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Abstract: Models of linear programming problems with fuzzy constraints are very well known in the current literature. In almost 
all cases, to solve these problems, linear membership functions are used because they have very good properties and are very 
easy to manipulate. In some cases, however, because of the knowledge that the decision maker has, such membership functions 
could be modeled as nonlinear, although the complexity of the problem could increase. This paper considers the use of nonlinear 
membership functions in fuzzy linear programming problems to show that the corresponding solution to be obtained can be 
derived from a parallel linear model. Moreover, it is easier to solve than the nonlinear model, making use of a similar procedure 
to that of post-optimal analysis in classical linear programming. The case in which these membership functions are defined by 
means of piecewise linear approximations is also considered and analyzed. 
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1. Introduction 

In general a linear programming (LP) problem is described by 

Max{cx I A x  <~ b, x >i 0} 

where A is a m x n matrix of real numbers, b • R m and c • R n. 
It is clear in this case the decision maker is assumed to have complete and precise information about 

all the elements taking part into the problem. Frequently, however, the decision maker prefers to 
express the parameters defining the problem in a linguistic way rather than in a numerical and exact 
one. 

From this fact, and based upon the seminal paper by Bellman and Zadeh [1], the first approaches to 
fuzzy linear programming (FLP) were made [12, 15]. The starting model, parallel to the above one, is 
an optimization problem in which the constraints are defined by respective fuzzy sets, which can be 
represented by 

Max{cx ] A x  <~ b, x >i 0}. 

Here, one permits the decision maker to accept moderate violations in the satisfying of the 
constraints. Such violations are evaluated by means of the corresponding membership function 
associated to each constraint, 

/z, : R---* [0, 1], V i e M ,  M = { 1 , 2  . . . . .  m } .  
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It is very important to note that one assumes that the decision maker is able to define these 
membership functions with exactness, which is similar to the previous assumption about the precise 
knowledge that the decision maker has regarding the precise specification of the values of the 
parameters. 

From this initial, soft approach, contributions to the topic of FLP have been addressed mainly from 
four different, but related view points: 

(a) Models incorporating concepts and results from fuzzy arithmetic. For example, we can assume 
that the parameters either in the technological matrix, the costs or the right hand side are fuzzy 
numbers. 

(b) Methods providing new ways of solving the different models. This is the case, for instance, when 
we apply classical parametric techniques based on the representation theorem for fuzzy sets. 

(c) Extensions of the above general model to more complex problems. The main focus has been on 
multiobjective problems, but transportation problems and games have been topics also widely studied. 

(d) Applications to concrete practical problems. 
There is, as said before, in all these contributions a common hypothesis: the fuzzy sets taking part 

into the model have membership functions very precisely defined by the decision maker. This means 
that is impossible to introduce any changes, e.g., on their shapes or margins, without changing 
completely the formulation of the problem. However, to study in what ways solutions can change 
according to changes in the membership functions should be a very interesting problem. More 
concretely, the problem to be treated is that of the sensitivity of the membership functions. The 
references on this problem in the literature are [3] and [6]. In [6], like in the classical case, the main 
focus is on the sensitivity of the right hand side, and in [3] a different conception about violation 
margins and the membership functions representing the fuzzy constraints have been considered. 

This paper develops a solution approach to FLP problems with nonlinear membership functions. 
Suppose an FLP problem with fuzzy constraints, that is, with a membership function for each constraint. 
Let x* be the optimal fuzzy solution. It is clear if these membership functions are changed, then x* will 
change too. But can the new optimal fuzzy solution be obtained from the former one? 

With regard to this problem, the next section will introduce briefly the FLP problem with linear 
membership functions. Section 3 is devoted to the use of nonlinear membership functions to model 
fuzzy constraints. Section 4 shows this approach with piecewise approximation of the nonlinear 
membership functions. Finally, to show the effectiveness of the proposed approach, a numerical 
example is analyzed and some conclusions are pointed out. 

