules. However, we further consider twotypes of free semantics:1. Unconstrained free semantics. The identi�cation method proceeds bylearning the fuzzy rules and the initial shapes of the membership func-tions associated with these rules. This is done without any prior fuzzypartitioning being available. That is, no restrictions are placed on themembership functions locations and shapes.2. Constrained free semantics. The identi�cation method uses an initialfuzzy partitioning of the domains of the input and output variables par-



12 Oscar Cord�on and Francisco Herreratition and the initial membership function parameters are locally (on arule by rule basis) adjusted during the identi�cation process.In the case of constrained free semantics, each universe of discourse, U ,is partitioned into a �nite number of overlapping regions each region labeledby a linguistic value. For instance, if X is a variable taking its values in Uand denoting temperature, then one may de�ne A1 as \low temperature,"Ai(1 < i < r) as \medium temperature," and Ar as \high temperature," etc.These referential linguistic values are characterized by their membershipfunctions �Ai(u) : U ! [0; 1]; i = 1; : : : ; r. To ensure good performance ofthe fuzzy model it is essential that all the referential membership functionsare normal and convex ones, and should satisfy the following completenesscondition8u 2 U 9j; 1 � j � r; such that �Aj (u) � �where � is a �xed threshold, called the completeness degree of a universe ofdiscourse. Figure 3.2 shows an example of a fuzzy partitioning with � = 0:5.Fig. 3.2. Graphical repre-sentation of a fuzzy parti-tioning.Based on this type of fuzzy partitioning , an interval of performance isassociated with each one of the three parameters (at; bt; ct) de�ning the mem-bership functions �At(�)[at̀; art ] = [at � bt � at2 ; at + bt � at2 ] (3.2)[bt̀; brt ] = [bt � bt � at2 ; bt + ct � bt2 ] (3.3)[ct̀; crt ] = [ct � ct � bt2 ; ct + ct � bt2 ] (3.4)These intervals of performance are then used for locally adjusting themembership functions parameters during identi�cation. Figure 3.3 shows theintervals of performance associated with each one of the parameters.



Genetic Fuzzy Identi�cation Process 13Fig. 3.3. Membership functionand intervals of performance.Therefore, the fuzzy rules identi�ed will have their semantics within theperformance intervals established by the initial fuzzy partitioning. As alreadymentioned, the identi�cation procedure is concerned with{ the fuzzy model structure identi�cation which allows us to obtain the RB,and{ the fuzzy model parameters estimation which allows us to obtain the DB.The phases of genetic simpli�cation and tuning involved in the identi�-cation of the approximative linguistic fuzzy model use the following fuzzylogic operations and an inference procedure [37]. Consider an input vectorx = (x1; : : : ; xn) and a fuzzy RB constituted by m linguistic fuzzy rules Ri,i = 1; : : : ;m,If X11 is A11 and : : :and X1n is A1n then Y is B1: : :If Xm1 is Am1 and : : :and Xmn is Amn then Y is Bm1 The logical and connective is used to connect the antecedents in eachindividual rule. This connective is interpreted by the min operator�Ai (x) = min(�Ai1 (x1); �Ai2(x2); : : : ; �Ain(xn)): (3.5)2 The if-then fuzzy implication is de�ned as a conjunction of the mem-bership functions from the antecedent and consequent part of an if-thenfuzzy rule. It is interpreted by the min operator�Bi 0(x; y) = min(�Ai (x); �Bi(y): (3.6)3 The logical connective also aggregating the fuzzy rules is given as theweighted sum of the defuzzi�ed values of the output �Bi 0(y) of each indi-vidual fuzzy rule. The �nal defuzzi�ed output, y, generated by the fuzzymodel, is computed as [11]y = Pmi=1 �Ai(x) �CG(�B0i (y))Pmi=1 �Ai(x) (3.7)where CG(�B0i(y)) is the center of gravity of the fuzzy set B0i.



14 Oscar Cord�on and Francisco Herrera4. The Genetic Fuzzy Identi�cation MethodThe GFIM is based on work presented in [5, 21, 22, 23]. It is composed bythe following three parts:I A genetic fuzzy rules construction method based on EAs, and a coveringmethod for the input-output example set. This part results in an initialfuzzy model structure and parameters, i.e., a set of approximative fuzzyrules with their associated fuzzy sets covering the training input-outputdata set in an adequate manner.II A genetic simpli�cation of fuzzy rules, based on a binary coded GA and afuzzy model performance measure. This part has the purpose of avoidingoverlearning and removing redundant fuzzy rules.III A genetic tuning of fuzzy model parameters, based on a RCGA and afuzzy model performance measure. This part results in a �nal fuzzy modelby tuning the membership functions for each fuzzy rule, i.e., it will es-timate the �nal fuzzy model parameters taking into account the fuzzymodel structure identi�ed in the previous part.Therefore, the �rst two parts form the genetic structure identi�cation partof GIFM and provide the fuzzy model structure or RB together with initialfuzzy model parameters. The third part of GFIM adjusts the DB parametersgiving us the �nal fuzzy model parameters.The GIFMmay be used in a number of ways according to the informationavailable about the system under identi�cation:1. Available example set: The GFIM is applied for identifying a fuzzy modelwith unconstrained free semantics. No restrictions are imposed on themembership functions of inputs and outputs.2. Available example set and a fuzzy partition: When initial fuzzy partitions(initial fuzzy model parameters) are available for all inputs and outputs,the GFIM is applied for constructing a RB using the initial fuzzy partitionsand then locally tuning the membership functions associated with theidenti�ed fuzzy rules by means of an ES. Hence, the initial fuzzy partitionsare used to guide the genetic search, restricting the shapes and the domainsin which each one of the membership functions involved can be locallyadjusted.3. Available partial RB and an example set: In this case a fuzzy partition-ing may or may not be available. Furthermore, an incomplete linguisticfuzzy model has been derived by a human expert. In this case the GIFMaugments the partial RB with fuzzy rules learned from the example set,and then genetic simpli�cation is applied to obtain the �nal fuzzy modelstructure. Finally, genetic tuning is applied for adjusting the membershipfunctions of the �nal RB, thus obtaining the �nal fuzzy model parameters.4. Available RB: In this case a complete linguistic fuzzy model is made avail-able i.e., the fuzzy model structure and parameters are derived from a



