
Encouraging cooperation in the geneticiterative rule learning approachfor qualitative modelingO. Cord�on, A. Gonz�alez, F. Herrera, R. P�erezDepartment of Computer Science and Arti�cial IntelligenceUniversity of Granada18071 - Granada, SpainAbstract. Genetic Algorithms have proven to be a powerful tool for automatingthe Fuzzy Rule Base de�nition and, therefore, they have been widely used todesign descriptive Fuzzy Rule-Based Systems for Qualitative Modeling. Thesekinds of genetic processes, called Genetic Fuzzy Rule-Based Systems, may bebased on di�erent genetic learning approaches, with the Michigan and Pittsburghbeing the most well known ones.In this contribution, we brie
y review another alternative, the Iterative RuleLearning approach, based on generating a single rule in each genetic run, anddealing with the problem of obtaining the best possible cooperation among thegenerated fuzzy rules. Two di�erent ways for encouraging cooperation betweenrules in this genetic learning approach are presented, which are used in two dif-ferent Genetic Fuzzy Rule-Based Systems based on it, SLAVE and MOGUL.Finally, the behaviour of these two processes in solving a qualitative modelingproblem, the rice taste analysis, is analysed, and the results obtained are com-pared with two other design processes with di�erent characteristics.Keywords. Fuzzy Logic, Fuzzy Rules, Fuzzy Rule-Based Systems, QualitativeModeling, Genetic Algorithms, Genetic Fuzzy Rule-Based Systems.1 IntroductionGenetic Algorithms (GAs) are search algorithms that use operations found innatural genetics to guide the trek through a search space. GAs are theoreticallyand empirically proven to provide robust search capabilities in complex spaces,o�ering a valid approach to problems requiring e�cient and e�ective searching[14]. Although GAs are not learning algorithms, they may o�er a powerful anddomain-independent search method for a variety of learning tasks. In fact, therehas been a good deal of interest in using GAs for machine learning problems [21].Fuzzy Rule Based Systems (FRBSs), initiated by Mamdani applied to controlproblems, are now considered as one of the most important applications of fuzzyset theory. FRBSs are knowledge-based systems that make use of the known



knowledge of the process, expressed in the form of fuzzy rules collected in thefuzzy rule base (FRB). They have been applied to a wide range of areas [ 2]. Adescriptive FRBS is a model that is described or expressed using linguistic termsin the framework of fuzzy logic. A crucial reason why the descriptive fuzzy rule-based approach is worth considering is that it may remain verbally interpretable.This FRBS has been widely used and has obtained very good results in manydi�erent applications [ 2].Focusing on the use of GAs in the �eld of fuzzy modeling, particularly inFRBS, GAs have proven to be a powerful tool for automating the de�nition of theFRB, since adaptive control, learning and self-organizing fuzzy systems may beconsidered in a lot of cases as optimization or search processes. Their advantageshave extended the use of GAs in the development of a wide range of approachesfor designing fuzzy systems in the last few years. These approaches receive thegeneral name of Genetic Fuzzy Systems (GFSs) and Genetic Fuzzy Rule BasedSystems (GFRBSs) [ 7, 23]. Among the di�erent approaches considered in thegenetic learning of FRBs there is the Iterative Rule Learning (IRL) approach[15, 20] that is based on the coding of one rule per chromosome, selecting one ruleper population by including the GA in an iterative scheme based on obtainingthe best current rule for the system, and incorporating this rule into the �nalFRB.In this contribution we deal with genetic learning processes based on the IRLapproach for designing descriptive FRBSs. In particular, we shall focus on theanalysis of the cooperation in the genetic learning processes for qualitative model-ing using linguistic fuzzy rules. We present two alternatives used for introducingcooperation in two di�erent GFRBSs. The �rst one, used in SLAVE (StructuralLearning Algorithm in Vague Environments) [15, 17, 19], modi�es the iterativeprocess in order to obtain rules that cooperate with the previously learnt rules,and the second one, used in MOGUL (Methodology to Obtain GFRBSs Underthe IRL approach) [10, 11], dividing the genetic learning process into, at least,two stages, thereby achiving cooperation between the fuzzy rules generated inthe second stage.In order to do this we organize the contribution as follows: Section 2 in-troduces some preliminaries such as descriptive FRBSs (qualitative modeling),Evolutionary and Genetic Algorithms, and GFRBSs; Section 3 studies the IRLapproach and the problem of the lack of cooperation between rules; Section 4presents two alternatives for including collaboration in the genetic learning pro-cesses based on the IRL approach; Section 5 shows some experimental results;and �nally, Section 6 presents some concluding remarks.2 Preliminaries2.1 Qualitative modeling: Descriptive FRBSsQualitative modeling based on fuzzy logic is considered as a system model basedon linguistic descriptions [36]. The linguistic descriptions are represented by fuzzy



