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The leaning of a Fuzzy Rule-Based Classficaion System (FRBCS) by
means of a supervised inductive process fundamentally implies four
tasks that are cmplementary among them: the seledion d the most
informative variables to the dasgficdion poblem to solve, the
generation d a set of rules, the seledion d the subset of rules with the
best co-operation and the least redundancy, and the establishment and
tuning of the fuzzy partitions for the domains of the problem variables.

The automatic definition o any of these tasks may be facal as an
optimisation a seach process Evolutionary Algorithms, and
particulary Genetic Algorithms, are seach tedhniques which use
operations based on the natura genetics, proving theoretic and
empiricdly their robust search cgpadty in complex spaces. This is the
resson why they offer a valid approach for problem solving, as the
Clasgficaion System design, that requires an efficient and effedive
seach.

In this chapter we analyse the evolutionary approacdes to the leaning
of FRBCSs. We present the different proposals based on evolutionary
algorithms for the four aforementioned tasks.



1 Introduction

The @nstruction d a Classficaion System has been tadkled many
times using fuzzy rules as knowledge representation tod ([4], [7] and
[12]). The resulting systems are cdl ed Fuzzy Rule-Based Clasdgficaion
Systems (FRBCSs) and their success is fundamentally due to two
reasons. On the one hand, the use of fuzzy logic makes possble the
treament of impredse, urcetain o incomplete information, wery
common in red clasdficaion poblems. On the other hand, rules
represent the knowledge in a mmprehensible form for those who will
use the Clasdgficaion System, making possble the use of this kind o
systems as a tod in dedsion making processs. All in al, the fuzzy
rules allow us to work in a transparent way in a feasible wmputer
environment with the opaque dassficaion schemes often used by
human beings for these kinds of tasks[81].

The design of an FRBCS by means of a supervised leaning process
which describes with higher passble predsion the dasses to represent,
fundamentally implies four tasks that are complementary among them:
the seledion d the most informative variables to the dassficaion
problem to solve, the generation d a set of rules, the seledion d the
subset of rules with the best co-operation and the least redundancy, and
the establishment and/or tuning of the fuzzy partitions of the problem
variable domains.

The automatic definition o any of these tasks may be facal as an
optimisation a seach process Evolutionary Algorithms [2], and
particularly Genetic Algorithms (GAs) ([24], [37] and [62]) are
considered as a genera adaptable @ncept for problem solving,
espedally well suited to solving difficult optimisation problems. It has
been theoreticdly and pradicdly proven that they provide a valid
solution to those problems that require an efficient and effedive search
in complex spaces. Due to this reason, and athowgh GAs can na be
considered leaning agorithms, they constitute apowerful optimisation
tod, independent of the domain, and applicable to the different tasks
compasing the leaning of the FRBCS.



In this chapter, we will analyse different propaosals on the use of GAsin
the leaning of a FRBCS, introdwcing some eamples abou its
applicaionin a dasgc dasdficaion poblem, the IRIS problem.

To adhieve this objedive, in Sedion 2we describe the structure of an
FRBCS and haw it works classfying new patterns, and we explain the
different aspeds from the FRBCS design that can be treaed with
processes based on GAs. We study several evolutionary approades to
solve them in the rest of the @ntribution: Sedion 3 describes the
genetic feaure seledion and extradion process Sedion 4 dscusses the
general charaderistics of the genetic fuzzy rule leaning approades;
Sedion 5showsthe use of GAsin the fuzzy rule seledion pocess and
Sedion 6 studies the genetic tuning of the fuzzy partitions for the
variables invalved in the fuzzy rules. Findly, in Sedion 7,we point out
the aonclusions of the study we have caried ou.

2 Fuzzy Clasgfication Framework

The pattern classficaion goblem involves assgning a dass C,; froma
predefined class & C ={C,,...,C,,} to an oljed, described as a point
in a cetain feaure space x O S".

The key problem of designing a Clasgficaion System is to find a
mapping

D:S"M - C

optimal in the sense of a cetain criterion §(D) that determines the

classfier performance Usudly, the fina goal is to design a
Clasgficaion System that assgns class labels with the smallest
posshle aror acossthe whole feaure space

2.1 FuzzyRule-Based Clasdgfication Systems

As mentioned, in this contribution we will focus on the Clasdficaion
Systems that utili se the fuzzy rules as a knowledge representation toadl,
FRBCSs.



The FRBCS design invalves to oltain a Fuzzy Reasoning Method
(FRM) andto lean a Knowledge Base (KB).

The FRM is an inference procedure, which derives conclusions from
the KB and a pattern. Traditionaly, in the spedalised hbibliography, the
FRM which is used considers only one rule, the winner one ([30], [40],
and [57]). Several reseachers have shown the increase of the FRBCS
generali sation cgpadty when considering an FRM that integrates, in the
inference process the information from all the rules fired o from a
subset of them ([4], [12], [16], and [17]).

The KB iscomposed of the Data Base (DB) and the Rule Base (RB):

The DB contains the definition d the fuzzy sets associated with the
linguistic terms used in the RB.

The RB contains the set of fuzzy classficaion rules of one of the
following rule types traditionaly used in the spedalised
bibli ography for FRBCSs:

1. Fuzzy rules with a dassin the mnsequent [30]. This
kind d rule has the foll owing structure:

R.: If x is A"and...andx, is A{ thenY isC,

where x,...,X, are the outstanding seleded feaures for the
clasdficaion goblem, AS,..., Al are linguistic labels used to

discretise the mntinuows domain of the variables, and Y is the
class C; to which the pattern belongs.

2. Fuzzy rules with a dassand a cetainty degree of the
clasgficaionin that classin the amnsequent [40]:

R, If x is A“and...andx, is A{ thenY is C; with r*

where r* isthe cetainty degreeof the dassficationin the dass
C, for a pattern belonging to the fuzzy subspacedelimited by

the antecalent.



3. Fuzzy rules with certainty degree for all classs in the
consequent [57]:

R : If x is A and...andx, is AS then (rf,...,r\)

where r].k Is the soundressdegreefor the rule k to predict the
class C; for apattern belonging to the fuzzy region represented
by the antecedent of the rule.

The leaning of a KB is caried ou through an inductive supervised
learning process which starts with a set of corredly classfied examples
(training examples) and its ultimate objedive is to design a
Clasgficaion System, which will assgn classlabels to new examples
with minimum error. Finaly, the system performance on the test datais
computed, to gain an estimate of the FRBCS red error. This processis
described in Figure 1.
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Figure 1. Design of an FRBCS (leaning/clasdficdion).

There ae many red applicaions of FRBCSs, among them we can pant
out the following: The recognition d license plates [1]; the detedion o
roadlike structures [58]; the segmentation d salient fadal landmarksin



a facereaognition system [3]; the recognition d handwritten numerals
[11] and[12], vowel sounds[57], and printed upper-case English letters
[12]; the segmentation d map images [12]; the dasdficaion o
biologicd patterns [68]; the medicd diagnostic of diseases as the
determination d thyroid dysfunctions [70], and myocardia infartions
[26].

2.2 FuzzyReasoning Methods

An FRM is an inference procedure, that uses the information contained
in the RB to predict a dassfor an unknavn example. Cordon et al. in
[17] introduced a general reasoning model that, particularised to an RB
composed of rules with a dass and its cetainty degree in the
consequent, is described in the foll owing.

t t

In the dassficaion d an example Et:(el,...,eN), the RB

R={R,...,R} is divided into M subsets acording to the dass
indicated by its consequent,

R=R, OR, 0O..OR;
and the next scheme is foll owed:

1. Compatibility degree. The compatibility degree of the anteceadent
with the example is computed for al the rulesin the RB, applying a
t-norm over the membership degree of the values of the example

(e,t ) to the correspondng fuzzy subsets.
RE)=Tluyle) e 6)  k=1...L

2. Assciation degree. The aociation degreeof the example E'with
the M classesis computed acording to ead rule in the RB.

b =h(R(E').r*).  k=1..|R]
i=1...,M



3. Weighting function. The values obtained are weighted by means
of a function g. An expresson which promotes the highest values
and penalises the smallest ones ®ans to be the most adequate
chaicefor thisfunction.

goobt) kLR
i=1...,M

4. Pattern clasdfication soundness degree for all classs. To
compute this value, an aggregation operator is used which
combines, for ead class the positive aciation degrees computed
in the previous gep

Y, = f(Bf, k=1..|R;| and B*>0),
i=1..,M

with f being an aggregation ogerator that returns a value between
the minimum and the maximum.