Genetic Fuzzy Identi�cation Process 15human expert. Then, genetic tuning process, is used to obtain a moreaccurate fuzzy model by adjusting the already available fuzzy model pa-rameters.In the next sections we describe the three parts of the GFIM. First, wewill present some requirements with respect to the RB.4.1 RequirementsFor identifying a set of fuzzy rules Ri, describing the structure of a linguisticfuzzy model, one has to \cover" all possible input-output pairs, e` 2 Ep, sothat the so called completeness property [14, 27] is achieved. The formulationof this requirement requires a constant � 2 [0; 1], the nonempty union of themembership functions �Ai(�), �Bi (�), and is formulated asCR(e`) = T[i=1Ri(e`) � � ` = 1; : : : ; p; (4.1)Ri(e`) = �(�Ai(ex`); �Bi(ey`));�Ai (ex`) = �(�Ai1 (ex1̀); : : : ; �Ain(exǹ));where � is a t-norm, and Ri(e`) is the compatibility degree between the ruleRi and the example e`.Given a set of fuzzy rules Ri, the covering value of an example e` is de�nedas CV R(e`) = TXi=1 Ri(e`); (4.2)and we require thatCV R(e`) � � ` = 1; : : : ; p: (4.3)The set of fuzzy rules must satisfy both of the conditions presented above,i.e., it has to have the completeness property and an adequate covering value.4.2 Genetic Construction of Fuzzy RulesThe di�erent parts of the genetic fuzzy rules construction method have beenpresented in [5, 22, 23]. In this chapter we describe their integration.The genetic fuzzy rules construction consists of a construction methodtogether with a covering method, both working on a given set of examples.{ The construction method is realized by means of a GA encoding of a sin-gle fuzzy rule in each chromosome. The GA �nds the best fuzzy rule inevery run over the set of examples according to GA �tness function. When



16 Oscar Cord�on and Francisco Herreraconstrained free semantics is considered, an ES is used for locally tuningthe best fuzzy rules obtained during the iterations involved in the geneticsearch.{ The covering method is realized as an iterative process. It allows the con-struction of a set of fuzzy rules such that they cover the set of examples.In each iteration, the construction method chooses the best chromosome(fuzzy rule), considers the relative covering value this fuzzy rule has withrespect to the example set, and removes the examples with a covering valuegreater than �.The above methods were separately presented in [22] and [5]. Here weintroduce a new �tness criterion for the case of free semantics. This is the socalled niche interaction rate which de�nes the degree of overlapping betweena newly constructed fuzzy rule and the previously constructed fuzzy rules.This �tness criterion was introduced in the case of constrained semantics in[5]. We also introduce some modi�cations to the �tness criteria presented in[22]. The �rst subsection presents these �tness criteria, the next two sectionsdescribe identi�cation with constrained and unconstrained free semantics andcovering methods, and the sections after consider the covering method, ge-netic simpli�cation, and genetic tuning.4.2.1 Fitness Criteria. The �tness functions employed in GFIM are de-signed according to di�erent �tness criteria.High frequency value. The frequency of a fuzzy model rule, Ri, on the set ofexamples, Ep, is de�ned as	Ep (Ri) = 1p pX̀=1Ri(e`) (4.4)where Ri(e`) is the compatibility degree between Ri and e`.High average covering degree on positive examples. The set of positive exam-ples for Ri with compatibility degree greater than or equal to ! is de�nedas E+! (Ri) = fe` 2 Ep=Ri(e`) � !g (4.5)where n+! (Ri) is equal to jE+! (Ri)j. The average covering degree on E+! (Ri)can be de�ned asG!(Ri) = Xe`2E+! (Ri)Ri(e`)=n+! (Ri): (4.6)



Genetic Fuzzy Identi�cation Process 17Small negative example set. The set of the negative examples for Ri is de�nedas E�(Ri) = fe` 2 Ep=Ri(e`) = 0 and Ai(ex`) > 0g: (4.7)An example is considered negative for a fuzzy rule when it better matchessome other fuzzy rule with the same antecedent (if-part), but a di�erentconsequent (then-part). The negative examples are always considered on thecomplete training set of examples.With n�Ri = jE�(Ri)j being the number of negative examples, the penaltyfunction on the negative examples set isgn(Ri�) = 8<: 1 if n�Ri � k � n+! (Ri)1n�Ri � kn+! (Ri) + exp(1) otherwise (4.8)where we permit, up to a percentage of the number of positive examples,k �n+! (Ri), a number of negative examples per fuzzy rule without any penalty.This percentage is determined by the parameter k 2 [0; 1].Small membership function width. The variable width (RW) of a fuzzy ruleRi is de�ned asRW i = 1h hXj=1 WVRijDW j (4.9)whereWVRij = c3ij � c1ij (4.10)and (c1ij ; c2ij; c3ij), j = 1; : : : ; h = n + 1, are the parameters associated withmembership function. DW j is the domain interval width per input/outputvariable.We de�ne the membership width rate, MWR, of the rule Ri as a functionof RW iMWR(Ri) = g(RW i) (4.11)where the function g represents requirements with respect to the size of thewidth. We require a small width by considering the functiong(x) = e1�x � 1e� 1 : (4.12)



