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Genetic Algorithms and Fuzzy Logic in ControlProcesses�O. Cord�on, F. Herrera, E. Herrera-Viedma, M. LozanoDept. of Computer Science and Arti�cial IntelligenceE.T.S. de Ingenier��a Inform�aticaUniversity of Granada, 18071 - Granada, SpainAbstractIn this paper we describe the genetic algorithms and fuzzy logic, focusing them as toolsto model control processes and to design intelligent and automatic control systems. Wedescribe the application of genetic algorithms to design fuzzy logic controllers, as well as thelearning classi�er systems and their development in a fuzzy environment, the fuzzy learningclassi�er systems.Keywords: Genetic algorithms, fuzzy logic, control processes, fuzzy logic controllers, classi�ersystems.1 IntroductionThe assumption that all engineering system modeling can be reduced to an exact set of algebraicand di�erential equations has been challenged by research that recognizes that measurements,process modeling and control can never be exact for real complex processes.There is a necessity to reach advanced control technologies able of:� managing uncertainty and expert knowledge� accommodating signi�cant changes in the plant and its environment,� incorporating techniques for learning either uncertain information, or a changing environ-ment, and methods of combining existing knowledge with a learning process.According to them, a problem is how to represent and compute processes that are impreciselydescribed or are controlled by humans without recourse to mathematical models, algorithms or adeep understanding of the physical processes involved. Fuzzy logic (FL), which may be viewed asan extension of classical logical systems, provides an e�ective conceptual framework for dealingwith the problem of knowledge representation in an environment of uncertainty and vagueness.Among the most successful application of FL are the Fuzzy Logic Controllers (FLCs). FLCsimplement an expert operator's approximate reasoning process in the selection of a controlaction.Another problem is how to get ready adaptive techniques, which permit to have intelligentcontrol systems, that is, systems involving learning or adaptation in response to changes inprocess parameters. FL is a powerful tool for knowledge representation in computational intelli-gence. On the other hand, adaptive control, learning and self-organization can be considered in alot of cases as optimization or search processes. Genetic algorithms (GAs) are search algorithms�This research has been supported by DGICYT PB92-0933



that use operations found in natural genetics to guide the trek through a search space. GAs aretheoretically and empirically proven to provide robust search in complex spaces, o�ering a validapproach to problems requiring e�cient and e�ective search.FL and GAs are two important tools for modeling and managing intelligent and automaticcontrol systems, which are able of supporting the above features. Each of them have di�erentadvantages, on one hand, nonlinearity and explicit knowledge expression of FL and, on otherhand, learning capability, global and local search approach of GAs. Recently there are anincreasing number of publications about the combination of these two topics. The integrationbetween GA and FL may produce useful results. The application of GAs to design FLCs hasbeen widely developed. In fact, the usefulness of the GAs in this task has been widely shown.Here, we describe the GA and the FLCs. We introduce the FLCs and their applications.We present the GAs, some GA applications developed to control and engineering processes, andtheirs applications to design FLCs. Also we approach the learning classi�er systems as the usualGA paradigm in machine learning and their development in a fuzzy environment, the fuzzylearning classi�er systems.In order to do that we organize the paper as follows. Section 2 introduces the FLCs whilesection 3 presents the GAs. Section 4 presents the design of FLCs using GAs. Section 5 includesthe description of the learning classi�er systems and the fuzzy learning classi�er systems. Finallysome conclusions are pointed out.2 Fuzzy Logic Controllers2.1 Description of the Fuzzy Logic ControllersThe purpose of any controller is to look periodically the values of the state variables of thecontrolled system and to obtain the values associated to their control variables by means of therelationships existing between them. If those relationships can be expressed in a mathematicalway, it is not too much di�cult to design the controller. The problem comes when, as it happensin a lot of real world nonlinear systems with complex dynamics, there is not a mathematicalmodel representing the existing relationships.In the 40's and 50's, many researches proved that