5. Classfication. A dedsionfunctionF is applied to the dasgficaion
degrees of the example. This function will return the dass label
correspondng to the maximum value.

C =F(Y,....Y, ) suchthaty, = max Y,
i=L,...,

It is clea that if we seledt the aygregation operator f ([ as the maximum

operator, we have the dasdcd FRM, i.e., the FRM based onthe winner
rule that considers, in the dassficaion pocess the rule with the
highest association degree By using this reasoning method, we do nd
consider the information provided by the other rules that also are
compatible (have dso been fired) with this example. Cordon et d. in
[16] and [17] propcosed to use FRMs that combine the information
given by the different rules fired by a pattern, and they distinguished
two kinds of inference models whaose differenceis based onthe use of
the function f (Jin step 4

*  FRMsintegrating al fuzzy rules, and



FRMs sleding a subset of fuzzy rules (the dasscd FRM is a
particular case of this groupin which this subset is composed of a
singlerule, the one with the highest association degres).

Some propasals for the function f ([ belonging to bath said types are
described and analyzed in [16] and [17].

2.3 Learning the Knowledge Basefor an FRBCS

The leaning of an FRBCS by means of a supervised inductive process
fundamentally implies four tasks that are complementary among them:

fedure seledion and extradion, i.e.,, determining the set of
relevant variables and their relevance for the dassficaion
problem,

leaning of fuzzy rules, that is, generation d an RB (if the DB is
leant together with the RB, we learn a mmplete KB),

seledion d fuzzy rules, simplifying the RB, and

tuning the membership functions that describe the semantic
asciated to the linguistic labels used by the linguistic variables.

Before adetailed description d these four tasks is given, we shoud
make some remarks:

The feaure seledion processis usualy considered as a previous
stage, that is independent of the Clasdficaion System
construction. In ou case, we have included it into the design tasks
that are needed to oltain the KB for the FRBCS, due to the fad
that there is a need for determining the relevant variables in order
to spedfy the structure and to lean the composition d the fuzzy
clasgficaionrulesincluded in it.

As we mentioned in the first point, in many cases, the feaure
seledion and extradion is caried ou in a pre-processng data
stage, previous to the Classficaion System design and regardless
of the type of Classficaion System and d the inductive leaning



process used. Taking the models which consider both aspeds in
the seledion d the most important variables into acour, the
main reseach has been focused in the development of methods
for Clasdficaion Systems based on dedsion trees, neura
networks, and k-neaest neighbou rule. This is the reason why in
the following sedion we will analyse fedure etradion and
seledion kased on GAs and applied to Clasdficaion System
design, nd necessarily based onfuzzy rules. Anyway, due to the
nature of the processto develop, the way in which it is carried ou
is not totally dependent on the type of Clasgficaion System to be
built. For thisreason, they may be considered feaure seledion and
extradion systems anal ogous to those, applied to FRBCS design.

However, the generation and seledion d fuzzy classficaion
rules, and the tuning of membership functions are spedfic tasks in
the FRBCS design, and they will be studied in Sedions 4, 5and 6.

3 Genetic Feature Seledion

An important asped in the developing process of a Classficaion
System is &€ledion d the most informative variable set for the spedfic
problem. The dgorithms that establish a solution to this optimisation
problem with restrictions are cdled feaure seledion agorithms. Their
objedive is to find the subset from the whole feaure or variable set
making the induwtive leaning agorithm able to generate a
Clasgficaion System with the least error.

The feaure seledion agorithms, removing the variables that introduce
noise and those which are not representative, na only allow to increase
the system performance bu also their simplicity, and to deaease the
cost asciated with the data aquisition and the time needed to lean
the Clasdfication System by means of an inductive leaning process

As Kohavi pointed ou in [49], the fedure seledion problem is nat
interesting from the theoreticad point of view, becaise the Bayes rule
forecasts the most probable dassfor any instance, on the basis of the
knowledge of the underlying probability distribution, with the highest
posshle acaoracy. However, in most of the red problems the



distribution function is unknown, and therefore, the inductive learning
algorithms try to oltain approximate solutions to NP-hard optimisation
problems and a seledion d the most informative variables for a
problem determines the performance of the system finally obtained.

Feaure seledion algorithms have threemain comporents:
1. A search algorithm, which explores the spaceof variable subsets.

2. An evaluation function that provides a measure of the goodressof a
spedfic feaure subset in the searching process

3. A performance function, which determines the validity of the subset
obtained.

Depending on the type of search algorithm used, the feaure seledion
methods have been traditionall y grouped into three céegories:

* Exporential agorithms, as the exhaustive seach algorithms,
which explore dl the subset spaceto find the variable subset with
the best behaviour, as well as the branch and boundalgorithms.
These kinds of methods have 0(2“) complexity for a problem
with n charaderistics, so they canna be used in most red
problems.

* Randam-seach agorithms, as GA or Simulated Anneding-based
ones.

e Sequentia seach algorithms, which use hill climbing strategies,
removing or adding a variable to a given subset.

We will focus our attention on the second group, spedficdly on the
fedure seledion methods based on GAs. Among them, and taking into
acoun the evaluation function used, we may distinguish:

e wrapper models, which work with the induwctive leaning
algorithm of the own classfier as evaluation function, and



» filter models, which assgn evaluation results to the candidate
solutions, independently on the inductive learning algorithm.

Graphicdly, we can seehow these models work in Figures 2 and 3.
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The main dsadvantage of the wrapper model is that the time neeled to
cary out the seledion processis increased, because of the inclusion o
the Classgficaion System construction in it, to evaluate eab ore of the
potential solutions. The filter approach solve this problem including an
evauation function which dces naot consider the inductive process
followed in the Classficaion System construction. Therefore, the
behaviour of the seleded feauresin the inductive leaning algorithmsis
ignored, and this is the reason by which the given solution dces not
sometimes permit to design a Classficaion System with the highest
performance

Although most of the induwctive leaning processes consider the
charaderistic seledion in a data pre-processng stage, some of them
face the problem as a part of the leaning process These kinds of
models are cdled embedded models, and we will analyse them in
Sedion 4.

In the spedalised hibliography, the terms feaure selection and
extraction have been confused. The fedure seledion ohedive is, as
pointed ou, the minimisation d the variable set considered in the
leaning problem which maximises the @rred classficaion
percentage. On the ontrary, fedure extradion pocesses look for a
transformation, wualy linea, which helps to remove redundant and
irrelevant information, and that shows the relative importance of the
variables €leded in the dassficaion problem.

In the following subsedions, we will describe several proposals of
genetic seledion and/or extradion methods based on the filter or
wrapper models, and oncombinations of them both.

3.1 Genetic Feature Sedledion Methods Based onthe
Filter M oddl

The feaure seledion agorithms based on the filter model are
charaderised by the use of an evauation function based ona measure
of the seleded charaderistic suitability, which is independent from the
induwctive construction algorithm of the Clasgficaion System. In this
phil osophy, we shoud highlight the works carried ou by Liu et a. [53],
andLanzi [51].



 Liu et al. [53] propcese a GA for fedure seledion with fixed
length integer coding, in which the i™ gen represents the index of

the i" seleded variable. The evaluation function is based onthe
expeded mutual information measure between two variables [5],
and tries to increase the information content of the variable subset
represented by the individual, and to reduce the redundancy. It
uses two genetic operators, adapted to the problem and to the
coding: The partial-complementary-crosover and the randam-
delete-mutation that introduces variation in a diromosome,
maintaining the stability in the charomosome where it comes from.

* Lanz [5]] developes a binary coded GA in which ead hinary
digit stands for the presence (1) or the dsence (0) of a given
feaure. The dgorithm uses dandard genetic operators, crossover
and mutation withou modificaion, and a fitness function based
on the inconsistency rate [54] introduced by the feaure
elimination.

Other authors ([50] and [55]) have propcsed some gproximate
measures to evauate feaure subsets withou applying an inductive
leaning algorithm that can be used in the fitnessfunctionin afilter GA
for feaure seledion.

3.2 Genetic Feature Extraction/Seledion M ethods
Based onthe Wrapper M odel

The fedure seledion and extradion agorithms based on the wrapper
model are charaderised by the mnstruction d the Clasgficaion System
by means of an inductive leaning process for the evaluation d the
variable subsets. In this type of algorithms, we shoud highlight the
works caried ou by Siedlecki and Sklansky [71], Brill et a. [9], Punch
et a.[68], Ray et a. [70] and Yang and Honavar [79].