18 Oscar Cord�on and Francisco HerreraHighly symmetrical membership functions.. The rate of symmetry is de�nedin order to achieve the symmetry of a membership function and to preventthe bad covering of extreme points. It is de�ned asRS (Ri) = 1di (4.13)wheredi = maxj=1;:::;n+1fdjig; (4.14)withdji = max(dji1dji2 ; dji2dji1) (4.15)anddji1 = c2ij � c1ij; dji2 = c3ij � c2ij: (4.16)Clearly, RS � 1, and if the membership function is symmetric, thenRS = 1.Low niche interaction rate. This criterion is introduced in [5]. Let Ni =(Nix;Niy) be the centers of the fuzzy rules (niches) determined until now(i = 1; : : : ; d, where d is the number of runs of the construction method). LetC be a chromosome from the current population. Then the niche interactionrate penalizes the �tness score associated with C in the following wayLNIR(C) = 1�NIR(C); (4.17)NIR(C) = maxi fhig; (4.18)hi = �(A(Nix); B(Niy)); i = 1; : : : ; d; (4.19)A(Nix) = �(A1(Nix1); : : : ; An(Niy)); (4.20)C � Ri: If x1 is A1 and : : :and xn is An then y is B: (4.21)Hence LNIR(C) is de�ned on [0; 1]. It gives the maximum value (no pe-nalization) when the fuzzy rule encoded in C does not interact with any ofthe fuzzy rules constructed previously. The minimum value (maximum pe-nalization) is obtained when the fuzzy rule encoded in C is identical to afuzzy rule constructed previously.Therefore, the combination of the niche scheme and the covering methodwill allow us to verify the two following fundamental aspects of the GFIM:{ GFIM will ensure that fuzzy rules are identi�ed for each available example.The completeness property is veri�ed in this manner.



Genetic Fuzzy Identi�cation Process 19{ GFIM will maintain an adequate rule distribution in each one of the nichesexisting in the space of examples. It is known that the good performanceof a fuzzy model is due to its interpolatation ability. A particular inputusually �res more than one fuzzy rule and the interaction between the si-multaneously �red fuzzy rules is what allows the fuzzy model to determinethe best output for this particular input. Hence, an adequate interactionrate between neighboring rules will improve the fuzzy model quality. Fuzzyrules too close to each other may cause an undesirable overlearning due tothe fact that their excessive interaction makes the inferred output moveaway from the optimal. Remote rules make the fuzzy model lose its inter-polation capability.4.2.2 Identi�cation with Unconstrained Free Semantics. The con-struction method for fuzzy rules is developed by means of a RCGA, whereeach chromosome represents a fuzzy rule. The RCGA obtains the best fuzzyrule according to a set of �tness criteria, which are included in the �tnessfunction of the RCGA. We describe the RCGA components [22] below.Representation. In the RCGA population, a candidate chromosome Cr, r =1; : : : ;M , represents a fuzzy ruleIf x1 is Ar1 and : : :and xn is Arn then y is Brwhere the reals (arj , brj , crj, ar), (br, cr) are the parameter vectors of themembership functions of Arj, j = 1; : : : ; n, and Br respectively. Cr codesthese vectors as(ar1; br1; cr1; : : : ; arn; brn; crn; ar; br; cr):As was justi�ed in [21], we propose approaching the identi�cation problemwith real coded chromosomes together with special genetic operators devel-oped for them. Then a fuzzy rule will be a chromosome vector coded as avector of 
oating point numbers [22].Finally, we represent a population of M chromosomes (fuzzy rules) by C,and it is set up as followsC = (C1; : : : ; CM): (4.22)Now, the fundamental underlying mechanisms of a GA, formation of aninitial chromosome pool, �tness function, and genetic operators are intro-duced.Initial chromosome pool. We denote the domain of every input and outputvariable as Xj and Y , respectively. These domains are closed intervals of realsdenoted as Uj and V , respectively. Furthermore, we consider an extension ofthese intervals in order to de�ne the membership functions covering their ex-treme values. The intervals will increase their width by 10% or more for eachextreme value. This permits us to cover the extreme values of the domains in



