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Abstract 

In a linguistic framework, several group decision making processes by direct approach are presented. These processes 
are designed using the linguistic ordered weighted averaging (LOWA) operator. To do so, first a study is made of the 
properties and the axiomatic of LOWA operator, showing the rationality of its aggregation way. And secondly, we 
present the use of LOWA operator to solve group decision making problems from individual linguistic preference 
relations. 
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1. Introduction 

Decision making is a usual task in human activ- 
ities. It consists of finding the best option from 
a feasible set. Many decision making processes, in 
the real world, take place in an environment in 
which the goals, constraints and consequences of 
possible actions are not precisely known. In these 
cases, probability theory has always allowed one to 
deal quantitatively with that lack of precision. 
However, when the lack of precision is of a qualitat- 
ive nature too, the use of other techniques is 
necessary. 

Fuzzy set theory applied to decision making 
allows a more flexible framework, where by it is 
possible to simulate humans' ability to deal with 
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the fuzziness of human judgments quantitatively, 
and therefore to incorporate more human consist- 
ency or "human intelligence" in decision making 
models. Different fuzzy decision making models 
have been proposed. A classification for all of them, 
depending on the number of stages before the deci- 
sion is reached, is shown in [-20]. We are interested 
in one fuzzy model in one-stage decision making, 
i.e., a fuzzy multi-person decision making model 
applied in group decision theory. 

A group decision making process may be defined 
as a decision situation in which (i) there are two or 
more individuals, each of them characterized by his 
or her own perceptions, attitudes, motivations, and 
personalities, (ii) who recognize the existence of 
a common problem, and (iii) attempt to reach a col- 
lective decision. 

In a fuzzy environment, a group decision prob- 
lem is taken out as follows. It is assumed that there 
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exists a finite set of alternatives X = {xl . . . .  , x,} as 
well as a finite set of experts E = {el . . . .  , era}, and 
each expert ek~ E provides his preference relation 
on X, i.e., Pk c X x X,  and #p~(Xi, x j) denotes the 
degree of preference of alternative x~ over x j, 
#p~(Xi, xj) ~ [-0, 1]. 

Sometimes, an individual may have vague know- 
ledge about the preference degree of the alternative 
x~ over xj and cannot estimate his preference with 
an exact numerical value. Then, a more realistic 
approach may be to use linguistic assessments in- 
stead of numerical values, i.e., supposing that the 
variables which participate in the problem are as- 
sessed by means of linguistic terms [6, 11, 21, 29, 
31]. A scale of certainty expressions (linguistically 
assessed) is presented to the individuals, who could 
then use it to describe their degrees of certainty in 
a preference. In this environment we have linguistic 
preference relations for providing individuals' 
opinions. 

On the other hand, assuming a set of alternatives 
or decisions, two ways to relate to different decision 
schemata are known. The first way, called the alge- 
braic way, consists in establishing a group selection 
process which obtains a decision scheme as solu- 
tion to group decision making problem. The sec- 
ond one, called the topological way, consists in 
establishing a measure of distance between different 
decision schemata. Several authors have dealt with 
both proposals in fuzzy environments [3, 16--19, 
23]. We have proposed various models for both 
possibilities under linguistic assessments in [-11, 14, 
15], respectively. Here, we will focus on the first 
possibility, and we develop various group decision 
making processes under linguistic preferences, 
based on the linguistic information aggregation 
operation carried out by the Linguistic Ordered 
Weighted Averaging (LOWA) operator [10]. To do 
this, we study the properties and the preference 
aggregations axiomatic of the LOWA operator, 
showing its rational aggregation way. Then we 
present how to use the LOWA operator for solving 
a group decision making problem from individual 
linguistic preference relations. 

The paper is structured as follows: Section 
2 shows the use of linguistic preference relation and 
some properties; Section 3 analyzes the properties 
and axiomatic of LOWA operator; Section 4 pre- 

sents the proposed group decision making pro- 
cesses; Section 5 illustrates its application with 
some examples; and finally, Section 6 presents our 
conclusions. 

2. Linguistic preference relations 
in group decision making 

Let X be a set of alternatives over which the 
fuzzy preference attitude of a decision-maker is 
defined. Then, according to Tanino [27, 28], the 
fuzzy preference may be represented as: 

1. A fuzzy choice set to represent his total prefer- 
ence attitude. It is described by a fuzzy subset of X, 
i.e., by a membership function # on X, whose value 
#(x) denotes the preference degree of x, or degree to 
which x is chosen as a desirable alternative. 

2. A fuzzy utility function. It is described as fuzzy 
mapping v, which associates a fuzzy subset of the 
utility values space (usually the space of real num- 
bers R) with each alternative x, v:XxR--+[O, 1], 
where v(x, t) denotes the degree to which the utility 
value of the alternative x is equal to t. 

3. A fuzzy preference relation. It is described by 
a fuzzy binary relation R on X, i.e., a fuzzy set on 
the product set X x X ,  characterized by a member- 
ship function I~R:XxX ~ [0, 1], where ~tR(xl, xj) de- 
notes the preference degree of the alternative 
X i over Xj. 

The use of fuzzy preference relations in decision 
making situations to voice experts' opinions about 
an alternative set, with respect to certain criteria, 
appears to be a useful tool in modelling decision 
processes. Among others, they appear in a very 
natural way when we want to aggregate experts' 
preferences into group ones, that is, in the processes 
of group decision making. 

