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Abstract

Genetic algorithms are adaptive methods that use principles inspired by

natural population genetics to evolve solutions to search and optimization

problems. Genetic algorithms process a population of search space solutions

with three operations: selection, crossover and mutation.

A great problem in the use of genetic algorithms is premature convergence;

the search becomes trapped in a local optimum before the global optimum

is found. Fuzzy logic techniques may be used for solving this problem. This

paper presents one of them: the design of crossover operators for real-coded

genetic algorithms using fuzzy connectives and its extension based on the

use of parameterized fuzzy connectives as tools for tackling the premature

convergence problem.
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1 Introduction

Genetic algorithms (GAs) are search algorithms that use operations found in

natural genetics to guide the trek through a search space. GAs are theoretically

and empirically proven to provide robust search in complex spaces, giving a valid

approach to problems requiring e�cient and e�ective search ([6]).

A GA starts with a population of randomly generated solutions, chromosomes,

and advance towards better solutions by applying genetic operators modeled on the

genetic processes occurring in nature. In these algorithms we maintain a population

of solutions for a given problem; this population undergoes evolution in a form of

natural selection. In each generation, relatively good solutions reproduce to give

o�spring that replace the relatively bad solutions which die. An evaluation of

�tness function plays the role of the environment to distinguish between good and

bad solutions.

�
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Although there are many possible variants of the basic GA, the fundamental

underlying mechanism operates on a population of chromosomes (representing pos-

sible solutions to the problem) and consists of the following operations which are

applied during each generation t:

1. evaluation of individual �tness,

2. formation of a gene pool by choosing individuals in proportion to their relative

�tness,

3. recombination by means of the genetic operator crossover and mutation.

The process is iterated until the system ceases to improve or a given generation

T is reached.

Fixed-length and binary encoded strings for representation solution have dom-

inated GA research, since there exist theoretical results that show them to be the

most appropriate, and they are amenable to simple implementation. But the GA's

good properties do not stem from the use of bit strings ([1]). For this reason,

the path has been lain towards the use of alphabets with a higher cardinal, fol-

lowed by the development of new genetic operators (crossover and mutation) on

these alphabets. Non binary encodings include real number representations, which

would seem particularly natural when we are tackling optimization problems of

parameters with variables in continuous domains. Then a chromosome is a vector

of oating point numbers whose size is kept the same as the length of the vector

which is the solution to the problem. GAs with this type of encoding will be called

real-coded GAs (RCGAs).

The use of real parameters makes it possible to use large domains (even unknown

domains) for the variables, which is di�cult to achieve in binary implementations,

where increasing the domain would mean sacri�cing precision, assuming a �xed

length for the chromosomes. Another advantage when using real parameters is their

capacity to exploit the graduality of the functions with continuous variables (where

the concept of graduality refers to the fact that slight changes in the variables

correspond to slight changes in the function). Lastly, they allow the tools that

handle non-trivial restrictions to be designed more easily, and the representation

of the solutions is very close to the natural formulation of many problems.

The mutation operator arbitrarily alters one or more components (called genes)

of a selected structure so as to increase the structural variability of the population,

e.g., it explores the search space. Under binary coding, given a gene with value \0",

it is replaced by \1", and viceversa. Under real coding di�erent versions of this

operator were presented ([9]). Each gene of each chromosome in the population

undergoes a random change according to a probability de�ned by the mutation

rate, the mutation probability, p

m

.

The crossover operator exploits the available information from the population

about the search space. It combines the features of two parent structures to form

two similar o�spring. The classical crossover operator under binary coding builds
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an o�spring by linking together two gene segments, each one belonging to a di�erent

parent. This operator is applied with a probability of performance, the crossover

probability, p

c

, that determines the number of chromosomes in the population to

be crossed. [7, 9] report crossover operator models under binary and real coding.

The crossover operator plays a central role in the GA's performance. It could

be considered to be one of the algorithm's de�ning characteristics, and it is one

of the components to bear in mind for improving the GA's behaviour ([12]). The

mutation operator is a complement of the crossover operator. It is needed to avoid

the loss of useful information produced by the crossover.