20 Oscar Cord�on and Francisco Herreraan adequate form. In this way, the extended intervals are Uj = [u1j ; u2j ] andV = [v1; v2].The initial chromosome pool is created partially from Et � Ep (t chro-mosomes). The remaining (M � t chromosomes) are initialized randomly, asfollows:{ Let t = minfjEpj;M=2g. We choose at random t examples from Ep and foreach example we determine the chromosome (fuzzy rule) belonging to theinitial chromosome pool as follows. Consider the example e` 2 Et and itscomponent exj̀ 2 [u1j ; u2j], 4exj̀ = minfexj̀ � u1j ; u2j � exj̀g. Let �(exj̀) bea random value in the range [0;4exj̀]. Then we construct the membershipfunction by means of the triple(exj̀ � �(exj̀); exj̀; exj̀ + �(exj̀)):The procedure is the same for the remaining components of e`.{ The remaining M � t chromosomes of the initial population are chosen atrandom, each chromosome in its respective interval,Cr = (cr1; : : : ; cr`); (4.23)` = 3 � (n+ 1), with requirements c3s+1 � c3s+2 � c3s+3, s = 0; : : : ; n.Evaluation of chromosome �tness. As we commented earlier, we de�ne the�tness function either according to the �ve criteria employed in [22] or thesix ones presented in this work.An evaluation function for the fuzzy rule Ri, and therefore a �tness func-tion for the associated chromosome Ci is de�ned asZ1(Ri) = 	Ep (Ri) �Gw(Ri) � gn(Ri�) �MWR(Ri) �RS (Ri); (4.24)Z2(Ri) = 	Ep (Ri)�Gw(Ri)�gn(Ri�)�MWR(Ri)�RS (Ri)�LNIR(Ri):(4.25)The objective in both of the above cases is the maximization of the �tnessfunction.Genetic operators. During the GA reproduction phase we use two classi-cal genetic operators, mutation and crossover. The ones selected are thenon-uniform mutation proposed by Z. Michalewicz [30], and the max-min-arithmetical crossover used in [21]. A short description of them is given be-low.{ Non-uniform mutationIf Ctv = (c1; : : : ; ck; : : : ; cH) is a chromosome and the element ck was se-lected for this mutation (the domain of ck is [ck`; ckr]), the result is a vectorCt+1v = (c1; : : : ; c0k; : : : ; cH), with k 2 1; : : : ;H, andc0k = � ck +4(t; ckr � ck) if a = 0ck �4(t; ck � ck`) if a = 1 (4.26)



Genetic Fuzzy Identi�cation Process 21where a is a random number that may have a value of zero or one, andthe function 4(t; y) returns a value in the interval [0; y]. This value is suchthat the probability of 4(t; y) being close to 0 increases as t increases4(t; y) = y(1 � r(1� tT )b ): (4.27)In the above expression, r is a random number in the interval [0; 1], Tis the maximum number of generations, and b is a parameter chosen bythe user, which depends on the number of iterations. This property of theprobability of4(t; y) forces the non-uniformmutation operator to performuniform search in the initial chromosome space when t is small, and localsearch for larger t.{ Max-min-arithmetical crossoverIf Ctv = (c1; : : : ; ck; : : : ; cH) and Ctw = (c01; : : : ; c0k; : : : ; c0H) are to be crossed,we generate the following four o�springs,Ct+11 = aCtw + (1� a)Ctv;Ct+12 = aCtv + (1� a)Ctw;Ct+13 with ct+13k = minfck; c0kg;Ct+14 with ct+14k = maxfck; c0kg: (4.28)This operator can use a parameter awhich is either a constant, or a variablewhose value depends on the age of the population. The resulting descen-dents are the two best of the four aforesaid o�springs.With regard to the selection procedure, it is a stochastic universal sampling[3], in which the number of o�springs is limited by the 
oor and ceiling ofthe expected number of o�springs, together with an elitist selection.4.2.3 Identi�cation with Constrained Free Semantics. This construc-tion method for fuzzy rules is developed by means of a special GA, wherea chromosome encodes a fuzzy rule, and an ES that locally tunes the fuzzyrules. In the following, we describe this method. For more detail see [5].Representation. Here, a chromosomeC is composed of two di�erent parts, C1and C2, each one corresponding to each one of the fuzzy model components.The �rst part of the chromosome encodes the linguistic fuzzy rule (belongingto the RB), and the second one the membership functions parameters for theinput and output variables involved in the fuzzy rule (belonging to the DB).In order to represent the �rst part there is a need to number the lin-guistic values belonging to each one of the term sets for the input and out-put variables. A variable xi taking linguistic values in a term set T (xi) =fL1(xi); : : : ; Lni(xi)g has associated with it the set T 0(xi) = f1; : : : ; nig. Onthe other hand, the second part adopts the same representation as in the caseof unconstrained free semantics. Hence, the fuzzy rule



22 Oscar Cord�on and Francisco HerreraIf x1 is Li1(x1) and : : :and xn is Lin (xn) then y is Lin+1 (y)is encoded into a chromosome C of the following formC1 = (i1; : : : ; in; in+1);C2 = (aLi1 (x1); bLi1 (x1); cLi1(x1); : : : ; aLin (xn); bLin (xn); cLin(xn);aLin+1 (y); bLin+1 (y); cLin+1 (y))C = C1C2: (4.29)Initial chromosome pool. Part of the initial chromosome pool is obtainedmaking use of the examples contained in the training set, Ep, and the re-mainder of it is generated at random. However a third possibility can beconsidered. WithM being the GA population size and t = minfjEpj; M3 g, lett examples be selected at random from Ep. Then, the initial population isgenerated in three steps as follows:1. Using fuzzy partitions, generate t chromosomes by taking the fuzzy rulewhich covers best each one of the t randomly selected examples. InitializeC1 and C2 by coding the fuzzy rule linguistic values and their semantics.2. Generate another t chromosomes by initializingC1 in the same way as inthe previous step, and compute the values of C2 at random, letting eachchromosome vary in its respective interval.3. Generate the remainingM � 2 � t chromosomes by computing at randomthe values of C1, and making use of these for randomly generating theC2 part, letting again each chromosome vary in its respective interval.Evaluation of chromosome �tness. Due to the fact that permitted chromo-some variations are restricted to being performed in intervals smaller thanthose considered in the case of unconstrained free semantics, several previ-ously employed �tness criteria lose their meaning and others become nec-essary. Hence, the membership function symmetricity and width rates arenot used anymore, but the niche interaction rate is required for obtaining anadequate fuzzy rule interaction. The �tness function is �nally de�ned in thefollowing wayZ3(Ri) = 	Ep (Ri) �Gw(Ri) � gn(Ri�) �LNIR(Ri): (4.30)Genetic operators. Due to the special nature of the chromosomes involved inthe case of constrained free semantics, the design of special genetic operatorsis required. For a more detailed description of these see [5].With respect to mutation, two di�erent operators are used, each one ofthem acting on a di�erent chromosome part. Since C2 corresponds to therepresentation employed in the case of unconstrained free semantics, the samemutation operator designed for this case is used for C2. Thus, Michalewicz'snon-uniform mutation operator is employed.