As we have mentioned above, in many cases an 
expert is not able to estimate his preference degrees 
with exact numerical values. Then, another possi- 
bility is to use linguistic labels, that is, to voice his 
opinions about alternatives by means of a linguistic 
preference relation. Therefore, to fix previously 
a label set it is absolutely essential to voice the 
experts' preferences. 

In [2] the use of label sets with odd cardinals was 
studied, the middle label representing a probability 
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of "approximately 0.5", the remaining labels being 
placed symmetrically around it and the limit of 
granularity is 11 or no more than 13. The semantic 
of the labels is given by fuzzy numbers defined on 
the [0,1] interval, which are described by member- 
ship functions. As the linguistic assessments are 
merely approximate ones given by the individuals, 
we can consider that linear trapezoidal member- 
ship functions are good enough to capture the 
vagueness of those linguistic assessments, since ob- 
taining more accurate values may be impossible or 
unnecessary. This representation is achieved by the 
4-tuple (ai, bl, ~i, fli) (the first two parameters indi- 
cate the interval in which the membership value is 
1.0; the third and fourth parameters indicate the left 
and right widths of the distribution). 

We shall consider a finite and totally ordered 
label set S = {si}, i e H =- {0, . . . ,  T}, in the usual 
sense and with odd cardinality as in [2], where each 
label si represents a possible value for a linguistic 
real variable, i.e., a vague property or constraint on 
[0,1]. We shall require the following properties: 

(1) The set is ordered: si >~ sj if i ~> j. 
(2) There is the negation operator: Neg(si) = sj 

such that j = T - i. 
(3) Maximization operator: max(si, s j ) = s l  if 

(4) Minimization operator: min(si, s~ )=s i  if 
si ~< sj. 

Assuming a linguistic framework and a finite set 
of alternatives X = {Xl, X:, ... ,xn}, the experts' 
preference attitude over X can be defined as a n × n 
linguistic preference relation R, such that R = (ri~), 
i, j = 1 . . . . .  n, where ri~ ~ S denotes the preference 
degree of alternative xi over x j, linguistically as- 
sessed, with 

So ~ rij ~ S T ( i , j  = 1 . . . . .  n), 

and where: 
1. rij = Sr indicates the maximum degree of pre- 

ference of xi over xj. 
2. Sr/2 < rlj < Sr indicates a definite preference 

of xi over Xj. 
3. rij = Sr/2 indicates the indifference between 

xi and xj. 
So that the linguistic relation reflects a prefer- 

ence, it would be desirable to satisfy some of the 
following properties, proposed by Tanino in fuzzy 

environment [27, 28], and interpreted here in a lin- 
guistic environment: 

1. Reciprocity: rij = Neg(rji), and rii = So Vi, j. 
2. max-min Transitivity: rig >>- Min(rij, rig), 

Vi,  j, k. 
3. max-max Transitivity: rig >~ max(rij, rjk), 

Vi, j , k .  
4. Restricted max-min transitivity: rij >~ Sr/2, rig 

>~ ST~Z, :=> rik ~ min(rij, rjk), Vi,.j, k. 
5. Restricted max-max transitivity: rij >7 Sr/z, 

rjk ~ ST/Z, ~ rik >~ max(r/t, rjk), Vi,  j, k. 
In order to make good use of the linguistic prefer- 

ence relations for aggregating experts' preferences, 
an aggregation operator of linguistic information is 
needed. Various operators have been proposed [2, 
10, 29, 32]. It is important that these operators 
satisfy a well defined axiomatic. In the next section, 
we study some postulated axiomatics of an intuit- 
ively acceptable fuzzy aggregation operator, and 
more concretely, we analyze the properties and 
axioms that the linguistic aggregation operator, as 
defined by Herrera and Verdegay in [10], verifies. 

3. Preferences aggregation axiomatic 

The main problem in fuzzy logic-based group 
decision making is how to aggregate the experts' 
opinions to obtain a group decision in such a way 
that some rational criteria are satisfied. The prob- 
lem may be discussed as a special case of informa- 
tion aggregation in multi-person and multi-criteria 
decision making or social choice theories (see, for 
instance, the surveys in books [8, 19, 25] and 
papers [7, 26, 301). 

Many papers on "classical" theory of group deci- 
sion make use of Arrow's work [1] as a starting 
point and a basic guide. Arrow proposed a qualitat- 
ive setting composed by a set of axioms, which any 
acceptable aggregation tool of group decision mak- 
ing should satisfy. Arrow's  impossibility theorem 
was an important result thereof. According to this 
theorem, it is impossible to aggregate individual 
preferences into group preference in a completely 
rational way. This is a problem that dissappears in 
cardinal setting in a fuzzy context, introducing pre- 
ference intensities, which provides additional de- 
grees of freedom to any aggregation model [7, 5]. 
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3.1. Preferences aggregation axiomatic 
in fuzzy  environment 

Therefore an axiomatic to model the aggregation 
processes in fuzzy set area is needed. Some axio- 
matic approaches have been partially taken by 
Fung and Fu [9], Montero [22] and Cholewa [4]. 
Fung and Fu presented a set of axioms to rational 
fuzzy group decision making in order to justify the 
minimum and maximum operations. Montero in- 
troduces fuzzy counterparts of veto and dictatorship, 
and Cholewa offers a collection of axioms for the 
aggregation of fuzzy weighted opinions and indi- 
cates that the weighted mean satisfies these axioms. 