membership functions, and they are used in an FRB composed of linguistic IF-THEN rules such as:IF (a set of conditions are satis�ed) THEN (a set of consequences may be inferred)The contents of both IF- and THEN-parts are usually expressed in terms oflinguistic variables. In an FRBS, the compositional rule of inference is usedto draw conclusions from the set of known premises. Thereby the concept oflinguistic variable [40] plays a central role.There are di�erent kinds of FRBSs in the literature, amongst which we shouldmention the Mamdani, TSK and DNF models.1. The generic expression of the TSK rules is the following:IF X1 is a1 and ... and Xn is an THEN Y = p1 �X1 + : : :+ pn �Xn + p0where X1; :::; Xn and Y are the input variables and the output variable,respectively, ai are linguistic variables with an associated fuzzy set de�ningtheir semantics, and pi are real numbers.2. In the Mamdani model, the FRB is composed of a collection of fuzzy ruleswith the following structure:IF X1 is a1 and : : : and Xp is an THEN Y is B3. The DNF model is an extension of the Mamdani model with the followingstructure: IF X1 is A1 and : : : and Xn is An THEN Y is Bwhere each variable Xi has a referential set Ui and takes values in a �nitedomain Di, for i 2 f1; : : : ; ng. The referential set for Y is V and its domainis F . The value of the variable y is B, where B 2 F and the value of thevariable Xi is Ai, where Ai 2 P (Di) and P (Di) denotes the set of subsets ofDi.We can �nd some important di�erences between these kinds of fuzzy rules.While DNF-type and Mamdani-type fuzzy rules consider a linguistic variablein the consequent [15, 27, 28, 29], TSK fuzzy rules are based on representingthe consequent as a polynomial function of the inputs [37]. The main di�erencebetween types 2 and 3 of rules is that type 3 allows subset of labels as values ofa variable.The Mamdani and DNF are linguistic models based on collections of IF �THEN rules with fuzzy quantities associated with linguistic labels, and the fuzzymodel is essentially a qualitative expression of the system. An FRBS in whichthe fuzzy sets giving meaning (semantic) to the linguistic labels are uniformlyde�ned for all rules included in the FRB follows the descriptive approach sincethe linguistic labels take the same meaning for all the fuzzy rules contained in theFRB. In this case, the FRB is usually called Knowledge Base and it is composedof two components: the Rule Base (RB), constituted by the collection of fuzzyrules themselves, and the Data Base (DB), containing the membership functionsde�ning their semantics.



2.2 Evolutionary and Genetic AlgorithmsEvolutionary Computation (EC) uses computational models of evolutionary pro-cesses as key elements in the design and implementation of computer-based prob-lem solving systems. There are a variety of evolutionary computational modelsthat have been proposed and studied which are referred to as Evolutionary Al-gorithms (EAs). There have been three well-de�ned EAs which have served asthe basis for much of the activity in the �eld, Genetic Algorithms, EvolutionStrategies and Evolutionary Programming (EP) [ 1].An EA maintains a population of trial solutions, imposes random changesto these solutions, and incorporates selection to determine which ones are goingto be maintained in future generations and which will be removed from thepool of the trials. There are however important di�erences between them. GAsemphasize models of genetic operators as observed in nature, such as crossover(recombination) and point mutation, and apply these to abstracted chromosomes.ESs and EP emphasize mutational transformations that maintain the behaviorallinkage between each parent and its o�spring.In the following, we brie
y review the GAs, the most extended and most usedEA.A GA starts o� with a population of randomly generated chromosomes, andadvances toward better chromosomes by applying genetic operators modeled onthe genetic processes occurring in nature. The population undergoes evolutionin a form of natural selection. During successive iterations, called generations,chromosomes in the population are rated for their adaptation as solutions, andon the basis of these evaluations, a new population of chromosomes is formedusing a selection mechanism and speci�c genetic operators such as crossover andmutation. An evaluation or �tness function (f) must be devised for each problemto be solved. Given a particular chromosome, a possible solution, the �tnessfunction returns a single numerical �tness, which is supposed to be proportionalto the utility or adaptation of the solution represented by that chromosome.Although there are many possible variants of the basic GA, the fundamentalunderlying mechanism consists of three operations:1. evaluation of individual �tness,2. formation of a gene pool (intermediate population) through selection mech-anism, and3. recombination through crossover and mutation operators.The next procedure shows the structure of a basic GA, where P (t) denotesthe population at generation t.GAs may deal successfully with a wide range of problem areas. The mainreasons for this success are: 1) GAs can solve hard problems quickly and reli-ably, 2) GAs are easy to interface to existing simulations and models, 3) GAs areextendible and 4) GAs are easy to hybridize. All these reasons may be summedup in only one: GAs are robust. GAs are more powerful in di�cult environments