Genetic Fuzzy Identi�cation Process 23The mutation operator selected for C1 is similar to the one proposed byThrift in [36]. When mutation for the C1 part of the chromosome is goingto be performed, a local modi�cation is developed by changing the currentlinguistic value to one of its neighboring linguistic values (the decision ismade at random). When the linguistic value to be changed is the �rst orlast one in the term set, the only possible change is to substitute it with itsright or left neighbor respectively. Obviously, a mutation in C1 provokes achange in C2. When an input/output changes its linguistic value value fromone term to another, the semantics (membership function) associated with itis automatically updated in the second part of the chromosome by the defaultvalues in the corresponding fuzzy partitioning.With regard to recombination, two di�erent crossover operators are em-ployed. If the fuzzy rule encoded by both parent chromosomes is the same,then the max-min-arithmetical crossover operator is applied to C2 and ob-viously the parent C1 values are maintained in the o�spring. On the otherhand, when the parent chromosomes encode di�erent rules, it makes no senseto apply this operator. Instead, a standard crossover operator is applied onboth parts of the parent chromosomes. This operator performs as follows. Acrossover point cp is randomly generated in C1 and the two parent chromo-somes are crossed at the cp-th and n + 1 + 3 � cp crossover points in eachchromosome part respectively. The crossover is thus performed in both chro-mosome parts, C1 and C2, thereby producing two meaningful o�springs.Let us consideran example in order to clarify the standard crossover op-erator. SinceCt = (c1; : : : ; ccp; ccp+1; : : : ; cn+1; ac1 ; bc1; cc1 ; : : : ; (4.31)accp ; bccp ; cccp ; accp+1 ; bccp+1 ; cccp+1 ; : : : ; acn+1 ; bcn+1 ; ccn+1)andC0t = (c01; : : : ; c0cp; c0cp+1; : : : ; c0n+1; ac01 ; bc01; cc01 ; : : : ; (4.32)ac0cp ; bc0cp ; cc0cp ; ac0cp+1 ; bc0cp+1 ; cc0cp+1 ; : : : ; ac0n+1 ; bc0n+1 ; cc0n+1)are the chromosomes to be crossed at the point cp, the two resulting o�springsare Ct+1 = (c1; : : : ; ccp; c0cp+1; : : : ; c0n+1; ac1 ; bc1; cc1 ; : : : ; (4.33)accp ; bccp ; cccp ; ac0cp+1 ; bc0cp+1 ; cc0cp+1 ; : : : ; ac0n+1 ; bc0n+1 ; cc0n+1);C0t+1 = (c01; : : : ; c0cp; ccp+1; : : : ; cn+1; ac01;bc01 ; cc01 ; : : : ; (4.34)ac0cp ; bc0cp ; cc0cp ; accp ; bccp ; cccp ; : : : ; acn+1 ; bcn+1 ; ccn+1):The last genetic operator is based on (1+1)-ES. This optimization tech-nique has been selected and integrated into the genetic recombination processin order to perform a local tuning of the best chromosomes (fuzzy rules) ob-tained in each run. Each time a GA is performed, the ES will be applied over



24 Oscar Cord�on and Francisco Herreraa percentage � of the best chromosomes from the current genetic populationand will adjust their C2 parts.The ES employed was brie
y presented in Section 2.2. In our case, the stepsize � can not be a single value because each one of the membership functionsencoded in the second part of the chromosome is de�ned over di�erent uni-verses of discourse and thus, requires mutations of a di�erent order. Followingthe modus operandi presented in [5], each parent component xi varying in theinterval of performance [xì; xri ] will have its own associated step size �i = ��siwith si = (xri � xì)=4. When the mutated value x0i= xi + zi does not belongto the interval of performance, it is assumed equal to the interval extent, xìor xri , closer to xi + zi.The selection procedure is again based on Baker's stochastic universalsampling and elitist selection.4.2.4 Covering method. The covering method is presented in detail in[22]. It is developed as an iterative process that allows to obtain a set offuzzy rules covering the example set. In each iteration, it considers the relativecovering value the best fuzzy rule (chromosome) has for the given trainingset, and removes from it the examples for which the covering value is greaterthan �.Let Re be the set of fuzzy rules provided by a human expert (expertfuzzy rules). For any one of the cases of unconstrained free semantics andconstrained free semantics, the covering method proceeds as follows:1. Initialization stage:{ Determines k, ! and � .{ Merges the fuzzy rules in Re with the fuzzy rules , Rg, which areobtained via identi�cation from inut-output data.{ Assigns CV [`] CVRe(e`), ` = 1; : : : ; p.{ If CV [`] � �, e` from Ep, ` = 1; : : : ; p is removed.2. Applies the speci�c construction method for the given set of examplesEp,3. Seelects the best chromosome Cr encoding the fuzzy rule Rr.4. Merges Rr with Rg.5. For every e` 2 Ep doesCV [`] CV [`] + Rr(e`),If CV [`] � � then remove it from Ep.6. If Ep = ; then Stop else return to Step 2.Since there may be similar fuzzy rules in Rg, or a fuzzy from Rg may besimilar to a fuzzy rule in Re, it is necessary to simplify the RB obtained .4.3 Genetic Simpli�cationDue to the iterative nature of genetic identi�cation, it may result in redundantfuzzy rules and/or overlearning . This latter occurs when some examples are