 Siedleki and Sklansky [71] introduce the use of GAs for the
seledion d fedures in the design of Clasdficaion Systems. For
this am, they propcse abinary coded GA, in which a 0 value
represents the asence of the feaure and an 1 value its presence
The fitnessfunction combines the aror measure obtained from the



induwctive dgorithm used for leaning the Classficaion System
and a penalty function to preserve the verificaion d a feashbility
property in the feaure subset being evaluated.

Brill et al. [9] propase aGA with purctuated equili bria (GAPE)
to seled variables for aneura network classfier [33].

GAPE is based onthe foll owing basic idess:

It uses, like Siedlecki and Sklansky in [71], a binary coding
with fixed length to indicae the present variables with an 1,
and those not present with a 0.

Each indvidua recaves a scoring, which is a linea
combination d the eror and the number of the feaures. One
of the most sensible models to the presence of variables with
noise andor irrelevant, the nearest neighbou [19], is used to
compute the dasgficaion error. The neaest neighbou rule
provides a good measure of the variable set suitability, andis
more dficient than the rrespondng neural network
construction.

The fitness function depends on the airrent popuation,
becaise it is a normaised linea combination d the
individual score with the average score of the individual from
the popdation, and the deviation d them with resped to the
average.

It uses the binomia crosover (2-point shuffle), which
avoids the paositional bias of the point crossover operators,
and the distributional bias of the uniform crossover [22].

Severa popuations independently evolve in dfferent
procesors during a number of generations, interchanging the
best individuals among neighbou subpopuations at the end.

This method oliains feaure subsets for a neural network with the
same or better prediction capadty than the neural network that
uses al the variables. One of the limitations of the wrapper
methods based on an evaluation function that uses a different



leaning algorithm from the one finally used for the Classficaion
System construction, is that they could oltain a feaure set which
originates a Classficaion System with bad performance The
authors propose, as a solution to this problem, to cary out a little
evolution with the best obtained solutions, using as fithess
function the aror made by the Neural Network Clasgficaion
System, which is leant starting from the seleded fedure set.

The main percentage of computing time of this algorithm is
consumed by the popdation evaluation process reason by which
Brill et al. in [9] propose the training set sampling technique, in
which only a propation d the training example set is used in the
individual evaluation, bu this subset is resampled every
generation. But in this GAPE the evaluation functionis a measure
that concerns to al the popuation, and this is why the gplicaion
of the training set sampling technique forces to re-evaluate the
whole popdation ead time the aosver is caried ou. Even
though, the number of evaluations carried ou is reduced.

Punch et al. [68] develop some genetic methods for feaure
extradion and seledion, kased on the Siedledi and Sklansky's
initial works for large-scde fedure seledion problems[71].

They utilise a GA with binary or red coding, depending on
whether the processcaried ou is feaure seledion a extradion.
In the first case, the mding scheme is that used in Siedledki and
Sklansky's work [71], and, in the seand scheme, a red value

r 0[0.0,10.0) is encoded in the i™ gen, which represents the
weight (or discriminate value) assgned to the i"-variable.

The evaluation function is a linea combination d the aror ratio
committed by a K-Neaest Neighbou (KNN) [67] scdable
classfier and the neighbou quaient that classfies incorredly.
This makes it more likely that the vote of the majority neighbous
isthe corred clasgfication.

Just like in the method popaosed by Brill et al., an alternative
which improves the method efficiency is suggested. Because most
of the required computing time in this method is invested in the



chromosome evaluation as well, a GA parale processng (micro-
gain paradlelism [52]) in which the individual evauation is
distributed in several nodesis proposed.

This described approadh makes a KNN spacescding, such that in
the evaluation d ead individual, as well as in the final solution
interpretation, those variables with a value less than a spedfic
threshold are not considered in the KNN classfier.

Ray et al. [70] propcse a taraderistic explicit seledion and
extradion algorithm using GAs. The GA considered works with
chromosomes compaosed o two perts:

- Thefirst onein which weights are coded asin [68], and

- asewmnd @t representing the feaure masking vedor. To
code this oond prt two schemes have been used: the
traditional one, used in [9] and [71], with binary coding and
fixed length equal to the total number of variables, indicaing
with a 0 the non-seleded variables, and with an 1 the seleded
ones, and therefore, thase to which the correspondng weight of
the first part of the diromosome will be gplied to. On the
other hand, an alternative scheme is proposed in which a set of
m bits is asociated to ead variable, and it is considered that
the feaure participates in the dassfication if the total number

of 1s from the set is greater o equal to |m/2. This sond

scheme tries to reducethe grea phenctypic variation associated
to ead genotypic changein asingle bit in the first scheme.

The fitness function is compaosed of severa elements. the aror
ratio of the KNN clasgfier, the number of feaures used in the
clasgficaion, the number of incorred votes from the
neighbouhoodin the dassficaion, and aterm that prevents the
bias introduced by the existence of different example propations
in the different clases. Therefore, the seach is guided to
obtaining a minimum charaderistic number, which reades an
important percentage of clasgficaion, maximising the number of
neighbous which corredly clasdfies and correding the possble



bias caused by different example propations in the training set
(very commonin red problems).

Comparing this agorithm with aher tecniques that
independently cary out the feaure seledion and extradion, and
with the dgorithm developed by the same aithors in [68], which
makes the feaure seledion as a mnsequence of the feaure
extradion pocess it is redised that the integration d both
proceses in the seach process alows the GA to find
interrelationships between data, which are missed when thaose
processs are independently caried ou. Nevertheless we have to
point out that the seach spaceis incressed, as well as the time
needed to find a good solution, and also the passhiliti es of falling
into a locd optimum if the GA does not recave elouwgh
information to corredly orientate the seach.

* Yang and Honavar [79] propose abinary coded GA with the
same @ding scheme used in [9], [51] and [71]], the dasscd
crosover and mutation, and a fitnessfunction that combines two
objedives, the maximisation of the dassficaion rate obtained by
afast constructive neural network learning algorithm [78] and the
cost of performing the dassficaion. The latter asped depends on
the red problem considered and can include the ast of measuring
the value of a particular feaure or the risk invalved, among others.

3.3 Genetic Feature Seledion Methods Based onthe
Hybridisation of Wrapper and Filter Models

Bala et al. [3] develop afeaure seledion genetic method with aspeds
from the wrapper and filter models.

The GA uses binary coding (asin [9], [51], [71] and [79]) and afithess
function that linealy combines three independent measures. a
theoreticd information measure which estimates the discriminatory
power of ead variable -using an entropy measure-, a measure of the
seleded feaure extradion cost, and the dassficaion ratio oltained by
adedsiontreg bult by means of C4.5[69] using the seleded variables.
In this way, it is got a hybrid model, in which the GA looks for inside



the feaure subset genatypic space and the inductive C4.5 explores the
dedsiontreephenatypic space

4  Genetic Fuzzy Rule Learning

An indwtive rule leaning process which starts from an example set
with knawvn clasdficaion, oliains an RB that properly describes the
problem classficaion mecdhanisms. GAs have been used to evolve sets
of rules, which describe ancepts or classes from three different points
of view:

» The Michigan approach, that considers a chromosome & a single
rule, and represents the RB by the eitire popuation.

* The Pittsburgh approach, in which ead chromosome encodes a
whole RB.

» The Iterative Rule Learning approach, that considers, as the
Michigan approach dces, ead chromosome like asingle rule, bu
contrary to the latter, the solution is obtained by only considering
the best individual foundin ead GA run, i.e., the GA provides a
partial solutionto the leaning problem ead timeit isrun.

The foll owing subsedions will describe these learning models and their
applicaionsto FRBCS design.

4.1 TheMichigan Approach

This leaning model is based on a GA in which the diromosomes
represent single rules and the whaole popdation an RB. Classficaion
Systems developed in this way are cdled, in the spedalised
bibliography, Clasdfier Systems (CSs), and are obtained as a
consequence of the evolution d the rules over time, by means of credit
assgnment, rule discovering and genetic operations applied at the level
of individual rules.

The learning a gorithms which employ this approach contain threemain
comporents:



1. A performance system that interads with the environment.

2. A credit assignment system, which leans the reward associated
with the individual rules with resped to the global behaviour of the
RB obtained by the popuation. Traditionally, two dfferent schemes
have been used to assgn credits: the Bucket Brigade dgorithm [39],
and the Profit-Sharing plan [31].