In [7], a very detailed analysis about proposed 
axiomatic approaches to rational group fuzzy deci- 
sion making is presented. A complete set of axioms 
in the fuzzy set setting for homogeneous groups is 
reviewed. These axioms are natural properties of 
a voting procedure that include the ones proposed 
by Arrow. Some of these are: unrestricted domain, 
unanimity, neutrality . . . . .  A three-group classifica- 
tion has been established: 
• Imperative axioms, whose violation leads to 

counterintuitive aggregation modes, e.g.: 
neutrality. 

• Technical axioms, that facilitate the representa- 
tion and the calculation of the aggregation oper- 
ator, e.g.: unrestricted domain. 

• Facultative axioms, that are applied in special 
circumstances but are not universally accepted, 
e.g.: unanimity. 
Obviously a particular aggregation operator 

~b does not have to satisfy all axioms together, it 
must satisfy those that its special application cir- 
cumstances require. For  more information about 
the axiomatic of fuzzy aggregation, see [7J. 

In the next sections, we study some properties 
and axioms that the aggregation operator of lin- 
guistic opinions, LOWA, verifies. 

3.2. The linguistic ordered weighted averaging 
operator 

The LOWA operator is based on the ordered 
weighted averaging (OWA) operator defined by 
Yager [30], and on the convex combination of 
linguistic labels defined by Delgado et al. [6]. 

Let {a~ . . . .  ,a,,} be a set of labels to aggregate, 
then the LOWA operator ~b is defned as 

(9(aa . . . . .  am) = W"  B x = Cm{Wk, bk, k = 1 . . . .  , m} 

= WlQbl  03(1 - wl) 

G C m-l{flh,bh, h = 2 . . . .  ,m} ,  

where W = [Wl, . . . ,  win], is a weighting vector, 
such that, wi ~ [0, 1] and 3~iwi = 1; flh = Wh/Z"iWk, 
h = 2 . . . . .  m, and B is the associated ordered label 
vector. Each element bl ~ B is the ith largest label in 
the collection a~, . . . ,  am. C "  is the convex combi- 
nation operator of m labels and if m = 2 then it is 
defined as 

C 2 {wi,  bi, i = 1, 2} = Wl Q sj 0 (1 - Wl) @ s i = S k ,  

sj, s i e S  ( j>~i )  

such that 

k = min{T, i + round(Wl "(j - i))}, 

where round is the usual round operation, and 
bl = sj, b 2 = S i. 

If Wj = 1 and wi = 0 with i ~ j Vi, then the con- 
vex combination is defined as: 

C" {wi, bl, i = 1 . . . . .  m} = bj. 

3.2.1. How to calculate the weights 
o f  LOWA operator 

Quantifiers can be used to represent the amount 
of items satisfying a given predicate. Classic logic is 
restricted to the use of the two quantifiers, there 
exists and for  all, that are closely related respect- 
ively to the or and and connectives. Human dis- 
course is much richer and more diverse in its 
quantifiers, e.g. about 5, almost all, a few,  many, 
most, as many as possible, nearly half, at least half. In 
an attempt to bridge the gap between formal sys- 
tems and natural discourse and, in turn, to provide 
a more flexible knowledge representation tool, 
Zadeh introduced the concept of linguistic quanti- 
tiers [34]. 

Zadeh suggested that the semantic of a linguistic 
quantifier can be captured by using fuzzy subsets 
for its representation. He distinguished between 
two types of linguistic quantifiers, absolute and 
proportional. Absolute quantifiers are used to rep- 
resent amounts that are absolute in nature such as 
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about 2 or more than 5. These absolute linguistic 
quantifiers are closely related to the concept of the 
count or number of elements. He defined these 
quantifiers as fuzzy subsets of the non-negative real 
numbers, • +. In this approach, an absolute quanti- 
fier can be represented by a fuzzy subset Q, such 
that for any r ~ ~ + the membership degree of r in Q, 
Q(r), indicates the degree to which the amount r is 
compatible with the quantifier represented by Q. 
Proportional quantifiers, such as most, at least half, 
can be represented by fuzzy subsets of the unit 
interval, [0, 1]. For any r ~ [0, 1], Q(r) indicates the 
degree to which the proportion r is compatible with 
the meaning of the quantifier it represents. Any 
quantifier of natural language can be represented as 
a proportional quantifier or given the cardinality of 
the elements considered, as an absolute quantifier. 
Functionally, linguistic quantifiers are usually of 
one of three types, increasing, decreasing, and uni- 
modal. An increasing type quantifier is character- 
ized by the relationship 

Q(rl) >~ Q(r2) i f r l > r 2 .  

These quantifiers are characterized by values such 
as most, at least half. A decreasing type quantifier is 
characterized by the relationship 

Q(rl) <<, Q(r2) if rl < rz. 

The quantifiers characterize terms such as a few, at 
most ~. Unimodal type quantifiers have the pro- 
perty that 

Q(a) <~ Q(b) <~ Q(c) = 1 >~ Q(d) 

for some a ~< b ~< c ~< d. These are useful for repre- 
senting terms like about q. 

A natural question in the definition of the 
LOWA operator is how to obtain the associated 
weighting vector. In [30, 33], Yager proposed two 
ways to obtain it. The first approach is to use some 
kind of learning mechanism using some sample 
data; and the second approach is to try to give 
some semantics or meaning to the weights. The 
final possibility has allowed multiple applications 
on areas of fuzzy and multi-valued logics, evidence 
theory, designing of fuzzy controllers, and the 
quantifier guided aggregations. We are interested in 
the area of quantifier guided aggregations, because 
our idea is to calculate weights using linguistic 

quantifiers for representing the concept of fuzzy 
majority in the aggregations that are made in our 
group decision making processes. Therefore, in the 
aggregations of LOWA operator the concept of 
fuzzy majority is underlying by means of the 
weights. 

