Encouraging cooperation in the genetic
iterative rule learning approach
for qualitative modeling

O. Cordén, A. Gonzalez, F. Herrera, R. Perez

Department of Computer Science and Artificial Intelligence
University of Granada
18071 - Granada, Spain

Abstract. Genetic Algorithms have proven to be a powerful tool for automating
the Fuzzy Rule Base definition and, therefore, they have been widely used to
design descriptive Fuzzy Rule-Based Systems for Qualitative Modeling. These
kinds of genetic processes, called Genetic Fuzzy Rule-Based Systems, may be
based on different genetic learning approaches, with the Michigan and Pittsburgh
being the most well known ones.

In this contribution, we briefly review another alternative, the Iterative Rule
Learning approach, based on generating a single rule in each genetic run, and
dealing with the problem of obtaining the best possible cooperation among the
generated fuzzy rules. Two different ways for encouraging cooperation between
rules in this genetic learning approach are presented, which are used in two dif-
ferent Genetic Fuzzy Rule-Based Systems based on it, SLAVE and MOGUL.
Finally, the behaviour of these two processes in solving a qualitative modeling
problem, the rice taste analysis, is analysed, and the results obtained are com-
pared with two other design processes with different characteristics.

Keywords. Fuzzy Logic, Fuzzy Rules, Fuzzy Rule-Based Systems,; Qualitative
Modeling, Genetic Algorithms, Genetic Fuzzy Rule-Based Systems.

1 Introduction

Genetic Algorithms (GAs) are search algorithms that use operations found in
natural genetics to guide the trek through a search space. GAs are theoretically
and empirically proven to provide robust search capabilities in complex spaces,
offering a valid approach to problems requiring efficient and effective searching
[14]. Although GAs are not learning algorithms, they may offer a powerful and
domain-independent search method for a variety of learning tasks. In fact, there
has been a good deal of interest in using GAs for machine learning problems [21].

Fuzzy Rule Based Systems (FRBSs), initiated by Mamdani applied to control
problems, are now considered as one of the most important applications of fuzzy
set theory. FRBSs are knowledge-based systems that make use of the known



knowledge of the process, expressed in the form of fuzzy rules collected in the
fuzzy rule base (FRB). They have been applied to a wide range of areas [ 2]. A
descriptive FRBS 1s a model that is described or expressed using linguistic terms
in the framework of fuzzy logic. A crucial reason why the descriptive fuzzy rule-
based approach is worth considering is that it may remain verbally interpretable.
This FRBS has been widely used and has obtained very good results in many
different applications [ 2].

Focusing on the use of GAs in the field of fuzzy modeling, particularly in
FRBS, GAs have proven to be a powerful tool for automating the definition of the
FRB, since adaptive control, learning and self-organizing fuzzy systems may be
considered in a lot of cases as optimization or search processes. Their advantages
have extended the use of GAs in the development of a wide range of approaches
for designing fuzzy systems in the last few years. These approaches receive the
general name of Genetic Fuzzy Systems (GFSs) and Genetic Fuzzy Rule Based
Systems (GFRBSs) [ 7, 23]. Among the different approaches considered in the
genetic learning of FRBs there is the Iterative Rule Learning (IRL) approach
[15, 20] that is based on the coding of one rule per chromosome, selecting one rule
per population by including the GA in an iterative scheme based on obtaining
the best current rule for the system, and incorporating this rule into the final
FRB.

In this contribution we deal with genetic learning processes based on the IRL
approach for designing descriptive FRBSs. In particular, we shall focus on the
analysis of the cooperation in the genetic learning processes for qualitative model-
ing using linguistic fuzzy rules. We present two alternatives used for introducing
cooperation in two different GFRBSs. The first one, used in SLAVE (Structural
Learning Algorithm in Vague Environments) [15, 17, 19], modifies the iterative
process in order to obtain rules that cooperate with the previously learnt rules,
and the second one, used in MOGUL (Methodology to Obtain GFRBSs Under
the TRL approach) [10, 11], dividing the genetic learning process into, at least,
two stages, thereby achiving cooperation between the fuzzy rules generated in
the second stage.

In order to do this we organize the contribution as follows: Section 2 in-
troduces some preliminaries such as descriptive FRBSs (qualitative modeling),
Evolutionary and Genetic Algorithms, and GFRBSs; Section 3 studies the TRL
approach and the problem of the lack of cooperation between rules; Section 4
presents two alternatives for including collaboration in the genetic learning pro-
cesses based on the IRL approach; Section 5 shows some experimental results;
and finally, Section 6 presents some concluding remarks.

2 Preliminaries

2.1 Qualitative modeling: Descriptive FRBSs

Qualitative modeling based on fuzzy logic is considered as a system model based
on linguistic descriptions [36]. The linguistic descriptions are represented by fuzzy



membership functions, and they are used in an FRB composed of linguistic TF-
THEN rules such as:

IF (a set of conditions are satisfied) THEN (a set of consequences may be inferred)

The contents of both IF- and THEN-parts are usually expressed in terms of
linguistic variables. In an FRBS, the compositional rule of inference is used
to draw conclusions from the set of known premises. Thereby the concept of
linguistic variable [40] plays a central role.

There are different kinds of FRBSs in the literature, amongst which we should
mention the Mamdani, TSK and DNF models.

1. The generic expression of the TSK rules is the following:
IF Xy isay and ... and X, isa, THENY =p1 - X1+ ...+ pp - X0 + po

where Xi,...,X,, and Y are the input variables and the output variable,
respectively, a; are linguistic variables with an associated fuzzy set defining
their semantics, and p; are real numbers.

2. In the Mamdani model, the FRB is composed of a collection of fuzzy rules
with the following structure:

IF X; ¢s ay and ... and X, ¢s a, THEN Y is B

3. The DNF model is an extension of the Mamdani model with the following
structure:

IF Xy is Ay and ... and X,, is A, THEN Y is B

where each variable X; has a referential set U; and takes values in a finite
domain Dy, for i € {1,...,n}. The referential set for ¥ is V' and its domain
18 F'. The value of the variable y is B, where B € F' and the value of the
variable X; is A;, where A; € P(D;) and P(D;) denotes the set of subsets of
D;.