many dynamic systems can be mathemat-ically modeled using di�erential equations. These previous works represent the foundations ofthe Control Theory which, in addition with the Transform Theory, provided an extremely pow-erful means of analyzing and designing control systems. These theories were being developeduntil the 70's, when the area was called Systems Theory to indicate its de�nitiveness [Mam93].Its principles have been used to control a very big amount of systems taking mathematics asthe main tool to do it during many years. Unfortunately, in too many instances this approachcould not be sustained because many systems have unknown parameters or highly complex andnonlinear characteristics that make them not to be amenable to the full force of mathematicalanalysis as dictated by the Control Theory.Over the last few years the application of Arti�cial Intelligence techniques has become aresearch topic in the domain of processes control, taking the purpose of avoid the commenteddrawbacks and allow to obtain e�cient controllers which utilizes the human experience in a morerelated form than the conventional mathematical approach. In the cases in which a mathematicalrepresentation of the controlled systems cannot be obtained, the process operator should be ableto express the relationships existing in them, that is, the process behavior.Fuzzy Logic Control is the main topic of this new �eld known as Expert Control. FLCsinitiated by Mamdani and Assilian in the work [Mam75], are now considered as one of the mostimportant applications of the Fuzzy Set Theory suggested by Zadeh in 1965 [Zad65] presenting



the notion of fuzzy set, generalization of the ordinary set characterized by a membership function� taking values in the interval [0,1] representing degrees of belonging to the set (not absolutebelonging as in classical sets), playing a central role. FLCs are knowledge based controllers thatare usually derived from a knowledge acquisition process or are automatically synthesized froma self-organizing control architecture [Bon94].While conventional linear controllers can be viewed as a hyperplane in a N+1-dimensionalspace, mapping an Nth dimensional state vector to a control action, FLCs, on the other hand,typically de�ne a non-linear mapping from the system's state space to the control space. Thus,it is possible to visualize the results of a FLC as a nonlinear control surface re
ecting the processoperator's prior knowledge.A FLC is composed by a Knowledge Base, that comprises the information given by theprocess operator in form of linguistic control rules, a Fuzzi�cation Interface, who has the e�ectof transforming crisp data into fuzzy sets, an Inference System, that uses them joined withthe Knowledge Base to make inference by means of a reasoning method, and a Defuzzi�cationInterface, that translates the fuzzy control action so obtained to a real control action using adefuzzi�cation method. The generic structure of a FLC is shown in �gure 1 [Lee90].
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DefuzzificationFigure 1: Generic structure of a fuzzy logic controllerThe Knowledge Base encodes the expert knowledge by means of a set of fuzzy controlrules. A fuzzy control rule is a conditional statement with the form IF (a set of conditions aresatis�ed) THEN (a set of consequences can be inferred) in which the antecedent is a condition inits application domain, the consequent is a control action to be applied in the controlled system(notion of control rule) and both antecedent and consequent are associated with fuzzy concepts,that is, linguistic terms (notion of fuzzy rule).Thus the Knowledge Base is composed of two components, a Data Base, containing thede�nitions of the fuzzy control rules linguistic labels, that is, the membership functions of thefuzzy sets specifying the meaning of the linguistic terms, and a Rule Base, constituted by thecollection of fuzzy control rules representing the expert knowledge. There are di�erent kindsof rules proposed in the specialized literature regarding to the expression of the consequent.Mamdani employs rules in which the consequent is another fuzzy variable [Mam75] while Sugenouses rules whose conclusion is a polynomial function of the inputs [Sug85]. Another kind of rulespresent too the consequent being a function of the input parameters. The following three rulesshow respectively the generic expressions of the three types commented:If X1 is A1 and ::: and Xn is An then Y is BIf X1 is A1 and ::: and Xn is An then Y = p0 + p1X1 + :::+ pnXnIf X1 is A1 and ::: and Xn is An then Y = f(X1; :::; Xn)