Procedure Genetic Algorithmbegin (1)t = 0;initialize P (t);evaluate P (t);While (Not termination-condition) dobegin (2)t = t+ 1;select P (t) from P (t � 1);recombine P (t);evaluate P (t);end (2)end (1)where the space is usually large, discontinuous, complex and poorly understood.They are not guaranteed to �nd the global optimum solution to a problem, butthey are generally good at �nding acceptably good solutions to problems accept-ably quickly. These reasons have been behind the fact that, over the last fewyears, GA applications have grown enormously in many �elds.The basic principles of GAs were �rst laid down rigorously by Holland ([25]),and are well described in many books, such as [14, 30]. It is generally acceptedthat the application of a GA to solve a problem must take into account thefollowing �ve components:1. A genetic representation of solutions to the problem,2. a way to create an initial population of solutions,3. an evaluation function which gives the �tness of each chromosome,4. genetic operators that alter the genetic composition of o�spring during re-production, and5. values for the parameters that the GA uses (population size, probabilities ofapplying genetic operators, etc.).2.3 Genetic Fuzzy Rule Based SystemsEAs are applied to modify/learn the de�nition of the membership function shapes(DB) and/or the composition of the fuzzy rules (RB) in the way shown in Fig-ure 1. Therefore, it is possible to distinguish three di�erent groups of GFRBSsdepending on the FRB components included in the learning process [ 7, 23]:1. Genetic de�nition of the membership functions2. Genetic derivation of the fuzzy rules3. Genetic learning of the whole FRBFor a wider description of each family see [ 7, 23] and for an extensive bibli-ography see [ 8], Section 3.13, and [ 9], Section 13. Di�erent approaches may befound in [22, 33, 34].Carse et al. [ 6] divide the third family into two di�erent subgroups dependingon the simultaneousness in the learning of both FRB components. Therefore, theydi�erentiate between learning them in a single process or in di�erent stages.
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In the last few years, the IRL approach has been used by some authors toobtain several GFRBSs following a new learning model [15, 20]. In the latter, asin the Michigan one, each chromosome in the population represents a single fuzzyrule, but only the best individual is considered to form part of the �nal FRB.Therefore, in this approach the EA provides a partial solution to the problem oflearning, and, contrary to both previous ones, it is run several times to obtainthe complete FRB. This substantially reduces the search space, because in eachsequence of iterations only one rule is searched for.In order to obtain a set of rules, which will be a true solution to the problem,the GA has to be placed within an iterative scheme similar to the following:1. Use a GA to obtain a rule for the system.2. Incorporate the rule into the �nal set of rules.3. Penalize this rule.4. If the set of rules obtained is adequate to represent the examples in thetraining set, the system ends up returning the set of rules as the solution.Otherwise return to step 1.A very easy way to penalize the rules already obtained, and thus be able tolearn new rules, consists of eliminating from the training set all those examplesthat are covered by the set of rules obtained previously.The main di�erence with respect to the Michigan approach is that the �t-ness of each chromosome is computed individually, without taking into accountcooperation with other ones.In the literature we can �nd some genetic learning processes that use thismodel such as SLAVE [15, 17, 20], SIA [38] and MOGUL [10, 11].>From the description shown above, we may see that in order to implementa learning algorithm based on GAs using the IRL approach, we need, at least,the following:1. a criterion for selecting the best rule in each iteration, and2. a penalization criterion, and3. a criterion for determining when there are enough rules available to representthe examples in the training set.The �rst criterion is normally associated with one or several characteristicsthat are desirable so as to determine good rules. Usually criteria about the rulestrength have been proposed (number of examples covered), criteria of consist-ency and completeness of the rule or criteria of simplicity (for some examples,see [10, 17, 20, 24]).The second criterion is often associated with the elimination of the examplescovered by the previous rules.Finally, the third criterion is associated with the completeness of the set ofrules [10, 17, 24] and must be taken into account when we can say that all theexamples of a concept in the training set are su�ciently covered and no morerules are needed to represent them. This criterion is often associated, although



it is not necessary, with the elimination of the examples in a concept covered bythe previous rules.This scheme is usually employed in GFRBSs based on inductive learning, inwhich the penalization of the fuzzy rules already generated is done by removingfrom the training data set all those examples that are still covered by the FRBobtained until that time. As has been previously said, a key characteristic of theIRL is that it substantially reduces the search space, because in each iteration onlyone fuzzy rule is searched. This allows us to obtain good solutions in GFRBSsfor o�-line learning problems.3.2 Competition and cooperation in the IRL approachAssociated to the previous criteria needed in the development of an IRL al-gorithm, we include a natural way for competition and cooperation relationsbetween the rules. So, the �rst criterion establishes the competition between mem-bers of the population representing possible solutions to the problem. In this case,this characteristic is due to the mechanisms of natural selection on which the EAis based. On the other hand, the second and third criteria include cooperationrelations between the rules that describe the same concept, since, as was previ-ously mentioned, normally the goal of the third criterion consists of trying toremove all the examples that are being learnt from the training set, when theseare covered by some rules to a su�cient degree.One of the most interesting features of an FRBS in qualitative modelingproblems is the interpolative reasoning it develops. This characteristic plays a keyrole in the high performance of FRBSs and is a consequence of the cooperationamong all the fuzzy rules composing the FRB. As is known, the output obtainedfrom an FRBS is not usually due to a single fuzzy rule but to the cooperativeaction of several fuzzy rules that have been �red, because they match the inputfor the system to some degree. So, a very interesting way to solve the problem ofdesigning an FRBS consists of adding both features to the learning algorithm:competition to achieve the best rules and cooperation between rules from thesame or di�erent value of the consequent variable. This is referred to as thecooperation versus competition problem (CCP) [ 4].However, the cooperation between rules from di�erent concepts is not in-cluded within the IRL approach. The di�culty of solving the problem of takinginto account this kind of cooperation depends directly on the genetic learningapproach followed by the GFRBS. GFRBSs based on the IRL approach try tosolve the CCP at the same time as reducing the search space by encoding a singlefuzzy rule in each chromosome. To put this into e�ect, these processes can usedi�erent ways:{ adding new criteria to the evaluation of the rule for including this kind ofcooperation within the IRL approach,{ dividing the genetic learning process into, at least, two stages. Therefore, theCCP is solved in two steps acting on two di�erent levels, with the competitionbetween fuzzy rules in the �rst one, the genetic generation stage, and with