2. FLP problems with linear membership functions 

Consider a decision maker faced with an LP problem in which he can tolerate violations in the 
accomplishment of the constraints, that is, he permits the constraints to be satisfied as well as possible. 
For each constraint in the constraint set this assumption can be represented by 

a i x ~ b i ,  V i e M  (1) 

and, for every i, modeled by means of a membership function 

i if aix <~ bi, 
I .~ i (X)  = (a ix)  if be <~ ai ~ bi -t- di, (2) 

if aix >i bi + di, 

where f//(.) is strictly decreasing and continuous for aix, f,-(bi) = 1 and f~(bi + d;) = 0. 
This membership function expresses that the decision maker tolerates violations in the accom- 

plishment of the constraint i up the value b i -F d i. T h e  function/~(.) gives the degree of satisfaction of 
the i-th constraint for x e R n, but this value is obtained by means of the function f~ which are defined 
over R. 
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With these assumptions in mind, the associated FLP problem can be presented as 

Max z = cx (3) 

s.t. A x  <- b, 

X/>0, 

where c e R n, b e R m and A is an m × n matrix of real numbers. 
Problem (3) has been described in [12] and [15], where some additional hypotheses about the fuzzy 

nature of the objective function, that are not relevant here, are also considered. 
With regard to solving (3), three different approaches can be considered [12, 13, 15]. In particular, 

making use of the representation theorem for fuzzy sets, [13] shows how to find a fuzzy solution to (3) 
by means of the auxiliary parametric LP problem 

Max z = cx (4) 

s.t. A x  <- g (  oc), 

x~>0, o ~ ( 0 , 1 ] ,  

where g(cr)e R "  is a column vector defined by the inverse functions of the f,-. The fuzzy solution 
involves as particular values those solutions proposed in [12] and [15]. In particular, if f~ are linear 
functions, then the membership functions are 

1 if agx <~ bi, 

l, t i(x ) = bi + di - agx if bi <<- aix ~ bi + di, (5) 
di 

0 if a~x >I b~ + d~, 

and (3) becomes 

Max z = cx (6) 

s.t. aix <~ b i q- di(1 - o:), Vie  M, 

x~>0, ere(0 ,1] .  

Hence, if x(o 0 is the optimal parametric solution of (6), the fuzzy solution for (3) will be the fuzzy set 
{x(c0/o~}, which will be denoted by x(cr). 

In some cases however the decision maker can prefer to express his satisfaction degrees on the 
constraints by means of nonlinear membership functions, perhaps more complex than the above linear 
ones. In this case, a method that employs conventional parametric techniques based on the 
representation theorem, is also able of solving the FLP problem. 

The next section focuses on this nonlinear case, generating a method to relate its corresponding 
optimal fuzzy solution with that one obtained when the problem is solved by using linear membership 
functions. 

3. FLP problems with nonlinear membership functions 

Consider (3), with the fuzziness of the constraints now 
functions 

i' if aix <~ bi, 
I,t[(X) = i (a i x )  if bi <~ aix <<~ bi + di, i e M ,  

if a~x >! b~ + di, 

represented by nonlinear membership 

(7) 
where f~(.) is strictly decreasing and continuous for aix, f~ (b i )  = 1 and f~(bi  +di )  = 0. These functions 
can be graphically represented as in Figure 1. 
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0 ..a. >aix 
b i b i + d i 

Fig. 1. 

Then, using the approach proposed in [13], and in a parallel way to the discussion above for the 
linear case, the fuzzy optimal solution for (3) can be obtained from the optimal parametric solution of 
the problem 

Max z = cx (8) 

s.t. Ax  <~g'(o:), 

x~>0, o~•(0,1], 

where g ' (o0 = f ' - x ( c 0 ,  Va~ • (0, 1]. 
We now try to find some link relating the two solutions obtained from the linear case and from the 

nonlinear one. To solve it, the following results will be needed. 

Proposition 1. Let [a, b] be a real interval and f : [a, b]---> [0, 1] be any continuous, strictly decreasing 
linear function, such that f (a ) = 1 and f ( b ) = O. For every other continuous, strictly decreasing function 
f ' : [a ,  b]---> [0, 1], such that f ' ( a )  = 1 and f ' ( b )  =0,  there exists a function r:[O, 1]--~ [0, 1] such that 
r(.) of(.)  = f ' ( . ) .  