being the Xi and Y linguistic variables and the Ai and B fuzzy sets specifying the meaning ofthem.Without lack of generality, in the following we consider a Rule Base constituted by m Mam-dani type fuzzy control rules Ri, i = 1, ..., m, with the form:If X11 is A11 and ::: and X1n is A1n then Y is B1also:::alsoIf Xm1 is Am1 and ::: and Xmn is Amn then Y is BmAs we have commented, the Knowledge Base encodes the expert known knowledge of thecontrolled system. So it is the only component depending on the concrete application and itmakes the accuracy of the designed FLC depends directly on its composition. There are fourmodes of derivation of fuzzy control rules that are not mutually exclusive [Ber92, Lee90]. Thesemodes are the following:1. Expert Experience and Control Engineering Knowledge.2. Modeling of the Operator's Control Actions.3. Based on the Fuzzy Model of a Process.4. Based on Learning and Self-Organization.The �rst method is the most widely used. This method is e�ective when expert humanoperators can express that they use it to control the system in terms of control rules. Therules more usually obtained by means of this process are Mamdani type. Since they presentan adequate form to represent the expert knowledge. The second method directly models thecontrol actions of the process operator. Instead of interviewing the operator, the types of controlaction taken by it are modeled. The third approach is based on the developing of a model ofthe plant and construct a FLC to control the fuzzy model generating the fuzzy control rules ofthe Knowledge Base by means of the fuzzy model of the system. It makes this approach similarto that traditionally used in Control Theory. Hence, structure and parameter identi�cation areneeded. Finally, the fourth method is focused on learning. In this case, the ability to createfuzzy control rules and to modify them based on experience in order to improve the controllersperformance is considered.The Fuzzi�cation Interface de�nes a mapping from an observed input space to fuzzy setsin certain input universes of discourse, obtaining the membership function associated to eachone of the system inputs. Symbolically,F = fuzzifier(x0)where x0 is a crisp input value from a controlled system, F is a fuzzy set and fuzzifier representsa fuzzi�cation operator.There are two main types of fuzzi�cation:a) Point fuzzi�cation: F (x) = ( 1 if x = x00 otherwiseb) Approximate function: F (x) = 0 if and only if jx� x0j < �



The Inference System is based on the application of the Generalized Modus Ponens(GMP), extension of the classical logic Modus Ponens, proposed by Zadeh in the way:If X is A then Y is BX is A0 Y is B0The fuzzy conditional statement If X is A then Y is B (being X, Y linguistic variables andA, B fuzzy sets) represents a fuzzy relation between A and B de�ned in X�Y, being X and Ythe universes of the variables X and Y respectively. The fuzzy relation is expressed by a fuzzyset R whose membership function �R(x; y) is given by:8x 2 X; y 2 Y : �R(x; y) = I(�A(x); �B(y))being �A(x) and �B(y) the membership functions of the fuzzy sets A and B respectively and I afuzzy implication operator. The consequent B' obtained from the GMP is deduced by projectionon Y by means of the Compositional Rule of Inference (CRI) given by the following expressionin what T' is a connective:�B0 (y) = Supx2X nT 0(�A0 (x); I(�A(x); �B(y)))oSince the input x corresponding to the state variables of the controlled system is crisp, x = x0,the application of the �rst type of fuzzi�cation provokes the fuzzy set A0 to be a singleton, thatis, �A0 (x) = 1 if x = x0 and �A0 (x) = 0 if x 6= x0. Thus the CRI is reduced to the followingexpression: �B0 (y) = I(�A(x0); �B(y))Finally, when the rules of the Knowledge Base have more than one variable in the antecedent(that is, they present the generic form If X1 is A1 and ::: and Xn is An then Y is B),x0 = (x1; :::; xn) and �A(x0) = T (�A1(x1); �A2(x2); :::; �An(xn))being T a conjunctive operator.Since from each rule Ri is obtained a fuzzy set B0i from the inference process, the Defuzzi-�cation Interface uses an aggregation operator G, representing the connective also of theKnowledge Base control rules, which composes them and applies a defuzzi�cation method D totranslate the fuzzy sets obtained in this way into values corresponding to the control variables ofthe system. So, calling S to the FLC, x0 to the inputs value and y0 to the crisp value obtainedfrom the defuzzi�cation, we have:�B0 (y) = Gn�B01(y); �B02(y); :::; �B0n(xy)oy0 = S(x0) = D(�B0 (y))At present, the commonly used strategies may be described as the Max Criterion, the Meanof Maximum (MOM) and the Center of Area (COA) [Lee90]:� The Max Criterion takes the point at which the fuzzy set representing the fuzzy controlaction, B0 , reaches its maximum value.� The MOM strategy generates a control action which represents the mean value of all localcontrol actions whose membership functions reach the maximum.