An important problem in the use of GAs is premature convergence; the search

becomes trapped in a local optimum before the global optimum is found. This is

produced by the lack of diversity in the population and a disproportionate exploita-

tion/exploration relationship; an adequate balance between a broad search and a

su�cient re�nement is not established.

Fuzzy logic techniques may be used to solve these problems. An attempt con-

sists of the use of fuzzy logic based systems for the dynamic control parameters

of RCGA (p

m

, p

c

, population size, etc) in such a way that the correct exploita-

tion/exploration relationship and suitable diversity levels became established ([8,

11]). Another one uses fuzzy connectives to design crossover operators ([8]).

In this paper we present crossover operators for RCGAs based on the use of

fuzzy connectives, and their extension based on the use of parameterized fuzzy

connectives for designing dynamic crossover operators with the main objective of

introducing population diversity in the GA search.

2 Design of Crossover Operators for RCGA us-

ing Fuzzy Connectives

As has already been pointed out, a chromosome is a vector of real numbers, and

its precision will be marked by that of the computer under which the algorithm is

carried out. The size of the chromosome is kept the same as the length of the vector

that is the solution to the problem; in this way, each gene represents a variable

of the problem. The values of the chromosome genes are forced to remain in the

interval established by the variable that the chromosome represents, so the genetic

operators must preserve this requirement.

In [3] it was pointed out that the crossover operator is a key point for solving the

premature convergence problem. Thus, solutions to this problem may be found by

designing new alternatives to this operator. Here, the development of such crossover

operators is attempted. We present crossover operators for RCGA based on the

use of fuzzy connectives: t-norms, t-conorms, average functions and generalized

compensation operators ([14, 15]) which induce di�erent diversity levels in the

population, and therefore the premature convergence problem may be controlled.

Let us assume that the chromosomes C

1

= (c

1

1

; c

1

2

; :::; c

1

n

) and C

2

= (c

2

1

; c

2

2

; :::; c

2

n

)
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are selected to apply the crossover operator to them, and two genes c

1

i

and c

2

i

to

be crossed over, c

1

i

; c

2

i

2 [m

i

;M

i

], being x

i

= min(c

1

i

; c

2

i

) and y

i

= max(c

1

i

; c

2

i

). It

seems reasonable to imagine the possibility of obtaining good descendents outside

this interval. In short, the interval of action of the gene i, [m

i

;M

i

], may be divided

into three regions [m

i

; x

i

], [x

i

; y

i

], and [y

i

;M

i

], where good descendents may be

obtained; even considering a region [x

0

i

; y

0

i

] with x

0

i

� x

i

and y

0

i

� y

i

would seem

reasonable. Graphically

Figure 1: Action interval for a gene

We shall now go on to put forward a set of crossover operators that allow

descendents to be obtained in the previous intervals. In order to do that, we use

four functions F , S, M and L de�ned from [a; b] � [a; b] in [a; b], a; b 2 <, which

ful�ll:

(P1) 8x; y 2 [a; b] F (x; y) � min(x; y),

(P2) 8x; y 2 [a; b] S(x; y) � max(x; y),

(P3) 8x; y 2 [a; b] min(x; y) �M(x; y) � max(x; y),

(P4) 8x; y 2 [a; b] F (x; y) � L(x; y) � S(x; y),

(P5) F , S, M , and L are monotone non-decreasing.

Let us assume that Q 2 fF; S;M;Lg, and C

1

= (c

1

1

: : : c

1

n

) and C

2

= (c

2

1

: : : c

2

n

)

are two chromosomes that have been selected to apply the crossover operator to

them. We may generate the chromosome H = (h

1

: : : h

n

) as

H = Q(C

1

; C

2

); h

i

= Q(c

1

i

; c

2

i

); i = 1; :::; n:

With the t-norm operators, t-conorms, averaging functions and generalized

compensation operators used as fuzzy connectives, we shall associate F with a

t-norm, S with a t-conorm, M with an averaging operator and L with a general-

ized compensation operator. First, we need a set of linear transformations to be

able to apply these operators under the gene de�nition intervals.
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Let O be an operator belonging to the set formed by the t-norms, t-conorms,

averaging functions and generalized compensation operators. For each position

i 2 f1; :::ng, the following operations will be carried out:

1. Transform c

1

i

and c

2

i

into the values s

1

i

; s

2

i

2 [0;1] such that

s

k

i

=

c

k

i

�m

i

M

i

�m

i

; k = 1;2:

Using this step, we transform the values of the genes so that the operator

may be applied to them.