We can find some important differences between these kinds of fuzzy rules.
While DNF-type and Mamdani-type fuzzy rules consider a linguistic variable
in the consequent [15, 27, 28, 29], TSK fuzzy rules are based on representing
the consequent as a polynomial function of the inputs [37]. The main difference
between types 2 and 3 of rules is that type 3 allows subset of labels as values of
a variable.

The Mamdani and DNF are linguistic models based on collections of IF —
T HEN rules with fuzzy quantities associated with linguistic labels, and the fuzzy
model is essentially a qualitative expression of the system. An FRBS in which
the fuzzy sets giving meaning (semantic) to the linguistic labels are uniformly
defined for all rules included in the FRB follows the descriptive approach since
the linguistic labels take the same meaning for all the fuzzy rules contained in the
FRB. In this case, the FRB is usually called Knowledge Base and it is composed
of two components: the Rule Base (RB), constituted by the collection of fuzzy
rules themselves, and the Data Base (DB), containing the membership functions
defining their semantics.



2.2 Evolutionary and Genetic Algorithms

EBvolutionary Computation (EC) uses computational models of evolutionary pro-
cesses as key elements in the design and implementation of computer-based prob-
lem solving systems. There are a variety of evolutionary computational models
that have been proposed and studied which are referred to as Fvolutionary Al-
gorithms (EAs). There have been three well-defined EAs which have served as
the basis for much of the activity in the field, Genetic Algorithms, Evolution
Strategies and Evolutionary Programming (EP) [ 1].

An EA maintains a population of trial solutions, imposes random changes
to these solutions, and incorporates selection to determine which ones are going
to be maintained in future generations and which will be removed from the
pool of the trials. There are however important differences between them. GAs
emphasize models of genetic operators as observed in nature, such as crossover
(recombination) and point mutation, and apply these to abstracted chromosomes.
ESs and EP emphasize mutational transformations that maintain the behavioral
linkage between each parent and its offspring.

In the following, we briefly review the GAs, the most extended and most used
EA.

A GA starts off with a population of randomly generated chromosomes, and
advances toward better chromosomes by applying genetic operators modeled on
the genetic processes occurring in nature. The population undergoes evolution
in a form of natural selection. During successive iterations, called generations,
chromosomes in the population are rated for their adaptation as solutions, and
on the basis of these evaluations, a new population of chromosomes is formed
using a selection mechanism and specific genetic operators such as crossover and
mutation. An evaluation or fitness function (f) must be devised for each problem
to be solved. Given a particular chromosome, a possible solution, the fitness
function returns a single numerical fitness, which is supposed to be proportional
to the utility or adaptation of the solution represented by that chromosome.

Although there are many possible variants of the basic GA, the fundamental
underlying mechanism consists of three operations:

1. evaluation of individual fitness,

2. formation of a gene pool (intermediate population) through selection mech-
anism, and

3. recombination through crossover and mutation operators.

The next procedure shows the structure of a basic GA, where P(#) denotes
the population at generation ¢.

GAs may deal successfully with a wide range of problem areas. The main
reasons for this success are: 1) GAs can solve hard problems quickly and reli-
ably, 2) GAs are easy to interface to existing simulations and models, 3) GAs are
extendible and 4) GAs are easy to hybridize. All these reasons may be summed
up in only one: GAs are robust. GAs are more powerful in difficult environments



Procedure Genetic Algorithm
begin (1)
t=0;
initialize P(t);
evaluate P(t);
While (Not termination-condition) do
begin (2)
t=t+1;
select P(t) from P(t — 1),
recombine P(t);
evaluate P(t);
end (2)
end (1)

where the space is usually large, discontinuous, complex and poorly understood.
They are not guaranteed to find the global optimum solution to a problem, but
they are generally good at finding acceptably good solutions to problems accept-
ably quickly. These reasons have been behind the fact that, over the last few
years, GA applications have grown enormously in many fields.

The basic principles of GAs were first laid down rigorously by Holland ([25]),
and are well described in many books, such as [14, 30]. It is generally accepted
that the application of a GA to solve a problem must take into account the
following five components:

1. A genetic representation of solutions to the problem,

2. a way to create an wnitial population of solutions,

3. an evaluation function which gives the fitness of each chromosome,

4. genetic operators that alter the genetic composition of offspring during re-
production, and

5. values for the parameters that the GA uses (population size, probabilities of
applying genetic operators, etc.).

2.3 Genetic Fuzzy Rule Based Systems

EAs are applied to modify /learn the definition of the membership function shapes
(DB) and/or the composition of the fuzzy rules (RB) in the way shown in Fig-
ure 1. Therefore, it is possible to distinguish three different groups of GFRBSs
depending on the FRB components included in the learning process [ 7, 23]:

1. Genetic definition of the membership functions
2. Genetic derwation of the fuzzy rules
3. Genetic learning of the whole FRB

For a wider description of each family see [ 7, 23] and for an extensive bibli-
ography see [ 8], Section 3.13, and [ 9], Section 13. Different approaches may be
found in [22, 33, 34].

Carse et al. [ 6] divide the third family into two different subgroups depending
on the simultaneousness in the learning of both FRB components. Therefore, they
differentiate between learning them in a single process or in different stages.



DESIGN PROCESS

Genetic Algorithm Based
Learning Process

Fuzzy Rule Base

Fuzzy Rule-
Input Interface Based System Output Interface
Environment Computation with Fuzzy Systems Environment

Fig. 1. Genetic Fuzzy Rule-Based Systems

3 Iterative Rule Learning Approach: Competition and
Cooperation

In this Section we introduce the IRL approach and analyze the cooperation prob-
lem in the model under the cooperation versus competition versus problem.

3.1 IRL Approach

The main problem that has to be solved to design a GFRBS consists of finding
a suitable representation capable of gathering the problem characteristics and
representing the potential solutions to it.

Classically, two genetic learning approaches, adopted from the field of genetic-
based machine learning systems, have been used: the Michigan [ 5, 26] and Pitts-
burgh [35] approaches. In the Michigan approach, the chromosomes are individual
fuzzy rules and the FRB is represented by the entire population. The collection of
fuzzy rules is adapted over time using some genetic operators applied at the level
of the individual rule. This evolution is guided by a credit assignment system
that evaluates the adaption of each single fuzzy rule. On the other hand, in the
Pittsburgh approach, each chromosome represents an entire FRB and the evolu-
tion 1s developed by means of genetic operators applied at the level of fuzzy rule
sets. The fitness function evaluates the accuracy of the complete FRBS encoded
in the chromosome.