the cooperation between these generated fuzzy rules in the second one, apostprocessing stage.In the following section we present these two alternatives.4 Alternatives for Including Cooperation in the IRLapproachIn this Section, we present two alternatives used for introducing cooperation intwo di�erent GFRBSs based on the IRL approach. The �rst one, used in SLAVE[15, 17, 20], includes cooperation relations between rules from di�erent valuesof the consequent value within the IRL approach, and the second alternative,used in MOGUL [10, 11], based on dividing the genetic learning process into, atleast, two stages, managing cooperation between the generated fuzzy rules in thesecond one.4.1 Cooperation within the IRL approachIn the proposal for the IRL approach the cooperation is de�ned between the rulesfrom the same value in the consequent variable in a natural way, as previouslyhas been mentioned. In many cases, this cooperation level is su�cient when theconcepts are exclusive and there is no noise or inconsistency in the example set.However, with databases a�ected by noise and inconsistency and when the con-cepts are not exclusive, a higher degree of cooperation must be established thatpermits good collaboration between rules from di�erent values of the consequentvariable.Normally, the degree of collaboration between rules from di�erent conceptsis measured using the inference model associated to the learning algorithm. Itis not easy to establish this cooperation between rules, since the IRL approachlearns the rules one by one, and the learning process does not has the whole ruleset for applying the inference model.A way for de�ning this cooperation level consists of applying the inferencemodel partially on a subset of the examples and including this information in theevaluation of the rules. This subset contains the examples of the concepts thathave been learnt by the learning algorithm. So, the cooperation between rules ismeasured by the error that produces the new rule in the outputs of the inferencemodel, when this rule is included in the rule set.The IRL approach, without this kind of collaboration, tries to extract theknowledge that the examples represent for each concept from the training set.The rule set obtained in this way, provides a comprehensible description of thesystem that we want to learn. From our point of view, the inclusion of cooperationmust keep this comprehensible description of the system and furthermore it mustimprove the interpolative reasoning between the rules. This is important sincean inappropriate use of the cooperation measure, may provoke a reduction in thequality of the rule (with respect to the interpretability of the rule set) because



