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Abstract 

In this paper we study some models for dealing with Fuzzy Integer Linear Programming problems which have a 
certain lack of precision of a vague nature in their formulation. We present methods to solve them with either fuzzy 
constraints, or fuzzy numbers in the objective function or fuzzy numbers defining the set of constraints. These 
methods are based on the representation theorem and on fuzzy number ranking methods: 
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1. Introduction 

Integer Linear Programming (ILP) problems have an outstanding relevance in many fields, such as 
those related to artificial intelligence, operations research, etc. They are especially important for 
representing and reasoning with propositional knowledge. Thus, the use of Mathematical Programming 
(MP) techniques for treating propositional logic is useful. In particular, several research efforts have 
involved the use of MP as a tool for modeling and performing deductive reasoning. An arbitrary system 
of rules can be represented and solved as an Integer Linear Program. The applications of Integer 
Programming to logic lead to new algorithms for inference in Knowledge-Based-Systems [13,15,20,23]. 

A classical ILP problem can be written as follows: 

m a x  z = c x  (1) 
s.t .  ~ a i j x  j <_ bi, i ~ M = { 1 . . . .  , m } ,  

yeN  

xi>_O , j ~ N = { 1  . . . . .  n}, 

x j ~ N ,  j ~ N ,  

where N is the set of integer numbers, c e ~n and aij, b i ~ ~,  i ~ M ,  j ~ N .  
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In real situations however the information available in the system under consideration not of an exact 
nature. The aim of this paper is to study different problems, where some lack of precision of a vague 
nature may be assumed on their formulations, providing a tool helping reasoning in imprecise Knowl- 
edge-Based-Systems. This kind of problems will be called fuzzy integer linear programming (FILP) 
problems. 

In [12] a classification of them was shown, along with a description of each of the possible problems, 
and an initial study of the fuzzy boolean linear programming problems with fuzzy constraint was carried 
out. In view of this classification we will study the FILP models to ascertain whether there are either 
fuzzy constraints, or fuzzy numbers as coefficients in the objective function or fuzzy numbers defining the 
set of constraints. In the following section we will firstly discuss the FILP problem with fuzzy constraints, 
in section three the FILP problem with fuzzy numbers in the objective function and in section four the 
FILP problem with fuzzy numbers in the technological matrix. Finally, some conclusions will be pointed 
o u t .  

2. FILP problems with fuzzy constraints 

This problem can be written as 

Max z = cx (2) 

s.t. ~ aijx j < b i ,  i ~ M ,  
j ~ N  

x ] > 0 ,  j ~ N ,  

x j ~ N ,  j ~ N .  

The symbol < means that the decision-maker is willing to permit some violations in the accomplishment 
of the constraints, that is, he considers fuzzy constraints defined by membership functions 

]'~i: ~ n  ._.+ (0,1], i ~ M. (3) 

Each of these gives the degree to which each x ~ ~n accomplishes the respective constraint. 
This problem was studied in [8], where an auxiliary ILP problem was presented as a transformation of 

the  former FILP problem into a deterministic model with linear constraints, a modified objective 
function and some supplementary constraints and variables. 

Next, following the ideas expressed ~n [18,12] we will present an alternative model which allows a fuzzy 
solution of the problem to be obtained according to the use of the representation theorem of fuzzy sets. 

Consider a linear membership function for the i-th constraint, 

i if aix <_ bi, 
/ -L/(X) = ( b , + d i ) - a , x ] / d i  i f b i < a i x < b i + d i ,  

i f  aix  >_ b i + di, 

and denote for each constraint 

X i = { x ~ n l a i x ~ b i ,  x j>O,  x j ~ } ,  i E M .  

If X = Iq r ~ M S i  then (2) can be rewritten as 

max { z = cx I x E X } .  (4) 
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It is clear, Va c (0,1], an a-cut of the constraint set will be the classical set X ( a )  = {x ~ R ~ I tZx(X)  > a} 
where V x  ~ ~n, iXx(X) = inf{/zi(x), i ~ M}. In this way, X i ( a )  will denote an a-cut of the i-th constraint, 
i ~ M .  