In [30, 33], Yager suggested an interesting way 
to compute the weights of the OWA aggregation 
operator using linguistic quantifiers, which, in the 
case of a non-decreasing proportional quantifier Q, 
is given by this expression: 

wi=Q(i /n)-Q(( i -1) /n) ,  i =  1, . . . ,n  

being the membership function of a non-decreasing 
proportional quantifier Q, as follows: 

t i  if r <a, Q(r)= -a_ if a<~r<~b, 
a 

if r > b .  

with a, b, r ~ [0, 1]. When it is used a fuzzy linguis- 
tic quantifier Q to compute the weights of LOWA 
operator ~b, it is symbolized by ~bQ. 

In Section 4, we explain how to use the LOWA 
operator for solving a group decision making prob- 
lem from individual linguistic preference relations 
by the direct approach, according to two types of 
fuzzy majority: 
• Fuzzy majority of dominance, used to quantify the 

dominance that one alternative has over all the 
others, according to one expert's opinions. 

• Fuzzy majority of experts, used to quantify the 
dominance that one alternative has over all the 
others, according to the experts' opinions, con- 
sidered as a whole. 

3.3. Properties of the LOWA operator 

The LOWA operator has some properties of the 
OWA operators investigated by Yager in [30], i.e.: 
monotonicity property, the commutativity property, 
and the property to be an "orand" operator. Before 
demonstrating the properties, we are going to de- 
monstrate the following theorem. 
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Theorem. Let  A = [al ,  a2 . . . . .  a , ]  be an ordered 
labels vector (al >~ a2 >~ "" >~ a.) and al~ S, then 

a, <<, (a(ai, a2, . . . ,  a,) <~ al.  

Proof. In [6] the following proper ty  was demon-  
strated: i f  k is the resulting label f rom the convex 
combination o f  two labels, i and j (i ~ j), then 
i ~ k ~ j .  

When observing that property,  obviously the 
theorem is a consequence thereof. 

P r o p e r t y  1. The L O W A  operator is increasing 
m o n o t o n o u s  with respect to the argument values, in 
the following sense: 

Let  A = [al, a2 . . . .  , an] be an ordered argument 
vector, let B = [bl, b2 . . . . .  b,] be a second ordered 
argument vector, such that V j, aj >>. bj then 

~b(A)/> ~b(B). 

Proof.  By induct ion over the number  of  arguments  
to aggregate. 

For n = 2. Let s j, si, sp, sq, be the ordered labels 
from S, corresponding to al ,  a2, bx, b2, respectively. 
Clearly j ~> p and i/> q, and therefore given any 
wl ~ [0, 1] then 

j ' w x  >~ p ' w l ,  

and 

i ' (1  - wl) ~> q ' ( 1  - Wl),  

and thus 

j ' w l  + i . ( 1 - w i ) > ~ p ' w l + q ' ( 1 - w i ) .  

As round is an increasing m o n o t o n o u s  function, 
then 

r o u n d ( j ,  wl + i" (1 - wl)) 

> / r o u n d ( p '  wl + q .(1 - wl)) 

=:. round( ( j  - i ) 'w l )  + i)) 

/> round((p - q). Wx) + q)); 

and as i e 7/+ and ((j - i ) ' w l )  > 0 then 

i + round( ( j  - i )wi)  >i q + round((p - q)wl) 

=> q~(al, a2) >f ~b(bl, b2). 

Suppose that it is true for  n - 1, i.e., 

q~(al, a2, .., , a . - 1 ) / >  ~b(bl, b2 . . . . .  bn-1). 

For n, 

~b(al, a2 . . . . .  a,) = wi @ al @ (1 -- wa) 

@C n-1 {fin, an, h = 2 . . . . .  n}, 

and 

~b(bx, b2, ... , b.) = Wl@bl  G(1  - wl) 

@C " - I  {fin, bh, h = 2 . . . . .  n}. 

As 

C n- i {fib, ah, h = 2 . . . . .  n} = ~b(a2, a 3, . . . ,  an), 

and 

C "-l{flh,bh, h = 2 . . . . .  n} = ~b(b2, b3, . . . ,  b,), 

then by induct ion hypothesis 

~b(a2, a3, . . . ,  an) >1 q~(b2, b3, . . . ,  b,). 

Let s j, si, be the labels corresponding to 
~b(a2, a3 . . . . .  an), and ~(b2, b3 . . . . .  bn), respectively, 
then using induct ion hypothesis sj >~ sl and as 
a l / >  bl,  and as the theorem a l / >  sj and bl ) s l ,  
then 

qb(aa, a2 . . . . .  a,) = qb(ai, sj), 

and 

4)(bl, b2 . . . . .  b , )  = 4~(b,, si). 

We know that 

q~(al, sj)  >1 ~b(ba, si), 

as it is proven for n = 2, and therefore 

~b(al, a2 . . . . .  a,) >~ q~(bl, b2, . . . ,  b,). 

Property 2. The L O W A  operator is commutat ive,  
i.e., 

~b(ai, a2 . . . . .  a.) = ~b(n(al), ~(a2), . . . ,  re(an)), 

where ~z is a permutation over the set o f  arguments. 

Proof. Clearly the commutat iv i ty  proper ty  is veri- 
fied, because we use an "ordered" weighted average 
of  the arguments.  
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Property 3. The L O W A  operator is an "orand" 
operator. That is, for  any weighting vector W and 
ordered labels vector A = [ai, a2 . . . . .  a,], then 

min(al, a2 . . . .  , a,) ~< tk(al, az . . . . .  a.) 