Proof. As f is a continuous strictly decreasing linear function in [a, b], it is possible to define its 
inverse, f - l ( . ) ,  in [0, 1]. Then, the function r exists and is defined as r(.) - - f ' ( . ) o f - l ( . ) .  [] 

Applying this proposition to the nonlinear function f~(-) and the linear function f~(.), associated to 
the membership functions ~ ( . )  and /~i(') respectively, it is clear that there exists a function 
r :[0, 1]--~ [0, 1] such that r(.) = f ; ( . )  off-l(.) and/ t ; ( - )  = r(.) o/~i(')- If/*;(.) = r(.) o/*i(') Vi • M, which is 
not restrictive because it may be reasonable for the decision maker to propose the same type of 
membership function for every constraint, then we obtain the following result. 

Proposition 2. Consider the FLP problem (3). Denote by x(.)  and x '( . )  the optimal fuzzy  solution for 
this problem, using linear and nonlinear membership functions repsectively to model  the fuzziness o f  the 
constraints. Then, x '  ( o:) = x ( r - l (  o:) ), where r(. ) is obtained f rom Proposition 1. 

Proof. Let x'(oc) be the solution of the FLP problem with nonlinear membership functions and the 
auxiliary parametric LP problem 

Max z = cx 

s.t. aix <- f;- l(o:) ,  

x~>O, ere(O, 1], 

where f ' ( . )  is the function associated to the membership function tt~(.), i • M. 
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Let now f~(.) be the linear function associated to the membership function ~t;(.). Then, from 
Proposition 1, there exists another function r(.) such that r of~. Thus, 

f ; - l ( o  0 = (r o f / ) - l ( o ¢ ) = f ~ - l ( r - l ( ~ ) ) .  

Denoting fl = r-~(tr), this expression can be rewritten as f]-~(o:) =fT~(fl). Hence, the FLP with linear 
membership functions may be rewritten as 

Max z = cx 

s.t. aix  << f / l ( f l ) ,  

x~>0, f i e (0 ,1 ] ,  

from which an optimal solution x ( f l )  can be obtained. 
These two ('linear' and 'nonlinear') problems are formally identical. Moreover, one has 

x ' ( t r )  = x ( f l )  = x ( r - ' ( o : ) ) .  [] 

Therefore, the corresponding value of the objective function will be derived according to 

z ' ( t r )  = c . x ' ( t r )  = c . x ( r - l ( t r ) ) .  

This shows that solving an FLP problem with constraints modeled by linear membership functions we 
can obtain the optimal fuzzy solution for the same problem modeled by nonlinear membership 
functions. Then it verifies the conditions of the above proposition: It suffices to use the above function 
r(-), which can be easily obtained. 

4. Piecewise linear membership functions 

Different paper [7, 8, 14] have formulated FLP with all the membership functions modeling the fuzzy 
constraints given in piecewise linear forms. 

Suppose #i, Vie M, is a continuous piecewise linear membership function. A function with this 
characteristic can be expressed as 

l~i(x) = lim (tij " a t • x + sit ) (9) 
j=l ..... N/+I 

in the range (0,1). It is assumed that t . t i ( x ) - - - t q . a i . x + s i j  for each segment g q _ l < ~ a i x < - g i j  

j = 1 . . . . .  N, + 1. That is, tit is the slope and sit is the y-intercept for the section of the curve starting at 
git-1 and ending at gq. 

Graphically, a membership function shaped as in Figure 2 is being considered. 

1 

ui(gl3 ) 

ui(gi2 ) 

ui(gil ) 

0 

0 
gi4 gi3 gi2 gil gio 

Fig. 2. 

a . x  i 
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where gio = bi + di and gi4 = bi. This kind of membership functions may be defined by 

i if aix <~ bi, 
Iz;'(x) = "(aix) if bi <~ aix <~ bi + di, (10) 

if aix >i bi + d~. 

Each segment is defined as gij_l<~a~x<<-gij such that g i o = b i + d i  and g i N , + l = b i V i e M ,  j =  
1, 2 . . . . .  N~ + 1, and f,"(.) is a continuous strictly decreasing function given by 

f i"(aix)  = fiT(aix) = ti/aix + Sij. (11) 

As this function satisfies the conditions for Proposition 1, we know that there exists a strictly 
increasing function h:[0,  1]--~ [0, 1] such that fi'(.) = h ( . ) o f  (.), and it is defined by 

h(.) =f/7ofi-l(-) if gij-~ <~fT~(") <~g~/, j = 1 . . . . .  Ni + 1. 

