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Abstract

In this paper we describe the genetic algorithms and fuzzy logic, focusing them as tools
to model control processes and to design intelligent and automatic control systems. We
describe the application of genetic algorithms to design fuzzy logic controllers, as well as the
learning classifier systems and their development in a fuzzy environment, the fuzzy learning
classifier systems.
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1 Introduction

The assumption that all engineering system modeling can be reduced to an exact set of algebraic
and differential equations has been challenged by research that recognizes that measurements,
process modeling and control can never be exact for real complex processes.

There is a necessity to reach advanced control technologies able of:
e managing uncertainty and expert knowledge
¢ accommodating significant changes in the plant and its environment,

e incorporating techniques for learning either uncertain information, or a changing environ-
ment, and methods of combining existing knowledge with a learning process.

According to them, a problem is how to represent and compute processes that are imprecisely
described or are controlled by humans without recourse to mathematical models, algorithms or a
deep understanding of the physical processes involved. Fuzzy logic (FL), which may be viewed as
an extension of classical logical systems, provides an effective conceptual framework for dealing
with the problem of knowledge representation in an environment of uncertainty and vagueness.
Among the most successful application of FL are the Fuzzy Logic Controllers (FLCs). FLCs
implement an expert operator’s approximate reasoning process in the selection of a control
action.

Another problem is how to get ready adaptive techniques, which permit to have intelligent
control systems, that is, systems involving learning or adaptation in response to changes in
process parameters. FL is a powerful tool for knowledge representation in computational intelli-
gence. On the other hand, adaptive control, learning and self-organization can be considered in a
lot of cases as optimization or search processes. Genetic algorithms (GAs) are search algorithms
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that use operations found in natural genetics to guide the trek through a search space. GAs are
theoretically and empirically proven to provide robust search in complex spaces, offering a valid
approach to problems requiring efficient and effective search.

FL and GAs are two important tools for modeling and managing intelligent and automatic
control systems, which are able of supporting the above features. Each of them have different
advantages, on one hand, nonlinearity and explicit knowledge expression of FL and, on other
hand, learning capability, global and local search approach of GAs. Recently there are an
increasing number of publications about the combination of these two topics. The integration
between GA and FL may produce useful results. The application of GAs to design FLCs has
been widely developed. In fact, the usefulness of the GAs in this task has been widely shown.

Here, we describe the GA and the FLCs. We introduce the FLCs and their applications.
We present the GAs, some GA applications developed to control and engineering processes, and
theirs applications to design FLCs. Also we approach the learning classifier systems as the usual
GA paradigm in machine learning and their development in a fuzzy environment, the fuzzy
learning classifier systems.

In order to do that we organize the paper as follows. Section 2 introduces the FLCs while
section 3 presents the GAs. Section 4 presents the design of FLCs using GAs. Section 5 includes
the description of the learning classifier systems and the fuzzy learning classifier systems. Finally
some conclusions are pointed out.

2 Fuzzy Logic Controllers

2.1 Description of the Fuzzy Logic Controllers

The purpose of any controller is to look periodically the values of the state variables of the
controlled system and to obtain the values associated to their control variables by means of the
relationships existing between them. If those relationships can be expressed in a mathematical
way, it is not too much difficult to design the controller. The problem comes when, as it happens
in a lot of real world nonlinear systems with complex dynamics, there is not a mathematical
model representing the existing relationships.

In the 40’s and 50’s, many researches proved that many dynamic systems can be mathemat-
ically modeled using differential equations. These previous works represent the foundations of
the Control Theory which, in addition with the Transform Theory, provided an extremely pow-
erful means of analyzing and designing control systems. These theories were being developed
until the 70’s, when the area was called Systems Theory to indicate its definitiveness [Mam93].
Its principles have been used to control a very big amount of systems taking mathematics as
the main tool to do it during many years. Unfortunately, in too many instances this approach
could not be sustained because many systems have unknown parameters or highly complex and
nonlinear characteristics that make them not to be amenable to the full force of mathematical
analysis as dictated by the Control Theory.

Over the last few years the application of Artificial Intelligence techniques has become a
research topic in the domain of processes control, taking the purpose of avoid the commented
drawbacks and allow to obtain efficient controllers which utilizes the human experience in a more
related form than the conventional mathematical approach. In the cases in which a mathematical
representation of the controlled systems cannot be obtained, the process operator should be able
to express the relationships existing in them, that is, the process behavior.

Fuzzy Logic Control is the main topic of this new field known as FEzpert Control. FLCs
initiated by Mamdani and Assilian in the work [Mam75], are now considered as one of the most
important applications of the Fuzzy Set Theory suggested by Zadeh in 1965 [Zad65] presenting



the notion of fuzzy set, generalization of the ordinary set characterized by a membership function
p taking values in the interval [0,1] representing degrees of belonging to the set (not absolute
belonging as in classical sets), playing a central role. FLCs are knowledge based controllers that
are usually derived from a knowledge acquisition process or are automatically synthesized from
a self-organizing control architecture [Bon94].

While conventional linear controllers can be viewed as a hyperplane in a N+1-dimensional
space, mapping an Nth dimensional state vector to a control action, FLCs, on the other hand,
typically define a non-linear mapping from the system’s state space to the control space. Thus,
it is possible to visualize the results of a FLC as a nonlinear control surface reflecting the process
operator’s prior knowledge.

A FLC is composed by a Knowledge Base, that comprises the information given by the
process operator in form of linguistic control rules, a Fuzzification Interface, who has the effect
of transforming crisp data into fuzzy sets, an Inference System, that uses them joined with
the Knowledge Base to make inference by means of a reasoning method, and a Defuzzification
Interface, that translates the fuzzy control action so obtained to a real control action using a
defuzzification method. The generic structure of a FLC is shown in figure 1 [Lee90].

Knowledge Base

|

Fuzzification Defuzzification
I Inference System [
Interface Interface
State Variables Control Variables

Controlled System

Figure 1: Generic structure of a fuzzy logic controller

The Knowledge Base encodes the expert knowledge by means of a set of fuzzy control
rules. A fuzzy control rule is a conditional statement with the form IF (a set of conditions are
satisfied) THEN (a set of consequences can be inferred) in which the antecedent is a condition in
its application domain, the consequent is a control action to be applied in the controlled system
(notion of control rule) and both antecedent and consequent are associated with fuzzy concepts,
that is, linguistic terms (notion of fuzzy rule).