In the last few years, the IRL approach has been used by some authors to
obtain several GFRBSs following a new learning model [15, 20]. In the latter, as
in the Michigan one, each chromosome in the population represents a single fuzzy
rule, but only the best individual is considered to form part of the final FRB.
Therefore, in this approach the EA provides a partial solution to the problem of
learning, and, contrary to both previous ones, it is run several times to obtain
the complete FRB. This substantially reduces the search space, because in each
sequence of iterations only one rule is searched for.

In order to obtain a set of rules, which will be a true solution to the problem,
the GA has to be placed within an iterative scheme similar to the following:

. Use a GA to obtain a rule for the system.
. Incorporate the rule into the final set of rules.
. Penalize this rule.

e QO N

. If the set of rules obtained is adequate to represent the examples in the
training set, the system ends up returning the set of rules as the solution.
Otherwise return to step 1.

A very easy way to penalize the rules already obtained, and thus be able to
learn new rules, consists of eliminating from the training set all those examples
that are covered by the set of rules obtained previously.

The main difference with respect to the Michigan approach is that the fit-
ness of each chromosome is computed individually, without taking into account
cooperation with other ones.

In the literature we can find some genetic learning processes that use this
model such as SLAVE [15, 17, 20], STA [38] and MOGUL [10, 11].

i From the description shown above, we may see that in order to implement
a learning algorithm based on GAs using the IRL approach, we need, at least,
the following:

1. a criterion for selecting the best rule in each iteration, and

2. a penalization criterion, and

3. acriterion for determining when there are enough rules available to represent
the examples in the training set.

The first criterion is normally associated with one or several characteristics
that are desirable so as to determine good rules. Usually criteria about the rule
strength have been proposed (number of examples covered), criteria of consist-
ency and completeness of the rule or criteria of simplicity (for some examples,
see [10, 17, 20, 24]).

The second criterion is often associated with the elimination of the examples
covered by the previous rules.

Finally, the third criterion is associated with the completeness of the set of
rules [10, 17, 24] and must be taken into account when we can say that all the
examples of a concept in the training set are sufficiently covered and no more
rules are needed to represent them. This criterion is often associated, although



1t 1s not necessary, with the elimination of the examples in a concept covered by
the previous rules.

This scheme is usually employed in GFRBSs based on inductive learning, in
which the penalization of the fuzzy rules already generated is done by removing
from the training data set all those examples that are still covered by the FRB
obtained until that time. As has been previously said, a key characteristic of the
IRL is that it substantially reduces the search space, because in each iteration only
one fuzzy rule is searched. This allows us to obtain good solutions in GFRBSs
for off-line learning problems.

3.2 Competition and cooperation in the IRL approach

Associated to the previous criteria needed in the development of an IRL al-
gorithm, we include a natural way for competition and cooperation relations
between the rules. So, the first criterion establishes the competition between mem-
bers of the population representing possible solutions to the problem. In this case,
this characteristic is due to the mechanisms of natural selection on which the EA
is based. On the other hand, the second and third criteria include cooperation
relations between the rules that describe the same concept, since, as was previ-
ously mentioned, normally the goal of the third criterion consists of trying to
remove all the examples that are being learnt from the training set, when these
are covered by some rules to a sufficient degree.

One of the most interesting features of an FRBS in qualitative modeling
problems is the interpolative reasoning it develops. This characteristic plays a key
role in the high performance of FRBSs and is a consequence of the cooperation
among all the fuzzy rules composing the FRB. As is known, the output obtained
from an FRBS is not usually due to a single fuzzy rule but to the cooperative
action of several fuzzy rules that have been fired, because they match the input
for the system to some degree. So, a very interesting way to solve the problem of
designing an FRBS consists of adding both features to the learning algorithm:
competition to achieve the best rules and cooperation between rules from the
same or different value of the consequent variable. This is referred to as the
cooperation versus competition problem (CCP) [ 4].

However, the cooperation between rules from different concepts is not in-
cluded within the IRL approach. The difficulty of solving the problem of taking
into account this kind of cooperation depends directly on the genetic learning
approach followed by the GFRBS. GFRBSs based on the IRL approach try to
solve the CCP at the same time as reducing the search space by encoding a single
fuzzy rule in each chromosome. To put this into effect, these processes can use
different ways:

— adding new criteria to the evaluation of the rule for including this kind of
cooperation within the IRL approach,

— dividing the genetic learning process into, at least, two stages. Therefore, the
CCP is solved in two steps acting on two different levels, with the competition
between fuzzy rules in the first one, the genetic generation stage, and with



the cooperation between these generated fuzzy rules in the second one, a
postprocessing stage.

In the following section we present these two alternatives.

4 Alternatives for Including Cooperation in the TRL
approach

In this Section, we present two alternatives used for introducing cooperation in
two different GFRBSs based on the IRL approach. The first one, used in SLAVE
[15, 17, 20], includes cooperation relations between rules from different values
of the consequent value within the TRL approach, and the second alternative,
used in MOGUL [10, 11], based on dividing the genetic learning process into, at
least, two stages, managing cooperation between the generated fuzzy rules in the
second one.

4.1 Cooperation within the IRL approach

In the proposal for the IRL approach the cooperation is defined between the rules
from the same value in the consequent variable in a natural way, as previously
has been mentioned. In many cases, this cooperation level is sufficient when the
concepts are exclusive and there is no noise or inconsistency in the example set.
However, with databases affected by noise and inconsistency and when the con-
cepts are not exclusive, a higher degree of cooperation must be established that
permits good collaboration between rules from different values of the consequent
variable.

Normally, the degree of collaboration between rules from different concepts
is measured using the inference model associated to the learning algorithm. It
is not easy to establish this cooperation between rules; since the IRL approach
learns the rules one by one, and the learning process does not has the whole rule
set for applying the inference model.

A way for defining this cooperation level consists of applying the inference
model partially on a subset of the examples and including this information in the
evaluation of the rules. This subset contains the examples of the concepts that
have been learnt by the learning algorithm. So, the cooperation between rules is
measured by the error that produces the new rule in the outputs of the inference
model, when this rule is included in the rule set.