the goal of the learning process is to reduce the error in the output as far aspossible.SLAVE is a learning algorithm based on the IRL approach that takes intoaccount cooperation between the rules from di�erent concepts in the sense pre-viously described. SLAVE was initially proposed in [15] and later developed in[17, 18]. The algorithm begins with a simple description of the problem: theconsequent variable (concept variable) and the set of all the available antecedentvariables for generating the rules that describe the consequent variable. The learn-ing algorithm, using this description and a set of examples, will decide for eachvalue of the consequent variable and each rule which variables are needed todescribe the concept (feature selection), and the rest will be eliminated.The basic element of the SLAVE learning algorithm is its model of rules thatwas described in Section 2.1 (type 3). The key to this rule model is that eachvariable may take as a value an element or a subset of elements in its domain,i.e., we let the value of a variable be interpreted more as a disjunction of elementsthan just one element in its domain.Consistency and Completeness in SLAVE In the SLAVE learning process(Figure 2), �nding the best rule consists of determining the best combinationof values from the antecedent variables, given a �xed value of the consequentvariable and a set of examples. The best rule concept uses a simple quantit-ative criterion; the best rule will be the rule covering the maximum number ofexamples. However, there are problems with this criterion, if we do not restrictthe set of possible rules.Classical learning theory proposes conditions that must be veri�ed for theset of rules that are obtained by a learning algorithm. These conditions, whichprovide the logical foundation of the algorithms for concept learning from ex-amples, are called consistency condition and completeness condition [31].These conditions are associated on the whole set of rules. SLAVE obtainsthe set of rules that describes the system, extracting one rule in each iterationof the learning process. Due to this reason, we need to de�ne these concepts oneach rule. Moreover, we are not interested in proposing hard de�nitions on fuzzyproblems, thus we propose a degree of completeness and a degree of consistency.De�nition1. The degree of completeness of a rule RB(A) is de�ned as�(RB(A)) = n+(RB(A))nBwhere nB = Pmi=1U (ei; B) is the number of examples of the value B of theconsequent variable in the training set, m is the number of examples in thetraining set and n+(RB(A)) is the number of positive examples covered by therule RB(A).With respect to the soft consistency degree [17] it is based on the possibility ofadmitting some noise into the rules. Thus, in order to de�ne the soft consistency
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Thus, SLAVE selects the rule that simultaneously veri�es the completenessand soft consistency conditions to a high degree. Therefore, rule selection inSLAVE can be solved by the following optimization problem:maxA2Df �(RB(A)) �k1k2(RB(A))gwhere D = P (D1)� P (D2) � : : :� P (Dn):Adding Cooperation between Rules The main component of SLAVE is agenetic algorithm [18]. The goal of the genetic algorithm is to �nd the mostconsistent and complete rule at each step given the available set of examples.However, we want a rule set that includes cooperation between rules from di�er-ent values of the consequent variable and with understandable rules.For this reason, it is necessary to establish measures on the simplicity of therule and on the degree of cooperation between rules and these measures mustbe taken into account for evaluating the rule. So, the evaluation function fordetermining the best rule is de�ned by a multiobjective function.The measures for evaluating the simplicity of the rule were proposed in [19].Now, we describe brie
y the way used by SLAVE for including cooperationamong rules.SLAVE distinguishes two kinds of learning problems, when the consequentvariable takes values in a discrete range (Classi�cation Problems) and when theconsequent variable takes values in a continuous range (Qualitative ModelingProblems). This di�erence between both problems is important since the infer-ence method associated for each one of them is di�erent. In the �rst case, theinference method can be seen as a competition between the rules for determiningwhich of them will be the most appropriate for classifying a certain example, thatis, the inference method selects only one rule each time. However, in the secondcase, the output of the rule set is obtained by the combination of the output ofeach rule that can be applied for classifying the example.In the �rst case, we establish competition relations between rules from dif-ferent values of the consequent variable for improving the overall behaviour ofthe rule set. The description of this process is to be found in [19]. In the secondcase, where the output is obtained by interpolative reasoning, SLAVE includescooperation relations between rules in the following form:a) de�ning in a special way the concepts of the number of positive and negativeexamples covered by a rule, andb) including an error measure that determines the cooperation degree of the newrule with the rest of the rules that are members of the rule set.The de�nition of the number of positive and negative examples covered by arule is related to the results that this rule will obtain in the inference process, thatis, with successes and failures. Using this idea, we built the following de�nitions:



De�nition3. A rule RB(A) classi�es correctly an example e ifU (e; A) > 0 and U (e; B) > 0where U (e; A) is the adaptation between the example and the antecedent of therule and U (e; B) is the adaptation between the example and the consequent ofthe rule. The de�nition of this adaptation function is to be found in [17].De�nition4. A rule RB(A) does not correctly classify an example e ifU (e; A) > 0 and U (e; B) = 0From the previous de�nitions, we can establish the de�nitions of the numberof positive and negative examples in the following way:n+(RB(A)) = jfe 2 E j U (e; A) > 0 and U (e; B) > 0gjn�(RB(A)) = jfe 2 E j U (e; A) > 0 and U (e; B) = 0gjThe previous de�nitions allow us to determine the goodness of the rule, buta di�erence of the sense proposed in the crisp problems [19], in fuzzy problemsit is not necessary to grade the trust of the successes, since the rules work incooperation for obtaining the output.However, these de�nitions are not su�cient for maximizing the relations ofcooperation between the rules. For this reason, SLAVE includes in the evaluationof the rule, a measure of the collaboration degree. This measure is based on theerror that the new rule produces in the output when it is included in the rule set.The error measure is obtained using the inference method on the subset ofthe examples that are members of some of the classes from the rules learnt. So,the rule evaluation function is composed by three criteria:Criterion 1: The degree to which the rule represents the examples from theconcepts that we want to learn, i.e., the veri�cation of the completeness andsoft consistency conditions to a high degree.Criterion 2: In
uence on the output from the Knowledge Base of the in-clusion of the new rule, i.e., error measure.Criterion 3: Simplicity and understanding of the rule, i.e., simplicity meas-ures.Therefore, the evaluation function is a multicriteria function that contains theprevious criteria. For the evaluation, a lexicographical order is applied, wherethe main criterion is to maximize the degree for representing the examples of theconcepts that we want to learn (criterion 1). In a tie situation among them therule is selected that produces less error in the output (criterion 2). If a new tiesituation is produced, then it selects the simpler rule (criterion 3) among them.