Then, denoting Va ~ (0,1], 

S ( a )  = {x  ~ ~ " [ c x  = m a x  cy, y ~ X ( a ) } ,  

the fuzzy set defined by the membership function 

( sup a x ~  U S ( a ) ,  

t o elsewhere, 

is the fuzzy solution of the problem (2) (Orlovski, [16]). 
As Va ~ (0,1], 

X ( a ) =  ['7 { x ~ n l a i x < - - r i ( a ) , x j > - - O ,  xy E ~ }  
i~M 

with ri(a) = b i + di(1 - a),  (3) can be written as the following auxiliary parametric ILP problem: 

max  z = cx (6) 
s.t. a i x < b i + d i ( 1 - a ) ,  i ~ M ,  

x i >_ O, 

x j ~ l ,  a e ( O , 1 ] ,  j ~ N .  

In [1] an approach was shown to solve (6), and by means of the parametric solution of (6) the fuzzy 
solution to (2) is obtained with a membership function like (5). 

The initial problem (2) may be presented with nonlinear membership functions for the constraints. As 
was shown in [7], the form of the membership functions does not make the use of the representation 
theorem complicated. In [9] it was shown that in all cases the objective function associated to the fuzzy 
solution is included into the same interval. In [7] a method was presented which allows us to obtain the 
fuzzy solution to a fuzzy linear programming problem with nonlinear membership functions from the 
fuzzy solution associated to the fuzzy linear programming problem with linear membership functions and 
same right margins [7,292-293, Proposition 2]. These results may be applied directly to the FILP 
problems. Therefore,  the use of nonlinear membership functions do not interfere in the computational 
efficiency of the solution method. 

2.1. Numerical example 

Consider the following problem: 

max z = 2x~ + 5x  2 

s.t. 2 x l  - x2 % 9, 

2x I + 8x 2 < 31, 

Xl, X 2 >___ O, 

Xl~ X 2 ~ ~ ,  
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with d 1 = 3 and d 2 = 4 the right margins allowed by the decision-maker. The auxiliary parametric integer 
programming problem is 

max 2x 1 + 5x 2 

s.t. 2x 1 - x  2<  9 + 3 ( 1 - a ) ,  

2x  1 + 8x 2_< 31 + 4 ( 1 - a ) ,  

Xl ,  X 2 :> 0 ,  

X 1, X 2 ~ [~, 

0 < a _ < l .  

Applying the resolution method the following solution is obtained: 

x ( a )  = (5,3),  z ( a )  = 25 Va ~ (0, 0.25], 

x ( a )  = (4,3),  z ( a )  = 23 Va ~ (0.25, 0.75], 

x ( a )  = (3,3),  z ( a )  = 21 Va ~ (0.75, 1], 

and finally, the fuzzy solution is the following fuzzy set: 

S = {(5 ,3) /0 .25 ,  (4 ,3) /0 .75 ,  (3 ,3 ) /1} .  

3. FILP problems with imprecise costs 

Here  we study FILP problems with imprecise coefficients in the objective function, that is, with 
coefficients defined by fuzzy numbers. The problem can be written as 

max Z= ~_~ cjxj (7) 
j ~ N  

s.t. ~ aijx j<bi ,  i ~ M ,  
j ~ N  

xj>O,  j ~ N ,  

X j E ~ ,  j ~ N ,  

where aij, b i ~ ~ are real coefficients, and the costs in the objective are fuzzy numbers, that is, cj ~ F(~),  
F(~)  being the set of real fuzzy numbers, i ~ M, j ~ N. 

Thus, one has the membership functions 

/zj:~---> [0,1], j ~ N ,  (8) 

expressing the lack of precision on the values of the coefficients that the decision-maker has. 
For  each feasible solution, there is a fuzzy number which is obtained by means of the fuzzy objective 

function. Hence,  in order to solve the optimization problem, obtaining both the optimal solution and the 
corresponding fuzzy value of the objective, methods ranking the fuzzy numbers obtained from this 
function may be considered. From this point of view two ways to solve (7) can be approached. The first 
will consist of the use of several well known ranking fuzzy numbers methods, each of which will provide a 
different auxiliary conventional optimization model solving the former problem. The second approach 
will explore the behavior of the representation theorem for fuzzy sets when it is used as tool to solve the 
proposed problem. 
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3.1. The use of fuzzy number ranking methods 

In this section, let X be the set of feasible alternatives of (7), and g a function mapping the set of 
feasible alternatives of (7) into the set of fuzzy numbers, 

g : X ~ F ( ~ ) ,  g ( x ) = c x =  ~] cjxi,  c j ~ F ( ~ ) ,  (9) 
j ~ N  

where extended sum and product by positive real numbers have been considered defined in F(R) by 
means of the Zadeh's  Extension Principle. 