� The widely used COA strategy generates the center of gravity of the fuzzy set B0 .In [Kis85] several factors were presented that have a signi�cant in
uence in the FLC suchas:1. The form of the mathematical de�nition of the fuzzy implication in the fuzzy control rules(If ... and ... then), that is, the selection of the fuzzy implication operator I representingthe fuzzy relation R.2. The form of the mathematical de�nition of the sentence connective and, that is, the selec-tion of the conjunctive operator T.3. The form of the mathematical de�nition of the sentence connective also, that is, theselection of the aggregation operator G.4. The form of the mathematical de�nition of composition of fuzzy relations existing in theCRI.5. The way of de�ning the defuzzi�cation operator D.The in
uence of several of these factors is analyzed in [Kis85, Car93, Car95], taking as baseseveral control applications.2.2 ApplicationsDuring the past several years, many applications of FLCs have been developed successfully.FLCs have been proved to be superior in performance to conventional systems in many appli-cations. It should be noted that the �rst industrial application was the cement kiln controllerdeveloped by the Danish cement plant manufacturer F. L. Smith in 1979 [Umb80]. Some ofother more recent applications are water treatment, combustion control system for a refuseincineration plant, japanese sake fermentation control, elevator control, highway tunnel ventila-tion control system, automatic train operation system, container crane operation system, fullyautomatic washing machine, vacuum cleaner, video equipment, recuperative turboshaft enginecontrol, locomotive wheel slip control, steam turbine cycling, power electronics control, heatexchange, warm water process control, activated sludge wastewater treatment, tra�c junction,aircraft 
ight control, turning process, robot control, model-car parking and turning, automobilespeed control, nuclear reactor control, fuzzy memory devices, fuzzy computer, welding, waterpuri�cation process control, control of a liquid level rig, automobile transmission control, gaso-line re�nery catalytic reformer control, two-dimensional ping-pong game playing, and control ofbiological processes [Hir93, Bon94, Lee90, Ber92].More complete information about FLCs can be found in [Lee90, Hel93, Ber92, Bon94].3 Genetic Algorithms3.1 Description of the Genetic AlgorithmsGAs are general-purpose search algorithms that use principles inspired by natural populationgenetics to evolve solutions to problems [Hol75]. The basic idea is to maintain a populationof knowledge structures that evolves over time through a process of competition and controlledvariation. Each structure in the population represents a candidate solution to the concrete prob-lem and has an associated �tness to determine in the process of competition which structures areused to form new ones. The new ones are created using genetic operators such as crossover and



mutation. GAs have had a great measures of success in search and optimization problems. Thereason of great part of its success is their ability to exploit accumulating information about aninitially unknown search space in order to bias subsequent search into useful subspaces, i.e., theirrobustness. This is their key feature, overcoat in large, complex and poorly understood searchspaces, where the clasical search tools (enumerative, heuristic,..) are inappropriate, o�ering avalid approach to problems requiring e�cient and e�ective search.A GA starts with a population of randomly generated solutions, chromosomes and advancestoward better solutions by applying genetic operators, modeled on the genetic processes occur-ring in nature. In these algorithms we maintain a population of solutions for a given problem;this population undergoes evolution in a form of natural selection. In each generation, relativelygood solutions reproduce to give o�springs that replace the relatively bad solutions which die.An evaluation or �tness function plays the role of the environment to distinguish between goodand bad solutions. The process of going from the current population to the next populationconstitutes one generation in the execution of a genetic algorithm.Although there are many possible variants of the basic GA, the fundamental underlyingmechanism operates on a population of chromosomes or individuals (representing possible solu-tions to the problem) and consists of three operations:(1) evaluation of individual �tness,(2) formation of a gene pool (intermediate population) and(3) recombination and mutation.The �gure 2 shows the structure of a simple GA.Procedure Genetic Algorithmbegin (1)t = 0;initialize P (t);evaluate P (t);While (Not termination-condition) dobegin (2)t = t+ 1;select P (t) from P (t � 1);recombine P (t);evaluate P (t);end (2)end (1)Figure 2: Structure of a GAA �tness function must be devised for each problem to be solved. Given a particular chro-mosome, a solution, the �tness function returns a single numerical �tness which is supposed tobe proportional to the utility or adaptation of the individual which that chromosome represents.There are a number of ways to do selection. We might view the population as mappingonto a roulette wheel, where each individual is represented by a space that proportionally cor-responds to its �tness. By repeatedly spinning the roulette wheel, individuals are chosen using"stochastic sampling with replacement" to �ll the intermediate population. The selection pro-cedure proposed by Baker, [Bak87], and called stochastic universal sampling is one of the moste�cient. The number of o�spring of any structure is bound by the 
oor and ceiling of theexpected number of o�spring [Bak87].