4.2 Cooperation in StagesAs the generation process does not envisage any relationship between the fuzzyrules generated, it is necessary to employ any other postprocessing to simplifyand/or adjust the FRB obtained, thereby forming a multi-stage GFRBS. There-fore, the CCP is solved in two steps acting on two di�erent levels:{ the genetic generation stage forces competition between fuzzy rules, as thegenetic learning processes based on the Michigan approach, to obtain anFRB composed of the best possible fuzzy rules. The cooperation between themis only smoothly addressed by means of the rule penalization criterion.This generation stage uses a covering method which is developed as an iterat-ive process that allows us to obtain a set of fuzzy rules covering the exampleset. In each iteration, it runs the generating method, obtaining the best fuzzyrule according to the current state of the training set, considers the relativecovering value this rule creates over it, and removes the examples from itwith a covering value greater than �, provided by the system designer. Itends up when the training set is left empty.Each time the generating method is run, it produces a set of candidate fuzzyrules by generating the fuzzy rule best covering every example from the train-ing set. The accuracy of the candidates is measured by using a multicriteria�tness function, composed of three di�erent criteria measuring the coveringthat each rule creates over the training set. Their expressions are to be foundin [10]. Finally, the best fuzzy rule is selected from the set of candidates andgiven as the method output.The designer is allowed to build the generation stage by using di�erent kindsof algorithms and not only a GA as in the previous existing processes follow-ing the IRL approach. It is possible to employ a non-evolutionary inductivealgorithm or an Evolution Strategy [ 1] instead of the usual GA [10]. The wayof working is still the same but the di�erence is the speed of the generationprocess, which is higher in the latter cases.{ the postprocessing stage forces cooperation between the fuzzy rules generatedin the previous stage by re�ning or eliminating the redundant or unnecessaryfuzzy rules from the previously generated fuzzy rule set in order to obtainthe best possible FRB.The postprocessing stage will present two important characteristics. On theone hand, it will be designed by means of a GA based on the Pittsburgh learningapproach, but signi�catively reducing the solution space by working only over theFRB generated in the �rst stage, i. e., not modifying the membership functionde�nitions. In this way, it will simplify the FRB obtained until now by remov-ing the redundant or unnecessary fuzzy rules not cooperating adequately withthe others. This operation mode will allow us to obtain the best possible FRBcomposed of the best combination of the fuzzy rules generated in the �rst stage.On the other hand, a genotypic sharing function [13] will be considered toobtain not only a single FRB as output from the process but di�erent onespresenting the best possible cooperation between the fuzzy rules composing them,



and thereby the best possible behavior. Due to this, we will refer to this secondstage as the multisimpli�cation process.The Sequential Niche Technique [ 3] is used to induce niches in this GFRBSstage, with the genetic simpli�cation process proposed in [24] being the basicoptimization technique iterated in each run of the multisimpli�cation process.The following subsections introduce the basic simpli�cation algorithm and theparticular aspects of the multisimpli�cation one, respectively.The Basic Genetic Simpli�cation Process As mentioned earlier, the basicgenetic simpli�cation process was �rst proposed in [24]. It is based on a bin-ary coded GA, in which the selection of the individuals is performed using thestochastic universal sampling procedure together with an elitist selection scheme,and the generation of the o�spring population is put into e�ect by using the clas-sical binary multipoint crossover (performed at two points) and uniformmutationoperators.The coding scheme generates �xed-length chromosomes. Considering the rulescontained in the rule set Bg derived from the previous step counted from 1 to m,an m-bit string C = (c1; :::; cm) represents a subset of candidate rules to formthe FRB �nally obtained as this stage output, Bs, such that,If ci = 1 then Ri 2 Bs else Ri 62 BsFollowing MOGUL assumptions, the initial population is generated by intro-ducing a chromosome representing the complete previously obtained rule set Bg ,i.e., with all ci = 1. The remaining chromosomes are selected at random.As regards the �tness function, F (Cj), it is based on two di�erent criteria:{ On the one hand, we have a global error measure that determines the accuracyof the FRBS encoded in the chromosome. We usually work with the meansquare error (SE), although other measures may be used. SE over a trainingdata set, ETDS , is represented by the following expression:E(Cj) = 12jEpj Xel2Ep(eyl � S(exl))2where S(exl) is the output value obtained from the FRBS using the FRBcoded in Cj, R(Cj), when the input variable values are exl = (exl1; : : : ; exln),and eyl is the known desired value.{ On the other hand, since there is a need to keep the � -completeness propertyconsidered in the previous stage, we shall ensure this condition by forcingevery example contained in the training set to be covered by the encodedFRB to a degree greater than or equal to � ,CR(Cj)(el) = [j=1::T Rj(el) � � , 8el 2 Ep and Rj 2 R(Cj)