3. A classifier discovering process, that generates new rules from a set
of rules by means of GAs.

It was Holland [37] who introduced the first ideas abou CSs, and
developed, jointly with Reitman in [38], the first CS, named CS-1.
Since that moment, different nonfuzzy CSs have been propcsed in the
spedalised literature ([24], [59], [76] and [77]), and aso some
algorithms based on this approach for designing Fuzzy Rule-Based
control Systems ([8], [64], [66], [73] and [74]).

As regards the Michigan approach to design FRBCSs, we may highlight
the method proposed by Yuan and Zhuang in [80] to generate fuzzy
rule bases that maximise the mnsistency [60], corredness and
corncision properties.

This algorithm leans fuzzy rules (in the modified namal disunctive
form proposed by Michalski [60]) in which the variables from the
antecalent, as well as that which describes the dass are linguistic
variables. Each rule is represented by a dromosome with hinary
coding, distinguishing a segment per variable in it (using as many bits
as linguistic labels have the variable). This coding scheme dlows the
system to evolve in the learning of rules nat necessarily composed o all
the initia linguistic variables, determining the most relevant variables
for eath ore of therules.

The initial popdation comes from a randam generation (50 %) and
from rules generated considering the training examples (50 %). This
combination provides a better starting point for reproduction than the
randam popuation, kecaise cmbines acarate and spedfic rules
generated from training examples, with rules randamly generated that
may contain some information nd covered by these examples.



Over this popuation, two classc operators are gplied: the two-point
crosover and the standard random mutation. Both operators are used in
a segment level, to adieve that the genetic dterations are produced
between unts with a cmmon meaning. Also, the aossis produced
between two randamly seleded individuals of the same spedes (i.e. two
rules with the same @nsequent). This limitationis due to the belief that
interspedes crosover tends to generate low-performance off springs

[37].

After the gplication d these operators, a viability ched is performed
to eliminate redundant offsprings (for example to eliminate a
individual that represents a rule cvered by ancther rule in the
popuation) and therefore to improve the quality of new generations.

The genetic fuzzy rule leaning processdeveloped by Yuang et al. starts
from a predefined fuzzy partition and seleds the most representative
variables for ead rule. The fitness function joins three goals. to
maximise the acwcragy of the rule, the cvering of the rule and its
contributionin the wrred classficaion d the examples with resped to
the adion d the whole RB. The last objedive aroids the necessty of a
credit assgnment mechanism present in clasgcd CSs, and aientates
the search to a a-operative set of rules. This fad increases the leaning
processefficiency.

4.2 ThePittsburgh Approach

In this model ead chromosome eicodes a whoe RB [72]. The
algorithms based on this philosophy are described easily because the
leaning methodis the description d the GA aspeds:

» Search space and representation of rules. These genetic leaning
methods use two languages for representing the rules. the
modified dgunctive norma form, propcsed by Michalski [60],
and the VL1 language, subsequently proposed by Michalski et al.
[61]. For these languages, in most cases, chromosomes of variable
length are used because the number of rules needed to describe the
system isunknown.



» Evaluation function. As ead chromosome eicodes a whae
clasgfier set, credit is assgned to the mmplete set of rules via
interadion with the environment and wsually depicts concepts
from the dassc leaning theory like consistency and completeness
[60].

o Genetic operators. These processes need to redefine the
traditional genetic operators with the am of adapting them to the
problem of leaning concepts and to the variable-length and
pasitiontindependent genomes. The aossover operator serves to
provide anew combination d rules and the mutation operator
gives new rules. Furthermore, new operators are introduced to
provide afaster evolution d the system towards suitable solutions
as operators of generaisation and spedalisation d rules [21], or
adaptive operators, which work in a different way depending on
the evolutionlevel of the system ([32] and [46]).

The Pittsburgh approach was initialy proposed by Smith [72]. Recent
examples of it in anonfuzzy environment are the GABIL [21] and GIL
[47] systems. This approach has nat been applied to the generation o
fuzzy rules for FRBCSs (see[10], [36] and [56] for some examples of
its application in the design of Fuzzy Rule-Based Control Systems),
although its basic phil osophy has been used in RB seledion and tuning
processes, as we will describein Sedions5 and 6.

If we compare both clasgcd genetic goproadhes to rule leaning, we see
that the roles of GAs in the Pittsburgh and Michigan approades are
rather different, and the distinction arises from the difference in the
level at which the GAs are gplied [10].

The Michigan approach has proven to be most useful in an online,
red-time environment in which radica changes in behaviour canna be
tolerated, whereas the Pittsburgh approach is more useful for off-line
environments in which more leisurely exploration and more radicd
behavioura changes are accetable [21].

Gonzdlez and Herrera [28] reported that the major problem with the
Michigan approach is that of resolving the nflict between the
individual and colledive interests of rules within the system. The



ultimate am of a Clasgficaion System leaning processisto oltain a
set of co-adapted rules which ad together in solving some problem. In a
Michigan style system, with seledion and replacement at the level of
the individua rule, rules which co-operate to effed good adions and
receve payoff also compete with ead ather under the adion d the GA.
Moreover, in FRBCSs with an FRM that considers the information
provided by al rules or by a subset of rules of the RB, this problem is
augmented.

With Pittsburgh-style Classficaion Systems such conflict between
individual and coll edive interest of individual rules does not arise since
reproductive competition accurs between complete RBs rather than
individual rules. However, maintenance and evauation d a popuation
of complete rule sets in Pittsburgh-style systems can often leal to a
much greaer computational burden (in terms of both memory and
processng time). Therefore, problems with the Pittsburgh approach
have proven to be, at least, equally challenging. Although the gproach
avoids the problem of explicit competition between rules, large
amounts of computing resources are required to evaluate a omplete
popuation d RBs.

4.3 Thelterative RuleLearning Approach

In recent bibliographies, a new leaning model based on GAs and
named the iterative leaning approach ([14], [28], [30] and [759])
appeas as an alternative to the Michigan and Pittsburgh approacdes.
This new model considers, as does the Michigan approad, that eat
chromosome in the popuation represents a single rule, bu contrary to
the Michigan approach, orly the best individual is considered as the
solution, dscarding the remaining chromosomes in the popdation.
Therefore, in the iterative model, the GA provides a partial solution to
the problem of learning.

Its basic working scheme in order to oltain a set of rules that describes
the dasses represented in the examplesis[30]:

0. Let E be aset of training examples which describes the behaviour in
the past time of the system to be leant. Le¢ GLOBAL and
PARTIAL be two sets of rules, initi alised to the enpty set.



1. Sdled a dassB which has nat been leant.

2. While PARTIAL is not complete and is composed of consistent

solutions,

a) Finda onsistent rule d by means of a GA.

b) Addd to the set of rules PARTIAL.

¢) Pendlise those rules belonging to PARTIAL, eluding the

posshility of being chosen in subsequent steps.

3. Addthe new rulesto GLOBAL.

4. Deletetherulesfrom PARTIAL.

5. If there ae more dassesto be leant, go to step 1. Otherwise, return

GLOBAL asthe solution d the dasdficaion poblem.

If we compare this approach with the Michigan and Pittsburgh models,
we seethat the iterative genetic model, as well as the Pittsburgh model,
does nat require any adaptation d the learning algorithm. Furthermore,
it considerably reduces the size of the seach space becaise of its
deamposing scheme of the problem. This reduction d the seach
space with resped to the two general models dudied in the last
sedions, is siown in Table 1 [75]. This table shows, for a problem with
M classes, N variables, V values per variable, and reeding k rules to
describe the system, the size of the search spacefor the GA in eat ore

of the three gproaches.

Table 1. Size of the search spacefor diff erent genetic learning models.

Genetic model | Size of the search space
Pittsburgh KM (V)
Michigan M (V +1)N

Iterative 2N




The first algorithms that have used this approach to develop a
Clasgficaion System are SIA (Supervised Inductive Algorithm ) [75]
for leaning crisp Classficaion Systems, and SLAVE (Structure
Leaning Algorithm in Vague Environment, [25] and [30]), developed
for designing crisp or fuzzy rule-based systems, used bah for control
and classficaion poblems. Herrera @ al. [14], and [18] and Gonzélez
and Pérez [27] use this model for control problems. The latter authors
describe in [28] a multi-stage genetic leaning process for fuzzy
systems.