Thus the Knowledge Base is composed of two components, a Data Base, containing the
definitions of the fuzzy control rules linguistic labels, that is, the membership functions of the
fuzzy sets specifying the meaning of the linguistic terms, and a Rule Base, constituted by the
collection of fuzzy control rules representing the expert knowledge. There are different kinds
of rules proposed in the specialized literature regarding to the expression of the consequent.
Mamdani employs rules in which the consequent is another fuzzy variable [Mam75] while Sugeno
uses rules whose conclusion is a polynomial function of the inputs [Sug85]. Another kind of rules
present too the consequent being a function of the input parameters. The following three rules
show respectively the generic expressions of the three types commented:

If X118 Ay and ... and X, 1s A, then Y is B
If Xi1is Ay and ... and X, 1s A, then Y = pg+ p1 X1 + ... + puXan
If Xy is Ay and ... and X,, is A, then Y = f(Xq,...,X,)



being the X; and Y linguistic variables and the A; and B fuzzy sets specifying the meaning of
them.

Without lack of generality, in the following we consider a Rule Base constituted by m Mam-

dani type fuzzy control rules R;, i = 1, ..., m, with the form:
If X118 Ay and ... and Xy, 1s Ay, then Y is By
also
also

If X118 Ay and ... and X, 18 Ay then Y is By,

As we have commented, the Knowledge Base encodes the expert known knowledge of the
controlled system. So it is the only component depending on the concrete application and it
makes the accuracy of the designed FLC depends directly on its composition. There are four
modes of derivation of fuzzy control rules that are not mutually exclusive [Ber92, Lee90]. These
modes are the following;:

1. Fzpert Fzperience and Control Engineering Knowledge.
2. Modeling of the Operator’s Control Actions.
3. Based on the Fuzzy Model of a Process.

4. Based on Learning and Self-Organization.

The first method is the most widely used. This method is effective when expert human
operators can express that they use it to control the system in terms of control rules. The
rules more usually obtained by means of this process are Mamdani type. Since they present
an adequate form to represent the expert knowledge. The second method directly models the
control actions of the process operator. Instead of interviewing the operator, the types of control
action taken by it are modeled. The third approach is based on the developing of a model of
the plant and construct a FLC to control the fuzzy model generating the fuzzy control rules of
the Knowledge Base by means of the fuzzy model of the system. It makes this approach similar
to that traditionally used in Control Theory. Hence, structure and parameter identification are
needed. Finally, the fourth method is focused on learning. In this case, the ability to create
fuzzy control rules and to modify them based on experience in order to improve the controllers
performance is considered.

The Fuzzification Interface defines a mapping from an observed input space to fuzzy sets
in certain input universes of discourse, obtaining the membership function associated to each
one of the system inputs. Symbolically,

F = fuzzifier(zg)

where zq is a crisp input value from a controlled system, F is a fuzzy set and fuzzt fier represents
a fuzzification operator.

There are two main types of fuzzification:

a) Point fuzzification:

0 otherwise

F(w):{ 1leof 2 =xg

b) Approximate function:
F(z)=01if and only if |2 — z¢| < 6



The Inference System is based on the application of the Generalized Modus Ponens
(GMP), extension of the classical logic Modus Ponens, proposed by Zadeh in the way:

If X is AthenY 1s B
X is A

Y is B’
The fuzzy conditional statement If X is A then Y is B (being X, Y linguistic variables and
A, B fuzzy sets) represents a fuzzy relation between A and B defined in XxY, being X and Y

the universes of the variables X and Y respectively. The fuzzy relation is expressed by a fuzzy
set R whose membership function pgr(z,y) is given by:

Ve e X,y €Y :up(a,y) = I(pa(z), us(y))

being p4(z) and pp(y) the membership functions of the fuzzy sets A and B respectively and I a
fuzzy implication operator. The consequent B’ obtained from the GMP is deduced by projection
on Y by means of the Compositional Rule of Inference (CRI) given by the following expression
in what T’ is a connective:

i (y) = Supsex {T' (@), Ipua(e). ns(y) }

Since the input 2 corresponding to the state variables of the controlled system is crisp, 2 = zg,
the application of the first type of fuzzification provokes the fuzzy set A’ to be a singleton, that
is, py(2)=1¢f 2 =wx9and py(x)=01¢f z# xg. Thus the CRI is reduced to the following
expression:

pg(y) = 1(palzo), pB(y))

Finally, when the rules of the Knowledge Base have more than one variable in the antecedent
(that is, they present the generic form If X is Ay and ... and X, is A, then Y is B),
zo = (21,...,2,) and

:uA(xO) = T(:uA1 (xl)v HA2($2)7 sy :uAn(xn))

being T a conjunctive operator.

Since from each rule R; is obtained a fuzzy set B; from the inference process, the Defuzzi-
fication Interface uses an aggregation operator G, representing the connective also of the
Knowledge Base control rules, which composes them and applies a defuzzification method D to
translate the fuzzy sets obtained in this way into values corresponding to the control variables of
the system. So, calling 5 to the FLC, zg to the inputs value and yy to the crisp value obtained
from the defuzzification, we have:

() = G g (1) s (), s e (29) }
Yo = S(xo) = D(pp(y))

At present, the commonly used strategies may be described as the Maxz Criterion, the Mean

of Mazimum (MOM) and the Center of Area (COA) [Lee90]:

e The Max Criterion takes the point at which the fuzzy set representing the fuzzy control
action, B’, reaches its maximum value.

o The MOM strategy generates a control action which represents the mean value of all local
control actions whose membership functions reach the maximum.



e The widely used COA strategy generates the center of gravity of the fuzzy set B'.

In [Kis85] several factors were presented that have a significant influence in the FLC such
as:

1. The form of the mathematical definition of the fuzzy implication in the fuzzy control rules
(If ... and ... then), that is, the selection of the fuzzy implication operator I representing
the fuzzy relation R.

2. The form of the mathematical definition of the sentence connective and, that is, the selec-
tion of the conjunctive operator T.

3. The form of the mathematical definition of the sentence connective also, that is, the
selection of the aggregation operator G.

4. The form of the mathematical definition of composition of fuzzy relations existing in the

CRI.

5. The way of defining the defuzzification operator D.

The influence of several of these factors is analyzed in [Kis85, Car93, Car95], taking as base
several control applications.