The TRL approach, without this kind of collaboration, tries to extract the
knowledge that the examples represent for each concept from the training set.
The rule set obtained in this way, provides a comprehensible description of the
system that we want to learn. From our point of view, the inclusion of cooperation
must keep this comprehensible description of the system and furthermore it must
improve the interpolative reasoning between the rules. This is important since
an inappropriate use of the cooperation measure, may provoke a reduction in the
quality of the rule (with respect to the interpretability of the rule set) because



the goal of the learning process is to reduce the error in the output as far as
possible.

SLAVE is a learning algorithm based on the IRL approach that takes into
account cooperation between the rules from different concepts in the sense pre-
viously described. SLAVE was initially proposed in [15] and later developed in
[17, 18]. The algorithm begins with a simple description of the problem: the
consequent variable (concept variable) and the set of all the available antecedent
variables for generating the rules that describe the consequent variable. The learn-
ing algorithm, using this description and a set of examples, will decide for each
value of the consequent variable and each rule which variables are needed to
describe the concept (feature selection), and the rest will be eliminated.

The basic element of the SLAVE learning algorithm is its model of rules that
was described in Section 2.1 (type 3). The key to this rule model is that each
variable may take as a value an element or a subset of elements in its domain,
1.e., we let the value of a variable be interpreted more as a disjunction of elements
than just one element in its domain.

Consistency and Completeness in SLAVE In the SLAVE learning process
(Figure 2), finding the best rule consists of determining the best combination
of values from the antecedent variables, given a fixed value of the consequent
variable and a set of examples. The best rule concept uses a simple quantit-
ative criterion; the best rule will be the rule covering the maximum number of
examples. However, there are problems with this criterion, if we do not restrict
the set of possible rules.

Classical learning theory proposes conditions that must be verified for the
set of rules that are obtained by a learning algorithm. These conditions, which
provide the logical foundation of the algorithms for concept learning from ex-
amples, are called consistency condition and completeness condition [31].

These conditions are associated on the whole set of rules. SLAVE obtains
the set of rules that describes the system, extracting one rule in each iteration
of the learning process. Due to this reason, we need to define these concepts on
each rule. Moreover, we are not interested in proposing hard definitions on fuzzy
problems, thus we propose a degree of completeness and a degree of consistency.

Definition1. The degree of completeness of a rule Rp(A) is defined as

n*(Rp(4))

A(Rp(4)) = 22

where ng = >~ U(ei, B) is the number of examples of the value B of the
consequent variable in the training set, m is the number of examples in the

training set and nt(Rp(A)) is the number of positive examples covered by the
rule Rp(A).

With respect to the soft consistency degree [17] it is based on the possibility of
admitting some noise into the rules. Thus, in order to define the soft consistency



Basic Structure Training Set

VA=>B
D All class have been learnt
. Rule Set
Selection of a Class not learnt L
J\ OUTPUT
J/ Label B E >

Module for selecting the best rule Restore dll examples
that describe this class of the Training Set

R (A

\L (A)

[ Append rule to the fuzzy rule set

{ Module of example elimination ]

a<

Aremorerules NO

for this concept
needed

Fig.2. SLAVE learning process

degree we use the following set:
A¥ = {Rp(A)/n” (Rp(A)) < k n*(Rp(4))}

which represents the set of rules having a number of negative examples strictly
less than a percentage (depending on k) of the positive examples.

Definition 2. The degree to which a rule satisfies the soft consistency condition
18

1 if R € A%
kant(R)-nL(R) . ks ko
Ry L REATYREA
0 otherwise

Ty, (R) =

where ki, ks € [0,1] and ky < ko, and ng(R), n};(R) are the number of positive
and negative examples to the rule, R.

This definition uses two parameters, k; is a lower bound of the noisy threshold
and ko 1s an upper bound of the noisy threshold.



Thus, SLAVE selects the rule that simultaneously verifies the completeness
and soft consistency conditions to a high degree. Therefore, rule selection in
SLAVE can be solved by the following optimization problem:

max{ A(Rp(A)) Thika (R5(4))}
where D = P(Dy) x P(D32) x ... x P(Dy).

Adding Cooperation between Rules The main component of SLAVE is a
genetic algorithm [18]. The goal of the genetic algorithm is to find the most
consistent and complete rule at each step given the available set of examples.
However, we want a rule set that includes cooperation between rules from differ-
ent values of the consequent variable and with understandable rules.

For this reason, it is necessary to establish measures on the simplicity of the
rule and on the degree of cooperation between rules and these measures must
be taken into account for evaluating the rule. So, the evaluation function for
determining the best rule i1s defined by a multiobjective function.

The measures for evaluating the simplicity of the rule were proposed in [19].
Now, we describe briefly the way used by SLAVE for including cooperation
among rules.

SLAVE distinguishes two kinds of learning problems, when the consequent
variable takes values in a discrete range (Classification Problems) and when the
consequent variable takes values in a continuous range (Qualitative Modeling
Problems). This difference between both problems is important since the infer-
ence method associated for each one of them is different. In the first case, the
inference method can be seen as a competition between the rules for determining
which of them will be the most appropriate for classifying a certain example, that
18, the inference method selects only one rule each time. However, in the second
case, the output of the rule set is obtained by the combination of the output of
each rule that can be applied for classifying the example.

In the first case, we establish competition relations between rules from dif-
ferent values of the consequent variable for improving the overall behaviour of
the rule set. The description of this process is to be found in [19]. In the second
case, where the output is obtained by interpolative reasoning, SLAVE includes
cooperation relations between rules in the following form:

a) defining in a special way the concepts of the number of positive and negative
examples covered by a rule, and

b) including an error measure that determines the cooperation degree of the new
rule with the rest of the rules that are members of the rule set.

The definition of the number of positive and negative examples covered by a
rule is related to the results that this rule will obtain in the inference process, that
1s, with successes and failures. Using this idea, we built the following definitions:



Definition3. A rule Rp(A) classifies correctly an example e if
U(e,A) >0 and U(e,B) >0

where U(e, A) is the adaptation between the example and the antecedent of the
rule and Ufe, B) is the adaptation between the example and the consequent of
the rule. The definition of this adaptation function is to be found in [17].