where � is the minimal training set completeness degree accepted in thesimpli�cation process. Usually, � is less than or equal to !, the compatibilitydegree used in the generation process.Therefore, we de�ne a training set completeness degree of R(Cj) over the setof examples Ep as TSCD(R(Cj); Ep) = \el2Ep CR(Cj)(el)The �nal expression of the �tness function is:F (Cj) = �E(Cj); if TSCD(R(Cj); Ep) � � ;1; otherwiseThe Genetic Multisimpli�cation Process In order to induce niching in thesequential niche algorithm, there is a need to de�ne some kind of distance metricwhich, given two individuals, returns a value of how close they are [ 3]. Weuse a genotypic sharing [13] due to the fact that the metric considered is theHamming distance measured on the binary coding space. With A = (a1; :::; am)and B = (b1; :::; bm) being two individuals, it is de�ned as follows:H(A;B) = mXi=1 ai � biMaking use of this metric, the modi�ed �tness function guiding the search onthe multisimpli�cation process is based on modifying the value associated to anindividual by the basic algorithm �tness function, multiplying it by a deratingfunction penalizing the closeness of this individual to the previously obtainedsolutions. Hence, the modi�ed �tness function used by the multisimpli�cationprocess is the following: F 0(Cj) = F (Cj) �G(Cj; S)where F is the basic genetic simpli�cationprocess �tness function, S = fs1; : : : ; skgis the set containing the k solutions already found, and G is a kind of deratingfunction. We consider the following, taking into account the fact that the problemwe deal with is a minimization one:G(Cj; S) = 8<:1; if d = 02� (dr )� ; if d < r and d 6= 01; if d � rwhere d is the minimum value of the Hamming distance between Cj and thesolutions si included in S, i. e., d = MinifH(Cj; si)g, and the penalization isconsidered over the closest solution, r is the niche radius, and � is the powerfactor determining how concave (� > 1) or convex (� < 1) the derating curveis. Therefore, the penalization given by the derating function takes its maximumvalue when the individual Cj encodes one of the solutions already found. There



is no penalization when the Cj is far away from S with a value greater than orequal to the niche radius r.The algorithm of the genetic multisimpli�cation process is shown below:1. Initialization: Equate the multisimpli�cation modi�ed �tness function to thebasic simpli�cation �tness function: F 0(Cj) F (Cj).2. Run the basic genetic simpli�cation process, using the modi�ed �tness func-tion, keeping a record of the best individual found in the run.3. Update the modi�ed �tness function to give a depression in the region nearthe best individual, producing a new modi�ed �tness function.4. If all the simpli�ed FRBs desired have not been obtained, return to step 2.Hence, the number of runs for the sequential algorithm performed is the num-ber of solutions desired to be obtained. We allow the FRBS designer to decidethis number as well as the values of parameters r and �.5 Example: Rice Taste AnalysisSubjective quali�cation of food taste is a very important but di�cult problem.In the case of the rice taste quali�cation, it is usually put into e�ect by means ofa subjective evaluation called the sensory test. In this test, a group of experts,usually composed of 24 persons, evaluate the rice according to a set of charac-teristics associated to it. These factors are: 
avor, appearance, taste, stickiness,and toughness [32].Because of the large quantity of relevant variables, the problem of rice tasteanalysis becomes very complex, thus leading to solve it by means of modelingtechniques capable of obtaining a model representing the non-linear relationshipsexisting in it. Moreover, the problem-solving goal is not only to obtain an accuratemodel, but to obtain a user-interpretable model as well, capable of putting somelight on the reasoning process made by the expert for evaluating a kind of ricein a speci�c way. Due to all these reasons, in this Section we deal with obtaininga qualitative model to solve the said problem.In order to do so, we are going to use the data set presented in [32]. This set iscomposed of 105 data arrays collecting subjective evaluations of the six variablesin question (the �ve mentioned and the overall evaluation of the kind of rice),made up by experts on this number of kinds of rice grown in Japan (for example,Sasanishiki, Akita-Komachi, etc.). The six variables are normalized, thus takingvalues in the real interval [0; 1].With the aim of not biasing the learning, we have randomly obtained tendi�erent partitions of the mentioned set, composed by 75 pieces of data in thetraining set and 30 in the test one, for generating ten qualitative models in eachexperiment. To solve the problem, we use the two GFRBSs based on the IRLapproach introduced in this paper, and two qualitative modeling processes withdi�erent characteristics as well:D1. The inductive learning process proposed by Nozaki et al. in [32].



D2. The inductive learning process proposed by Wang and Mendel (WM) in [39].D3. The SLAVE GFRBS introduced in Section 4.1.D4. The GFRBS obtained from MOGUL introduced in Section 4.2.As was done in [32], we have worked with fuzzy partitions composed by adi�erent number of linguistic labels for the six variables considered. These fuzzypartitions have been obtained from a normalization process in which the universeof discourse of each variable has been equally divided into 2 and 3 parts, anda triangular fuzzy set has been associated to each one of them. Figure 3 showsan example of a fuzzy partition with �ve linguistic labels. The reason why wehave not considered fuzzy partitions with a higher number of labels is that thereis a need to obtain simple qualitative models with FRBs composed by a smallnumber of rules in order to make them interpretable.
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Fig. 3. Example of fuzzy partition with �ve linguistic labelsThe results obtained in the experiments developed are collected in Table 1.The values shown in columns SEtra and SEtst have been computed as an averageof the mean square error values obtained in the approximation of the trainingand test data sets, respectively, by the ten qualitative models generated in eachcase. The column #R stands for the average number of fuzzy rules in the FRBsof the models generated from each process. We should remember that these fuzzyrules are simple in GFRBSsD1,D2 andD4, and present the disjunctive normalform in the case of GFRBS D3. Finally, as may be observed, GFRBS D4, theone based on MOGUL, has two rows associated, one for each one of the learningstages: generation and postprocessing.In view of these results, many interesting conclusions may be drawn. Onthe one hand, as regards the accuracy in the problem solving, the qualitativemodel generated by the GFRBS obtained from SLAVE, D3, has obtained thebest training result and MOGUL, D4, has obtained the best test result whenworking with 2 labels, with the second best result being obtained by SLAVE.With respect to MOGUL, the good behaviour of the cooperation encouraged by