Consider the set of fuzzy numbers A = {g(x)l  x ~X},  Then x* ~ X  will be said to be an optimal 
alternative if the fuzzy number g(x*) is greatest in A. Hence, the problem now is how to determine the 
greatest in A. 

The problem of comparison of fuzzy numbers has been widely investigated in publications. Many fuzzy 
numbers ranking methods (FNRM) can be found for instance in [2] and [10]. This paper  will focus on 
those FNRMs which are defined by means of a ranking function, and particularly by means of a linear 
ranking function (LRF), which is not too restrictive because many well known FNRM can be formulated 
by using linear ranking functions in some way. 

Consider A, B ~ F(~).  A simple method of comparison between them consists of the definition of a 
certain function f : F(R) ~ ~. If  this function f ( .  ) is known, then f ( A )  > f (B) ,  f ( A )  = f(B),  f ( A )  < f (B )  
are equivalent to A > B, A = B, A < B respectively. Usually, f is called an LRF  if 

VA, B e F ( ~ ) ;  V r ~ R  r > O ;  f ( A + B ) = f ( A ) + f ( B ) a n d  f ( r A ) = r f ( A ) .  (lO) 

As it is well known, from this definition several FNRPs may be considered. In [3] an extensive study of 
these LR F  can be found. 

To simplify, triangular fuzzy numbers will be considered. They will be denoted c] = (rj, cj, Ri), and 
their membership functions supposed in the form 

( ( u - r ~ ) / ( c j - r j )  i f r j < u < c j ,  

V u ~ ,  j ~ N ,  t z c , ( u ) = ~ ( R y - u ) / ( R y - c y )  ifc,<_u<_Ri, (11) 

to otherwise. 

Then  the following result holds [11]. Let  us assume a linear expression y = Ejcjxj  in which the c / s  are 
fuzzy numbers with membership functions similar to the ones given by (1]), and xj _> O, j ~ N. Then the 
membership function of the fuzzy number y is given by 

z )  = ( z - r x ) / ( c x  - r x )  

=/0j(z ) 
if x > O, rx < z < cx, 

if x>  O, cx < z < Rx , 

otherwise, 

(12) 

where r = (r  1 . . . .  , rn) , e = ( e l , . . .  , e n) and R = (R 1 . . . . .  Rn). If it is denoted that d = R - c and d' = c - r, 
then d -x and d' -x will be the lateral margins (right and left respectively) of the fuzzy number cx. 

If  we apply different methods of ranking fuzzy numbers to (7) then it is interesting to observe how the 
optimal solution to it will be an optimal solution of a conventional Programming problem with similar 
constraints and a nonfuzzy objective function. This nonfuzzy objectivereflects,  by means of the ranking 
functions, the preference of the decision-maker. 
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Consider a ranking function f mapping each fuzzy set into the real line, f : A --* R. Then a solution for 
(7) can be found from 

max f(cx)  (13) 

s.t. Ax < b ,  
x j e ~  , j e N .  

Therefore according to the ranking function f used, different auxiliary models solving (7) can be 
obtained. Clearly, if we use LRF then the auxiliary problem obtained in (13) will be the following ILP 
problem: 

max ( Y] f (c])xi[ j  e N ,  x e X } .  (14) 
~ j ~ N  

Some of these auxiliary models are shown in the following 
a) The use of the Index of Chang [4] provides the problem 

max {(dx + d'x).  (3cx + dx - d 'x ) /6]Ax  _< b, x i e ~} (15) 

which is nonlinear. 
b) The use of first, second and third Index of Yager [21,22] produces respectively the models 

max {[c + (d - d ') /3]x lax <_ b, xj e ~}, (16) 

max {(cx + d x ) / ( d x  + 1) lAx < b, xj e ~1}, (17) 

max {[c + (d  - d ' ) / 4 ]  x [Ax _< b, xj e ~}. (18) 