2.2 Applications

During the past several years, many applications of FLCs have been developed successfully.
FLCs have been proved to be superior in performance to conventional systems in many appli-
cations. It should be noted that the first industrial application was the cement kiln controller
developed by the Danish cement plant manufacturer F. L. Smith in 1979 [Umb80]. Some of
other more recent applications are water treatment, combustion control system for a refuse
incineration plant, japanese sake fermentation control, elevator control, highway tunnel ventila-
tion control system, automatic train operation system, container crane operation system, fully
automatic washing machine, vacuum cleaner, video equipment, recuperative turboshaft engine
control, locomotive wheel slip control, steam turbine cycling, power electronics control, heat
exchange, warm water process control, activated sludge wastewater treatment, traffic junction,
aircraft flight control, turning process, robot control, model-car parking and turning, automobile
speed control, nuclear reactor control, fuzzy memory devices, fuzzy computer, welding, water
purification process control, control of a liquid level rig, automobile transmission control, gaso-
line refinery catalytic reformer control, two-dimensional ping-pong game playing, and control of
biological processes [Hir93, Bon94, Lee90, Ber92].

More complete information about FLCs can be found in [Lee90, Hel93, Ber92, Bon94].

3 Genetic Algorithms

3.1 Description of the Genetic Algorithms

GAs are general-purpose search algorithms that use principles inspired by natural population
genetics to evolve solutions to problems [Hol75]. The basic idea is to maintain a population
of knowledge structures that evolves over time through a process of competition and controlled
variation. Each structure in the population represents a candidate solution to the concrete prob-
lem and has an associated fitness to determine in the process of competition which structures are
used to form new ones. The new ones are created using genetic operators such as crossover and



mutation. GAs have had a great measures of success in search and optimization problems. The
reason of great part of its success is their ability to exploit accumulating information about an
initially unknown search space in order to bias subsequent search into useful subspaces, i.e., their
robustness. This is their key feature, overcoat in large, complex and poorly understood search
spaces, where the clasical search tools (enumerative, heuristic,..) are inappropriate, offering a
valid approach to problems requiring efficient and effective search.

A GA starts with a population of randomly generated solutions, chromosomes and advances
toward better solutions by applying genetic operators, modeled on the genetic processes occur-
ring in nature. In these algorithms we maintain a population of solutions for a given problem;
this population undergoes evolution in a form of natural selection. In each generation, relatively
good solutions reproduce to give offsprings that replace the relatively bad solutions which die.
An evaluation or fitness function plays the role of the environment to distinguish between good
and bad solutions. The process of going from the current population to the next population
constitutes one generation in the execution of a genetic algorithm.

Although there are many possible variants of the basic GA, the fundamental underlying
mechanism operates on a population of chromosomes or individuals (representing possible solu-
tions to the problem) and consists of three operations:

(1) evaluation of individual fitness,
(2) formation of a gene pool (intermediate population) and

(3) recombination and mutation.
The figure 2 shows the structure of a simple GA.

Procedure Genetic Algorithm
begin (1)
t = 0;
initialize P(t);
evaluate P(t);
While (Not termination-condition) do
begin (2)
t=1+1;
select P(t) from P(t —1);
recombine P(t);
evaluate P(t);
end (2)
end (1)

Figure 2: Structure of a GA

A fitness function must be devised for each problem to be solved. Given a particular chro-
mosome, a solution, the fitness function returns a single numerical fitness which is supposed to
be proportional to the utility or adaptation of the individual which that chromosome represents.

There are a number of ways to do selection. We might view the population as mapping
onto a roulette wheel, where each individual is represented by a space that proportionally cor-
responds to its fitness. By repeatedly spinning the roulette wheel, individuals are chosen using
”stochastic sampling with replacement” to fill the intermediate population. The selection pro-
cedure proposed by Baker, [Bak87], and called stochastic universal sampling is one of the most
efficient. The number of offspring of any structure is bound by the floor and ceiling of the
expected number of offspring [Bak87].



After selection has been carried out, the construction of the intermediate population is
complete and recombination and mutation can occur.

The crossover operator combines the features of two parent structures to form two similar
offsprings. It is applied at a random position with a probability of performance, the crossover
probability, P.. The mutation operator arbitrarily alters one or more components of a selected
structure so as to increase the structural variability of the population. Each position of each
solution vector in the population undergoes a random change according to a probability defined
by a mutation rate, the mutation probability, P,,.

The next figure illustrates the basic operations: reproduction, crossover and mutation.

Evaluation Old Population Gene Pool
1
> .|
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Figure 3: Evaluation and contribution to the gene pool
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Figure 4: Recombination. One-point crossover
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Figure 5: Mutation

It is generally accepted that a GA to solve a problem must take into account the five following
components:

1. A genetic representation of solutions to the problem,

2. a way to create an initial population of solutions,

3. an evaluation function which gives the fitness of each individual,

4. genetic operators that alter the genetic composition of children during reproduction, and

5. wvalues for the parameters that the GA uses (population size, probabilities of applying genetic
operators, etc.).

The basic principles of the GAs were first laid down rigorously by Holland [Hol75] and are
well described in many texts as [Dav91lb, Gol89, Mic92].

Numerous GAs applications have been presented during the last years. Some of them can be
summarize as numerical function optimization, combinatorial optimization, image processing,
fuzzy logic, engineering processes, biology, artificial life, machine learning, etc. [Bel91, M&n92,
For93, ICEC94, Dav94].

There are many applications of GAs to learning systems [Dej88, Gre93, Gre94], a usual
paradigm being that of a learning classifier system [Hol78]. The GA tries to evolve a set of if ...



then rules to deal with some particular situation. Learning classifier systems will be presented
in section 5.

3.2 Genetic Algorithms in Control Processes

Focusing into the application of the GAs in engineering system modeling, we find a great quantity
of applications. In the following we summarize some of them in order to show the potential of
GAs in engineering system modeling.

o Optimizing robot trajectories

In [Dav9lalis introduced a GA which successfully handles the trajectory generation of the
redundant robot model described.

The proposed GA incorporates some few new mechanisms which are necessary to make a
GA amenable to the natural trajectory representation used.

The majority of changes needed were concentrated in adopting the reproduction operator
to suit the varying in length and an order dependent representation of trajectories. The
results presented demonstrate the power and robustness of the trajectory-GA. It optimizes
trajectories efficiently and, more importantly, reliably.

e Parametric Design of Aircraft

In [Bra91] the optimizing aircraft designs when the task is posed as that of optimizing a
list of parameters were discussed.

o Air-Injected Hydrocyclone Optimization

In [Kar91lc] the design of an air-injected hydrocyclone as a list of parameters was repre-
sented. In this approach the authors use a new operator called ”simplex reproduction”,
showing that a GA using this operators is quite effective as a search technique for finding
design parameter combinations.

o Multiple Fault Diagnosis

In [Lie91] the use of a genetic algorithm for finding the most plausible combination of
causes for alarms in a microwave communication system was discussed.

o Schedule Optimization

In [Sys91] the application of a GA to the problem of scheduling activities in a laboratory
in which each activity may affect the others in a variety of ways was described .

o Control-Cost-Driven Evolution

Genetic programming (GP) is essentially a variant of GA with a different problem rep-
resentation. Koza [Ko0z92] started from the observation that problem representation is a
key issue in GAs because it is actually the coded representation of the underlying problem
that a GA can manipulate.