~< max(al, a2 . . . .  , a.) 

Proof. Clearly it is a consequence of the aforemen- 
tioned theorem. 

3.4. Axiomatic o f  the LOWA operator 

In what follows we are going to study some of the 
proposed axioms in fuzzy setting considering the 
LOWA operator which works with linguistically 
valued preferences. Before this, we include the fol- 
lowing linguistic notation that we shall use. 

Let A = {x~, . . . ,  x,} be a finite non-empty set of 
alternatives. 

Let E = {el, . . . ,  e,,} be a panel of experts. 
Let S = {si: i = 0 . . . . .  T} be a label set to voice 

experts' opinions. 
Let x u e S be the linguistic rating of alternative 

x~ by expert ej. 
Let Fj be the linguistic rating set over alterna- 

tives by expert ej. 
Let #G be the linguistic membership function of 

Fj such that xi~ = #vj(Xi). 
Let F be the linguistic rating set such that 

F = ¢(F, ,  . . . ,  F.). 

Axiom L Unrestricted domain. For any set of indi- 
vidual preference patterns {Fj, j = 1 . . . . .  m} there 
is a social preference pattern F, which may be 
constructed, 

VF1 . . . . .  Fm ~ S", 3F ~ S" such that 

F = ~(F1 . . . . .  Fro). 

It is basically technical, and clearly it is satisfied in 
accordance with the LOWA operator definition. 

Axiom II. Unanimity or idempotence. If everyone 
agrees on a preference pattern, it must be chosen as 
the social choice pattern, 

F j =  F, V j ~  F = ffa(F,F . . . .  ,F). 

Following this definition, the LOWA operator can 
immediately be verified. 

Axiom IlL Positive association of  social and indi- 
vidual values. If an individual increases his 
linguistic preference intensity for x~ then the 
sociallinguistic preference for xi cannot decrease. 
This means that if F) and Fj are such that 
#Fj ~< #f) ,  then if ¢(F1 . . . . .  Fj . . . . .  Fr,) = F and 
~b(F1, . . . ,  F), . . . ,  Fro) -- F',  then 

#F <~ #F'. 

Clearly it is satisfied, because it is a consequence of 
increasing monotonicity property of the LOWA 
operator. 

Axiom IV. Independence of  irrelevant alterna- 
tives. The social preference intensity for xi only 
depends on the individual preference intensity for 
xi, and not for Xk, k ~ i, 

#~(F ... . . .  F~(x~) = ¢p(xix . . . . .  Xim). 

It is basically technical, and is satisfied by the 
definition of the LOWA operator. Clearly this ax- 
iom does not extend strictly speaking, since for 
preference relations the independence of irrelevant 
alternatives deals with pairs of alternatives. 

Axiom V. Citizen sovereignty. It means that any 
social preference pattern can be expressed by the 
society of individuals; in other words 

VF, 3F~, . . . ,  Fm such that F = ~b(F1 . . . .  , F,,). 

A weaker form of citizen sovereignity called Non- 
Dictatorship [22] is as follows: there is no indi- 
vidual ej such that 

(o(Fi, . . . ,  Fj . . . . .  F,,,) = Fj. 

This requirement prohibits any individual from 
acting as a veto or dictator under any cir- 
cumstances. 

Obviously, this axiom is satisfied in its general 
form, because it is a consequence of axiom II (un- 
animity). Clearly, as the LOWA operator is com- 
mutative, then it also satisfies the weaker form of 
the axiom. 
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Axiom gI.  Decomposability of the voting proced- 
ure. This means that it is possible to split the set of 
individuals into disjoint subgroups, build the social 
preference pattern for each subgroup and then 
combine the local social preference patterns to ob- 
tain the result. Some forms of this axiom are: 

1. Strongest form, associativity: 

~b(~b(F1, FE), F3) = c~(Fx, (o(F2, Fa)). 

2. Weaker form, auto-distributivity: 

~b(r~, ~b(F2, F3)) = ~(~(F1, F2), q~(F1, F3)). 

This axiom is not verified for any of its forms. Thus, 
the LOWA operator is not associative, example: 

Suppose, there is a set of nine labels, and we want 
to aggregate the labels sv, s6, Ss. If we fix two 
weights w~ = 0.3, w2 = 0.7 then 

~b(~b(sT, s6), Ss) ~--- s 5 ~ $6 = ~(S7, ~b(S6, Ss)). 

And the LOWA operator is not auto-distributive, 
example: 

Let s~, s2, s4 be the opinions to be aggregated. 
Using the same weights as before, 

4,(sl, q~(s~, s~)) = s~ # s~ = q~(4~(s~, s~), q~(s,, s~)). 

Axiom VII. Neutrality. The neutrality axiom re- 
fers to the invariance properties of the voting pro- 
cedure. There are three types: 

1. Neutrality with respect to alternatives. Ifxi and 
X k are such that xq = Xkj, Vj, then P,(v ...... vm)(x3 = 
/~,~F . . . . . .  ~, .~(x~).  

2. Neutrality with respect to voters. In a homo- 
geneous group, this is the anonymity property, i.e., 
the commutativity of ~b. 

3. Neutrality with respect to the intensity scale or 
Neutrality of Complement. If F~ is the complement 
to F~, such that F~ = Neg(F~), the social pattern 
c~(F], . . . ,  F~) should be the complement of the 
social preference pattern, 

q~(Fa . . . . .  V,,) c = 4)(F], . . . ,  F~,). 