3.2. The use of the representation theorem 

Consider Vc e R n, c = (ca , . . . ,  cn), the membership function 

~ ( c )  = in.f ixi(cj) , j e N .  
J 

It is clear, as was shown in [19], that ~(-)  defines a fuzzy objective which induces a fuzzy preorder in X. 
Consequently a fuzzy solution to (7) can be found from the solution of the Multiobjective Parametric 
Integer Linear Programming problem 

max {cx ]Vc e ]~":/.~(c) > 1 - a } .  (19) 
x E X  

But, taking into account that 

t ~ ( c ) > l - a c * i n f ~ j ( c j ) > l - a c ~ , j ( c j ) > l - a ,  j e W ,  ae[O,1], 
J 

from (12), 

,j-(cj-) > 1 - a  ¢~hj-l(1 - a )  <c j<gi ' (1  - a ) ,  j e W ,  

is obtained, and denoting ¢i -= h71, ~ - g y  -1, J e N, the problem (19) can be written as 

m a x { c x [ x ~ X ,  q ) ( 1 - a ) < c < ~ ( 1 - a ) , a e [ 0 , 1 ] }  (20) 

where ~ ( . )  = [~ba(.),..., ~b,(.)] and qt = [~Fx(.),..., qt (.)]. 
Moreover, if F(1 - a), a ~ [0,1], denotes the set of vectors c e •" with all of their components e i in 

the interval [~b/(1 - a), ~j(1 - a)], j e N, (20) can be finally rewritten as 

max {cx]x e X ,  c e F ( 1 - a ) ,  a e [0,1]} (21) 
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which for each a ~ [0,1] is a Multiobjective ILP problem denoted M(a) and having in its objective 
function costs that can assume values in the respective intervals. Different alternatives can be considered 
here: first, following [5], the resolution of all problems in the family {M(a),  a ~ [0,1]} where the fuzzy 
solution for (7) will be obtained from the solution of the following Multiobjective Integer  Programming 
problem: 

max (clx, C2X . . . . . .  x2nx) (22) 

s.t .  A x  _<b, 
x>O, c k ~ E ( 1 - - a ) ,  
a ~ [ 0 , 1 ] ,  k = 1 , 2 , . . . , 2  n, 

where E(1 - a )  o F ( 1  - a )  is the subset constituted by vectors whose j - th component  is equal to either 
the upper  or the lower bound of c i, ~bj(1 - a )  or ~.(1 - a),  j ~ N. 

On the  other hand, according to some results by Ishibuchi and Tanaka,  [14], on the use of interval 
arithmetic for solving LP problems with interval objective functions, the fuzzy solUtion for (7) can be 
found from the parametr ic  solution of the following biobjective parametr ic  problem, P(a) :  

max z ' ( a )  = ( z l ( x ,  o~), zC(x ,  a ) )  ( 2 3 )  

s.t. Ax < b ,  
x i ~ ,  j ~ N ,  

~ [0,1], 

where zl(x, a) and zC(x, a) in the case of  triangular fuzzy numbers  are defined by 

n 
z l ( x , a )  = E [ c i - a ( c j - r i ) ] x j  and 

j = l  
zC(x,a)  =1 ~ [2c i+a(R ,+r i -2c , ) ]x i .  

j = l  

Now, in accordance with the representat ion theorem for fuzzy sets, one can define 

s = U  s(1 - .)  
ot 

which is a fuzzy set giving the fuzzy solution to the former  problem, in which S(1 - a )  is defined as the 
set of  solutions of the auxiliary problem considered according to the two approaches,  (22) or (23), for 
every a ~ [0,1]. 

Concretely, a decision-maker may be able to assign weights/~k ~ [0,1] to each of the objectives taking 
par t  in (22) or (23), such that  Ek/3k = 1. Then  conventional parametr ic  LP problems are obtained. 