Definition4. A rule Rp(A) does not correctly classify an example e if
U(e,A) >0 and U(e,B) =0

From the previous definitions, we can establish the definitions of the number
of positive and negative examples in the following way:

nt(Rp(A)) = |{e€ E|U(e, A) > 0 and Ufe, B) > 0}

n~(Rp(A)) ={e€ E|U(e, A) > 0 and U(e, B) = 0}|

The previous definitions allow us to determine the goodness of the rule, but
a difference of the sense proposed in the crisp problems [19], in fuzzy problems
it 1s not necessary to grade the trust of the successes, since the rules work in
cooperation for obtaining the output.

However, these definitions are not sufficient for maximizing the relations of
cooperation between the rules. For this reason, SLAVE includes in the evaluation
of the rule, a measure of the collaboration degree. This measure is based on the
error that the new rule produces in the output when it is included in the rule set.

The error measure is obtained using the inference method on the subset of
the examples that are members of some of the classes from the rules learnt. So,
the rule evaluation function is composed by three criteria:

Criterion 1: The degree to which the rule represents the examples from the
concepts that we want to learn, i.e., the verification of the completeness and
soft consistency conditions to a high degree.

Criterion 2: Influence on the output from the Knowledge Base of the in-
clusion of the new rule, i.e., error measure.

Criterion 3: Simplicity and understanding of the rule, i.e., simplicity meas-
ures.

Therefore, the evaluation function is a multicriteria function that contains the
previous criteria. For the evaluation, a lexicographical order is applied, where
the main criterion is to maximize the degree for representing the examples of the
concepts that we want to learn (criterion 1). In a tie situation among them the
rule is selected that produces less error in the output (criterion 2). If a new tie
situation is produced, then it selects the simpler rule (criterion 3) among them.



4.2 Cooperation in Stages

As the generation process does not envisage any relationship between the fuzzy
rules generated, it is necessary to employ any other postprocessing to simplify
and/or adjust the FRB obtained, thereby forming a multi-stage GFRBS. There-
fore, the CCP 1is solved in two steps acting on two different levels:

— the genetic generation stage forces competition between fuzzy rules, as the
genetic learning processes based on the Michigan approach, to obtain an
FRB composed of the best possible fuzzy rules. The cooperation between them
1s only smoothly addressed by means of the rule penalization criterion.
This generation stage uses a covering method which is developed as an iterat-
ive process that allows us to obtain a set of fuzzy rules covering the example
set. In each iteration, it runs the generating method, obtaining the best fuzzy
rule according to the current state of the training set, considers the relative
covering value this rule creates over it, and removes the examples from it
with a covering value greater than e, provided by the system designer. It
ends up when the training set is left empty.

Each time the generating method is run, it produces a set of candidate fuzzy
rules by generating the fuzzy rule best covering every example from the train-
ing set. The accuracy of the candidates is measured by using a multicriteria
fitness function, composed of three different criteria measuring the covering
that each rule creates over the training set. Their expressions are to be found
in [10]. Finally, the best fuzzy rule is selected from the set of candidates and
given as the method output.

The designer is allowed to build the generation stage by using different kinds
of algorithms and not only a GA as in the previous existing processes follow-
ing the TRL approach. It is possible to employ a non-evolutionary inductive
algorithm or an Evolution Strategy [ 1] instead of the usual GA [10]. The way
of working is still the same but the difference is the speed of the generation
process, which is higher in the latter cases.

— the postprocessing stage forces cooperation between the fuzzy rules generated
wn the previous stage by refining or eliminating the redundant or unnecessary
fuzzy rules from the previously generated fuzzy rule set in order to obtain
the best possible FRB.

The postprocessing stage will present two important characteristics. On the
one hand, it will be designed by means of a GA based on the Pittsburgh learning
approach, but significatively reducing the solution space by working only over the
FRB generated in the first stage, 1. e., not modifying the membership function
definitions. In this way, it will simplify the FRB obtained until now by remov-
ing the redundant or unnecessary fuzzy rules not cooperating adequately with
the others. This operation mode will allow us to obtain the best possible FRB
composed of the best combination of the fuzzy rules generated in the first stage.

On the other hand, a genotypic sharing function [13] will be considered to
obtain not only a single FRB as output from the process but different ones
presenting the best possible cooperation between the fuzzy rules composing them,



and thereby the best possible behavior. Due to this, we will refer to this second
stage as the multissmplification process.

The Sequential Niche Technique [ 3] is used to induce niches in this GFRBS
stage, with the genetic simplification process proposed in [24] being the basic
optimization technique iterated in each run of the multisimplification process.
The following subsections introduce the basic simplification algorithm and the
particular aspects of the multisimplification one, respectively.

The Basic Genetic Simplification Process As mentioned earlier, the basic
genetic simplification process was first proposed in [24]. Tt is based on a bin-
ary coded GA, in which the selection of the individuals is performed using the
stochastic universal sampling procedure together with an elitist selection scheme,
and the generation of the offspring population is put into effect by using the clas-
sical binary multipoint crossover (performed at two points) and uniform mutation
operators.

The coding scheme generates fixed-length chromosomes. Considering the rules
contained in the rule set BY derived from the previous step counted from 1 to m,
an m-bit string C' = (eq, ..., ¢m) represents a subset of candidate rules to form
the FRB finally obtained as this stage output, B*, such that,

Ifc; =1 then R; € B® else R; ¢ B*

Following MOGUL assumptions, the initial population is generated by intro-
ducing a chromosome representing the complete previously obtained rule set B9,
i.e., with all ¢; = 1. The remaining chromosomes are selected at random.

As regards the fitness function, F(C}), it is based on two different criteria:

— On the one hand, we have a global error measure that determines the accuracy
of the FRBS encoded in the chromosome. We usually work with the mean
square error (SE), although other measures may be used. SE over a training
data set, Eppg, 1s represented by the following expression:

E(C) = 35, > (ey = S(eat))?

where S(ex') is the output value obtained from the FRBS using the FRB
coded in Cj, R(C}), when the input variable values are ex! = (ex!,... exl),
and ey’ is the known desired value.