Clearly it is verified for the form of neutrality re- 
spect to alternatives. As the LOWA operator is 
commutative, then it also verifies the neutrality 
with respect to voters. However it does not verify 
the neutrality with respect to intensity scale. Example: 

Consider a label set with eight elements S. Let 
s3, s2 e S be the labels to be aggregated and its 

complement labels s4, ss, and wl = 0.1, then 

Neg(~b(s3, sz)) = s5 4:s4 = ~b(s4, ss). 

In conclusion, the LOWA operator verifies the 
following axioms: Unrestricted domain, Unanimity 
or ldempotence, Positive association of social and 
individual values, Independence of irrelevant alterna- 
tives, Citizen sovereignity, Neutrality. The fulfilment 
of those axioms provides evidence of rational ag- 
gregation using the LOWA operator in particular 
frameworks. 

4. Direct approach to group decision making under 
linguistic assessments 

Suppose we have a set of n alternatives 
X = { x a  . . . . .  x,} and a set of experts E =  
{el . . . . .  era}. Each expert ek~ E provides a pre- 
ference relation linguistically assessed into the label 
set S, 

(ov~ : X x X  --* S, 

where ~oe~(xl, x~)= p~j E S represents the linguisti- 
cally assessed preference degree of the alternative 
xi over x i. We assume that pa is reciprocal without 
loss of generality. 

As is known, basically two approaches may be 
considered. A direct approach 

{p1 . . . . .  P"} --, solution 

according to which, on the basis of the individual 
preference relations, a solution is derived, and an 
indirect approach 

{p1 . . . . .  pro} ~ p __. solution 

providing the solution on the basis of a collective 
preference relation, P, which is a preference relation 
of the group of individuals as a whole. 

In [14], we considered a group decision making 
process by indirect approach. Here, we consider the 
direct approach. We present three direct ways to 
solve a group decision making process in a linguis- 
tic framework: (i) Dominance Process (DP), (ii) 
Strict-Dominance Process (SDP), (iii) Non-Domi- 
nance Process (NDP). 

These processes are based on linguistic domi- 
nance, linguistic strict-dominance, and linguistic 
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non-dominancenance degrees respectively, as de- 
fined in [13]. The direct approach processes are 
calculated on two levels of action: 
• Level of Preference or Level of Individual. The 

different linguistic degrees are calculated for each 
alternative according to the opinions of each 
expert, considered individually, i.e., individual de- 
grees are calculated on this level. 

• Level of Degrees or Level of Group. Here, the 
different linguistic degrees are calculated for each 
alternative according to the opinions of the ex- 
pert group, considered as a whole, i.e., social 
degrees are calculated on this level. 
Note that between both levels the concept of fuzzy 

majority is different, dominance majority and ex- 
perts' majority respectively, and therefore we can use 
different fuzzy linguistic quantifiers on each level. 

The following subsections are devoted to devel- 
oping each one of the aforementioned models. 

4.1. Dominance process 

This is a resolution model that uses the linguistic 
dominance degree of each alternative to decide 
which of them to choose as a solution to the group 
decision making problem. The linguistic domi- 
nance degree of one alternative gives a measure of 
the averaging preference degree that the overall 
ones in function of the experts' opinions. 

After fixing a label set S and the concepts of fuzzy 
majority of dominance and fuzzy majority of ex- 
perts by means of two fuzzy quantifiers, Q1 and Q2, 
respectively, the process is described in the follow- 
ing steps: 

1. For  each linguistic preference relation of each 
expert, pk, using the LOWA operator q~o,, find out 
the individual linguistic dominance degree of 
each alternative xz, called IDa', according to this 
expression: 

ID k k • = ~0, (Pij, J = 1 . . . . .  n,j # i) 

w i t h k = l  . . . . .  m ; i = l  . . . . .  n. 
2. For  each alternative xi, calculate the social 

linguistic dominance degree, called SDi, as follows 

SD, = 4~Q:(ID k, k = 1 . . . . .  m) 

with i = 1, . . . ,n .  

3. Obtain the set of alternatives with maximum 
linguistic dominance degree a X . . . .  as follows 

Smaxd = (X i ~ X/SDi = max i (SDj )  } 

and the solution set, i.e., those alternatives with 
maximum degree. 

This process is shown in Fig. 1. 

4.2. Strict-dominance process 

This proposal of direct approach selects the al- 
ternative(s) solution according to its respective lin- 
guistic strict-dominance degree. The linguistic 
strict-dominance degree gives a linguistic measure 
of the number of times that one alternative is pre- 
ferred overall ones according to all experts' 
opinions. 

In this process, as we shall see, fuzzy majority of 
dominance is not underlying in the weights of an 
LOWA operator. Here, it is used to quantify lin- 
guistically the number of times that one alternative 
is preferred to overall ones. Therefore, we need to 
define a fuzzy quantifier of the Q': [0, 1] ~ L type, 
being L a label set. This can be done by means of 
this expresion: 

Q'(r) = 

Io if r < a, 

li if a<~r<~b, 

lv if r > b ,  

lo and lv are the minimum and maximum labels in 
L, respectively, and 

I i = S u p  {lq},  
lq~ M 

with 

{ r-a 

with a, b, r ~ [0, 1]. Another definition of Q' can be 
found in [32]. 