”For many problems in machine learning and artificial intelligence, the most
natural known representation for a solution is a hierarchical computer program
of indeterminate size and shape, as opposed to character strings whose size has
been determined in advance”. [Koz92, p. 210].

GP provides a way to find an approximately correct function for problems of control and
optimal control for which an exact mathematical solution cannot be obtained. In the
chapter 11 of [K0z92] it is demonstrated the use of GP on the well known optimal control



problem of balancing a broom, the control problem of backing up a tractor-trailer truck
and an optimization problem.

Other papers about that can be found in the proceeding of the last conferences [Bel91,
M&n92, For93, ICE94, Dav94]. By means of this summary we have tried to show the faculty of
GAs for multiple applications in ingeniering and control processes.

4 Design of Fuzzy Logic Controllers using Genetic Algorithms

When we try to design a FLC, two problems arise: first, how to establish the structure of the
controller and, second, how to set numerical values of the controller parameters. The GAs
have been successfully applied in these problems, learning controller structure as well as tuning
controller parameters. In fact, the GAs search the fuzzy control rules (FCR) base that verify
the optimality conditions specified by their fitness function according to the required features.

In the following we present some proposals according the above settled aspects.

4.1 Tuning controller parameters

A FLC contains a number of sets of parameters that can be altered to modify the controller
performance. They are [Hel93]:

e the scaling factors for each variable,
o the fuzzy sets representing the meaning of linguistic values,
o the if-then rules.

Each of these sets of parameters has been used as the controller parameters to be adapted
in different adaptive FLCs.

GAs have been used to modify the fuzzy set definitions, to alter the shapes of the fuzzy
sets defining the meaning of the linguistic terms, to determine the membership functions that
produce maximum control performance according to the inference system (fuzzy implication and
conjunctive operator) and the defuzzification strategy used. That is, to tune the FCR set, in
order to make the FLC behaves as closely as possible to the operator or expert behavior. This
method relies on having a set of training data against which the controller is tuned.

The tuning method using GAs fits the membership functions of the fuzzy rules dealing with
the parameters of the membership functions, minimizing a square error function defined by
means of an input-output data set for evaluation.

Recent works have been centred on the the use of GAs altering the set definitions so that
the FLC matches a suitable set of reference data as closely as possible [Kar91la, Kor93, Hes93,
Var93, Her95a].

A chromosome represents one possible solution to the problem, that is, one possible FCR
base . The fitness function itself depends on the task of the FLC, usually the square error can
be considered, then the chromosome is tested by evaluating the training data set.

4.2 Learning controller structure

For learning the controller structure different hypotheses can be considered, either to work with
a determined variables domain or to manage rules with a free structure. According to these two
possible models, different GA learning processes have been proposed.



Determined variables domain

We assume that each universe, U, contains a number of referential sets having their linguis-
tic meaning which form a finite set of fuzzy sets on U. Membership functions are defined
to represent the developer’s conception of the linguistic variables. For instance if X is a
variable on U for temperature, then one may define Ay as ”low temperature”, A;(1 < i < r)
as "medium temperature” and A, as ”high temperature”. These referential fuzzy sets are
characterized by their membership functions A;(u): U — [0,1],¢=1,...,r. To ensure the
performance of the fuzzy model and provide an uniform basis for further study it is required
that all referential sets should be normal convex and satisfy the following completeness
condition:

Vu e U 35, 0 < j <r, such that A;(u) > 6

where 6 is a fixed threshold, the completeness degree of the universes.

Free variables structure

Rules with a free structure, without an initial fuzzy set referential, can be also considered.

The rules have the form
R; : IF 24 is A1 and ... and z, is A;, THEN 4, is B;; and ... and y,, is Bin

where z1,...,x, and #,..., ¥y, are the process state variables and the control variables
respectively, and Aji,..., Ajp, Bit, ..., By are fuzzy sets in the universes of discourse

Uy, ...Upn, Vi, e, Vi

These fuzzy sets are characterized by their membership functions
Aii(Bip) : U;(Vi) — [0,1], 7=1,...,n, h=1,..,m

We can consider every fuzzy set associated to a normalized trapezoidal membership func-
tion. A computational way to characterize it is to use a parametric representation achieved
by means of the 4-tuple (a}j,a?j,a%,afj), (b}, 03,07 01, j=1,...,n, h=1,..,m.
Next we describe two of the GA learning processes proposed in the literature for each one of
the variables structure.

4.2.1 GA learning processes with determined variables domain

The method proposed by Karr [Kar91b]

The rule set is formed as follows. Membership functions were defined to represent the devel-
oper’s conception of the linguistic variables (fuzzy sets) and these variables made the formation
of the rule set a straightforward task. The selection of the decision variables and the fuzzy sets
describing required a number of rules n. From all combination of antecedent labels, one action
must be found via GAs. Considering seven fuzzy sets describing the control variables, the entire
set of possible actions for one rule was represented as a three-bit string (000 represented action
1, 001 represented action 2, and so on). Because n rules were possible, a string of length 3n
represents every possible rule set for the FLC.

Once an acceptable rule set was learned with a GA, the selection of high-performance mem-
bership functions with the rule set is carried out using the above described tuning process.



The method proposed by Thrift [Thr91]

The method proposed by Thrift is similar to the above proposed by Karr, except that Thrift
introduced a new possible value for the consequent of rules, the label ”_”. The 7" symbol
indicates that there is no fuzzy set entry at a position that it appears. A chromosome is formed
from the decision table by going rowwise and producing a string of numbers from the code set.

In this way, during the learning process it is determined the number of rules necessary in
the control process because the rules with the consequent label ”_” can be eliminated.

The codification of the solutions is different of the above proposal. Fach rule has assigned a
gene taking integer numbers. There exist as many genes as possible combinations of the state
variable labels. The range of the genes from 0 to m includes a code for the label ”_” as possible
value of a gene. There are particular features of the GA based on the coding strategy described
above. A mutation operator changes a fuzzy code either up or down a level, or to the blank code
(if it is already blank, then it chooses a non-blank code at random). The crossover operator is
the standard two-point crossover.