— On the other hand, since there is a need to keep the 7-completeness property
considered in the previous stage, we shall ensure this condition by forcing
every example contained in the training set to be covered by the encoded
FRB to a degree greater than or equal to 7,

Cricpler) = U R;(e)) > T, Ve € E, and R; € R(C})
j=1..T



where 7 is the minimal training set completeness degree accepted in the
simplification process. Usually, 7 is less than or equal to w, the compatibility
degree used in the generation process.

Therefore, we define a training set completeness degree of R(C;) over the set
of examples F, as

TSCD(R(C)), By) = ()| Crecyler)
elEEp

The final expression of the fitness function 1s:

F(C;) = {E(@»), if TSCD(R(C)), 1) > 7,

0, otherwise

The Genetic Multisimplification Process In order to induce niching in the
sequential niche algorithm, there is a need to define some kind of distance metric
which, given two individuals, returns a value of how close they are [ 3]. We
use a genolypic sharing [13] due to the fact that the metric considered is the
Hamming distance measured on the binary coding space. With A = (ay, ..., am)
and B = (b1, ..., b)) being two individuals, it is defined as follows:

m

H(A,B):Zazbz

i=1

Making use of this metric, the modified fitness function guiding the search on
the multisimplification process is based on modifying the value associated to an
individual by the basic algorithm fitness function, multiplying it by a derating
function penalizing the closeness of this individual to the previously obtained
solutions. Hence, the modified fitness function used by the multisimplification
process is the following:

F(C5) = F(C5) - G(C5,9)
where F' is the basic genetic simplification process fitness function, S = {s1,...,sx}
is the set containing the & solutions already found, and G is a kind of derating
function. We consider the following, taking into account the fact that the problem
we deal with is a minimization one:

o, ifd=0
G(C;,8) =<2 (47, ifd<randd#0
1 ifd>r

bl

where d is the minimum value of the Hamming distance between C; and the
solutions s; included in S, i. e., d = Min;{H(C},s;)}, and the penalization is
considered over the closest solution, r is the niche radius, and 3 is the power
factor determining how concave (8 > 1) or convex (f < 1) the derating curve
is. Therefore, the penalization given by the derating function takes its maximum
value when the individual C; encodes one of the solutions already found. There



is no penalization when the C; is far away from S with a value greater than or
equal to the niche radius r.
The algorithm of the genetic multisimplification process is shown below:

1. Initialization: Equate the multistmplification modified fitness function to the
basic simplification fitness function: FI(C'j) «— F(Cj).

2. Run the basic genetic simplification process, using the modified fitness func-
tion, keeping a record of the best individual found in the run.

3. Update the modified fitness function to give a depression wn the region near
the best individual, producing a new modified fitness function.

4. 1If all the simplified FRBs desired have not been obtained, return to step 2.

Hence, the number of runs for the sequential algorithm performed is the num-
ber of solutions desired to be obtained. We allow the FRBS designer to decide
this number as well as the values of parameters r and 3.

5 Example: Rice Taste Analysis

Subjective qualification of food taste is a very important but difficult problem.
In the case of the rice taste qualification, it is usually put into effect by means of
a subjective evaluation called the sensory test. In this test, a group of experts,
usually composed of 24 persons, evaluate the rice according to a set of charac-
teristics associated to it. These factors are: flavor, appearance, taste, stickiness,
and toughness [32].

Because of the large quantity of relevant variables, the problem of rice taste
analysis becomes very complex, thus leading to solve it by means of modeling
techniques capable of obtaining a model representing the non-linear relationships
existing in it. Moreover, the problem-solving goal is not only to obtain an accurate
model, but to obtain a user-interpretable model as well, capable of putting some
light on the reasoning process made by the expert for evaluating a kind of rice
in a specific way. Due to all these reasons, in this Section we deal with obtaining
a qualitative model to solve the said problem.

In order to do so, we are going to use the data set presented in [32]. This set is
composed of 105 data arrays collecting subjective evaluations of the six variables
in question (the five mentioned and the overall evaluation of the kind of rice),
made up by experts on this number of kinds of rice grown in Japan (for example,
Sasanishiki, Akita-Komachi, etc.). The six variables are normalized, thus taking
values in the real interval [0, 1].

With the aim of not biasing the learning, we have randomly obtained ten
different partitions of the mentioned set, composed by 75 pieces of data in the
training set and 30 in the test one, for generating ten qualitative models in each
experiment. To solve the problem, we use the two GFRBSs based on the TRL
approach introduced in this paper, and two qualitative modeling processes with
different characteristics as well:

D1. The inductive learning process proposed by Nozaki et al. in [32].



D2. The inductive learning process proposed by Wang and Mendel (WM) in [39].
D3. The SLAVE GFRBS introduced in Section 4.1.
D4. The GFRBS obtained from MOGUL introduced in Section 4.2.

As was done in [32], we have worked with fuzzy partitions composed by a
different number of linguistic labels for the six variables considered. These fuzzy
partitions have been obtained from a normalization process in which the universe
of discourse of each variable has been equally divided into 2 and 3 parts, and
a triangular fuzzy set has been associated to each one of them. Figure 3 shows
an example of a fuzzy partition with five linguistic labels. The reason why we
have not considered fuzzy partitions with a higher number of labels is that there
is a need to obtain simple qualitative models with FRBs composed by a small
number of rules in order to make them interpretable.

VS S M B VB

05| ---K-mmrmmm K ommmmmm e N

Fig. 3. Example of fuzzy partition with five linguistic labels

The results obtained in the experiments developed are collected in Table 1.
The values shown in columns SEy,, and SFEys; have been computed as an average
of the mean square error values obtained in the approximation of the training
and test data sets, respectively, by the ten qualitative models generated in each
case. The column # R stands for the average number of fuzzy rules in the FRBs
of the models generated from each process. We should remember that these fuzzy
rules are simple in GFRBSs D1, D2 and D4, and present the disjunctive normal
form in the case of GFRBS D3. Finally, as may be observed, GFRBS D4, the
one based on MOGUL, has two rows associated, one for each one of the learning
stages: generation and postprocessing.