As mentioned, SLAVE is a system for FRBCS design, developed by
Gonzdlez and Pérez [30], based on the basic scheme of the iterative
model for rule leaning that demands the verificaion d the
completeness and consistency properties to the KB. It is known that
both properties are difficult to verify in a red-world clasgficaion
problem. Furthermore, if a system which works with fuzzy rules, as
SLAVE does, is considered, the condtion d consistency turns to be a
degree problem. Due to this, Gonzalez and Pérez [30] define the
condtion d soft consistency -which alows a number of negative
examples, which is a percentage of the number of positive examples-,
and the weak completeness that attempts to determine when the number
of examples covered by a set of rules on a fixed classis aufficient to
represent this class

The main comporents of the genetic learning algorithm considered in
Step 2(a) in SLAVE are the foll owing:

* It leansrulesin a modified dsunctive normal form, as happens
in the genetic leaning process propased by Yuan and Zhuang
[80], bu the differenceis that the consequents are aisp. It utili ses
the same binary coding scheme but this algorithm does nat only
allow us to cary out a leaning of the more significant variables
for ead rule, bu also to make a tange in the granularity of the
domain, combining diff erent elements [30].

e The initial popdation is obtained from the most spedfic rules
generated from a randam subset of the training set to orientate the
seach.



* |t uses the two pant crossover operator and the randam mutation
genetic operators applied at the bit level. Also, aher spedfic
operators for the dasdficaion problem are included: a modified
relesse of the traditional inversion operator, the rotation operator
[27], which produces an increease in the level of diversity of the
popuation; a generalisation operator, which tries to oltain stable
variables, eliminating their unstable zones [30]; and the And - Or
operators, two spedal crosover operators, which try to represent
concepts of generalisation and spedalisation between two
individuals from the popuation.

* The evduation function provides a measure of the cnsistency,
completeness simplicity and description d therules.

* The stoppng condtion is caried ou in dfferent ways. when a
maximum number of iterations is readed, a when the popuation
does nat improve during a maximum number of generations.

As mentioned, we use in this contribution, as example base, Fisher's Iris
database [23] composed of a set of 150 examples of iris flowers with
four attributes (peta and sepal width and length) and three dasses
(setosa, versicolor and virginica). This example base is available by
anonymous FTP to i cs. uci . edu in the diredory pub/ machi ne-
| ear ni ng- dat abases.

Gonzélez and Pérez [30] show the test results obtained by SLAVE on
the IRIS example base, using as error estimation technique randam
resampling, comparing them with those obtained with aher classcd
leaning algorithms: C4.5[69] and BP [33].

Table 2. Test resultsfor IRIS.

Algorithm Test

SLAVE 95.43
C4.5 91.13
BP 91.56

One of the more important charaderistics of this leaning agorithm is
the high linguistic description level of the obtained RB. The @ding



scheme used, along with the genetic operators, make possble to oltain
an RB with alow cadinality, in which the defined partition granularity
isfitted to the information represented by the training example set.

In the following, an RB obtained by SLAVE for the Iris problem and
compaosed o threerulesis srown [30].

IF Petal | is Very |ow

THEN Cl ass i s Setosa

IF Petal _wis H gh or Very_ high

THEN Class is Virginica

IF Petal | is Medium AND Petal _wis |less or equal to
Medi um

THEN Cl ass is Versicol or

Gonzdlez and Pérez [29] propase amodificaion d the leaning process
to include a feaure seledion in it, thus obtaining an embedded
seledion method (see Sedion 3. In the proposed GA, ead individua
in the popdationis represented by two chromosomes: the chromosome
in the variable level, and the chromosome in the value level. The
second comporent follows the rule representation coding scheme
previously described. The first can use one of the following schemes:
binary coding (representing with 1 the present variables, and with 0
those that do nd appea), or red coding (showing the variable
adivation probability and considering that a variable will be present in
the rule when this probability is greaer than a given threshald). This
red coding scheme dlows us to use the information provided by the
training set. Also, it is possble to have small bit genotypic changes that
do nd cause astrong phenatypic change.

It can be seen that the seledion processis caried ou in the rule level,
and dwe to this, it can na be used in a situation where the am is to
reduce the training data aquisition cost. Nevertheless it sededs
variables at two levels, the variable and value, and this leals to a more
acwrate seledion d the variables participating in a cetan
classficdionrule.



5 Genetic Fuzzy Rule Seledion

The seledion d a set of nonredundant rules with a high degreeof co-
operation amongst them is an important problem in the design of an
FRBCS. Furthermore, in many of the red clasdficaion poblems the
number of variables invalved is high. As a result, any generation
methodwill give an RB with high cardinality.

In the spedalised hibliography, two genetic methods for seleding fuzzy
rules in FRBCSs have been proposed: the genetic rule seledion process
developed by Ishibuchi et al. [43], and the multiseledion genetic
process for FRBCSs, developed by Corddén et al. [15]. Both are
described in the following subsedions.

5.1 Genetic Rule Seledion Process @3]

Ishibuchi et a. in [41], [42], [43], and [44] develop a genetic process
for simplifying fuzzy rule bases used in clasgficaion. This process
does nat modify the semantics of the fuzzy rules, and starts from an RB
obtained from aleaning method which, from different fuzzy partitions
of the dtribute domains, generates in ead zone of the space arule
whose mnsequent is delimited by the examples of such subspace

The propased rule seledion GA has the foll owing charaderistics:

e It follows the philosophy of the Pittsburgh approach: ead
chromosome represents a complete RB. It uses integer coding,
which naes with an 1the rules that are present in the RB, with a -
1, those which are not present, and with a 0, the rules nat
generated.

e |t uses the randam crosover in ore point in [43] and the uniform
crosover in [42], as crosover operator.

 The mutation operator used in their first works is the simple
randam mutation in [42], replaced by a biased mutation operator
that enhances the dimination o rulesin [43].



» Thefitnessfunction, which determines the goodressof the RB, is
in [41] aweighted combination d two oljedives. maximising the
number of examples that are crredly classfied and minimising
the cadinality of the RB. In [42], the second oljedive is removed
and the minimisation d the sum of the linguistic terms used by the
variables is added. In this way, the fuzzy rules in a warse fuzzy
partition are enhanced, becaise from the point of view of
knowledge aquisition, a fuzzy rule with linguistic labels from a
coarse fuzzy partitionis a generd rule that can be valid in alarge
subspaceof the pattern space In [44], different values are given to
the weights of the weighted combination in ead generation, thus
orientating the seach o the GA in dfferent diredions
simultaneously.

Ishibuchi et al. [44] consider that the basic gpproach to multiobjedive
optimisation poblemsisto try to find nd a single solution bu a set of
nonrdominated solutions. The final solution shoud be determined by
the dedsion maker from the nondominated solutions depending on
his’her preference  Due to this, a modificaion o the proposed
seledion algorithm is suggested, transforming it into a multiobjedive
GA that obtains a better set of nondominated solutions for the
classficaion problem. Furthermore, the genetic method may include a
reinforcement leaning process of the cetainty degreeincluded in the
consequent of the rules, thus obtaining a hybrid agorithm, which
increases the dassficaion paver of the FRBCS.

The results obtained by the proposed genetic seledion method in the
Iris problem with consideration to the fitness function popased by
Ishibuchi et a. in [42] are shownin Table 3.

Table 3. Clasdficaion results for Iris.

Algorithm Corred classficaion | NR

GA with unform crosver and bas 99.20 6.2
mutation

GA with ore-paint-crossover and hias 99.47 5.8
mutation




In Table 4, some nondominated solutions obtained by the two-
objedive GA developed by Ishibuchi et a. in [44] are shown.

Table 4: Classficaion results for Iris.

Corred clasdficaion | 94.67 97.33 98 98.67
Number of rules 3 4 5 6

The final solution shoud be seleded by human users from four non
dominated solutionsin the last table depending on preference

Note that the results shown in Tables 3 and 4are obtained providing all
the available examples (150 to the proposed seledion GA as training
examples.

5.2 Genetic Multiseledion of FRBCSs [15]

Cordénet a. in[13] and[15] develop a GA-based processthat not only
seleds the best subsets of fuzzy rules, bu aso leans the best set of
linguistic hedges for the linguistic variables co-operating with the
FRMs. Therefore, this rule seledion processincludes alocd tuning of
the membership functions used by the linguistic variables.

The genetic multiseledion process obtains different simplified KBs,
with the best co-operation between the rules. It includes:

* The Sequentia Niche Technique [6] to induce niches [2(], using as
basic optimisation technique the genetic seledion process propaosed
in[35], iterated in ead run d the multiseledion process

» A seach processthat looks for the best set of modifiers or linguistic
hedges associated with the linguistic labels of the variables.

* A locd seach pasterior to eah seledion pocess so that for the
best individual, i.e., the best KB, it looks for the best modification,
adding or eliminating arule and/or modifying ali nguistic hedge.