After selection has been carried out, the construction of the intermediate population iscomplete and recombination and mutation can occur.The crossover operator combines the features of two parent structures to form two similaro�springs. It is applied at a random position with a probability of performance, the crossoverprobability, Pc. The mutation operator arbitrarily alters one or more components of a selectedstructure so as to increase the structural variability of the population. Each position of eachsolution vector in the population undergoes a random change according to a probability de�nedby a mutation rate, the mutation probability, Pm.The next �gure illustrates the basic operations: reproduction, crossover and mutation.
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Old Population                                               Gene Pool EvaluationFigure 3: Evaluation and contribution to the gene poolFigure 4: Recombination. One-point crossoverFigure 5: MutationIt is generally accepted that a GA to solve a problem must take into account the �ve followingcomponents:1. A genetic representation of solutions to the problem,2. a way to create an initial population of solutions,3. an evaluation function which gives the �tness of each individual,4. genetic operators that alter the genetic composition of children during reproduction, and5. values for the parameters that the GA uses (population size, probabilities of applying geneticoperators, etc.).The basic principles of the GAs were �rst laid down rigorously by Holland [Hol75] and arewell described in many texts as [Dav91b, Gol89, Mic92].Numerous GAs applications have been presented during the last years. Some of them can besummarize as numerical function optimization, combinatorial optimization, image processing,fuzzy logic, engineering processes, biology, arti�cial life, machine learning, etc. [Bel91, M�an92,For93, ICEC94, Dav94].There are many applications of GAs to learning systems [Dej88, Gre93, Gre94], a usualparadigm being that of a learning classi�er system [Hol78]. The GA tries to evolve a set of if ...



then rules to deal with some particular situation. Learning classi�er systems will be presentedin section 5.3.2 Genetic Algorithms in Control ProcessesFocusing into the application of the GAs in engineering systemmodeling, we �nd a great quantityof applications. In the following we summarize some of them in order to show the potential ofGAs in engineering system modeling.� Optimizing robot trajectoriesIn [Dav91a] is introduced a GA which successfully handles the trajectory generation of theredundant robot model described.The proposed GA incorporates some few new mechanisms which are necessary to make aGA amenable to the natural trajectory representation used.The majority of changes needed were concentrated in adopting the reproduction operatorto suit the varying in length and an order dependent representation of trajectories. Theresults presented demonstrate the power and robustness of the trajectory-GA. It optimizestrajectories e�ciently and, more importantly, reliably.� Parametric Design of AircraftIn [Bra91] the optimizing aircraft designs when the task is posed as that of optimizing alist of parameters were discussed.� Air-Injected Hydrocyclone OptimizationIn [Kar91c] the design of an air-injected hydrocyclone as a list of parameters was repre-sented. In this approach the authors use a new operator called "simplex reproduction",showing that a GA using this operators is quite e�ective as a search technique for �ndingdesign parameter combinations.� Multiple Fault DiagnosisIn [Lie91] the use of a genetic algorithm for �nding the most plausible combination ofcauses for alarms in a microwave communication system was discussed.