Let  us assume (22) and (23) and consider /3 = to  = (w 1 . . . .  , tot) and 13 = u = (91, u 2) then these 
problems are denoted Ms(a) and P~(a) respectively. I f  the set of optimal points of these is defined as 
S~(1 - a )  for every a ~ [0,1], then the fuzzy solution with weight /3  will be given by the fuzzy set 

S~ = [,.J s ~ ( 1  - a ) .  
o~ 

In [11] it was shown that  using weight vectors then P~(a) is a particular case of Ms (a ) .  It  is enough to 
1 1 take to1 = (Vx + ~92), °Jr = 7v2, and ~0 i = 0 for 0 < i < t, and the equivalence is obtained. 
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3.3. Numerical example 

Consider  the following problem: 

max z = C lX  1 "1- 5X 2 

s.t. 2x  1 - x 2 < 12, 

2x  1 + 8X 2 ~ 35, 

Xi>__O , x j ~ N ,  j ~ N ,  

where  c = (1, 3, 5) .  
We  have the following functions:  

~bi(1 - a )  = 3 - 2 a ,  1/t1(1 - a )  = 3 + 2 a ,  

and the associated interval parametr ic  p roblem is: 

max Z=ClX ~ + 5x 2 

s.t. 2x  1 - x  z < 12, 

2x  1 q- 8X 2 ~ 35, 

3 -  2 a  < c  1 < 3 + 2 a ,  

xj>O, Xy~N,  j ~ N ,  a ~ [ 0 , 1 ] .  

F r o m  (23) the  auxiliary multiobjective ILP  problem is: 

max { ( 3 -  2 a ) x l  +5x2, (3 + 2 a ) x  1 + 5x2} 

s.t. 2x  I - x  2 < 12, 

2x  I q- 8X 2 ~___ 35, 

xj>_O, x j ~ N ,  j ~ N ,  a ~ [ O , 1 ] .  

Next, we solve the above auxiliary multiobjective ILP  problem for the following weight  vectors: 
/3 = (1,0) a n d / 3  = (0.5,0.5) 

F o r / 3  = (1,0) the auxiliary parametr ic  p roblem is: 

max z = (3 - 2 a ) x  1 + 5 x  2 

s . t .  2 x  1 --X 2 _~ 12, 

2x  1 + 8X 2 ~ 35, 

xj>O, X j ~ N ,  j ~ N ,  

the opt imal  solution of  

x ( a )  = (7 ,2) ,  

= ( 5 , 3 ) ,  

x ( a )  = (1 ,4) ,  

.St3 = { ( 7 , 2 ) / 0 . 2 5 ,  

~ [0,1],  

which is 

z ( a ) = 3 1 - 1 4 a  'Ca ~ [0, 0.25],  

z ( a )  = 3 0 -  10a  Va ~ [0.25, 0.875], 

z ( a ) = 2 3 - 2 a  V a ~ [ 0 . 8 7 5 , 1 ] ,  

( 5 , 3 ) / 0 . 8 7 5 ,  ( 1 , 4 ) / 1 } .  
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For /3  = (0.5,0.5): 

max z = 3 x  1 + 5 x  2 

s.t. 2xl  - x 2 <  12, 

2 x  I + 8 x  2 < 35 ,  

xy>_O, x j ~ N ,  j ~ N ,  a ~ [ 0 , 1 ] ,  

and the corresponding optimal solution 

x (a )  : (7,2),  z (a )  = 31 Va ~ [0,1], S,  = { (7 ,2 ) /1} .  

Using Ranking Function the auxiliary problem obtained is 
a) Using the ranking function of Chang, 

max {2Xl 2+  3.33x~x 212x 1 - x 2 <  12, 2x 1 + 8x 2_<35, x j >  0, x j ~  ~,  j ~ N } ,  

the optimal solution of which is x* = (7,2). 
b) Using the ranking functions of Yager, 

max {3x I + 5x 212x I - x 2 < 12, 2x I + 8x 2 < 35, xj > O, xj ~ ~, j ~ N}, 

max  { 5 X l + 5 X 2 1 2 x 1 - - x 2 < 1 2 , 2 x l + 8 x z < 3 5 ,  xi>O, 1 -I- 1 . . . .  

max {3x 1 -t- 5X 212x I - x  2 < 12, 2x 1 q- 8X 2 _~< 35, X i > O, Xj ~ N, j ~ N } ,  

and the corresponding optimal solutions are x* = (7,2), x* = (0,4) and x* = (7,2) respectively. 

