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Abstract: Boolean linear programming problems for which there exist some lack of precision of vague nature in the constraints 
are considered. An a-cut-based approach is considered to solve them. Then, an algorithm providing a fuzzy solution is proposed 
and analyzed. The linking with other known solution methods is also studied. 
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1. Introduction 

Boolean Linear Programming (BLP) problems have a lot of relevant applications in many fields, as 
for instance those related to Artificial Intelligence and Operations Research. In particular, they are 
specially important for representing and reasoning with propositional knowledge [2, 9]. 

As it occurs in the conventional case of Linear Programming problems, some lack of precision of 
vague nature may be assumed in the formulation of BPL problems. In this case, Fuzzy Boolean Linear 
Programming (FBLP) problems can be considered. This kind of models were formerly introduced and 
studied in [12]. Also in [3] an extensive classification of them and a description of each of the possible 
problems can be found. 

Considering a general BLP problem with imprecisely defined (fuzzy) constraints, i.e., a FBLP 
problem, similarly to the conventional case, this problem can be written as 

max z = cx (la) 

s.t. ff'~ aqxj~bi, i ~ M = { 1 , . . . , m } ,  
jEN (lb) 

xj~{0,1}, j E N = { 1 , . . . , n }  (lc) 

where as usual c E R n, au, bi ~ R, i ~ M, j ~ N, and the symbol ~< means the decision-maker is willing to 
permit some violations of the constraints, that is, he assumes fuzzy constraints characterized by 
membership functions 

/ x , : R "  ~ (0, 1], iEM, (2) 

each of them giving the degree to which each x ~ R n accomplishes the ith constraint. 
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In [3] and [12] two different solution methods for (1) were proposed. Hence, the main aim of this 
paper is to relate both methods. To do this, the paper is set up as follows. In the next section the two 
different approaches solving the problem are introduced. Section 3 shows the link between both 
methods and their respective solutions. Finally a numerical example clarifying the above relationships is 
analyzed and some remarks are added. 

2. Solving Boolean programming models with fuzzy constraints 

The starting point is the following FBLP model: 

min z = f ( x )  (3a) 

s.t. g i ( x ) ~ b e ,  i c M ,  (3b) 

xj~{0, 1}, j e N .  (3c) 

In this paper f ( x )  and each g~(.), Vi eM, are assumed to be linear functions. 
To solve (3) two approaches can be considered. The first one, [12], looks for a solution according to 

the classical Bellman and Zadeh's concept of maximizing decision [1]. The second one [3] seeks a 
solution to be obtained from the Representation Theorem for Fuzzy Sets [5], that is, by taking 
advantage of the o-cuts of the fuzzy constraint set. In the following both ways are described. 

2.1. First approach 

The problem considered in [12] is 

Find xjE{0,1}, j ~ N ,  

such that ~ agjxj <<- b~, i ~ M,  
jEN 

(4a) 

(4b) 

where no distinction is made between fuzzy objective and fuzzy constraints, and the linear membership 
functions are defined as 

i if aix <~ bi, 
tzi(x) = - (aix - bi)/di if bs <~ aix <~ b i + de, 

if C x  >! b~ + d~. 

Note that (4) is a special case of (3), in which a fuzzy goal is assumed for the values of the objective 
function. If the objective function calls for strict maximization (or minimization) it can also be 
transformed into a fuzzy set (see Zimmermann [14, p. 256]). Even for nonlinear membership functions 
similar results may be achieved (see Zimmermann [13, pp. 101-106]). 

From Bellman and Zadeh's concept of maximizing decision, the solution of (4) will be x*, satisfying 

/zD(x*) = max/xD(x) = max min[/xl(x) . . . . .  /Zm(X)]. 
x X i 

Then, to obtain x*, the following mixed BLP problem is considered: 

max A 

s.t. A ~ < l - ( a i x - b i ) / d i ,  i E M ,  

xj~{0,1}, j E N ,  

O ~ A ~ I .  