In view of these results, many interesting conclusions may be drawn. On
the one hand, as regards the accuracy in the problem solving, the qualitative
model generated by the GFRBS obtained from SLAVE, D3, has obtained the
best training result and MOGUL, D4, has obtained the best test result when
working with 2 labels, with the second best result being obtained by SLAVE.
With respect to MOGUL, the good behaviour of the cooperation encouraged by



2 labels 3 labels
PTOC€SS #R SEtra SEtst #R SEtst SEtst
D1 64 0.00862 0.00985 |364.8 0.00251 0.00322

D2
D3
D4 (gen.)

15 0.013284 0.013118
2.0 0.004111 0.007288
10.1 0.013601 0.012508

23 0.003339 0.003758
3.0 0.003866 0.006533
21.2 0.005157 0.006579

6 0.004861 0.0037 |10.6 0.00281 0.004169

D4 (post.)

Table 1. Results obtained in the rice taste analysis problem by the different learning
processes

the postprocessing stage is demonstrated in the light of the results obtained: it
not only significatively reduces the number of rules in the models generated but
improves their accuracy to a high degree (see rows D4 (gen.) and D4 (post.)).
With respect to SLAVE the results are very close to the previous system and the
main difference corresponds to the simplicity of the final model.

In the case of 3 labels, the best results are obtained by GFRBS D1, which
obtains the best overall global results in this case as well. The problem is that
the qualitative models generated from this GFRBS are not useful in practice due
to the number of rules in their FRBs (364.8 in average) is excessively high in
order to interpret them. We should remember that the goal is not only to obtain
accurate fuzzy models solving the problem but to make sure these models can be
interpreted by human beings.

Focusing on this second aspect, it may be observed that the simplest models
are obtained by the SLAVE GFRBS, D3, presenting an average of 2.0 and 3.0
rules when considering 2 and 3 labels, respectively. This i1s a key aspect due to
the fact that the interpretability of the model will depend directly on the number
of fuzzy rules in the FRB. It will be very easy for an expert to interpret a
qualitative model composed by only two rules. The cooperation induced in the
rule generation in this GFRBS (see Section 4.1) allows it to generate very simple
qualitative models with an adequate accuracy according to its simplicity. On the
other hand, the behaviour of the GFRBS obtained from MOGUL, D4, is also
good in this aspect. It allows us to design qualitative models with a very good
balance between interpretability (generates simple models with 6 rules in the
case of 2 labels, and 10.6 in the case of 3 labels) and accuracy.

In Tables 2 and 3, as an example, the composition of the FRB is shown for
one of the models generated from each one of the GFRBSs based in the TRL
introduced in this contribution. The specific values obtained by them in both
measures are SFEyq = 0.0041 and SFE;;; = 0.0061 for the GFRBS D3 (SLAVE),
and SFEirq = 0.005681 and SFE;;; = 0.001782 for the GFRBS D4 (MOGUL).



Ri:|IF
Taste is Bad
THEN

Overall Fvaluation is Low

Ry:|IF
Appearanceis Good AND
Taste 1s Good

THEN
QOverall Fvaluationis High

Table 2. FRB of one of the qualitative models generated from the GFRBS D3 using
2 labels

(ht]
Flavor|Appearance|Taste| Stickness | Toughness|Overall Evaluation
Ri:| Good Good Good| Sticky Tender High
R>:| Good Good Good| Sticky Tender High
Rs:| Good Good Good| Sticky Tender High
R4:| Good Bad Bad |Not sticky| Tough Low
Rs:| Bad Bad Bad |Not sticky| Tough Low
Rg:| Bad Good Good| Sticky Tender Low

Table 3. FRB of one of the qualitative models generated from the GFRBS D4 using
2 labels

6 Concluding Remarks

In this contribution, the TRL approach, one of the existing genetic learning ap-
proaches to design GFRBSs, has been briefly reviewed, and the problem of ob-
taining the best possible cooperation between the generated fuzzy rules in the
genetic learning processes based on it has been analyzed. Two different ways for
encouraging cooperation between rules in them have been presented: the inclu-
sion of the cooperation between rules inside of the iterative rule learning, used in
SLAVE, and the creation of a postprocessing stage obtaining different simplified
FRB definitions with good cooperation from the rules generated in the genetic
learning stage, used in MOGUL.

Both GFRBSs have been applied to solve a qualitative modeling problem,
rice taste analysis, and the results obtained by them have been compared with
two other design processes with different characteristics. They have performed
well, showing the good behaviour of both alternatives presented to encourage the
cooperation between rules in GFRBSs based on the IRL approach.

On the other hand, we should note that these GFRBSs have been applied to
solve other real-world problems as well. In [16], SLAVE was used in a medical



application, the diagnosis of myocardial infarction, while a real-world Spanish
electrical engineering problem was solved by the GFRBS obtained from MOGUL
in [12].

References

[10]

[11]

[12]

[13]

[14]

[15]

T. Back, Evolutionary Algorithms in Theory and Practice (Oxford University
Press, 1996).

A. Bardossy, L. Duckstein, Fuzzy Rule-Based Modeling With Application to Geo-
physical, Biological and Engineering Systems (CRC Press, 1995).

D. Beasly, D.R. Bull, R.R. Martin, A sequential niche technique for multimodal
function optimization, Evolutionary Computation 1:2 (1993) 101-125.

A. Bonarini, Evolutionary learning of fuzzy rules: competition and cooperation,
in: W. Pedrycz, Ed., Fuzzy Modelling: Paradigms and Practice (Kluwer Academic
Press, 1996) 265-283.

L.. Booker, Intelligent Behaviour as an Adaption to the Task Environment, PhD
thesis, University of Michigan (1982).

B. Carse, T.C. Fogarty, A. Munro, Evolving fuzzy rule based controllers using
genetic algorithms, Fuzzy Sets and Systems 80 (1996) 273-294.

Cordén, O., Herrera, F., A General Study on Genetic Fuzzy Systems. In: G.
Winter, J. Periaux, M. Galan, P. Cuesta (Eds.), Genetic Algorithms in Engin-
eering and Computer Science, Wiley and Sons, (1995), 33-57.

O. Cordén, F. Herrera, M. Lozano, A classified review on the combination fuzzy
logic-genetic algorithms bibliography: 1989-1995, in: E. Sanchez, T. Shibata, L.
Zadeh, Eds., Genetic Algorithms and Fuzzy Logic Systems. Soft Computing Per-
spectives (World Scientific, 1997) 209-241.