� Schedule OptimizationIn [Sys91] the application of a GA to the problem of scheduling activities in a laboratoryin which each activity may a�ect the others in a variety of ways was described .� Control-Cost-Driven EvolutionGenetic programming (GP) is essentially a variant of GA with a di�erent problem rep-resentation. Koza [Koz92] started from the observation that problem representation is akey issue in GAs because it is actually the coded representation of the underlying problemthat a GA can manipulate."For many problems in machine learning and arti�cial intelligence, the mostnatural known representation for a solution is a hierarchical computer programof indeterminate size and shape, as opposed to character strings whose size hasbeen determined in advance". [Koz92, p. 210].GP provides a way to �nd an approximately correct function for problems of control andoptimal control for which an exact mathematical solution cannot be obtained. In thechapter 11 of [Koz92] it is demonstrated the use of GP on the well known optimal control



problem of balancing a broom, the control problem of backing up a tractor-trailer truckand an optimization problem.Other papers about that can be found in the proceeding of the last conferences [Bel91,M�an92, For93, ICE94, Dav94]. By means of this summary we have tried to show the faculty ofGAs for multiple applications in ingeniering and control processes.4 Design of Fuzzy Logic Controllers using Genetic AlgorithmsWhen we try to design a FLC, two problems arise: �rst, how to establish the structure of thecontroller and, second, how to set numerical values of the controller parameters. The GAshave been successfully applied in these problems, learning controller structure as well as tuningcontroller parameters. In fact, the GAs search the fuzzy control rules (FCR) base that verifythe optimality conditions speci�ed by their �tness function according to the required features.In the following we present some proposals according the above settled aspects.4.1 Tuning controller parametersA FLC contains a number of sets of parameters that can be altered to modify the controllerperformance. They are [Hel93]:� the scaling factors for each variable,� the fuzzy sets representing the meaning of linguistic values,� the if-then rules.Each of these sets of parameters has been used as the controller parameters to be adaptedin di�erent adaptive FLCs.GAs have been used to modify the fuzzy set de�nitions, to alter the shapes of the fuzzysets de�ning the meaning of the linguistic terms, to determine the membership functions thatproduce maximum control performance according to the inference system (fuzzy implication andconjunctive operator) and the defuzzi�cation strategy used. That is, to tune the FCR set, inorder to make the FLC behaves as closely as possible to the operator or expert behavior. Thismethod relies on having a set of training data against which the controller is tuned.The tuning method using GAs �ts the membership functions of the fuzzy rules dealing withthe parameters of the membership functions, minimizing a square error function de�ned bymeans of an input-output data set for evaluation.Recent works have been centred on the the use of GAs altering the set de�nitions so thatthe FLC matches a suitable set of reference data as closely as possible [Kar91a, Kor93, Hes93,Var93, Her95a].A chromosome represents one possible solution to the problem, that is, one possible FCRbase . The �tness function itself depends on the task of the FLC, usually the square error canbe considered, then the chromosome is tested by evaluating the training data set.4.2 Learning controller structureFor learning the controller structure di�erent hypotheses can be considered, either to work witha determined variables domain or to manage rules with a free structure. According to these twopossible models, di�erent GA learning processes have been proposed.