Remark.  As we can see according to the solution method used we have different solutions, which is in 
accordance with the imprecise raising of the problem. When the representation theorem is used then a 
fuzzy solution is obtained, which contains good alternatives, and hence the decision maker eventually 
makes the final choice himself. 

4. FILP problems with fuzzy numbers as coefficients of  the technological matrix 

Now, we consider FILP problems with fuzzy numbers defining the set of constraints. These can be 
formulated as follows: 

max z = c x  (24) 

s.t. ~, aiix i < b i, i ~ M, 
j ~N  

xj>O, j ~ N ,  

x j~[~,  j ~ N ,  

where aij, b i ~ F(E). The symbol < means, as in (2), that the decision-maker permits certain flexible 
accomplishment for the constraints. Thus, the following membership functions are considered: 
For each row (constraint) in (24), 

3 ~ i E F ( R  ) suchtha t  tzi:R---> [0,1], i ~ M ,  (25) 

which defines the fuzzy number on the right-hand side. 
For each i ~ N and j ~ N, 

:~]'~ij E~_ F(R) such that ].Lij : ~ "'> [0,1], (26) 
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defining the fuzzy numbers in the technological matrix. 
For each row of (24), 

d: F(R) (0,1], (27) 
giving, for every x ~ R n, the accomplishment degree of the fuzzy number 

ailxl +qi2x2+ . . .  +ainXn, i ~ N ,  

with respect to the i-th constraint, that is, the adequacy between this fuzzy number and the correspond- 
ing one bi with respect to the i-th constraint. 

L e t  f i  be a fuzzy number, fixed by the decision maker, giving his allowed maximum violation in the 
accomplishment of the i-th constraint. Then as an auxiliary problem to solve (24), one can propose the 
following one: 

n 

max ~ cix j (28) 
j=l 

n 

s . t .  E a i j x j [ ~ b i - I - t i ( 1 - a ) ,  i E M ,  
j=l 

x/>O,  a~(O,1] ] ~ N ,  

where ~ represents a relation between fuzzy numbers. Moreover, according to the characteristics of 
the relation [-<-], different models of conventional LP problems are obtained. Considering this relation as 
a ranking function, the auxiliary model obtained is the following: 

max cx (28) 

s.t. f ai jx  ] < f ( b i + t i ( 1 - v ~ ) )  , i ~ M ,  
i 

xj>_O, a ~ ( 0 , 1 ] ,  j ~ N ,  

and, if we use LRF, then (28) becomes the following parametric LP problem: 
n 

max ~ cjxi (29) 
j = l  

n 

s .t .  Ef(aij)xj<_f(bi ) + f ( t i ) ( 1 - a ) ,  i~M,  
j = l  

x]>__0, a ~ ( 0 , 1 ] ,  j ~ N .  

4.1. Numerical example 

Consider the following problem: 

max z =  2Xl +5x2 

s.t .  2 x l  - l x2 _< 9, 

2Xl + 8x2 _< 31, 
X1, X 2 >___ 0 ,  

X l ,  X 2 E [~, 
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with 
al l  = (1, 2, 3), a12 = (0.5, 1, 2), b I = (7, 9, 10), t 1 = (2.5, 3i 4,) and 
q21 = (1.5, 2, 3.5), a22 = (7, 8, 10), b 2 = (29, 31, 35), t 2 = (3, 4, 6). 