O. Cordén, F. Herrera, M. Lozano, On the combination of fuzzy logic and evolu-
tionary computation: a short review and bibliography, in: W. Pedrycz, Ed., Fuzzy
Evolutionary Computation (Kluwer Academic Press, 1997) 57-77.

O. Cordén, F. Herrera, A three-stage evolutionary process for learning descriptive
and approximate fuzzy logic controller knowledge bases, International Journal of
Approximate Reasoning 17:4 (1997) 369-407.

O. Cordén, M.J. del Jesus, F. Herrera, M. Lozano, MOGUL: A Methodology to
Obtain Genetic fuzzy rule-based systems Under the iterative rule Learning ap-
proach. Technical Report DECSAI-98101, Dept. Computer Science and Artificial
Intelligence, University of Granada, Granada (Spain, January 1998).

O. Cordédn, F. Herrera, L. Sdnchez, Computing the Spanish Medium Electrical Line
Maintenance Costs by means of Evolution-Based Learning Processes, Eleventh
International Conference on Industrial & Engineering Applications of Artificial
Intelligence & Expert Systems (IEA-98-AIE) Castellén (Spain, 1998).

K. Deb, D.E. Goldberg, An investigation of niche and species formation in genetic
function optimization, Proc. of the Second International Conference on Genetic
Algorithms, Lawrence Erlbaum (Hillsdale, NJ, 1989) 42-50.

D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley (1989).

A. Gonzélez, R. Pérez, J.L.. Verdegay, Learning the structure of a fuzzy rule: a
genetic approach. Proc. EUFIT’93 vol. 2 (1993) 814-819. Also in Fuzzy System
and Artificial Intelligence 3(1) (1994) 57-70.



[16]
[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]
[30]
[31]

[32]

33]
[34]
[35]

[36]

A. Gonzalez, R. Pérez, A. Valenzuela, Diagnosis of myocardial infarction through
fuzzy learning techniques, Proceedings of IFSA’95 vol.I, Sao Paulo (1995) 273-276.
A. Gonzélez, R. Pérez, Completeness and Consistency Conditions for Learning
Fuzzy Rules. Fuzzy Sets and Systems (1998, to appear).

A. Gonzalez, R. Pérez, A Learning System of Fuzzy Control Rules. In: F. Herrera,
J.L. Verdegay (Eds.), Genetic Algorithms and Soft Computing, Physica-Verlag
(1996) 202-225.

A. Gonzdlez, R. Pérez, SLAVE: a genetic learning system based on an iterative
approach, Technical Report #DECSAI-97111 (1997).

A. Gonzalez, F. Herrera, Multi-stage genetic fuzzy systems based on the iterative
rule learning approach, Mathware & Soft Computing 4 (1997) 233-249.

J.J. Grefenstette, (Ed.), Genetic Algorithms for Machine Learning. Kluwer Aca-
demic, (1994).

F. Herrera, J.L. Verdegay (Eds.), Genetic Algorithms and Soft Computing
(Physica-Verlag, 1996).

F. Herrera, .. Magdalena, Genetic fuzzy systems, in: R. Mesiar, B. Riecan, Eds.,
Tatra Mountains Mathematical Publications 13 (1997) 93-121. Vol. ?Fuzzy Struc-
tures. Current Trends”. Lecture Notes of the Tutorial: Genetic Fuzzy Systems.
Seventh IFSA World Congress (IFSA’97).

F. Herrera, M. Lozano, J.L.. Verdegay, A learning process for fuzzy control rules
using genetic algorithms, Fuzzy Sets and Systems (1998, to appear).

J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, 1975.
(MIT Press (1992)).

J.H. Holland, S. Reitman, Cognitive systems based on adaptive algorithms, in:
D. A. Waterman and F. Hayes-Roth, Eds., Pattern-Directed Inference Systems
(Academic Press, 1978).

C.C. Lee, Fuzzy logic in control systems: fuzzy logic controller - parts [ and 11,
IEEE Transactions on Systems, Man, and Cybernetics 20 (1990) 404-435.

L. Magdalena, F. Monasterio, A Fuzzy Logic Controller with Learning Through the
Evolution of its Knowledge Base, International Journal of Approximate Reasoning,
16 (1997) 335-358.

L.. Magdalena, Adapting the Gain of an FLC with Genetic Algorithms, Interna-
tional Journal of Approximate Reasoning, 17 (1997) 327-349.

7. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, (1992).

R.S. Michalski, Understanding the nature of learning, Machine Learning: An arti-
ficial intelligence approach (Vol II). San Mateo, CA: Morgan Kaufmann (1986).
K. Nozaki, H. Ishibuchi, H. Tanaka, A Simple but Powerful Heuristic Method for
Generating Fuzzy Rules from Numerical Data, Fuzzy Sets and Systems 86 (1997)
251-270.

W. Pedrycz (Ed.), Fuzzy Evolutionary Computation (Kluwer Academic Press,
1997).

E. Sanchez, T. Shibata, L. Zadeh (Eds.), Genetic Algorithms and Fuzzy Logic
Systems. Soft Computing Perspectives (World Scientific, 1997)

S.F. Smith, A Learning System Based on Genetic Adaptive Algorithms, PhD
thesis, University of Pittsburgh (1980).

M. Sugeno, T. Yasukawa, A Fuzzy-logic-based Approach to Qualitative Modeling,
IEEE Transactions on Fuzzy Systems 1(1) (1993) 7-31.



[37] T. Takagi, M. Sugeno, Fuzzy identification of systems and its application to mod-
eling and control, IEEE Transactions on Systems, Man, and Cybernetics 15(1)
(1985) 116-132.

[38] G. Venturini, STA: a Supervised Inductive Algorithm with Genetic Search for
Learning Attribute Based Concepts. Proc. European Conference on Machine
Learning, Vienna, (1993), 280-296.

[39] L.X. Wang, J.M. Mendel, Generating Fuzzy Rules by Learning from Ezamples,
IEEE Transactions on Systems, Man, and Cybernetics 22(6) (1992) 1414-1427.

[40] L. Zadeh, The Concept of a Linguistic Variable and its Applications to Approzim-
ate Reasoning. (1975) Part I, Information Sciences 8, 199-249, Part II, Information
Sciences 8, 301-357, Part III, Information Sciences 9 43-80.