Determined variables domainWe assume that each universe, U , contains a number of referential sets having their linguis-tic meaning which form a �nite set of fuzzy sets on U . Membership functions are de�nedto represent the developer's conception of the linguistic variables. For instance if X is avariable on U for temperature, then one may de�ne A1 as "low temperature", Ai(1 < i < r)as "medium temperature" and Ar as "high temperature". These referential fuzzy sets arecharacterized by their membership functions Ai(u) : U ! [0; 1]; i= 1; :::; r. To ensure theperformance of the fuzzy model and provide an uniform basis for further study it is requiredthat all referential sets should be normal convex and satisfy the following completenesscondition: 8u 2 U 9j; 0 � j � r; such that Aj(u) � �where � is a �xed threshold, the completeness degree of the universes.Free variables structureRules with a free structure, without an initial fuzzy set referential, can be also considered.The rules have the formRi : IF x1 is Ai1 and ... and xn is Ain THEN y1 is Bi1 and ... and ym is Bimwhere x1; :::; xn and y1; :::; ym are the process state variables and the control variablesrespectively, and Ai1; :::; Ain, Bi1; :::; Bim are fuzzy sets in the universes of discourseU1; :::; Un, V1; :::; Vm.These fuzzy sets are characterized by their membership functionsAij(Bih) : Uj(Vh)! [0; 1]; j = 1; :::; n; h = 1; ::; mWe can consider every fuzzy set associated to a normalized trapezoidal membership func-tion. A computational way to characterize it is to use a parametric representation achievedby means of the 4-tuple (a1ij ; a2ij; a3ij ; a4ij), (b1ih; b2ih; b3ih; b4ih), j = 1; :::; n, h = 1; ::; m.Next we describe two of the GA learning processes proposed in the literature for each one ofthe variables structure.4.2.1 GA learning processes with determined variables domainThe method proposed by Karr [Kar91b]The rule set is formed as follows. Membership functions were de�ned to represent the devel-oper's conception of the linguistic variables (fuzzy sets) and these variables made the formationof the rule set a straightforward task. The selection of the decision variables and the fuzzy setsdescribing required a number of rules n. From all combination of antecedent labels, one actionmust be found via GAs. Considering seven fuzzy sets describing the control variables, the entireset of possible actions for one rule was represented as a three-bit string (000 represented action1, 001 represented action 2, and so on). Because n rules were possible, a string of length 3nrepresents every possible rule set for the FLC.Once an acceptable rule set was learned with a GA, the selection of high-performance mem-bership functions with the rule set is carried out using the above described tuning process.



The method proposed by Thrift [Thr91]The method proposed by Thrift is similar to the above proposed by Karr, except that Thriftintroduced a new possible value for the consequent of rules, the label " ". The " " symbolindicates that there is no fuzzy set entry at a position that it appears. A chromosome is formedfrom the decision table by going rowwise and producing a string of numbers from the code set.In this way, during the learning process it is determined the number of rules necessary inthe control process because the rules with the consequent label " " can be eliminated.The codi�cation of the solutions is di�erent of the above proposal. Each rule has assigned agene taking integer numbers. There exist as many genes as possible combinations of the statevariable labels. The range of the genes from 0 to m includes a code for the label " " as possiblevalue of a gene. There are particular features of the GA based on the coding strategy describedabove. A mutation operator changes a fuzzy code either up or down a level, or to the blank code(if it is already blank, then it chooses a non-blank code at random). The crossover operator isthe standard two-point crossover.4.2.2 GA learning processes with free rules structureThe Method proposed by Cooper and Vidal [Coo93]In contrast to prior genetic fuzzy systems which require every input-output combination tobe enumerated, they propose a novel encoding scheme which maintains only those rules necessaryto control the target system.They de�ned a special GA where mutations include inversion of the copied bit and theaddition or deletion of an entire rule. These latter two mutations permit the size of a system'sFCR base to evolve. The cycle of evaluation and reproduction continues for a predeterminednumber of generations or until an acceptable performance level is achieved.The membership function for each variable is a triangle characterized by the location of itscenter and the half-length of its base. A single rule, therefore, consists of the concatenation ofthe one-byte unsigned characters (assuming values from 0 to 255) specifying the centers andhalf-lengths of the membership functions. The rule descriptions for a single fuzzy system arethen concatenated into a single bit string where the number of rules is not restricted.To be meaningful, the genetic paradigm requires that the rules in the two strings be alignedso that similar rules are combined with each other. Simply by combining the strings in theorder they appear it does not preserve much information about either system and producesnearly random results, rather as a child system that performs in a manner similar to its parents.Therefore, before reproduction, both strings must be aligned so that the centers of the inputvariables match as closely as possible. The most closely matching rules are combined �rst,followed by the next most closely matching rules from those that remain and so on. Any rulesforming a longer string that is not matched are added at the end.The method proposed by Herrera et al. [Her95b]The proposed learning fuzzy control rules process is based on the use of GAs under thefollowing hypotheses:� There is some linguistic information from the experience of the human controller butlinguistic rules alone are usually not enough for designing a successfully control system orcould not be available.� There is some numerical information from sampled input-output (state-control) pairs thatare recorded experimentally.