4.2.2 GA learning processes with free rules structure

The Method proposed by Cooper and Vidal [Co093]

In contrast to prior genetic fuzzy systems which require every input-output combination to
be enumerated, they propose a novel encoding scheme which maintains only those rules necessary
to control the target system.

They defined a special GA where mutations include inversion of the copied bit and the
addition or deletion of an entire rule. These latter two mutations permit the size of a system’s
FCR base to evolve. The cycle of evaluation and reproduction continues for a predetermined
number of generations or until an acceptable performance level is achieved.

The membership function for each variable is a triangle characterized by the location of its
center and the half-length of its base. A single rule, therefore, consists of the concatenation of
the one-byte unsigned characters (assuming values from 0 to 255) specifying the centers and
half-lengths of the membership functions. The rule descriptions for a single fuzzy system are
then concatenated into a single bit string where the number of rules is not restricted.

To be meaningful, the genetic paradigm requires that the rules in the two strings be aligned
so that similar rules are combined with each other. Simply by combining the strings in the
order they appear it does not preserve much information about either system and produces
nearly random results, rather as a child system that performs in a manner similar to its parents.
Therefore, before reproduction, both strings must be aligned so that the centers of the input
variables match as closely as possible. The most closely matching rules are combined first,
followed by the next most closely matching rules from those that remain and so on. Any rules
forming a longer string that is not matched are added at the end.

The method proposed by Herrera et al. [Her95b]

The proposed learning fuzzy control rules process is based on the use of GAs under the
following hypotheses:

e There is some linguistic information from the experience of the human controller but
linguistic rules alone are usually not enough for designing a successfully control system or
could not be available.

e There is some numerical information from sampled input-output (state-control) pairs that
are recorded experimentally.



¢ The combination of these two kinds of information may be sufficient for a successful design

of a FCR base.

e We include the possibility of not having any linguistic information and having a complete
numerical information.

According to the aforementioned hypothesis a learning process is designed according to the
following goals:

o to develop a generating FCR process from numerical data pairs; and

¢ to develop a general approach combining both kinds of information, linguistic information
and fuzzy control rules obtained by the generating process, into a common framework
using both simultaneously and cooperatively to solve the control design problem.

In order to reach these goals, it is proposed a methodology based on the design of the three
following components:

a) a generating fuzzy rules process of desirable fuzzy rules able to include the complete
knowledge of the set of examples,

b) a combining information and simplifying rules process, which finds the final set of fuzzy
rules able to approximate the input-output behaviour of a real system,

¢) a tuning process of the final set of rules,

all of them developed by means of GAs.

As it is possible to have some linguistic IF — THEN rules given by an expert, it is used
a linguistic fuzzy rules structure to represent them. On other hand, there are sampled input-
output pairs and to generate the fuzzy rules covering these examples is used a free fuzzy rules
structure. Then both kind of rules are combined, applying a simplified method based on a GA,
and finally a tuning method is applied over the simplified set of rules.

The generating fuzzy rules process consists of a generating method of desirable fuzzy rules
from examples using GAs together with a covering method of the set of examples.

e The generating method of fuzzy rules is developed by means of a real coded GA (RCGA)
where a chromosome represents a fuzzy rule and it is evaluated by means of a frequency
method. The RCGA finds the best rule in every running over the set of examples according
to the following features which will be included in the fitness function of the GA.

e The covering method is developed as an iterative process. It permits to obtain a set of
fuzzy rules covering the set of examples. In each iteration, it runs the generating method,
it chooses the best chromosome (rule), assigns to every example the relative covering value
and removes the examples with a covering value greater than e.

Because we can obtain two similar rules in the generating process or one rule similar to
another given by an expert, it is necessary to combine and simplify the complete set of rules for
obtaining the final set of rules. Finally, the tuning method presented in [Her95a] is applied over
the simplified set of rules.

Other methods have been proposed under different hypothesis [Bon93, Lee93a, Lee93b,
Chw94, Lee94, Hof94, Sat94].



5 Learning Classifier Systems

5.1 Introduction

The man’s life is surrounded by many monotonous, difficult and dangerous tasks. Many of
them have been eliminated through the developments in autonomous machinery but certain
tasks have remained resistant to automation. In particular, tasks that require robust adapt-
ability have proved difficult to automate. These tasks include trouble-shooting, maintenance,
navigation through poorly-defined, time-varying environments, and the control of systems that
contain many initially unknown and persistently uncertain elements. Biological organisms per-
form effectively in these sorts of environments through processes that can be broadly described
as learning. Due to this reason, there have been many automatic system approaches based in
natural systems, e.g.: neuronal networks, genetic algoritms, evolutive computing, etc.

The aforementioned problems can be classified as learning control problems or machine learn-
ing problems in which the environment varies too rapidly or is too poorly defined for conventional
or adaptive control. In such problems, a control system (controller) must map regions of the
environmental state space onto widely different control actions. This mapping must be formed
adaptively in response to performance-related environmental feedback and must be maintained
in memory. More concretely, these problems are called reinforcement learning control problems,
that is, general models of limited information learning environments where an automated sys-
tem must adquire knowledge about appropiate actions through ongoing experience and whose
learning process is guided by feedback about the quality of developed actions. The researches on
such problems are a fundamental concern for the future of high-autonomy machines. A general
reinforcement learning control system model is presented in the figure 6.
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Figure 6: A general reinforcement learning model.

If we visualize a learning control system as consisting of two components, (i) a task subsystem
or performance component, whose behavior is modified over time via learning, and (ii) a learning
subsystem responsible for observing the task subsystem over time and effecting the desired
behavioral changes. The learning control problem may be restated in terms of searching the
space of legal structural changes for instances that achieve the desired behavioral changes. When
search space of structural changes of learning control problem is poorly-defined and time-varying,
the use of GAs is very effective and appropriate.

GAs are an alternative technique for the designer of learning control systems in which the
control actions required for desired performance vary rapidly and in a way that cannot be pre-
specified.