2. Apply the operator O(s

1

i

; s

2

i

) and calculate the value h

i

:

h

i

= m

i

+ (M

i

�m

i

) �O(s

1

i

; s

2

i

);

so that the gene h

i

is in relation to its original limits, h

i

2 [m

i

;M

i

].

3. h

i

will be the value for the gene at position i of the chromosome resulting

from the crossover of the chromosomes C

1

and C

2

.

Complying with a set of fuzzy connectives, (T

j

;G

j

; P

j

;

^

C

j

), j = 1; :::; k, a set of

functions F

j

, S

j

, M

j

and L

j

j = 1; :::; k is built as we describe below:

F

j

(c

1

i

; c

2

i

) = m

i

+ (M

i

�m

i

) � T

j

(s

1

i

; s

2

i

)

S

j

(c

1

i

; c

2

i

) = m

i

+ (M

i

�m

i

) �G

j

(s

1

i

; s

2

i

)

M

j

(c

1

i

; c

2

i

) = m

i

+ (M

i

�m

i

) � P

j

(s

1

i

; s

2

i

)

L

j

(c

1

i

; c

2

i

) = m

i

+ (M

i

�m

i

) �

^

C

j

(s

1

i

; s

2

i

)

These crossover operators have di�erent features: the F - and S-crossovers show

exploration, the M-crossover operators show exploitation and the L-crossover show

relaxed exploitation.

3 Example

We have carried out di�erent experiments that help to compare the behaviour of

a binary coded GA, and some RCGAs with crossover operators that have been

proposed in other publications, with a set of algorithms based on the crossover

operators proposed, which use the fuzzy connectives (T

j

; G

j

; P

j

;

^

C

j

), j = 1; :::;5

showed in Table 1.
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t-norm t-conorm Averaging Operator

Logical Product Logical Sum

T

1

(x; y) = min(x; y) G

1

(x; y) = max(x; y) P

1

(x; y) = (1� p)x+ py

Hamacher Product Hamacher Sum f(x) =

1�x

x

T

2

(x; y) =

xy

x+y�xy

G

2

(x; y) =

x+y�2xy

1�xy

P

2

(x; y) =

1

y�yp�xy+xp

xy

+1

Algebraic Product Algebraic Sum f(x) = � log x

T

3

(x; y) = xy G

3

(x; y) = x+ y� xy P

3

(x; y) = x

1�p

y

p

Einstein Product Einstein Sum f(x) = log

2�x

x

T

4

(x; y) =

xy

1+(1�x)(1�y)

G

4

(x; y) =

x+y

1+xy

P

4

(x; y) =

2

1+(

2�x

x

)

p

(

2�y

y

)

1�p

Bounded Product Bounded Sum f(x) = 1� x

T

5

(x; y) = 0 _ (x + y � 1) G

5

(x; y) = 1 ^ (x+ y) P

5

(x; y) = (1� p)x+ py

Table 1: Set of Operators

Each t-conorm is dual to the t-norm shown to its left. The averaging function

is calculated from the formula of the quasi-arithmetic averages, using as the f

function the additive generator function of the t-norm placed in the same line,

except for the �rst one which, not being Archimedean, does not have a generator

function, and we shall use f (x) = x. This function is shown in the upper part of

the cells where these averaging operators are speci�ed. For each family of operators

in Table 1, a generalized compensation operator

^

C

j

will be considered, de�ned as

follows:

^

C

j

= P

j

(T

j

; G

j

)

For the family of Logical operators, we shall consider

^

C

1

= T

1�p

1

:S

p

1

.

The GA families are di�erentiated according to how they carry out the following

two steps:

1. Generation of o�spring using the di�erent crossover operators.

2. Selection of o�spring resulting from the crossover which will form part of the

population.

A proposal is the following: For each pair of chromosomes from a total of

1

2

�p

c

�N (p

c

crossover probability, N population size), four o�spring are generated,

the result of applying speci�c functions F , S, M , and L to them. The two most

promising o�spring of the four replace their parents in the population.