Different KB definitions are obtained by seleding the rules best co-
operating from the initial fuzzy rule set and by seleding the best hedges



for these rules, by means of the use of the &owve mentioned
subprocesses.

In the foll owing subsedions the genetic method and the composition d
the multiseledion processare analysed.

5.2.1 TheBasic Genetic Seledion Method

The genetic seledion processeliminates unrecessary rules from the RB
and looks for the best set of hedges modifying these fuzzy rules. The
leaning of the hedges may be caried ou from two dfferent paints of
view:

* To oltain a hedge for ead fuzzy set related to alinguistic label in
the fuzzy partitions of the DB. In this case, this st of hedges is
shared for al rulesin the RB.

» To olrain the best set of hedges for eat fuzzy rule in the RB.

In the first case, the semantic related to the linguistic variables is
uniform for al rules and it is gedfied in the DB. In the seoond, the
meaning is Pedfic for ead individual rule, but it keeps the descriptive
nature of the FRBCS. In the following, the first kind d hedges will be
referred to as Hedges |, and the latter as Hedges 1.

The seledion processis based ona GA and wses the phil osophy of the
Pittsburgh approach, because dl the information relative to the KB is
coded in a diromosome. The seledion d individualsis developed using
the stochastic universal sampling procedure together with an eliti st
seledion scheme, and the generation d the off spring popuation is put
into effed by using the dassca binary multipoint crossover (performed
at two pants) and unform mutation operators.

The wding scheme generates fixed-length chromosomes with two
outstanding parts, ore related to the seleded rules and the other
referring to the hedges associated with the linguistic labels. Considering
an RB with m fuzzy rules, and degpending on the hedge leaning process
to be caried ou, there ae two dfferent coding schemes:



* Hedges I: The dromosome length is h=m+ ZiNzlli , with |,

being the number of linguistic labels for the variable i. A
chromosome C; =(c,,...,c,) is divided into two parts: The first

one has as many binary genes as rules exist in the RB, i.e, m
genes. ¢,,...,C,, represents a subset of candidate rules to form the

RB finally obtained as this gage output, B, such that,

If ¢ =1thenR OBelseR OB

In addition, the second @t has as many genes as different
linguistic terms are cnsidered for ead variable. For these genes,
the number of digits considered as values will be equa to the
number of different hedges taken into account. For instance, if we
use the linguistic hedges “more or less’ and “very”, we culd code
the information d ead gen with ore of the following values: 0, if
the linguistic term does not have any modifier, 1 if it has the
modifier “moreor less’, and 2,if the hedgeis“very".

In Figure 4, this coding scheme and the resulting KB (with an RB
compaosed o rules with a cetainty degreefor ead ore dassin the
consequent) are described, representing the values 1 and 2 the
modifiers more or less and very, respedively, and the vaue 0
being assciated with the origina membership function withou
hedges.

« Hedges Il: The chromosome length is h'=m[{N +1), with N
being the number of variables. The diromosome is again dvided
into two parts. In the first one we follow the @ding scheme
presented in the latter point. The mCN remaining genes represent
the hedges for ead of therules.

In Figure 5, this coding scheme & well as the type of resulting
KB are described.

In bah cases, the initial popdation is generated by introdwing a
chromosome representing the complete previously obtained rule set,
that is, with all ¢, =1,i 0{1,...,m}, without hedges. For ead type of



value of hedge cmnsidered, a diromosome representing the complete
RB, and with all the genes that code the li nguistic hedges with the value
of the mentioned hedge, is included. The remaining chromosomes are
seleded at randam.

Selected RB

RB Hedges X1 Hedges X2
Ll o[ of i d2[2fa]af d2[ 1] o af 4

R1:If X1is S and X2 is VH
| then C1 with cf = 0.8
C2 with cf=0.2
C3 with cf=0.0

L R2:1f X1is S and X2 is VS

then C1 with ¢cf = 0.0
C2 with cf=0.7
C3 with cf=0.3

R4: If X1 is H and X2 is VH
then C1 with cf = 0.2

C2 with cf=0.5
C3 with cf=0.3
Figure 4. A chromosome with type | hedges.
RB Hedgesrule 2  Hedges rule 4
[ af ol afol af[ o 2] -[-] 4] ..
Hedges rule 1
Slected RB Selected RB
R1: If X1 is "more or less" S and X2 is "very" VH R1: If X1 isb; and X2 iJ_A

then C1 with cf = 0.8 then C1 with cf = 0.8

C2 with cf=0.2 C2 with cf=0.2

C3 with cf = 0.0 C3 with cf=0.0

R2: If X1 is‘)\ and X2 ib

R2: If X1 is "very" S and X2 is "more or less" VS

then C1 with cf = 0.0 = then C1 with ¢f = 0.0
C2 with cf=0.7 o C2withcf=0.7
C3with cf=0.3 C3with cf=0.3
R4: If X1 is "more or less" M and X2 is VH R4: If X1 is and X2 is /
then C1 with cf = 0.2 then C1 with cf = 0.2
C2 with cf=0.5 C2 withcf=0.5
C3 with cf=0.3 C3 with cf=0.3

Figure 5. A chromosome with type Il hedges.



With regard to the fitnessfunction, F(J, it is based onthe dasdfier's

error rate over atraining data set using a cetain FRM, demanding the
verificaion d the k-consistency property [30].

5.2.2 TheMultiseledion Genetic Process

The multi seledion genetic processtakes as a base the Sequentia Niche
Tednique [6] for inducing niches in the search spaceto oltain dfferent
KB definitions [15]. In ead stage, the genetic seledion pocess
propacsed in the last subsedionis used.

Ead time the genetic seledion process obtains a new KB definition,
the multiseledion ore pendises the seach space zone where it is
locaed in order that it will not be seleded in future runs. A genctype
sharing scheme [20] is used to pendlise individuals acording to their
space proximity to the previous lutions found. To do so, there is a
need to define adistance metric which, given two individuals, returns a
value of how close they are. In this genetic multiseledion process
chromosomes are not binary encoded becaise of their second part,
which encodes the linguistic hedges. Therefore, the use of the foll owing
distance function is proposed: With A=(a,...,a,) and

B=(b,,...,b,) being two individuals, it is defined as foll ows:

h

D(AB)=S d
L 0L i a #h
', otherwise

Making use of this distance function, the modified fitness function
guiding the seach onthe multiseledion processis based onmodifying
the value assciated with an individual by the basic dgorithm fitness
function, multiplying it by a derating function, G(CJ. ,S), penalising the

closenessof this individua to the solutions S previously obtained. We
consider the following function taking into acourt the fad that the
problem to be dedt with is one of minimisation:



O e, if d=0

=% Btig if d<randd #0
slc,,

T it d2r

where d is the minimum value of the distance between C, and the
solutions s included in S ie, d =Mini{H (Cj,s) , and the

penalisation is considered for the most close solution, r is the niche
radius, and B isthe power factor determining how concave (3 >1) or

convex (B <1) the derating curve is. Therefore, the penalisation given

by the derating function takes its maximum value when the individual
C, encodes one of the solutions already found. There is no penalisation

when the C; is far avay from Sin avaue greder than or equal to the
nicheradiusr.

Moreover, a locd seach algorithm is considered to individualy
optimising ead of the KB definiti ons obtained, inserting or eliminating
arule and/or changing a hedge, changes that will | ead to improvement
in KB behaviour. It may be observed that this is a very simple and
quick optimisation process

The locd seach is caried ou at the end d ead iteration stage in the
multiseledion process It is divided into two pheses. First of al, the
rule seledion is optimised by means of a search in the RB spacewith
distance one to the optimum, i.e., with ore rule more or one lessin the
RB obtained as a result of one of the iterations of the multiseledion
process To reducethe seach space when the RB part is optimised, the
best set of hedges with distance one to the set of hedges which belongs
to the KB represented hy the optimum is looked for.

The dgorithm of the genetic multiseledion processis shown below:

1. Initialisation: Equate the multiseledion modified fitnessfunction to
the basic seledion fitnessfunction: F'(Cl.) - F(C].).



2. Runthe basic genetic seledion process using the modified fitness
function, keguing arecord o the best individual foundin the run.

3. Run the locd optimisation process to optimise the KB definition
generated.

4. Update the modified fitness function to give a depresson in the
region rea this indvidual, produwcing a new modified fitness
function.