Genetic Fuzzy Identi�cation Process 25covered to degree higher than the desired one and in this case the performanceof the identi�ed RB is negatively a�ected.The genetic simpli�cation was proposed in [23]. It is based on a binarycoded GA, in which the selection of chromosomes is performed by usingthe stochastic universal sampling procedure together with an elitist selectionscheme. Also, recombination is put into e�ect by using the classical binarymultipoint crossover (performed on two points) and uniform mutation oper-ators.The coding scheme generates �xed-length chromosomes. Let us now con-sider the fuzzy rules in the RB, constructed at the previous step and num-bered from 1 to m. An m-bit string C = (c1; : : : ; cm) represents a subset ofcandidate fuzzy rules that is to be obtained as the output, Bs, of geneticsimpli�cation, and such thatIf ci = 1 then Ri 2 Bs else Ri 62 Bs:The initial population of chromosomes is obtained by introducing a chro-mosome representing the complete rule set Rg , that is, ci = 1 for all i. Theremaining chromosomes are selected at random.The �tness function, E(�) is based on an application-speci�c measure,usually employed in the design of GFSs: the mean square error (SE) over atraining data set, ETDS , given asE(Cj) = 12jETDS j Xe`2ETDS(ey` � S(ex`))2 (4.35)where S(ex`) is the output value obtained from the identi�ed fuzzy modelusing the model structure (RB) coded in Cj, R(Cj), when the input valuesare ex`, and ey` is the known desired output value.During genetic simpli�cation, there is a need to keep the completenessproperty considered previously: the model must always be able to infer aproper output for every system input. We will ensure this condition by forcingevery example contained in the training set to be covered by the encoded RBin a degree greater than or equal to � ,CR(Cj )(e`) = [j=1::T Rj(e`) � � , 8e` 2 ETDS and Rj 2 R(Cj) (4.36)where � is the degree of completeness of the minimal training set used forgenetic simpli�cation. Usually, � is less than or equal to !, the compati-bility degree used in the identi�cation. Therefore, we de�ne a training setcompleteness degree of R(Cj) on the set of examples ETDS asTSCD(R(Cj); ETDS ) = \e`2ETDS CR(Cj)(e`): (4.37)The �tness function, penalizing the lack of the completeness property is



26 Oscar Cord�on and Francisco HerreraF (Cj) = 8<: E(Cj) if TSCD(R(Cj); ETDS ) � �12 Pe`2ETDS(ey`)2 otherwise. (4.38)4.4 Genetic TuningGenetic tuning process is presented in-depth in [21]. It is based on the ex-istence of an initial fuzzy model, that is, an initial estimation of the modelparameters (DB), and initially identi�ed fuzzy model structure de�ned by aRB and composed by m fuzzy rules.Each chromosome forming the genetic population encodes the whole RB,Rs, with di�erent fuzzy model parameters associated with it.The GA designed for the tuning uses real numbers coding , stochastic uni-versal sampling as selection procedure, and Michaelewicz's non-uniform mu-tation operator. The crossover operator, max-min-arithmetical, is employedagain.As we commented before, the membership functions have a triangularform. Thus, each one of them has an associated parametric representationbased on a triple of real values. Each one of the fuzzy rules will be encodedin parts of the chromosome Cri, i = 1; : : : ;m, in the following wayCri = (ai1; bi1; ci1; : : : ; ain; bin; cin; ai; bi; ci): (4.39)Therefore the complete RB with an associated DB is represented by acomplete chromosome CrCr = Cr1 Cr2 : : : Crm: (4.40)Each chromosome in the population represents a complete fuzzy modeli.e., both RB and DB. In particular, all of them encode the identi�ed RB, Rs,i.e., the model structure identi�ed in the previous two stages, and the onlydi�erence between the di�erent chromosomes are the di�erent membershipfunctions, that is, the di�erent DBs.The initial fuzzy model is encoded directly into a chromosome, denotedas C1. The remaining ones are generated by associating an interval of per-formance, [ch̀; crh] to every ch in C1, h = 1 : : : (n + 1) �m � 3. Each interval ofperformance will be the interval of adjustment for the corresponding variable,ch 2 [ch̀; crh].If (t mod 3) = 1 then ct is the left value of the support of a membershipfunction. The latter one is de�ned by the three parameters (ct, ct+1, ct+2)and the intervals of performance arect 2 [ct̀; crt ] = [ct � ct+1 � ct2 ; ct + ct+1 � ct2 ]; (4.41)ct+1 2 [ct̀+1; crt+1] = [ct+1 � ct+1 � ct2 ; ct+1 + ct+2 � ct+12 ]; (4.42)ct+2 2 [ct̀+2; crt+2] = [ct+2 � ct+2 � ct+12 ; ct+2 + ct+3 � ct+22 ]: (4.43)