According to [Dej88] there are a great variety of GA approaches to learning control problem
of increasing complexity. A simpler approach is to restrict structural changes to parameters
modification that control the behavior of performance components and to use GAs to develop a
strategy to quickly locate useful combinations of parameters values. A second approach involves
using GAs to change complex data structures (such as agendas) that control the behavior of the



task subsystem. And a third approach involves using GAs to change the task program itself. In
this context, the task program is considered a production system that consists of an unordered
set of rules. It represents the individual population, which is explored and exploited by GAs-
based learning subsystem. Historically there are two ways to use the space of production systems
to represent the population:

o The Pitt Approach, where each member of population represents a set of production rules
and, therefore, a population is a set of rule sets [Smi80].

o The Michigan Approach, where each member of population represents an individual pro-
duction rule and, therefore, a population is a set of rules [Hol78].

The Pitt approach seems to be more useful for off-line environments in which more radical
behavioral changes are acceptable, whereas the Michigan approach seems to be more useful in
on-line and real-time environments in which radical changes in behavior cannot be tolerated.

Our study concerns third approach to the GA-based learning control problem and, more
concretely, a class of general purpose reinforcement learning control systems, known as learning
classifier systems (LCSs), inspired by the Michigan approach and whose foundations were laid
by Holland in [Hol75] and later developed in [Hol76, Hol78].

5.2  Description of Learning Classifier Systems

LCSs are defined as a massively parallel, message-passing, rule-based systems that are capable
of environmental interaction and reinforcement learning through credit assignment and rule
discovery [Boo89]. They typically operate in environments, such as robot world, economic
systems, mammalian vision systems, games as chess, and others, which exhibit some of following
characteristics: perpetually novel events accompanied by large amounts of noisy or irrelevant
data; continual, often real-time, requirements for action; implicitly or inexactly defined goals;
and, sparse payofl or reinforcement obtainable only through long action sequences.
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Figure 7: A general learning classifier system.

To work in such environments, L.LCSs are designed to absorb new information and devise sets
of competing hypotheses (expresed as rules) without disturbing capabilities already acquired.



There is a considerable variety in the structural and functional details of the LCSs presented
in the literature [Hol78, Gre88, Gol89, Smi9l, Par93, Wil94]. The prototypical organization of
a L.CS is composed of the following three main parts, as it is illustrated in figure 7:

o The Performance System.

o The Credit Assignment (CA) System.

o The Classifier Discovery System.

5.2.1 The Performance System

This is the part of the overall system that interacts directly with the environment. Its activities
are environmental interaction and messages processing. It is composed of the six basic elements:

1. An input interface, which consists of at least one detector that translates the current state
of the environment into standard messages (external messages). Generally, all messages
are required to be of a fixed length over a specified alphabet, typically k-bit binary strings.

2. An output interface, which consists of at least one effector that translates some messages
(action messages) into actions that modify the state of the environment.

3. A set of rules, called classifier list, represented as strings of symbols over a three-valued
alphabet (A ={0,1,#}) with a condition/action format. The condition part specifies the
messages that satisfy (activate) the classifier and the action part specifies the messages
(internal messages) to be sent when the classifier is satisfied. A limited number of classifiers
fire in parallel in each cycle. Details on classifiers coding are given in [Gol89, Boo90].

4. A pattern-matching system, which identifies which classifiers are matched or satisfaid
(matched classifiers) in each cycle of the LCS.

5. A message list, which contains all current messages, i.e., those generated by the detectors
and those sent by fired classifiers.

6. A conflict-resolution (CR) system, which has two functions:

(a) Determining which matched classifiers fire when the size of the message list is smaller
than the number of matched classifiers.

(b) Deciding which actions to choose in case of inconsistency in the actions proposed to
effectors, e.g. ”"turn left” and "turn right”.

The CR system acts according to some usefulness measures associated to each competing
classifiers, i.e. the relevance to the current situation or specificity and the strength or
past usefulness. The CR system is based on an economic analogy and consists of a bid
competition between classifiers. In this system, matched classifiers bid a certain proportion
of their usefulness measures and classifier conflicts are resolved based on a probability
distribution over these bids. Higher bidding classifiers are favored to fire and post their
messages. If a classifier fires, it must pay out its bid. Thus, each classifier that fires risks a
certain percentage of its strength with the possibility of receiving reward as compensation.
No global information is maintained to suggest which classifiers compete with one another.
Each classifier maintains only its own statistics, which are updated only when the classifier
is active.

Generally, the CR and AC systems make up the complete inference engine of LCS and i.e.
their activities are interrelated as we shall see later.



A descriptive scheme of the performance system is presented in the figure 8.
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Figure 8: A general performance system.

5.2.2 The Credit Assignment System
The learning of a L.CS is divided in two learning processes:

(i) the learning process developed in the credit assignment system,

(ii) the learning process developed in the classifiers discovery system.

In the first one, the set of classifiers is given and its use is learned by means of environmental
feedback. In the second one, new and possibly useful classifiers can be created using past
experience.

Therefore, the main task of CA system includes the activity of learnig by the modification
and adjustment of conflict-resolution parameters of classifier set, i.e., their strengths. There are
many different CA system scheme types proposed in the literature. The most important ones
are two:

1. The traditional scheme of the Bucket Brigade Algorithm (BBA) [Boo82, Hol85, Boo89,
Gol89], which is a local learning scheme that requires a few memory and computational
requeriments. Usually, the BBA is linked to the CR system and set up the mechanism of
a competitive economy known as CA/CR system. In this classical LCS CA/CR system,
each satisfied classifier C'; makes a bid Bud;,

Bid; =b - Str; - Spec;

where b is a small constant less than 1, called risk factor, Str; is C';’s strength (initialized
with the same value for all classifiers), and Spec; is C;’s specificity; and i.e., a quantity
expressing the classifiers relevance to particular environmental situations. The probalility
that a bidding classifier C'; wins the competition is given by
Bud;
>c,es Bidy

where B is the set of all bidding classifiers. A winning classifier C'; reduces its strength by
the amount of its bid according to this expression,

Str; = Str; — Bud;,



and this amount (Bid;) is shared among those classifiers (predecessors) whose preceding
activities enabled C; to became active according to the following rule:

Bid:
Stri = Str; + —% VCieP;,
[P

where P; is the set of predecessors, that is,
P;=A{VC; : T € T; Im € T (Cisent m)}

where 7; is the set of all messages tuples that satisfy C'; and m a message.

Obviously, if a classifier does not bid enough to win the competition, it pays nothing.
Additionally, if an external reward is received from the environment then it is equally
distributed among the classifiers that sent the effector-activating messages. In this way
all classifiers directly or indirectly that are useful in achieving specific goals are rewarded
although they are not active when the external reward is obtained. Some variants of BBA
can be found in [Dor91,Wei91,Wil87a).