Fixed two label sets, S and L, and the concepts of 
fuzzy majority of alternatives and experts by means 
of two fuzzy quantifiers, Q'~ and Q2, respectively, 
the process is shown in Fig. 2, and described in the 
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following steps: 
1. For each linguistic preference relation of each 

expert pk, find out the individual linguistic strict- 
dominance  degree of each alternative x~, called ISD/k, 
according to this expresion: 

IS Dk = O i \ ~ l _ l /  

with k = 1, . . . ,  m; i = 1 . . . . .  n, and where, 

= # (x~ ~ X such that 
Pij > Pji, J = l, . . . ,  n , j  :/= i}, 

and # stands for the cardinal of the term set. 
2. For each alternative x~, calculate the social 

linguistic s t r ic t -dominance degree,  called SSD~, as 
follows 

SSDi = (he2(ISD k, k = l . . . . .  m) 

with i = 1 . . . . .  n. 
3. Obtain the set of alternative with maximum 

linguistic strict-dominance degree XSmdax, as follows 

sd {X i ~ X / S S D i  maxj(SSDj)} S m a x  ~ 

the solution set. 

4.3. Non-dominance  process  

Here, we present a third model using the direct 
approach, which selects the alternative(s) solution 
according to its respective linguistic non-domi- 
nance degree. The linguistic non-dominance degree 
of one alternative expresses a linguistic measure in 
which that alternative is not dominated by any, 
according to the experts' opinions. It is calculated 
on the basis of the concept of non-dominated alter- 
natives described by Orlovsky [24], extended here 
to linguistic environment. 

After fixing a label set, S, and the concept of fuzzy 
majority of experts by means of the fuzzy quanti- 
tiers, Q2, the group decision making process is 
shown in Fig. 3, and described in the following 
steps: 

1. For each linguistic preference relation of each 
expert, pk, find its respective linguistic strict prefer- 
ence relation, pk, with cop~ = pk> such that, 

P~ij = So if pikj < P~i, 

k = if p/kj k or Ps ij Sh ~ S >1 Pjl with p~j = sl, P~i = s, and 
l = t + h .  

individual 
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set of preference non-dominance 
experts relations delrees 
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. -  : ' 

DIRECT 
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Fig. 3. Non-dominance process. 
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2. For  each linguistic strict preference relation of 
each expert pk, find the individual linguistic non- 
dominance degree of each alternative xi, called 
IND k, according to this expression: 

IND k = min [Neg(~op~(Xj, xi))] 
x j ~ X  

w i t h k = l  . . . .  , m ; i = l  . . . .  ,n. 
3. For  each alternative xi, calculate the social 

linguistic non-dominance degree, called SND~, as 
follows 

SNDi = q~Q~ (IND k, k = 1 . . . . .  m) 

with i = 1 . . . .  , n. 
4. Obtain the set of alternatives with maximum 

X . . . .  as follows linguistic non-dominance degree ,d 

Xmaxnd -~. (X i E X/SNDi = maxj(SNDj)} 

and the solution set. 

4.4. Sequential process 

Sometimes, any of above solution set of alterna- 
tives can be formed by various alternatives. This 
may happen because of the existence of balance 

between all the alternatives, or the existence of an 
inconsistency situation between all the experts' 
opinions. In these cases, the combined application 
of the three models could be very interesting, be- 
cause it can help to avoid the inconsistency 
situation and to identify the best solution set of 
alternatives. 

In line with the aforementioned, we propose 
a group decision making process which combines 
the ones described earlier, called The Sequential 
Process. This model consists in applying each one 
of them in sequence, according to a previously 
established order. There is no criterion to establish 
an order, e.g., we can establish an order based on 
the order of the presentation of our work. From 
this supposition, the sequential process is shown in 
Fig. 4 and developed in three steps: 

1. Apply the first model, DP over X, and obtain 
d d Xma x. I f  # (Xmax)= 1 then End, and this is the 

solution. Otherwise continue, using the following 
step. 

2. Apply the second model, SDP over X, and 
d (ysd~l.~ = 

o b t a i n  ~ ( s d - d  C X m a  x If # ~ - ~ m a x  / 1 then End, ~ - m a x  - -  

and this is the solution. Otherwise continue, using 
the following step. 
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Fig. 4. Sequential process. 
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3. Apply the third model, NDP over X, and 
obtain Xnda~x d d ~  --max)(Sd-d, and this is the best 
solution. 

Using the linguistic quantifier "As many as pos- 
sible" with the pair (0.5, 1) for all the operations, 
and assuming that Q1 = Q2 and S = L, then the 
direct models are applied as follows: 

5. Examples 5.1. Dominance process 

In this section the application of aforementioned 
models is shown in the following conditions: 

Let the nine linguistic label set be S: 

C Certain (1, 1, 0, 0) 
EL Extremely_likely (0.98, 0.99, 0.05, 0.01) 
ML Most_likely (0.78, 0.92, 0.06, 0.05) 
MC MeaningfuLchance (0.63,0.80,0.05,0.06) 
IM It_may (0.41, 0.58, 0.09, 0.07) 
SC SmalLchance (0.22, 0.36, 0.05, 0.06) 
VLC Very_low_chance (0.1, 0.18, 0.06, 0.05) 
EU Extremely_unlikely (0.01, 0.02, 0.01, 0.05) 
I Impossible (0, 0, 0, 0) 

Suppose a set of four alternatives 
X = {xl, x2, x3, x4}, as well as a set of four experts 
E : {el, e2, e3, e4} , whose respective opinions are 
the following linguistic preference relations, ex- 
pressed over X, using the labels of S: 

- SC C I ] 

p 1  MC - EU EL 

I EL - VLC ' 
_ C EU ML 

- IM C EU 1 
p 2 =  IM - EU C 

I EL - VLC ' 
EL I ML - 

- IM EL I 1 
p3= IM - I EL 

EU C - VLC ' 

C EU ML - 

- IM C EU 1 
p 4 =  IM - EU C 

I EL - VLC 

EL I ML - 

Step 1. The individual linguistic dominance de- 
grees of each alternative using the LOWA operator 
with W = (0, 0.334, 0.666) are: 
Expert one, 

(IO~, 1O~, IDX3, IDa) -- [EU, VLC, EU, SC]. 