Genetic Fuzzy Identi�cation Process 27Figure 4.1 shows these intervals of performance.Therefore, we create a population of chromosomes containing C1 as its�rst individual and where the remaining ones are initiated randomly, witheach one being in its respective interval of performance.
Fig. 4.1. Membership func-tion and intervals of perfor-mance for genetic tuning.The �tness function of a chromosome is de�ned by using the traininginput-output data set, ETDS , and a speci�c error measure, the mean squareerror. In this way, the adaptation value associated with a chromosome isobtained by computing the error between the outputs given by the fuzzymodel contained in the chromosome and the outputs contained in the traininginput-output data set. The �tness function is given asE(C) = 12jETDS j Xe`2ETDS(ey` � S(ex`))2: (4.44)4.5 Summary of the Identi�cation ProcedureThis section summarizes the presented GFIM, showing some guidelines forits use idepending on the information available about the system under iden-ti�cation.I. Available knowledge. Once the input-output data set is available,the existence of any other kind of prior knowledge for the purpose ofidenti�cation should be studied: the possibility of de�ning the modelparameters (in the sense of initial fuzzy partitions), the availability of apartial fuzzy model (in the sense of an incomplete RB with or withoutan initial de�nition of the DB), or a complete one (in the sense of acomplete RB and an initial de�nition of the DB).II. Using the GFIM. Once the the existing knowledge is made available,the particular identi�cation method to be applied has to be chosen.



28 Oscar Cord�on and Francisco Herrera1. No prior knowledge: In this case, we only have the input-output dataset for performing identi�cation. Therefore, the unconstrained free se-mantics type of identi�cation is �rst applied for obtaining an initialde�nition of the fuzzy model structure and parameters. Genetic sim-pli�cation is then applied for identifying the �nal fuzzy model struc-ture. Finally, genetic tuning obtains the �nal fuzzy model parameters.2. Initial fuzzy model parameters: When initial fuzzy partitions, a verypreliminary de�nition of the model parameters, are provided, the over-all learning process is applied for identifying a fuzzy model taking theprevious semantics as a base. The only change with respect to theprevious case is that the genetic construction method used will be theconstrained free semantics one.3. Partial fuzzy model: When an incomplete linguistic fuzzy model hasbeen derived from a human expert, the GFIM permits the incorpo-ration of this partial RB by merging it with the one obtained fromgenetic identi�cation (constrained or unconstrained free semantics ).Genetic simpli�cation and tuning are then applied for obtaining the�nal model structure and parameters.4. Complete fuzzy model: When a complete linguistic fuzzy model hasbeen derived from an expert, i.e., the fuzzy model structure and thefuzzy model parameters are both available, genetic tuning may beused to obtain a more accurate fuzzy model by adjusting the availablefuzzy model parameters.III. Model validation. The GFIM proposed takes into account some fuzzyrule base properties in order to guarantee good quality linguistic fuzzymodels. Thus, the analysis of how well the fuzzy rules cover the dataspace should be done with care since a bad coverage decreases the qualityof the linguistic fuzzy model. Anyway, there is always the need to validatethe identi�ed fuzzy model through numerical simulation and comparisonswith system data in order to improve its validity.To conclude this section we would like to note here that any other type ofmembership functions may be incorporated in the GFIM with minor modi-�cations. Furthermore, in [7] a di�erent GFIM for the case of unconstrainedfree semantics is presented where the construction method for fuzzy rules usesan inductive algorithm and an ES. The structure of this GFIM may be usedfor identifying another type of a linguistic fuzzy model, namely a descriptivelinguistic fuzzy model [8, 10].5. ExampleIn order to analyze the accuracy of the GFIM, we will show now how twon-dimensional functions can be used to identify three-dimensional surfaces.Three di�erent ways of fuzzy model identi�cation these will be compared:



Genetic Fuzzy Identi�cation Process 291. Two GFIMs for the case of unconstrained free semantics using the �tnessfunctions Z1 and Z2 respectively, and2. The GFIM for the case of constrained free semantics using the �tnessfunction Z3.The n-dimensional functions and the universes of discourse consideredare shown below. The spherical model, F1, is an unimodal function, while thegeneralized Rastrigin function, F2, is a strongly multimodal one. These areillustrated in (Figures 5.1 and 5.3).F1(x1; x2) = x21 + x22; (5.1)x1; x2 2 [�5; 5]; F1(x1; x2) 2 [0; 50]:F2(x1; x2) = x21 + x22 � cos(18x1) � cos(18x2); (5.2)x1; x2 2 [�1; 1]; F2(x1; x2) 2 [2; 3:5231]:For each function, an input-output training data set, uniformly dis-tributed in the three-dimensional space has been obtained experimentally.In this way, two sets with 1681 values have been generated by taking 41 val-ues for each of the two state variables considered to be uniformly distributedin their respective intervals.Two other data sets have been generated for their use as test sets. Theseare to be used for evaluating the performance of the learning method thusavoiding any possible bias related to the data in the training set. The size ofthese data sets is ten percent of the size of the corresponding training set.The data is obtained by generating the state variables values randomly inthe concrete universes of discourse for each of them, and then computing theassociated output value. Hence, two test sets formed by 168 data are used tomeasure the accuracy of the fuzzy models identi�ed by computing the meansquare error for these fuzzy models.The initial fuzzy model parameters used in the GFIM for the case of con-strained free semantics are de�ned in terms of three initial fuzzy partitions(two corresponding to the input variables and one associated with the out-put). The fuzzy partitions have seven linguistic values and the semantics ofthese is de�ned via the use of triangular membership functions (as shown inFigure 3.1). Adequate scaling factors are used to translate the generic uni-verse of discourse into the one that is associated with each system variable.The following parameters, corresponding to the �rst two stages of theidenti�cation, are combined for determining the number of runs for the threedi�erent GFIMs: � = 1:5, ! = 0:05, k = 0:1 and � = f0:25; 0:5g. This leadsto an overall of 2 runs per function and GFIM. The remaining parametersused in the three GFIMs to be compared, are: the t-norm � used in the fuzzyrule construction method is the min operator; GAs run over 50 generationsand the ES is applied until there is no improvement in 25 generations over