(5) 

(6a) 

(6b) 

(6c) 
(6d) 

If (x*, A*) is obviously the optimal solution of (6), its x-part (x*) is also the maximizing decision in (5). 
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In [12], for computational reasons, (6) is transformed into the equivalent problem 

max ~ L - -  ~ / J , t 0 ' m i n [ l ' l + m a x m i n ( b i - ~ x i ) ] / '  xjE{0,1}, j~N ,  (7) 
j ~ N  

where bi = bi/di and a~ : aq/di. 
Thus, for 

X -  max min(bi ~ ~ x j )  (8) 
x t j E N  

the problem which eventually has to be solved is 

Max {0, min[] + X]} (9a) 

s.t. XyE{0,1}, jEN.  (9b) 

2.2. Second approach 

Consider the FBLP problem (3), and let 

i if g i (x )  ~ bi, 
/xi(x) = (gi(x)) ifbi<-gi(x)<~bi+d~, 

if gi(x) >i bi + d, 

be the membership function of the ith constraint, i E M. 
Denote for each constraint 

X /={x~R"  Ig,(x)~b,,xjE{O, 1}}, iEM. 

I f  X = (-')~EMXi, then (3) can be rewritten as 

min {z = f (x ) /x  eX}. (10) 

Any c~-cut, Vo~ E(0, 1], of the constraint set is a classical set X ( u ) =  {x E R" I/Zx(X)~ > ~} where 
Vx ~ R", tXx(X) = inf{/zi(x), i ~ M}. Thus, X~(~) denotes on a-cut of the ith constraint, i E M. 

As, Vo~ ~ (0, 1], 

X(o~) = (-'1 {x E R" I g~(x) <~ r~(u), xj E{0, 1}} with r,(o~) =f;- l(u) ,  
i c ~ M  

(3) can be written as 

min z = f (x )  ( l la)  

s.t. gi(x)<~h(a), i E M  ( l lb)  

xjE{O, 1}, o~(0 ,1] ,  jEN.  (11c) 

Then denoting Vo~ E (0, 1] by S(~) = {x ~ R" If(x) = rnin f (y) ,  y EX(~)}, a fuzzy solution concept for 
(3) based on the corresponding one by Orlovski [6] can be defined. 

Definitien. Given a FBLP problem like (3), the fuzzy set defined by the membership function 

sup a, x 
a(x)  : IxEs °  

L0 elsewhere, 

is the fuzzy solution of the problem. 

A(.) gives the degree of goods alternatives belonging to the fuzzy solution, and the decision-maker 
will make the final choice himself. 
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Consider, in particular, the following FBLP problem in which, without loss of generality, one 
supposes that all the coefficients are integer numbers: 

min z = cx (12a) 

s.t. aix <-bi, i e M ,  (12b) 

xj • {0, 1}, j • N. (12c) 

The membership functions of the constraints are defined by 

f i if aix <<- bi, 
tzi(x) = bi + di) - aix]/d~ if b i <~ aix  <~ b i q- di, 

if aix >1 bi + di. 

Thus, (12) can be written as the following conventional parametric BLP problem: 

min z = cx (13a) 

s.t. a~x<~bi+ds(1-a) ,  i • M ,  (13b) 

xj•{0,1}, a • ( 0 , 1 ] ,  j ~ N .  (13c) 

In the following, to approach a solution method for (13) which provides the FLBP problem (12) with a 
fuzzy solution, for each fixed a e(0, 1], (13) will be denoted by P(a)  and will be used as an 
intermediate problem. The optimal solution of P(a)  will be denoted by x(a)  and, as usually, Ix] will 
represent the largest integer less than or equal to some value x. Thus, if {x} denotes the fractional 
remainder of x • R, then x = [x] + {x}, 0 ~< {x} < 1. 