Expert two, 

(IDa, IDa, ID 2, IDa) = [VLC, VLC, EU, VLC]. 

Expert three, 

(IDa, ID23, ID33, IDa) = [EU, EU, EU, SC]. 

Expert four, 

(IDa, IDa, 1D~, IDa) = [VLC, VLC, EU, VLC]. 

Step 2. The social linguistic dominance degree of 
each alternative using the LOWA operator with 
W = (0, 0, 0.5, 0.5) is: 

(SD> SD2, SD3, SD4 = [EU, VLC, EU, VLC]). 

Step 3. The set of alternatives with maximum 
linguistic dominance degree is: 

d 
Xma x = {X2, X4}, 

5.2. Strict-dominance process 

Step 1. The individual linguistic strict-domi- 
nance degrees of each alternative are: 
Expert one, 

(ISDI, ISD~, ISD~, ISD~) 

: [Q'l(1/3), Q'I (2/3), Q'~(1/3), Q'~(2/3)] 

= [I, SC, I, SC]. 

Expert two, 

(ISD 2 , ISD 2 , ISD 2 , ISD 2) 

= [Q'~(1/3), Q'~(1/3), Qi(1/3), Q'~(2/3)] 

: [I, I, I, SC]. 
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Expert three, 

(ISD~, ISD~, ISDa a, ISD 3) 

= [Q'~ (1/3), Q'I (1/3), Q'~ (l/a), Q'~(2/3)] 

= [I, I, I, SC]. 

Expert four, 

(ISD 4, ISD2*, ISD3 4 , ISD 4 ) 

-- [Q'~ (1/3), Q] (1/3), Q'~ (1/3), Q'I (2/3)] 

= [ I ,  I ,  I ,  S C ] .  

Step 2. The social linguistic strict-dominance de- 
gree of each alternative using the LOWA operator 
with W = (0, 0, 0.5, 0.5) is: 

(SSD1, SSD2, SSD3, SSD4) = [I, I, I, SC]. 

Step 3. The set of alternatives with maximum 
linguistic dominance degree is: 

sd 
Xma x = {X,l.}. 

5.3. Non-dominance process 

Step 1. Find the respective strict linguistic pref- 
erence relations of each expert. 

p ~ =  V C  - I L 

ML - 

I IM - 

[i , c ,] p 2 =  - I C , 

ML - I 

ML I IM - 

P~= 

- I M L  I ] 

I - I ML 

i I C -- 

C ML IM - 

[ P~= 
ML - 

ML I IM 

Step 2. The individual linguistic non-dominance 
degrees of each alternative are: 
Expert one, 

(INDI, IND, ,  IND 1, IND])  = [I, VLC, I, VLC]. 

Expert two, 

(IND 2, IND2 2, IND 2, IND 2) = [VLC, VLC, I, I]. 

Expert three, 

(IND 3, IND32, IND, ,  IND,)  = [I, I, VLC, VLC]. 

Expert four, 

( IND,,  IND2 4, IND, ,  IND4 4) = [VLC, VLC, I, I]. 

Step 3. The social linguistic non-dominance de- 
gree of each alternative using the LOWA operator 
with W -- (0, 0, 0.5, 0.5) is: 

(SNDI, SND2, SND3, SND4 = [I, EU, I, I]). 

Step 4. The set of alternatives with maximum 
linguistic non-dominance degree is: 

d 
Xma x = {X2}. 

5.4. Sequential process 

Step 1. After applying the DP  model we obtain 
the following set of alternatives with maximum 
linguistic dominance degree: 

d 
Xma x = {X2, X4}. 

d As # (Xmax) > 1, then continue. 
Step 2. Apply the SSP model over X. As 

d Xmax = {X2, X4} then only its respective strict- 
dominance degrees are considered, 

( S S D 2 ,  S S D 4 )  = [I, SC], 

and therefore the XSma~ff is 

xsd  a = {x4}, 
m a x  

~ysd d / and as # ,--max, = 1 then End. 
In consequence, by applying the proposed mod- 

els together, it is possible to distinguish better 
amongst alternatives. 

Remark. In the sequential process, the order of 
application of the different processes is chosen by 
the user. 
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6.  C o n c l u s i o n s  

The paper has developed basically two ideas: 
- finding out evidence of the rationality of the 

LOWA operator, 
showing its usefulness in processes of group deci- 
sion making in a linguistic environment. 
We have checked the first goal, expressing the 

properties of the LOWA operator and examining 
some of the axioms of an acceptable aggregation 
operator that it satisfies. Then we combined the 
LOWA operator with other fuzzy tools, such as 
fuzzy linguistic quantifier, linguistic preference rela- 
tions, concept of dominance and non-dominance, 
to show its use in the field of group decision. We 
presented three models of group decision making 
based on rational properties of the LOWA oper- 
ator. 

This paper shows how to use fuzzy techniques to 
incorporate more human consistency in decision 
models. In the future, we are interested in develop- 
ing decision models that allow a closer link between 
the computer world and human beings world in 
fields, such as multi-criteria decision making and 
multi-stage decision making, using linguistic ele- 
ments. 
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