This selection strategy introduces a high exploitation level with an underlying

exploration caused by the use of the di�erent Q-crossover operators.

Next, the results on Rosenbrock's Generalized function ([4]) are shown. The

analytical and graphical formulation together with the element that represents the

global optimum (minimum) are:

f(~x) =

n�1

X

i=1

(100 � (x

i+1

� x

2

i

)

2

+ (x

i

� 1)

2

)
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�5:12 � x

i

� 5:12

min(f ) = f (1; : : : ;1) = 0

Figure 2:

where n = 5.

A set of nine RCGA based on crossover operators presented in the literature

were considered for the experiments (RGA1-RGA9). Below there is a table indicat-

ing the type of crossover and mutation used by each of them, together with their

names.

Algorithms Mutation Crossover

RGA1 Random Simple [13, 17]

RGA2 Non-Uniform Simple [13, 17]

RGA3 Random Uniform Arithmetical [13]

a = 0:35

RGA4 Non-Uniform Uniform Arithmetical [13]

a = 0:35

RGA5-� Non-Uniform BLX-� [5]

(� = 0; :15; :3; :5)

RGA6 Non-Uniform Discrete [16]

RGA7 Non-Uniform Linear [17]

RGA8 Non-Uniform Extended Intermediate [16]

RGA9 Non-Uniform Extended Line [16]

Table 2: Real Coded Genetic Algorithms

By BGA we denote a binary coded GA with 30 genes per variable, multiple

crossover with two points and proportional selection probability.

By NRGA1; :::; NRGA5 we denote a family of GA based on the fuzzy connec-

tives crossover and the generation and selection of o�spring proposals, using the

families of fuzzy connectives: Logical, Hamamcher, Algebraic, Einstein and Bound,

respectively. In all cases we use the stochastic universal sampling ([2]) selection

procedure and the elitist model. We carried out our experiments using the fol-

lowing parameters: the population size is 61 individuals, the crossover probability
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p

c

= 0:6, and the probability of chromosome update p

u

= p

m

� 5 = 0:6, and the pa-

rameter b used by the non- uniformmutation is 5. We executed all the algorithms 3

times, each one with 100, 500 and 5000 generations, and present the average value

of them in Table 3.

Algorithms 100 500 5000

BGA 1.1262e+01 3.6069e+00 1.9045e+00

RGA1 3.0446e+01 2.0070e+01 6.0669e+00

RGA2 6.9230e+00 2.1448e+00 4.7343e-01

RGA3 4.1941e+00 8.6031e+00 6.3745e+00

RGA4 3.7915e+00 2.9624e+00 8.9244e-01

RGA5-0.0 4.5504e+00 2.3454e+00 9.1602e-01

RGA5-0.15 3.2157e+00 2.9556e+00 7.0929e-01

RGA5-0.3 3.7477e+00 1.5844e+00 4.8854e-01

RGA5-0.5 8.2653e+00 2.1099e+00 1.7329e+00

RGA6 5.5393e+00 2.8379e+00 3.5106e-01

RGA7 4.7115e+00 1.8487e+00 5.1499e-01

RGA8 4.6861e+00 3.5337e+00 5.3325e-01

RGA9 4.2196e+00 2.9374e+00 3.8014e-02

NRGA1 4.1431e+00 1.9687e+00 4.9364e-03

NRGA2 1.2378e+01 7.3868e-01 4.0848e-02

NRGA3 1.0031e+01 3.5037e+00 1.0099e+00

NRGA4 1.2425e+01 4.3985e+00 1.8347e+00

NRGA5 6.0121e+00 2.6930e+00 1.2150e+00

Table 3: Results

The best behaviour corresponds to the Logical crossover operator. This op-

erator together with the o�spring selection mechanism o�er a suitable exploita-

tion/exploration balance, although we must point out that this mechanism is more

time expensive because need more evaluations. Other o�spring selection mecha-

nisms are proposed in [10].