2. The Profit Sharing Plan (PSP) [Hol78,Gre88], which is a global learning scheme that
typically achieves a clearly better performance than the BBA. Here, the bidding and
selection of the winning classifiers is done as in BBA and the external reward Faxt is
distributed among sequences of active classifiers, that is, among classifiers C'; that was
active at least one time during a episode (where an episode is defined as the time interval
between the receipts of two succesive external rewards) according to rule

StT]‘ = StT]‘—Bid]‘—I—b - Fat.

Therefore, the BBA is an incremental learning algorithm according to which the strengths
are updated each cycle; against that, the PSP is an episodical learning algorithm according
to which the strengths are only updated at the end of each episode. Some variants of PSP
can be found in [Gre88,Wei92].

There exist some approaches to a synthesis of aforementioned CA schemes. For example the
Grefenstette’s system called RUDI [Gre88], and most recently, Gerhard WeiB3 has proposed a new
CA system approach, the Hierarchical Chunking Algorithm (HCA) [Wei94], which approaches
to both the lower computational requirements of the BBA and higher performance level of the
PSP and, have been designed to solve the locality/globality dilemma (see [Wei94] for more
information).

5.2.3 The Classifier Discovery System

The classifier discovery process for LCS uses AGs for its task. The system develops its learning
process generating new classifiers from classifier set by means of AGs. Basically a GA selects
high fitness classifiers as parents forming offsprings by recombining components from the parent
classifiers. The fitness of a classifier is determined by its usefulness or strenght calculated with
the CA system instead of a fitness function. In typical LCS implementations, the GA population
is a portion of the classifier set consisting of those high strength ones. In order to preserve the
system performance the GA is allowed to replace only a subset of the classifiers, i.e., a subset of
the worst m classifiers is replaced by another of m new classifiers created by the application of
the GA on the selected portion of the classifier population. As AG uses classifiers strength as a
measure of fitness, it can be usefully applied to the set of classifiers only when the CA system has
reached steady-state, i.e., when a classifier strength accurately reflects its usefulness. Therefore,
it is applied with a lower frequency, usually between 1000 and 10000 CA system cycles. A AG
basic execution cycle is as follows:



Step 1. Take the classifier set as initial population P.

Step 2. Rank individuals of P in decreasing fitness order using the strength associated to every
classifier as a measure of fitness.

Step 3. Choose 2k individuals to be replaced among low ranked-useless-ones.
Step 4. Choose k pairs of individuals to be replicated among high ranked-useful-ones.
Step 5. Apply genetic operators to the k pairs selected at step 4, creating offspring classifiers.

Step 6 Replace the 2k individuals selected at step 3 with the offsprings created at step 5.

5.2.4 Basic Operation of a LCS

A LCS basic execution cycle that combines the aforementioned systems consists of the followings
steps:

Step 0. Initially, a set of classifiers is created randomly or by some algorithm that takes into account
the structure of the problem domain and they all have assigned the same strength.

Step 1. Allow the input interface to code the current environmental output signals as messages.
Step 2. Add all messages from the input interface to the message list.

Step 3. The pattern-matching system determines the set of classifiers that are matched by the
current messages of the message list.

Step 4. The CR system resolves conflicts between matched classifiers and determines the set of
active classifiers.

Step 5. Purge the message list.
Step 6. Place the messages suggested by the active classifiers on the message list.

Step 7. Allow any effectors that are matched by the current message list to submit their actions
to the environment. In the case of inconsistent actions call to CR system.

Step 8. If a reward signal is present, distribute it with the CA system.
Step 9. If the CA system has reached steady-state applying GAs over classifier set.

Step 9. Return to step 1.

5.2.5 Future in LCSs Research

Nowadays there are defined many questions into LCSs research. In The First International
Workshop on Learning Classifier Systems holded on October 6-9, 1992 at Johnson Space Center
in Houston, Texas, were pointed out some main questions as:

1. What methods can create cooperation in LCS?.

2. What discovery mechanisms can help the GA to find and maintain useful classifier sets?.
3. What is an appropiate syntax or representation in LCS?

4. How can one insure effective credit assignment in LCS?

5. How can the LCS creates computationally useful internal message processing?



For more information see [B0092,5mi92].

In the following section we shall study the appropiate representation problem and analize
a type of LCS, called the Fuzzy LCSs (FLCSs), which merge the ideas behind LCSs and fuzzy
controllers, allowing to work with continous input and output variables due to the advanges of
Fuzzy Sets Theory to deal imprecise information. Finally, in the last section we shall present
some of the most important applications of LCSs in systems control.

5.3 Fuzzy Learning Classifier Systems

In many complex environments, e.g. in identification and adaptive control of dynamic systems,
the LCSs have not had much application due in part to the limitations of the their syntax
to represent continuously varying variables. A simple and promising way of dealing with this
problem is through Fuzzy Sets Theory.

A Fuzzy Learning Classifier System is a genetic based machine learning system whose clas-
sifier list is a fuzzy rule base. The FLCS learns by creating fuzzy rules which relate the values
of the input varibles to internal or output variables. The FLCS integrates the same elements of
the LCS, but working in fuzzy environment.

Three fuzzy logic-based LCS approaches have been proposed, Valenzuela’s approach [Val9la,
Val91b], Parodi & Bonelli’s approach [Par93] and Carse & Fogarty’s approach [Car94]. In what
follows, these approaches will be described.

5.3.1 The Valenzuela’s Fuzzy Learning Classifier System

Valenzuela-Rend6n gives the first description of a FLCS [Val91a, Val91b]. Some peculiarities of
his FLCS model are:

e It operates over inputs, outputs and internal variables, and it allows them to take contin-
uous values over given ranges.

e For each variable, n component fuzzy sets are defined so that their membership functions
span the interval [0,1]. The number of these componet sets is defined by the user according
to the precision required and membership functions are fixed and set by hand.

e The classifiers are fuzzy rules, similarly to fuzzy controllers. Each classifier is a binary
string that encodes the membership function of the fuzzy sets defined for variables involved
in the problem, so that the number of bits in a condition or an action is the number of
fuzzy sets defined over the given variable. A ”1” indicates that the corresponding fuzzy
set is part of the condition or action.

e Fach condition or action presents a non-fuzzy binary tag which indicates to which variable
the condition or action is referring to.

e The FLCS syntax does not include the wildcard character #.

o There is defined a fuzzification process in the input interface of FLCSs, which fuzzifies
inputs into fuzzy messages by creating minimal messages, one for each fuzzy set defined
over the variable.