Therefore, if ~u~'(.) = h(.)o ~i(') Vi 6 M, then, by the Proposition 2, the fuzzy solution for (3), denoted 
by x"(cr), when piecewise linear membership functions are used to model the fuzzy constraints, can be 
obtained as 

x"( o 0 = x ( h - l (  a )  ). 

Otherwise, the fuzzy solution will be obtained solving the following parametric LP problem: 

Max z = cx (12) 

s.t .  ai x <~f;,-1 (ol),  i ~ M,  

x~>O, ere(O, 1], 

where f; '-~(.) are piecewise linear functions. 

5. Numerical example 

Consider the following FLP problem: 

Max z = 2Xl + 3x2 (13) 

s.t. -2Xl + x2 ~ 3, 

Xl "~ X2 ~ 5,  

X 1 ~ O, X 2 ~ O, 

for which the decision maker permits violations d l =  3.5 and dz = 6.5 of the constraints respectively. 
In fact, if the decision maker defines linear membership functions, the auxiliary model to be solved is 

the following parametric LP problem: 

Max z = 2Xl + 3x2 (14) 

s.t. - 2 x l  + x2 ~< 3 + 3.5(1 - or), 

X 1 +x2~<5 + 6.5(1 - aO, 

X l ~ O  , x 2 ~ O  , Or' e (0 ,  1],  

whose optimal solution is obtained as 

x l (a )  = 1.6666 - a, Xz(CQ = 7.6666 - 3.3333cr, 

and the value of the objective function 

z ( a )  = 2x~(tr) + 3x2(a) = 26.3333 - 12or. 
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Suppose that in order to solve this problem, the decision maker proposes to model the fuzzy 
constraints by means of nonlinear membership functions. 

Assume first, parabolic concave membership functions defined by 

l l if aix <- b, 

1 2bi b 2 
/.t~(X) = ---~ii(aix)2 +--~i (aix)+ 1---~i if bi<~aix<~bi+di, 

0 if a~x >! bi + di. 

Then, the fuzzy solution is obtained solving the following parametric LP problem: 

Max z = 2X 1 "91- 3X2 (15) 

s.t. --2Xl + X2 ~< 3 + 3.5 X/(1 - 0~), 

Xl +Xz~<5 + 6.5 "X/-(i- -- 0:), 

X l ~ 0  , X 2 ~ 0  , O{ e (0,  1]. 

By Proposition 1, r(fl) = 1 - (1 - fl)2 and r-l(o:) = 1 - V T -  o:, and the optimal solution by Proposition 
2 is 

X'l(Cr) = xl(r-~(a0) = 1.6666 - (1 - k/1 - oc) = 0.6666 + ~/1 - o~, 

x~(o:) =xz(r- ' ( tx))  = 7.6666 - 3.3333(1 - ~ ] - -  tr) = 4.3333 + 3.3333 ~/1 - a~, 

and the corresponding optimal value of the objective is 

z'(tr) = 14.3333 + 12 V T -  re. 

Now, suppose the decision maker uses exponential convex membership functions defined by 

I 
1 if aix <- b~ 
qt.(a~x-bi)/di __ qt 

#[ (x )=  1 - q  t i fbi<-aix<~bi+di,  0 < q < l ,  t > 0 ,  

0 if a~x >i b~ + d i 

If q and t are fixed, for example q = 0.5 and t = 1, we can obtain the fuzzy solution solving the 
following auxiliary problem: 

Max z = 2xl + 3x2 (16) 

s.t. -2x l  + x2 ~< 3 + 3.5 logo.5(0.5 + 0.5o0, 

x~ + x2 ~< 5 + 6.5 1Ogo.5(0.5 + 0.500, 

xl~>O, x2~>O, tee(O, 1], 

and by Proposition 1, 

qt(1-3) _ qt 
O < q < l ,  t>O,  rq( f l )  1 _ q t  

Its optimal solution is 

and r~l (a)  = 

x'~(tr) = 0.6666 + 1ogo.5(0.5 + 0.5a), 

t - logq(q' + tr(1 - qt)) 

x~(tr) = 4.3333 + 3.3333 1Ogo.5(0.5 + 0.5o 0 

and the value of the objective function is 

z'(oc) = 14.3333 + 121ogo.5(0.5 + 0.500. 
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Consider,  finally, the decision maker  uses the following piecewise membersh ip  functions: 