4 Design of Dynamic Crossover Operators Using

Parameterized Fuzzy Connectives

An idea for avoiding the premature convergence consists in allowing the exploration

in the beginning of the search process and the exploitation at the end of it. With

the exploration the diversity becames greater, increasing the probability of �nding

zones which are closed to optimal solutions. Then, supposing that the popula-

tion have information about these zones, the convergence towards the optimum is

produced through exploitation.

A mutation operator for RCGA called non-uniform mutation ([13]) is based

on the aforementioned principle. The proportion in which a real gene is mutated

decreases as the GA's execution advance. Thus, the changes produced on the genes

are smaller in the last generations producing a local tuning.
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We may extend the use of the crossover operators presented in order to follow

the aforementioned ideas. Di�erent fuzzy connectives could be used during the

GA's run. Firstly, we shall use fuzzy connectives that produce high diversity levels,

and later other ones producing a su�cient diversity level to allow the convergence

to be reached.

We present a set of dynamic crossover operators based on the use of parameter-

ized t-norms, t-conorms and averaging functions ([14, 15]). In the �rst stages, we

shall use t-norms and t-conorms distant from the minimum t-norm and maximum

t-conorm respectively, so high diversity is induced. Later, t-norms close to the

minimum and t-conorms close to the maximum are considered. The convergence

is caused and the good behaviour of the logical fuzzy connectives will be kept. As

was shown in Table 3, these operators are in general the most pro�table.

To do this, we propose a set of crossover operators based on the functions

families: fF

p

g

p=1;:::;G

, fS

p

g

p=1;:::;G

, and fM

p

g

p=1;:::;G

, G 2 N de�ned from [a; b]�

[a; b] in [a; b], a; b 2 <, which ful�ll the corresponding P1-P5 properties and:

(P6) 8x; y 2 [a; b]; lim

p!G

F

p

(x; y)

�

=

min(x; y)

(P7) 8x; y 2 [a; b]; lim

p!G

S

p

(x; y)

�

=

max(x; y)

(P8) 8x; y 2 [a; b]; min(x; y) � M

p

(x; y) �

x+y

2

or

x+y

2

� M

p

(x; y) � max(x; y)

and 8x; y 2 [a; b]; lim

p!G

M

p

(x; y)

�

=

x+y

2

Let us consider a GA with a maximum number of generations � and C

t

1

=

(c

1t

1

; :::c

1t

n

) and C

t

2

= (c

2t

1

; :::c

2t

n

) two chromosomes that were selected in the gener-

ation t to apply the crossover operator to them. If Q

p

2 fF

p

; S

p

;M

p

g p = 1; :::; �

we may generate the chromosome H

t

= (h

t

1

; :::; h

t

n

) as

H

t

= Q

t

(C

t

1

;C

t

2

); h

t

i

= Q

t

(c

1t

i

; c

2t

i

); i = 1; :::; n:

We shall build functions families with the (P6) and (P7) properties using the

parameterized t-norms and t-conorms described in Table 4. Table 5 shows the

properties of the parameterized t-norms in this table. The properties of the pa-

rameterized t-conorms are analogous. We must point out that T

6

is the drastic

t-norm (the smallest t-norm).
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Type t-norm t-conorm

Yager T

q

1

(x; y) = G

q

1

(x; y) = 1^

q

p

x

q

+ y

q

(q > 0) = 1� (1 ^

q

p

(1� x)

q

+ (1� y)

q

)

Frank T

q

2

(x; y) = log

q

[1 +

(q

x

�1)(q

y

�1)

q�1

] G

q

2

(x; y) =

(q > 0) = 1� log

q

[1 +

(q

1�x

�1)(q

1�y

�1)

q�1

]

(q 6= 1)

Dombi T

q

3

(x; y) =

1

1+

q

p

(

1�x

x

)

q

+(

1�y

y

)

q

G

q

3

(x; y) = 1�

1

1+

q

p

(

x

1�x

)

q

+(

y

1�y

)

q

(q > 0)

Dubois T

q

4

(x; y) =

xy

x_y_q

G

q

4

(x; y) = 1�

(1�x)(1�y)

(1�x)_(1�y)_q

(0 � q � 1)