30 Oscar Cord�on and Francisco Herreraa percentage � = 20% of the population of chromosomes (the parameterc of the 1=5-success rule is equal to 0:9); genetic simpli�cation and tuningrun over 500 and 1000 generations, respectively. In all cases, the population isformed by 61 chromosomes, the value of the non-uniformmutation parameterb is 5:0, and the crossover and mutation rates are Pc = 0:6 and Pm = 0:1(this last one per indiviual) respectively. The max-min-aritmethical crossoverparameter a takes the value 0:35.Finally, we use the min t-norm for representing fuzzy implication, andthe center of gravity as defuzzi�cation operator [11].The results obtained are shown in the tables below, each table is associ-ated with both of the functions considered. The notation jRjx stands for thenumber of fuzzy rules in the RB, while SEx stands for the medium square er-ror obtained by the current fuzzy model on the corresponding test set at eachstage (x is equal to G, S, and T in the genetic construction, simpli�cationand tuning stages, respectively).Table 5.1. Results obtained using the three proposed GFIMs for the fuzzy modelof the function F1GFIM � jRjG SEG jRjS SES SET1 0.25 108 5.823179 82 2.794654 0.9298801 0.5 108 5.823179 82 3.423883 1.0946632 0.25 180 17.448940 119 2.013139 0.9941332 0.5 180 17.448940 119 2.662488 1.1773723 0.25 98 2.411402 67 1.779137 0.6968693 0.5 98 2.411402 73 2.130197 1.118251Table 5.2. Results obtained using the three proposed GFIMs for the fuzzy modelof the function F2GFIM � jRjG SEG jRjS SES SET1 0.25 250 0.398029 181 0.324123 0.2904741 0.5 250 0.398029 196 0.344089 0.3076142 0.25 345 0.393328 264 0.283268 0.2657462 0.5 345 0.393328 275 0.359460 0.3272853 0.25 346 0.268026 232 0.213960 0.1952333 0.5 346 0.268026 253 0.232196 0.210177To illustrate the performance of the proposed GFIM, some of the fuzzymodels obtained are shown in the following �gures. The two fuzzy models



Genetic Fuzzy Identi�cation Process 31depicted are the ones that best approximate each one of the functions con-sidered, that is, the ones with the lowest mean square error. Figures 5.2and 5.4 show the fuzzy models for the functions F1 and F2 which fuzzy mod-els are obtained by means of the constrained free semantics GFIM using the�tness function Z3 and � = 0:25.
Fig. 5.1. Graphical representation of F1.6. Practical Considerations and Concluding RemarksThis section summarizes the practical aspects of the proposed genetic iden-ti�cation method, pointing out its advantages and drawbacks.6.1 Use of Prior KnowledgeAs observed in Section 4, the GFIM can be used in di�erent modes re
ectingthe knowledge available about the system under identi�cation. This o�ersthe possibility of using both prior expert knowledge as well as numericalinput-output data.The main advantage of the fuzzy model considered is its ability to dealwith complex systems with strong nonlinearities. In [10], the GFIM is used forthe purpose of the identi�cation of descriptive and approximative fuzzy mod-els of three-dimensional functions. The approximative approach shows better
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Fig. 5.2. Graphical representation of the fuzzy model obtained for F1.

Fig. 5.3. Graphical representation of F2.
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Fig. 5.4. Graphical representation of the fuzzy model obtained for F2.performance than the descriptive one in the case of more complex functions(such as the function F2 considered in Section 5). The drawback that maybe associated with GFIM is the loss of interpretability of the approximativefuzzy model obtained due to the lack of explicit linguistic values. However,this may be justi�ed by the higher modeling accuracy of this type of fuzzymodel.6.2 Model ComplexityAnother advantage of the GFIM presented is that the proposed learning pro-cess allows the user to obtain the desired tradeo� between fuzzy model accu-racy and complexity. The number of fuzzy rules in the RB may be modi�edby the following factors:1. The number of linguistic values in the initial fuzzy partitions used in thecase of constrained free semantics .2. The value of the parameter �. The higher the value, the greater the numberof fuzzy rules and vice versa.On the other hand, the identi�cation of the fuzzy model structure is di-rectly guided by the composition of the input-output data set. Therefore,no fuzzy rules are obtained in the regions of the data space that are empty.The necessary number of fuzzy rules is determined by the values of the pa-rameter �. No redundancy may occur due to the low niche interaction ratecriterion. Genetic simpli�cation allows us to obtain an adequate interaction
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