Proposition 1. Let a '  • (0, 1] be  a specific fixed value and x (a ' )  the optimal 0-1 solution o f  the 
corresponding problem P(a). Then 

A(x(a ')) = min{tzi(x(a ')), i ~ M}. 

Proof. Let O=min{ l~ i (x (a ' ) ) , i eM}.  Then 0~>a ' is satisfied and X(O)~_X(a ' ) .  As c . x ( a ' ) =  
min{c • x I x • X (a ' ) }  and x(a ' )  • X(O) c X (a ' ) ,  it follows that c" x ( a ' )  = min{c • x Ix • X(0)}. Finally, 
as Va > 0, x ( a ' )  ~ X(a ) ,  then it follows that Mx(a ' ) )  = 0 = min{/zs(x(a')), i •M}. [] 

Corollary. Let x(o~') be an optima 0-1 solution o f  P(a ' )  for some fixed a '  • (0, 1], and 0 = )t(x(a')). 
Then, Va • [a', 0], x (a ' )  is also an optimal solution o f  P(a). 

Proof. It is clear that V a e [ a ' , O ] ,  X ( O) ~_ X(a )~_X(a ' ) .  Therefore, as x ( a ' ) E X ( O )  and 
c .  x ( a ' )  -- min{c -x Ix cX(a ' )} ,  it follows that c .  x(ol') -- min{c .x  Ix •X(oO}. [] 

Remark 1. Notice that from the above it follows that Va e [a', 0], x(cr') = x (a)  and, in particular, if 
a '  ~ a, then Z(x(a ' ) )  = A(x(a)) = O. 

Remark 2. The following relation will be needed. Consider, Vo~ E (0, 1], 

1~ = {1 if max{bi + di(1 - a)} = O, 
min{{bi + di(1 - cQ}: {b/+ di(1 - a)} ¢ O} elsewhere. 

i 

If d '  = max{di} and Aa = l~ /d ' ,  then it is evident that di • Aa ~< 1, Vi E M. 
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Lemma. I f  {be + de(1 - ct)} ~ 0, then [bi + di(1 - ct)] = [be + dg(1 - (ct + Act))]. 
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Proof. In fact, using the above  notat ion,  it is clear that  

1 >{be +de(1 - a ) } - d e "  Act ={b,  + d e ( l -  c e ) } - d e "  l J d '  

1> {be + d~(1 - ct)} - de" l , , / 4  = {be + de(1 - ct)} - 1,, i> O, 

and the re fo re  

[be + de(1 -- ct)] = [be + d,(1 - ct) - di" Act] = [bi + 4 ( 1  - ( a  + Act))]. [] 

Proposition 2. Cons ider  0 = A ( x ( O ) ) c ( O ,  1) a n d  a ' =  0 + AO, with AO as prev ious ly  defined.  Le t  
a " =  A(x(ct ')).  Then,  Vct c (O,  ct"], x ( a ' )  is an op t im a l  so lu t ion  o f  P(ct).  

Proof .  It is clear  that  x ( a ' )  is an opt imal  solut ion of  P(ct), Vct E [ct', ct"], by means  of  the above  
corollary.  Now, we will show it Vct e (0, ct'). 

Le t  us assume /3 E (0, a ' ) .  Then  let x( /3)  be an opt imal  0 -1  solut ion of  P(/3). I f / 3 '  = A(x(/3)), then  
/3' I>/3 > 0. As /3' = A(x(/3)), 3i  e M  such that  it follows that  aix(/3)  = bi + di(1 - / 3 ' )  < be + di(1 - 0) ,  
ae(/3) being an integer  number .  Moreove r ,  f rom the in teger  na ture  of  the coefficients it follows that  
[bi -}- de(] - / 3  ')] = bi + di(1 - / 3  '). 