I 
1 if aix3, 

(10 - ( - 2 x l  + x2))/7 if 3 ~ a~x ~ 5.1, 

/t](X) = L (06.5- (--2X 1 + X2))/2 i f5 .1<~aix<~6.5,  

if aix >i 6.5, 

1 if aix <~ 5, 

(18 - ( - 2 x l  + x2))/13 if 5 ~< a~x <~ 8.9, 

/ ~ ( x ) =  ( l l . 5 - ( - 2 X a X z ) ) / 3 . 7 1 4  i f8.9<~aix<~ll .5,  

0 if aix >i 11.5. 

Then,  the corresponding fuzzy solut ion for  the fo rmer  p rob lem will be ob ta ined  solving the two 
following parametr ic  LP  problems:  

Max z = 2x~ + 3x2 Max 

s.t. - 2 x 1 +  x2 ~< 6.5 -- 2o:, s.t. 

Xl + x2 ~< 11.5 - 13o:/3.5, 

Xl~O,  xz>-O, o:e(O,O.7] ,  

with 

~(3.5 + 3.5f l ) /7  if fl ~>0.4, 
h(fl) = t3 .5 f l / 2  if fl ~< 0.4, and 

and whose optimal  solutions are respect ively 

x~'(o:) = 1.6666 - 2 o : / 3 . 5  and x2(o:) = 7.6666 - 6.6666o:/3.5 

x~'(o:) = 2.6666 - 2o: and x2(o:) = 11 - 6.6666o: 

In this case, the objec t  funct ion takes the value 

j 2 6 . 3 3 3 3 -  24o:/3.5 if o:~<0.7, 
Z"( o:) 

[38.3333 - 24o: if o:/> 0.7. 

Z = 2X1 "~- 3X 2 

- 2 x l  + Xz <- 10 - 7o:, 

x~ + Xz <~ 18 - 13o:, 

xl~>O, x2~>O, o: e (0 .7 ,1] ,  

h_l(o:  ) = [ 2 o : -  1 if o: I> 0.7, 
t2o : /3 .5  if o:~<0.7, 

if o: ~< 0.7, 

if o: ~> 0.7. 

(17) 

z ( - )  

2 3  

2 2  

2 1  . . . .  "~ . . . .  i . . . . . .  :: . . . . . .  

2O 

1 9  . . . . .  i . . . . . . .  i . . . . . .  

~ a  . . . .  i . . . . .  ! . . . .  

I ; ,  . . . .  ! . . . . .  i . . . . .  ! . . . .  

1 6  . . . .  ~ . . . . .  ~ . . . . .  i . . . . . .  i . . . . . .  : . - .  

16 . . . .  i . . . . .  . . . . .  . . . . .  :: . . . . . .  :: . . . . . .  i . . . . . . . . . . . .  

4,1 1 4  
0 0 0 0 0 0 0 0 0 0 1 

Fuzzy obJecllve using l inear m.f. 

Fuzzy objecl lve using Plecewlse l inear m.f. 

Fuzzy object ive using parabol ic concave m.f. 

Fuzzy object ive using exponent ia l  oonvex m,f. 

Fig. 3. 
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Remark. Notice that the functions obtained by means of the Proposition 1 and called r(.) or h(-) allow 
us to obtain the solution of the problems (15), (16) and (17) by applying Proposition 2. 

With respect to the objective functions, each of them can be easily obtained and represented as in 
Figure 3. 

Conclusions 

Linear programming (LP) problems with fuzzy constraints have been considered, and the case of 
representing these restrictions by nonlinear membership functions analyzed. It has been shown that we 
can obtain the fuzzy optimal solution from the solution of a parallel LP problem modeled by linear 
membership functions when the nonlinear membership functions verify the conditions of the above 
propositions. This approach includes the case of piecewise linear functions. 

The way of obtaining the solution can be seen as analogous to a post-optimal analysis on the 
membership functions, which shows that only linear membership functions are needed to determine the 
solution for nonlinear membership functions. 

The results obtained here also allow us to solve parametric LP problems where the right hand side is 
formulated by means of nonlinear parametric functions and these verify the conditions of Proposition 1. 
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