5. If dl the aapted KBs desired have not been oltained, return to step
2.

Hence the number of runs of the sequential agorithm performed
(iterations of the multiseledion procesg is the number of solutions to
be obtained, i.e, the number of seleded KBs to generate, value
determined by the FRBCS designer.

In Table 5, some test results for Iris achieved with this multiseledion
method and with five different FRMs (see &so [16] and [17]) are
shown. In this table, the type of hedge learning from which the results
are obtained is noted with I, 1 or nathing if the result corresponds to a
multiselecdon processwithou hedge leaning. To describe the dfeds
of the multiseledion process the results obtained with the origina RB
(in which the cnsequent is compaosed of a dassand a cetainty degree
are shown in columns 2 and 3. The aror estimation technique used is
randam resampling.

Table 5. Test resultsfor Iris.

Initial RB Multi seledion
FRM Test NR| Hedges Test NR
Normali zed sum 96.22 70 96.71 48
Quasiarithmeticmean | 95.21 70 Il 96.18 48.2
QuasiOWA 95.21 79 I 95.70 42.6




6 Genetic Tuning

One of the more difficult aspeds to spedfy in the design of any Fuzzy
Rule-Based System (FRBS), and at the same time, ore of the best
determinants of its acairagy, is the fuzzy partition wsed. If the set of
rules has been oltained by an expert or been generated with a
supervised induwctive leaning process it is necessary to cary out a
tuning of the used membership functions to oltain a system with better
performance Thistuning could be performed at two levels:

 In the DB level, modifying the parameters that define the
membership functions of the linguistic labels in a cmmmon way for
all the rules. Thistuning processmaintains the descriptive charader
of the resulting system.

* Inthe KB levdl, tuning for ead rule the parameters that define the
membership functions of the linguistic labels. Therefore, the
semantic of the linguistic terms depends on the spedfic rule in
which such terms appea. The RB obtained will have an
approximate behaviour ([14] and [18]).

Both approaches have been used in the genetic tuning of FRBSs for
modelling and control. Karr [48] uses a GA to lean the parameters of
the fuzzy sets with triangular membership functions related to eat ore
of the linguistic terms of the DB. Herrera d al. [34] propcse agenetic
process to tune trapezoidal and triangular membership functions,
coding with red parameters the complete definition d the KB in a
chromosome and oltaining a control FRBS of approximate type.

As was mentioned in Sedion 1, Classficaion Systems are frequently
used as suppat systems in dedsion making processes, and this is why
they are usualy designed with a descriptive gproach. As a result of,
there ae more processes developed for the descriptive than the
approximate tuning. Among them, we may highli ght two genetic tuning
methods for FRBCSs: Ishibuchi et a.'s approach [45] and the one
propcsed by Cordonet a. in[14] and[15].

Apart from the descriptive Classficaion Systems context, there ae
propcsals to optimise the parameters of fuzzy classficaion rules,



which approximate regions of the searching space Some of them, such
as that described in [63], uses a GA with red coding as the base of the
tuning procedure of the two parameters for the distance function
utili sed to determine the fuzzy region to which the example belongsin
a greder degree and subsequently, the fuzzy rule that is fired for its
clasgficaion.

6.1 Genetic Tuning Method to Obtain the Fuzzy
Partitions [45]

Ishibuchi and Murata [45] introduce agenetic processthat determines
the fuzzy partition d the pattern spacefor a dassficaion poblem. The
resulting partition establi shes, along with the process of obtaining the
consequent described in [40], the set of fuzzy rules that composes the
FRBCS. As a result of this, this tuning process is aso a fuzzy rule
leaning process All in al, the GA simultaneously determines the
number of fuzzy rules and the membership function for ead fuzzy set
belonging to the antecadents.

To cary out this task, a genetic process is developed, wsing as the
coding scheme an extension d that proposed by Nomura  al. [65] for
tuning the membership functions of a wntrol system with the foll owing
differences:

» [talowsan uriquelabel to be apassble solution for the partition o
one variable (it will be egquivalent to na consider that variable in
the a@rrespondng rule).

* It permits trapezoidal membership functions for the labels from the
extremes of the variable domain, in contrast to the origina propaosal
designed to tune triangular membership functions. This leadsto a
greder descriptive power in the rules, as well as a reduction in the
number of them needed to oltain a catain level of performance

The mding scheme generates binary chromosomes of fixed length, with
a segment per variable. Each segment has a predefined length which
determines the predsion d tuning. In the coromosome, an 1 indicaes
the centre of atriangular membership function, and the extremes of the
neighbou membership functions. If a bit extreme of a segment is equal



to 0,it indicaes that the membership function d this extreme linguistic
valueistrapezoidal. If abit |, =1 then its position is determined by the
expresson (i —1)(N, 1), N, being the pre-established length of the
segment. An example of this type of coding for a dasdfication problem
with two variablesis shown in Figure 6.

[2[o[2[2o]qdo4qdd9ioppplofo]e

0 1 O 1
X X

1 2
Figure 6. Coding scheme used by Ishibuchi and Muratain [45].

Over a randamly generated popudation, three recmbination operators
are used: an operator of multiple aossover between segments, which is
equivaent to interchanging the partition d a cetain variable between
two individuals withou losing the meaning; and two mutation
operators. The first of them interchanges adjaceant bits inside asegment
thus making a fine tuning of the partition, that is, a soft modificaion o
the width for the suppat of the arrespondng fuzzy set. The second
one changes the value of one bit with dfferent probability, and this is
equivaent to adding or removing a linguistic term from the partition o
a cetain variable. In Figures 7, 8,and 9,the dfed of these operatorsis
shown.

In this tuning algorithm, as happens in the one propcsed by the same
authors for rule seledion (see Sedion 5.J), the fitness function hes a
doude obedive: to maximise the number of patterns corredly
clasgfied, and to minimise the number of rules.

The process depends, in a high degree on the length of the segments
N., which determines the tuning predsion, and consequently, the
classficaion percentage obtained by the resulting FRBCS. Although
the increase on that length produces a deterioration in the GA
efficiency, due to the expansion d the seach space highlighting the



necessty for orientating the GA with the available information to
produce goodresults.
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1Figure 7. Crossove; operator used by Ishibuchi and Muratain [45)].
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Figure 8. Type 1 mutation operator used by Ishibuchi 1and Muratain [432.
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Figure 9. Type 2 mutation operator used by Ishi bucﬁi and Muratain [432.

In Table 6, the results obtained by the described tuning processfor IRIS
database with dfferent values of N, are shown [45]. Note that the

results correspond to a leaning process in which al the available
examples (150) have been used to buld the FRBCS.



Table 6: Classfication resultsfor IRIS.

N, |Classficationrate (%) | NR
6 97.3 6
11 98.0 12
16 97.3 9
21 97.3 18
31 96.0 40

6.2 Genetic Data Base Tuning Process [L5]

Cordonet al. in[15] propcse agenetic tuning processthat optimises the
parameters which define the membership of a DB with a predefined
granularity. This optimisation process is performed at a superior DB
level to retain the linguistic goproach of the resulting Clasgficaion
System and constitutes a solution to the problem of finding the seach
spacepartition that best represents the knowledge @ou the problem, as
happens in the processdescribed in the last subsedion.

The genetic tuning process sarts from a set of predefined fuzzy
partitions -uniform and with triangular membership functions, as the
one shown in Figure 10- and finds a new set of fuzzy partitions, in
which the fuzzy sets are modified in width and location.

Eadh chromosome forming the genetic popdation will encode a
different DB definition that will be combined with the existing RB to
evaluate the individual adaptation. The GA designed for the tuning
process presents a red coding issue and wses the stochastic universal
sampling as aseledion pocedure.

It has been mentioned that the primary fuzzy sets considered in the
initial fuzzy partitions are triangular-shaped. Thus, ead ore of the
membership functions has an asciated parametric representation
based ona 3-tuple of red values, and a primary fuzzy partition can be
represented by an array composed of 3[1L red values, with L being the
number of terms forming the linguistic variable term set. The mwmplete
DB for a problem in which N inpu linguistic variables are involved is
encoded into afixed length red coded chromosome C, bult by joining



the partial representations of ead ore of the variable fuzzy partitions as
it is hown in the foll owing:

C, = (ail'bilicil""'am 7b||_i G, )'
c:r :CrlCrZ"'CrN

During the reproduction phase of the GA, the nonuniform mutation
and the max-min-arithmeticd crosover operators have been used. The
nortuniform mutation operator [62] has a dynamic behavior: the
propation in which a red gene is mutated deaeases as the GA's
exeaution advances. The max-min-arithmeticd crossover [34] makes
use of fuzzy todsin order to improve the GA behaviour in this form: If
C, and C, are two chromosomes to be aos=d, four offspring are

generated

C,=aC,+(1-a)C,
C,=aC, +(1-a)C,
C, with ¢, =min{c,,c,}
C, with ¢, =maxc,,c, }

This operator cen use a parameter a which is either a onstant, or a
variable whose value depends on the ae of the popuation. The
resulting offspring are the two best of the four aforementioned
off spring.