Then  two possibilities arise: 
(a )  [be + di(1 - 0)] --- bi + d i ( l  - 0).  But,  due to the integer  na ture  of  the coefficients, 

bi + de(1 - / 3 ' )  < be + di(1 - O) and, moreove r ,  di • A0 ~< 1. Then  

be + de(1 - / 3 ' )  ~< be + de(1 - 0) - di" AO = be + di(1 - (0  + AO)) = b i + de(1 - ct') ~ /3' i> a ' .  

(b) [be + de(1 - 0)] ~ be + dg(1 - 0). But  as d i • AO <~ {be + di(1 - 0)}, we have 

be + de(1 - / 3 ' )  ~< [be + de(1 - 0)] + {be + di(1 - 0)} - de" A0 = bi + d i ( l  - ct ') ~ /3' >1 o~ '. 

Since /3'~> ct' and a '  >/3,  it follows that  c t 'E  [/3,/3']. The re fo re ,  f rom the corollary,  x(/3) is an 
opt imal  solut ion of  P(w),  Vw ~ [/3, /3 '], and x(/3) is also an opt imal  solut ion of  P(ct ') .  Thus,  
c .  x ( / 3 ) =  c .  x (c t ' )  and x (c t ' )  is an opt imal  solut ion of  P(to), Vto e [/3,/3']. The re fo re ,  x (c t ' )  is an 
opt imal  solut ion of  P(/3), V / 3 e ( 0 ,  ct'), and, finally, x(c t ' )  is an opt imal  solut ion of  P(ct), 
V a  ~ (0, c~"]. E] 

These  results are used to make  an algori thm solving p rob lem (12) using (13) as in termedia te .  The  
algori thm works as follows: First P(0),  a l  = 0, is solved by using Glover ' s  E n u m e r a t i o n  Scheme [7]. 
Then  the max im um value of  ct, say 0, for  which the solut ion remains  opt imal  in the interval  [ctl, 0] is 
de te rmined .  If 0 ~ 1, then consider  ct = 0 + A0, and solve P(ct) looking for a new interval  of  ct. The  
process is r epea ted  until 0 = 1 is reached.  

The  interval  of  ct-values for  which x is an opt imal  solut ion of  P ( a )  will be deno ted  by Ix~). Hence ,  it 
is clear  that/~(~) ~_ [0, 1]. 

Thus,  if an F B L P  p rob lem like (12) is assumed,  the algori thm can be descr ibed as follows: 

Step O. Let  ct = ct 1 = 0. 
Step 1. Solve P(ct). Le t  x ( a )  be an opt imal  solut ion of  P (a ) .  
Step 2. Let  0 = A(x(ct)) = min{/~i(x(ct)), i e m } .  

If ct~ = 0, then x ( a )  is an opt imal  solut ion of  P ( a ) ,  Vct E [oq, 0]; 
else x(a~) is an opt imal  solut ion of  P ( a ) ,  V~ ~ (ct, 0]. 
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Step 3. If 0 < 1, then o/1 = 0, ff = 0 -t- m 0 ;  go to Step 1. 
Step 4. Stop. 

3. R e l a t i n g  b o t h  s o l u t i o n  m e t h o d s  

In the seminal paper by Bellman and Zadeh [1], one has an explicit fuzzy feasible set, X c R n, called 
a fuzzy constraint set, and an explicit fuzzy set of alternatives that attain a goal, G c R", called a fuzzy 
goal. 

The value o f /zc (x)  indicates the degree to which x e X satisfies G. For example, 

i for f (x)  <~f-, 
g o ( x ) =  (x) f o r f -<~ f ( x )<- f  +, 

for f (x)  >~ f+, 

to be read as: We are fully satisfied (/xc(x) = 1) with the x's for which f (x)  attains a value lower than 
the aspiration level f - ;  we are less satisfied (to degree 0 < f ( x ) <  1) with the x's for which f (x)  is 
between f+  and the lowest level f - ;  finally, we are fully dissatisfied with the x's for which f (x)  is larger 
than f - .  And similarly for C. 