Table 4: Dynamic Operators

Tipo T

6

T

5

T

4

T

3

T

2

T

1

Yager 0 1 1

Frank 1 ! 1 ! 0

Dombi 0 1 1

Dubois 1 0

Table 5: Properties of the Dynamic Operators

We may observe that there is an order relation in the convergence rate towards

the minimum among these operators, which is: Yager, Dombi, Frank and Dubois.

fF

p

g

p=1;:::;�

and fS

p

g

p=1;:::;�

functions families may be built using a param-

eterized t-norm T

q

converging on the minimum and a parameterized t-conorm

converging on the maximum, respectively ([14, 15]). To do so, we need a function

�(�) for transforming the values of p, f1; :::; �g, into the range of the parameter q

such as q = �(p) with lim

p!�

�(p) = �

�

and T

�

�

�

=

min(x; y), G

�

�

�

=

max(x; y).

We may obtain a family of functions fM

p

g

p=1;:::;�

using parameterized averag-

ing functions. An example of these functions is:

8x; y 2 [0;1], P

q

(x; y) =

q

r

x

q

+ y

q

2

�1 � q � 1:

which is computed through the generalized mean de�ned by:

Mg(x; y) = f

�1

((1� �)f (x) + �f (y)) (0 � � � 1)

with f (x) = x

q

and � =

1

2

.

The properties of these operators are ([14]):
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q P

q

(x; y)

�1 x ^ y

�1

2xy

x+y

0

p

xy

1

x+y

2

+1 x _ y

Table 6: Properties of P

q

(�; �)

We build fM

p

g using P

q

with q =  (p) where

i)  : [1; � ]! [�1;1] is an increasing monotonous function, or

ii)  : [1; � ]! [1;+1] is a decreasing monotonous function.

Four GAs based on the use of the dynamic crossover operators presented were

built, which were denoted as DRGA1-DRGA4.

For each pair of chromosomes from the total population that undergoes crosso-

ver, four o�spring are generated, the result of applying functions F

p

, S

p

, and two

M

p

, each one ful�lling a di�erent part of (P8). The two most promising o�spring

of the four replace their parents in the population.

Table 7 shows the �(�) functions related with each one of the dynamic operators

used.

Operators �(p)

Yager

1

ln(

�+1

p

)

Frank ln(

�+1

p

)

Dombi

1

ln(

�+1

p

)

Dubois

1

p

p

Table 7: Functions �(�)

The function  (p) used is 1 + ln(

p

�

) as increasing monotonous function and

1 + ln(

�

p

) as decreasing monotonous function.

The average results returned by these algorithms under the above conditions

are the following:

Algorithms 100 500 5000

DRGA1 5.149822e+00 3.004678e+00 8.060713e-01

DRGA2 8.111676e+00 2.855141e+00 5.509746e-01

DRGA3 8.175044e+00 2.343028e+00 8.944534e-01

DRGA4 2.073980e+00 8.210735e-01 1.406304e-03

Table 8: Results of DRGA1-DRGA4

The results show that the DRGA1-DRGA3 algorithms do not improve the re-

sults of Table 3. The reason is that the dynamic operators of Yager, Frank and
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Dombi have a slow convergence towards the logical operators which are the ones

with best behaviour. For that, these operators induced higher diversity levels dur-

ing the GA's run than the Dubois operators, which cause smaller local tuning at

the end of the GA. The case of DRGA4 is di�erent: it shows the best results for 100

and 5000 generations, and the second place for 500 generations. The rapid conver-

gence towards the logical operators shown by the Dubois operators (see Table 5)

allows diversity at the beginning to be introduced and a similar behaviour as the

algorithm NRGA1 (which is de�ned using Logical operators) to be reached quickly.

The DRGA4 algorithm induced a strong exploitation/exploration relationship, of-

fering good diversity levels.

5 Conclusions

In this paper we have presented the use of fuzzy connectives to design new crossover

operators for RCGA. The results obtained show that by using this type of oper-

ators the performance of the RCGA is improved. These operators were de�ned

for inducing di�erent diversity levels in the population. This is a very important

feature against premature convergence since a correct exploitation/exploration bal-

ance may be established and so this problem will be controlled. With the use of

the dynamic operators the diversity levels may be changed during the GA's run,

in such a way that this will be high at the beginning and slow at the end, showing

a good GA performance.
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