e Fach message has an associated activity level which measures the degree of belonging of
the input variable to the fuzzy set defined by the membership function represented by the
message. The messages are deposited in message list.

e The pattern-matching system acts at two steps. First, the tags of the message and condi-
tion are compared; if they are the same they refer to the same variable, if so, the rest of
the message and condition are compared. And second, if at least there is one position in
which the condition has a 71”7 and the message also, then the condition is satisfied.



o When classifier conditions are satisfied, it posts a new message in the message list with an
activity level proportional to the classifier own activity level. Where the activity level of a
classifier is equal to the minimum of the satisfaction levels of all its conditions, being the
satisfaction level of a condition equal to the maximum activity level of the messages that
match this condition.

e When the output interface detects messages refered to output variables, it develops a
defuzzification process, based on gravity center procedure, which translates them into real
values.

e It has a CR/CA system which reassemble those of common learning classifier systems, i.e.,
the bucket brigade algorithm, but with a fuzzy nature.

o The classifiers that do not participate in the competition pays a living tax, (i.e. a small
portion of their strength every cycle) whose purpose is to eliminate non-used classifiers.

o It uses a GA with the crossover and mutation operators to create new classifiers and
therefore allows the evolution of adapted classifier set, but only the evolution of classifiers.

Valenzuela tested his FLCS in the identification of static one-input one-output systems using
a stimulus-response FLCS without AC system, and he obtained good and promising results.

Some drawbacks of this approach are: (i) if the variables present many sets the classifiers
can be very long; (ii) FLCS presents many parameters dependent on user; and (iii) membership
functions are set and fixed by hand, which does not seem to be an easy task to perform in
complex cases.

5.3.2 The Parodi & Bonelli’s Fuzzy Learning Classifier System

This is a new and original approach to FLCSs that can be viewed as an extension of Wilson’s
Boole LCS [Wil87b] and which eliminates drawbacks of aforementioned approach. Some of its
peculiarities are:

e Each variable has associated a fuzzy set, and i.e. each variable is described by a member-
ship function. This description is variable and will evolve through genetic search. This
approach suggest the use of symmetric membership functions, e.g. it chooses triangles.

e Each classifier contains the actual description of the membership functions that correspond
to each input and output variable, which consists of parameters that define the associated
fuzzy set. There is also an associated strength to each classifier that indicates its credibility.

e The pattern-matching system follows a process similar to a fuzzy controller process. A
crisp input values vector is broadcast to the classifiers. All classifiers are activated in
parallel to a different degree. The degree to which each classifier is activated is calculated
by taking the minimum of the current inputs membership values with respect to the
fuzzy sets present in the condition part of each classifier. All fuzzy sets of the action of
each classifier are partially activated in parallel according to a proportional expresion to
correpondient classifier activity degree.

e In the output interface the partially activated fuzzy sets of same output variables are
combined using the weighted sum method to produce a final fuzzy set for each output
variable. And finally, in order to produce numerical output values vector, each output
fuzzy set is defuzzied according to fuzzy centroid procedure using the center of mass
formula.



o Its CA system only works with positive rewards. It deducts a fraction of each active
classifier strength and distributes a payofl quantity of the obtained reward to each active
classifier strength according to a measure of goodness. This measure determines the quality
of the classifiers action and the quality of the classifiers conditions for this particular input.

o Its classifier discovery system works with a GA that uses the crossover operator and a
numerical creep mutation operator.

o [ts main advantages are that it allows learning of membership functions as well as classifiers
and it reduces the problems of classifiers representation.

Parodi & Bonelli tested their model with the same examples used by Valenzuela, and they
obtained better results.

5.3.3 Caser & Fogarty’s Fuzzy Learning Classifier System

Brian Carse & Terence C. Fogarty proposed in [Car94] a new FLCS using the Pittsburgh model.
Some of its peculiarities are:

e In this FLCS genetic operators and strength asignment apply over classifier sets rather
than over individual classifiers.

o The classifier sets representation is based on Parodi & Bonelli’s representation, which
allows the discovery component the learning of membership functions as well as fuzzy
relations (classifiers).

o [t includes variable length classifier sets.

e Its discovery component involves a numerical creep mutation operator and a new crossover
operator based on weak positional dependence.

They tested also its system with the same examples used by Valenzuela, and obtained better
results than Parodi & Bonelli’s system and than Valenzuela’s sytem.

The three aforementioned approaches have exhibited good results, but they have not been
enough developed yet. Many issues remain open for research, see [Val91b, Par93, Car94].

5.4 Applications of LCSs in Control Processes

There exist many useful cases of LLCSs application in control of real systems where they show
good results. In this section we shall briefly comment some of main applications of LCSs in
systems control.

In 1983 Goldberg applied a LCS to the control of two engineering systems: the pole-balancing
problem and a natural gas pipeline-compressor systems. The simulations were in the stimulus-
response format and with conventional structure of a LCS. For more information see [Gol83].

In robotic, Dorigo has developed a learning control system of a real robot, with great suc-
cess. He has designed the system according to a parallel distributed model of learning based
on LCSs and parallel machines (transputer networks). He decomposes the complex learning
control problem of a robot in many simpler learning control problems. Fach one of them is
assigned to a LLCS. Each component of LCS is implemented on a transputer network, each LCS
is implemented as a subset of transputer nerwork and thus, the whole learning control system of
robot is implemented as a set of transputer network subsets. In this way, the proposed system
implements both a low-level parallelism within the structure of a single LCS (among its compo-
nent systems) and a high-level type of concurrency, which allows various LCSs to work together
by means of appropiate coordination strategies of competition and cooperation. These systems
presents the following advantages:



¢ Increasing speed and flexibility of learning control system.

¢ Allowing to manipulate large sets of rules and therefore to face very complex learning
control problems.

¢ Allowing to build more modular and efficient learning control systems.

For more information see [Dor92a, Dor92b, Dor93].

An FLCS application in control has been done by Furuhashi et al. in [Fur93]. They propose a
method for suppressing excessive fuzziness in the FLCS for fulfilling complex tasks. The method
uses multiple stimulus-response type Valenzuela’s FLCSs. Simple simulations for learning to
steer a simulated ship are done, showing its effectiveness in fulfilling a control task and for
acquiring complex control rules.

Others interesting applications and studies can be found in [Wil83, Wil85, Gre87].

6 Conclusions

We have focused this paper on the description of GAs and FLCs as tools to model control
processes. We have shown some GA applications to the design of FLCs, and the learning classifier
systems and fuzzy learning classifier systems as tools for intelligent and adaptive control.
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