Theinitia gene pod is creaed making use of the DB definition d the
FRBCS to tune. This is encoded dredly into a chromosome, dencted
C,. The remaning indviduads are generated hy assciating a
performance interval, [CL,CLJ, to every gene ¢, in C,
h :1...221 L; (B. Eadh interval of performance will be the interval of

adjustment for the mrrespondng gene, ¢, U [CL,C,ZJ.

If (t mod3)=1 then c, isthe left-hand value of the suppat of a fuzzy

number. The fuzzy number is defined by the three parameters
(ct , t+1,CHZ), andtheintervals of performance ae the foll owing:
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Figure 10 showstheseintervals.

Figure 10. Intervals of performance

Therefore, apopuation d chromosomes is creded, containing C, asits

first individual and the remaining ones initiated randamly, with eah
gene being in its respedive interval of performance

Finally, with regard to the fitnessfunction, it is the same one used in the
multiseledion process presented in Subsedion 5.2 if the KB is
completeto a T degree the function will be equal to classficaion error,
value belonging to [0,1]. Otherwise, it will be egual to 1.

The wding scheme and the tuning algorithm that includes it do nd
consider variations in the level of granularity established for ead
variable, in contrast to the one proposed by Ishibuchi and Murata in
[45], and shown in the previous dion. This is as a result of its
objedive being the optimisation of a partition defined a priori to
improve the performance of an FRBCS, whose RB has been previously
obtained, either by means of aleaning processor an expert, who could



not usualy define the membership function d the linguistic |abels that
he/she uses with predsion.

In Table 7, the test results obtained for an RB with a dassand a
catainty degree with dfferent FRMs are shown ([16] and [17]). To
describe the dfeds of the tuning process we dso show the results
obtained with the initial KB. Randam resampling as error estimation
techniqueis used.

Table 7: Test resultsfor Iris.

Initial KB Tuning
FRM Test NR Test NR
Classc 9448 47.4| 95.66 47.4
OWA 9484 448 | 95.76 44.8
QuasiOWA | 94.71 494 | 95.62 49.4

7/ Summary

Designing a Clasgficaion System through a supervised inductive
leaning process when the subjacent data probability distribution is
unknowvn isan NP-hard problem to which inductive learning algorithms
try to provide an approximate solution. GAs are seach algorithms
which use operations based on ratural genetics, proving theoreticdly
and empiricdly their robust seaching capadty in complex spaces, and
hence offering a vaid approach for problem solving, as the
Clasgficaion System design, requiring an efficient and effedive
seach.

GAs have been applied to dfferent FRBCS design aspeds, and among
them the foll owing can be highli ghted:

» Seleding the most informative variable set for the problem to solve,
andlor determining the importance of ead variable in the
clasgficdion problem.

» Leaning afuzzy rule set, which expresses the extraded knowledge
from the training examples abou the problem to be solved, and



alowing generalisations to make inferences regarding classes
among unknowvn samples.

Simplifying the RB, seleding a new RB with co-operation among
the rules and with the least redundancy.

Aspeds traditionally grouped into FRBS design under the term
"tuning”, in which the following are included:

— Determining the most suitable fuzzy partition for ead ore of
the linguistic variables.

— Tuning of the predefined membership functions, correspondng
to the labels used by the linguistic variables.

— Tuning of the fuzzy sets used by the fuzzy variables. In this
way, the semantic of the linguistic terms depends on the spedfic
rule in which such terms appea and therefore the system has an
approximate nature [14].

The work caried ou in the FRBCS design shows the utility of GAs in
leaning processes. The propcsals are fundamentaly centred in the
suitable definition, for the different problem they solve, of three

aspeds:

The coding scheme that al ows us to adequately represent potential
solutions. Note that in the different analysed genetic methods an
important incidence in the use of the binary coding is observed that
makes posdble to use traditional recombination operators.
Nevertheless and given that it is known that the GA cagpabilit es do
not depend onthe utili sation d a binary coding scheme, in fedure
extradion and tuning propacsals a red coding all ows representation
of problem solutionsin amore natural way.

The recombination operators which allow us to adequately explore
and exploit the seach space adapting it to the aloped
representation. In this form, there ae propcsals to represent
traditional operations in indwctive leaning process ([30] and [43));
operators that work among units with meaning [80], or even among



individuals from the same spedes, in ou case, from the same dass
[80]; or adaptive operators that work in a different way depending
on the evolution level of the GA ([15], [32] and [46]), amongst
others. In the latter case, the objedive is to guide the GA evolution
towards a proper relation between exploration and exploitation. The
former cases try to determine the recombination operator aduation
a the phenatypic level, to adequately combine the genotypic
information, and orientate the GA towards lutions with good
results.

* Mechanisms which improve the GA efficiency. In most propcsals
the most resource-consuming task is the individual evauation.
Some gproaches have been introduced in two dfferent senses for
reducing this computing time:

— Pardlée genetic dgorithms: Brill et al. [9] propose a GA with
purctuated equili bria, in which dfferent popuations evolve in
paralel, making a periodic interchange of the best individuals
among neighbou subpopuations. Punch et a. [52] developed a
GA based on pralel processng, in which the individua
evaluationis distributed in several nodes.

— Alternative techniques of training example utili sation, as the
training set sampling tedhnique propacsed by Brill et a. [9], in
which orly a propation d the training example set is used in
ead evauation.

The feaure seledion is a very important asped in the Classficaion
System design, because it will determine the design performance,
simplicity, linguistic description and complexity. The feaure extradion
is a process that increases the system acaracy, providing an
approximate darader to the Clasdficaion System that includes it,
because it is difficult to linguisticdly justify the assgnation d a red
value @& discriminative value to ead variable @nsidered in the
Clasgficaion System.

The seledion o the most important variables for ead rule in the
genetic rule leaning algorithm, as Yuan et al. [80] and Gonzalez et al.
[30] do in their FRBCS induwctive genetic leaning, is useful and



descriptive. Note that this kind d learning does not exclude aprevious
fedure seledion, which fadlitates the leaning and deaeases the
training data obtaining cost.

Sometimes, the rule generation methods include in the fina RB,
redunchnt rules that do nd co-operate in the rred classficaion o
new examples, and in these caes the RB seledion is important.
Cordoén et al. in [15] develop a genetic RB seledion method which
includes a leaning of the best linguistic modifier set for the labels used
by the linguistic variables. The multiseledion genetic processtakes as a
base the Sequential Niche Technique [6] for inducing niches in the
seach spaceto oktain dfferent KB definitions. This sledion pocess
isindependent from the inductive rule generation method wsed to oltain
the RB. Ishibuchi et al. [42] propcse arule seledion method which
allows areduction d the cadinality of the RB, and oliains an RB with
fuzzy partitions with dfferent cardinality, which increases the FRBCS
generalisation pawer. It is a rule seledion process orientated to the
smplificaion d RBs that are obtained with a rule generation process
with multi ple partitions.

If the FRBCS has been oltained through an automatic inductive
leaning process as well as by an expert, it is usualy necessary to cary
out tuning of the fuzzy partitions used in the fuzzy rules. This asped is
treaed by Ishibuchi et a. [45 and Cordonet a. [15] with goodresults.
Ishibuchi and Murata [45] developed a fuzzy partition determination
process and subsequently, an RB generation. Cordén et a. [15]
obtained a tuning process independent on from the way in which the
RB is generated.

All these genetic propcsals provide aequate results for the partial
problem that they solve. Results, as thase obtained by Cordonet al. in
[13], [15 and [16], pant out that a possble solution could be to
develop a genetic leaning method including everything. Obvioudly, to
develop a GA that simultaneously seaches for the most suitable
variable set, the best partition for ead variable, and the rule set with
least redundancy and greaest co-operation is nat possble becaise of
the huge size of the seach spaceto explore. This is the reason why a
multi stage genetic leaning process that determines the variable set,
their partition and the fuzzy rules in severa stages, by means of



independent genetic processes, may obtain an FRBCS with best
behaviour. The genetic process of eat stage can be alapted to the
problem to be solved, arientating the search in the best posshble way.
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