By means of (28) the auxiliary problem is written as 

max z = 2 x  1 + 5 x  2 

s . t .  2 x  1 - ! x 2 ~ ] 9  -I- 3(1 - a ) ,  

2x l  + 8x2 ]31 + 4(1 - 

X l ,  X 2 ~ 0 ,  

X1, X 2 (~ ~ ,  a ~ (0,1],  

and applying the ranking function for fuzzy numbers,  the auxiliary parametr ic  models which represent  
the preferences according to the ranking method are obtained. In this example, we apply a linear ranking 
function, the first index of Yager. 

a) Using the first index of Yager, 

max z = 2 X  1 q- 5 x  2 

s.t. 2x  1 -- 1.166x 2 _< 8.666 + 3.166(1 -- a ) ,  

2.333x I + 8.333x 2 _< 31.666 + 4.333(1 -- a ) ,  

X1, X 2 ~ O, 

X1, X 2 ~ N ,  a ~ (0,1],  

whose optimal solution is 

S = {(7 ,2) /0 .052 ,  (4 ,3) /0 .384 ,  (6 ,2) /0 .683 ,  (3 ,3) /0 .923 ,  ( 5 , 2 ) / 1 } .  

Note  how different this solution is f rom the corresponding one in the parallel model without fuzzy 
numbers  in the technological matrix shown in Section 2.1. 

I f  we use nonlinear ranking functions then nonlinear parametr ic  programming problems are obtained, 
which makes its solution more  complicated. For example, if we use the index of Chang, [4], we obtain the 
next auxiliary problem. 

b) Using the index of Chang, 

max z = 2 x  1 + 5 x  2, 

s.t. (2x  I + 1 .5x2) (x  1 - 0.583x2) < [3 + 1.5(1 - a ) ]  [4.333 + 1.583(1 - a ) ] ,  

(2x  I + 3x2)(1 .666x 1 + 4.166x2) < [6 + 3(1 - a ) ]  [15.833 + 2.166(1 - a ) ] ,  

X l ,  X 2 ~__ O, 

xl ,  x 2 ~ N ,  a ~ ( 0 , 1 ] ,  

which is a nasty nonlinear parametr ic  programming problem. 

5. Conclusions 

In this paper  we study three models for dealing with the lack of precision of a vague nature in the 
formulation of ILP problems, with either fuzzy constraints, or fuzzy numbers  in the objective function or 
fuzzy numbers  defining the set of constraints. Some approaches based on the representat ion theorem 
and on F N R P  have been provided to solve them. 
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T h e  c o m p u t a t i o n a l  b u r d e n  of  the  auxi l iary m e t h o d  is in r e l a t ion  to the  n u m b e r  of  auxil iary in teger  
l inea r  p r o g r a m m i n g  p r o b l e m s  tha t  we mus t  solve. 

Al l  the  mode l s  o b t a i n e d  in the  p a p e r  have express ions  for  t r i angu la r  fuzzy numbers ,  bu t  all of  t h e m  
may  be  easi ly  r ewr i t t en  for  the  case  of  fuzzy n u m b e r s  of  L R  kind.  

As  we have  a l r eady  said, the  use  of  the  r e p r e s e n t a t i o n  t h e o r e m  gives us in t ege r  p a r a m e t r i c  auxil iary 
p rob lems ,  t he  solu t ions  of  which  a re  used  for  bu i ld ing  the  fuzzy so lu t ion  of  the  models .  T h e  fuzzy 
so lu t ions  a re  in a cco rdance  wi th  the  imprec i se  ra is ing of  the  p rob lems ,  and  con ta in  good  a l ternat ives ,  
and  h e n c e  the  dec i s ion  m a k e r  eventua l ly  makes  the  f inal  choice  himself .  O n  the  o t h e r  hand,  when  we use  
rank ing  me thods ,  each  m e t h o d  has  its own advan tages  over  the  o the r s  in some pa r t i cu l a r  s i tuat ions,  the  
choice  of  a rank ing  m e t h o d  has  effects  on  the  resul ts  as we can see in the  examples ,  and  also the  dec is ion  
m a k e r  mus t  choose  the  f inal  r ank ing  m e t h o d  accord ing  to  his p re fe rences .  

Final ly ,  we  mus t  also po in t  ou t  the  necess i ty  of  deve lop ing  an  in terac t ive  dec is ion  suppor t  system in 
fuzzy in t ege r  p r o g r a m m i n g  p rob lems ,  which  would  al low in te l l igent  decis ions  accord ing  to the  ac tua t ion  
p r e f e r e n c e s  o f  the  dec is ion  makers .  This  p r o b l e m  will  be  dea l t  wi th  in fu tu re  pape r s .  
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