This aspiration-level-based interpretation of G (and C) is not the only possible one, though it is 
certainly very convenient and intuitively appealing. 

The problem is now stated as 'satisfy C and attain G' ,  which by introducing a fuzzy set D c R n, the 
fuzzy set 'decision', can be written as 

txo(x) = IXc(x) A Ix~(x) = min(/xc(X),/zc(x)) Vx ~X. 

Though 'A' is the most commonly used operation, also here, other operations T, notably t-norms, 
may be used and then /xn(x) = T(txc(x), tXc(X)). In [11] the use of the connective H ,  can be seen, 
which is an Archimedean t-norm, and corresponds to the intersection of fuzzy sets: 

n y ( l ~ Z ,  I-I,B) --  I'£AILB 
- /+  (1 - 7)(/xa + tXB - ].LA~ZB)' ")/ > O, (14) 

where 7 is an arbitrary parameter. It is evident that if 7 = 1, then H~(IXA, tzB) = ]Jbz ° ]dbB. 
It should however be pointed out that problem (6) may become a nasty nonlinear programming 

problem for either nonlinear membership functions or other that the min-operator (see Zimmermann 
[13, pp. 100-108 and 254]). 

The next problem is which x E X is to be chosen as a (nonfuzzy) solution to the problem. As 
commonly assumed, we seek an x * e  X such that 

tzv(x*) = sup tZD(X). (15)  
x ~ X  

P r o p o s i t i o n  3. Let T be a t-norm, and tx c and IXc the respective membership functions of  the fuzzy 
objective and the fuzzy constraint set. Then the following relation holds: 

sup T(a, max/zc(x))  = max T(tzc(x), tZc(X)). 
a X(a )  x ~ X  

(16) 

Proof. Write 

r = m a x  T(tzc(x), tZc(X)) and r' = sup  T(a, m a x / z a ( x ) ) .  
x ~ X  o~ x ( a )  

Then it will be shown that r = r'. 
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Let x '  ~ X  be such that T(l~c(x'), tzc(x')) = r a n d / 3  = lZc(X'). It is clear that x '  eX(/3). Then 
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sup T(a,  max txa(x)) >i T(/3, max IXa(X)) i> T(IXG(X'), tXc(X')) : r 
x ( , ~ )  x ( t 3 )  

and r ' /> r. 
On the other hand, consider a fixed a e[0, 1] and suppose the problem maxx(~)~G(x). 

3y e X ( a )  such that /zG(y)  = maxx(~)/zc(x) and therefore T(a, maxx(~) tzG(x) = T(a, /ZG(y)). 
Thus, as tzc(y) ;~ a, r(tzc(y),  tzc(y))  i> T(a, maxx(~) tzG(x)), and 

Then, 

max r(lzc(x),  tZc(X)) >1 sup r (a ,  max/xc(x)),  
X c~ X ( ~ )  

therefore r >i r', and consequently r = r'. [] 

According to Proposition 3, it is clear that tZD(X*) = sups T(a, maxx(~) IIG(X)) = Og* for x* such that 
tZG(X*) = SUpX(¢) IXG(X) and/3 = tZc(X*). 

It is evident, that if /ZG is an increasing (or decreasing) continuous function, then a* always exists. 
Moreover, as the membership function of the fuzzy objective is linearly decreasing and the objective 
function is an increasing one, the following equivalence holds: 

max IxG(X) ¢:> min cx. 
X(~) X(cO 

Thus, if problem (4) has linear fuzzy constraints, then 

X ( a ) : { x E R " i x j e { 0 , 1 } ,  a ix<~bi+di (1-a) ,  a t ( 0 , 1 ] ,  i : 2 , . . . , m  

and the alternative model to solve (4) is obtained as 

min z = alx (17a) 

s.t. aix<~bi+di (1-a) ,  i = 2 , . . . , m  (17b) 

xj E {0, 1}, a e (0, 1]. (17c) 

If x (a )  is the solution of (17), the following result shows that the maximizing decision provided by 
(14), or (5), can be obtained as a particular value of that parametric solution. 