2 labels 3 labelsProcess #R SEtra SEtst #R SEtst SEtstD1 64 0.00862 0.00985 364.8 0.00251 0.00322D2 15 0.013284 0.013118 23 0.003339 0.003758D3 2.0 0.004111 0.007288 3.0 0.003866 0.006533D4 (gen.) 10.1 0.013601 0.012508 21.2 0.005157 0.006579D4 (post.) 6 0.004861 0.0037 10.6 0.00281 0.004169Table 1. Results obtained in the rice taste analysis problem by the di�erent learningprocessesthe postprocessing stage is demonstrated in the light of the results obtained: itnot only signi�catively reduces the number of rules in the models generated butimproves their accuracy to a high degree (see rows D4 (gen.) and D4 (post.)).With respect to SLAVE the results are very close to the previous system and themain di�erence corresponds to the simplicity of the �nal model.In the case of 3 labels, the best results are obtained by GFRBS D1, whichobtains the best overall global results in this case as well. The problem is thatthe qualitative models generated from this GFRBS are not useful in practice dueto the number of rules in their FRBs (364:8 in average) is excessively high inorder to interpret them. We should remember that the goal is not only to obtainaccurate fuzzy models solving the problem but to make sure these models can beinterpreted by human beings.Focusing on this second aspect, it may be observed that the simplest modelsare obtained by the SLAVE GFRBS, D3, presenting an average of 2:0 and 3:0rules when considering 2 and 3 labels, respectively. This is a key aspect due tothe fact that the interpretability of the model will depend directly on the numberof fuzzy rules in the FRB. It will be very easy for an expert to interpret aqualitative model composed by only two rules. The cooperation induced in therule generation in this GFRBS (see Section 4.1) allows it to generate very simplequalitative models with an adequate accuracy according to its simplicity. On theother hand, the behaviour of the GFRBS obtained from MOGUL, D4, is alsogood in this aspect. It allows us to design qualitative models with a very goodbalance between interpretability (generates simple models with 6 rules in thecase of 2 labels, and 10:6 in the case of 3 labels) and accuracy.In Tables 2 and 3, as an example, the composition of the FRB is shown forone of the models generated from each one of the GFRBSs based in the IRLintroduced in this contribution. The speci�c values obtained by them in bothmeasures are SEtra = 0:0041 and SEtst = 0:0061 for the GFRBS D3 (SLAVE),and SEtra = 0:005681 and SEtst = 0:001782 for the GFRBS D4 (MOGUL).



[ht] R1: IF Taste is BadTHENOverall Evaluation is LowR2: IF Appearance is Good ANDTaste is GoodTHENOverall Evaluation is HighTable 2. FRB of one of the qualitative models generated from the GFRBS D3 using2 labels[ht] Flavor Appearance Taste Stickness ToughnessOverall EvaluationR1: Good Good Good Sticky Tender HighR2: Good Good Good Sticky Tender HighR3: Good Good Good Sticky Tender HighR4: Good Bad Bad Not sticky Tough LowR5: Bad Bad Bad Not sticky Tough LowR6: Bad Good Good Sticky Tender LowTable 3. FRB of one of the qualitative models generated from the GFRBS D4 using2 labels6 Concluding RemarksIn this contribution, the IRL approach, one of the existing genetic learning ap-proaches to design GFRBSs, has been brie
y reviewed, and the problem of ob-taining the best possible cooperation between the generated fuzzy rules in thegenetic learning processes based on it has been analyzed. Two di�erent ways forencouraging cooperation between rules in them have been presented: the inclu-sion of the cooperation between rules inside of the iterative rule learning, used inSLAVE, and the creation of a postprocessing stage obtaining di�erent simpli�edFRB de�nitions with good cooperation from the rules generated in the geneticlearning stage, used in MOGUL.Both GFRBSs have been applied to solve a qualitative modeling problem,rice taste analysis, and the results obtained by them have been compared withtwo other design processes with di�erent characteristics. They have performedwell, showing the good behaviour of both alternatives presented to encourage thecooperation between rules in GFRBSs based on the IRL approach.On the other hand, we should note that these GFRBSs have been applied tosolve other real-world problems as well. In [16], SLAVE was used in a medical
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