Proposition 4. Let a* be obtained from (14), or (5), and suppose that x(a)  is the solution of  (17). If  
{xi(ai)} denotes the set of  points of  the solution x(a), then 

a* : max T(~G(Xi(Oli), i~(Xi(Oli) ). (18) 
{xi(~i)} 

Proof. Consider 

ce* = max T(Ixc(x), tXc(X)) = sup T(a, sup/xa(x))  
X c~ x(~) 

and x* as the corresponding solution associated with problem (19). Writing/3 = tzc(x*), we have 

(19) 

tzc(x*) = sup txc(x) >i a* ~ cx* = min cx ~ cx* = cx(/3). 
x(Is) x(t3) 

Thus, x* is an optimal solution for P(/3), and p.c(x*)=/ZG(X(/3)). Therefore, as h(x(/3))= tZc(X(/3) ), 
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we obtain a* = T( t zc (x (~) ) ,  A(x(/3))) and hence the optimal solution of (14) and (5) is obtained as 

a* = max T(l.~G(Xi(Oti) , l~(Xi(Oli) ). [] 
{x,(,~i)} 

The relation between the solutions of the above two approaches is illustrated by the following 
example. 

4. Numerical example 

Consider the same problem proposed in [12], 

find xl, x2, x3 E {0, 1} 

s.t. -10Xl - 20x2 - 20x3 ~< -45,  

xl +x2 +x3 ~< 2.5, 

2X 1 + X  2 + 3 x  3 ~ 5 ,  

0.5X 1 -]- 3x2 + x3 ~ 3, 

in which the violations that the decision maker permits of the constraints are dl = 10, d2 = 0.75, d3 = 1.5 
and d4 = 2, respectively. 

The solution provided to this problem in [12] is 

a * = 0 . 5  and x l = 0 ,  x 2 = l ,  x3=1.  

On the other hand, (17) takes now the following form: 

Min z = -10x~ - 2 0 x 2  - 20X3 

s.t. Xl -}- X 2 -}- X 3 ~ 2.5, 

2xl +x2 + 3x3 ~ 5, 

0.5Xl  -{- 3X2 q- X 3 ~ 3, 

X1, X2, X 3 E {0, 1}. 

Applying the above algorithm to this problem, the following solution is obtained: 

x(0) = (1, 1, 1), Ix(o) = [0, 0.25], 

x(0.375) = (0, 1, 1), /x(O.37s) = (0.25, 0.5], 

x(0.875) = (1, 0, 1), Ix(0.875) = (0.5, 1], 

and therefore the corresponding fuzzy solution is S = {(1, 1, 1)/0.25, (0, 1, 1)/0.5, (1, 0, 1)1}. Hence, by 
applying Proposition 4, and using the minimum as t-norm, the above solution of [12] can be obtained: 

/zc(x(0.00)) = 1.0, A(x(0.00)) = 0.25, 

/,c(x(0.375)) = 0.5, a(x(0.375)) = 0.5, 

/z~(x(0.875)) = 0.0, h(x(0.875)) = 1. 

Thus, max~x,(~,)} (h (x i (a i ) ) k t z c ( x i (a i ) )=  0.5 and therefore a* = 0.5 and x* = (0, 1, 1). 
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Final Remark 

To face the solution of a Boolean programming problem with imprecisely stated constraints, that is 
an FBLP problem, a parametric Boolean programming problem has been proposed as an auxiliary 
model. Therefore the latter problem is a formal frame to find solutions to the former problem, and it 
has been shown that the solution of that parametric problem, which provides a fuzzy solution, involves 
as particular values the point solutions which could be obtained from other approaches. 
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