� The combination of these two kinds of information may be su�cient for a successful designof a FCR base.� We include the possibility of not having any linguistic information and having a completenumerical information.According to the aforementioned hypothesis a learning process is designed according to thefollowing goals:� to develop a generating FCR process from numerical data pairs; and� to develop a general approach combining both kinds of information, linguistic informationand fuzzy control rules obtained by the generating process, into a common frameworkusing both simultaneously and cooperatively to solve the control design problem.In order to reach these goals, it is proposed a methodology based on the design of the threefollowing components:a) a generating fuzzy rules process of desirable fuzzy rules able to include the completeknowledge of the set of examples,b) a combining information and simplifying rules process, which �nds the �nal set of fuzzyrules able to approximate the input-output behaviour of a real system,c) a tuning process of the �nal set of rules,all of them developed by means of GAs.As it is possible to have some linguistic IF � THEN rules given by an expert, it is useda linguistic fuzzy rules structure to represent them. On other hand, there are sampled input-output pairs and to generate the fuzzy rules covering these examples is used a free fuzzy rulesstructure. Then both kind of rules are combined, applying a simpli�ed method based on a GA,and �nally a tuning method is applied over the simpli�ed set of rules.The generating fuzzy rules process consists of a generating method of desirable fuzzy rulesfrom examples using GAs together with a covering method of the set of examples.� The generating method of fuzzy rules is developed by means of a real coded GA (RCGA)where a chromosome represents a fuzzy rule and it is evaluated by means of a frequencymethod. The RCGA �nds the best rule in every running over the set of examples accordingto the following features which will be included in the �tness function of the GA.� The covering method is developed as an iterative process. It permits to obtain a set offuzzy rules covering the set of examples. In each iteration, it runs the generating method,it chooses the best chromosome (rule), assigns to every example the relative covering valueand removes the examples with a covering value greater than �.Because we can obtain two similar rules in the generating process or one rule similar toanother given by an expert, it is necessary to combine and simplify the complete set of rules forobtaining the �nal set of rules. Finally, the tuning method presented in [Her95a] is applied overthe simpli�ed set of rules.Other methods have been proposed under di�erent hypothesis [Bon93, Lee93a, Lee93b,Chw94, Lee94, Hof94, Sat94].



5 Learning Classi�er Systems5.1 IntroductionThe man's life is surrounded by many monotonous, di�cult and dangerous tasks. Many ofthem have been eliminated through the developments in autonomous machinery but certaintasks have remained resistant to automation. In particular, tasks that require robust adapt-ability have proved di�cult to automate. These tasks include trouble-shooting, maintenance,navigation through poorly-de�ned, time-varying environments, and the control of systems thatcontain many initially unknown and persistently uncertain elements. Biological organisms per-form e�ectively in these sorts of environments through processes that can be broadly describedas learning. Due to this reason, there have been many automatic system approaches based innatural systems, e.g.: neuronal networks, genetic algoritms, evolutive computing, etc.The aforementioned problems can be classi�ed as learning control problems ormachine learn-ing problems in which the environment varies too rapidly or is too poorly de�ned for conventionalor adaptive control. In such problems, a control system (controller) must map regions of theenvironmental state space onto widely di�erent control actions. This mapping must be formedadaptively in response to performance-related environmental feedback and must be maintainedin memory. More concretely, these problems are called reinforcement learning control problems,that is, general models of limited information learning environments where an automated sys-tem must adquire knowledge about appropiate actions through ongoing experience and whoselearning process is guided by feedback about the quality of developed actions. The researches onsuch problems are a fundamental concern for the future of high-autonomy machines. A generalreinforcement learning control system model is presented in the �gure 6.
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task subsystem. And a third approach involves using GAs to change the task program itself. Inthis context, the task program is considered a production system that consists of an unorderedset of rules. It represents the individual population, which is explored and exploited by GAs-based learning subsystem. Historically there are two ways to use the space of production systemsto represent the population:� The Pitt Approach, where each member of population represents a set of production rulesand, therefore, a population is a set of rule sets [Smi80].� The Michigan Approach, where each member of population represents an individual pro-duction rule and, therefore, a population is a set of rules [Hol78].The Pitt approach seems to be more useful for o�-line environments in which more radicalbehavioral changes are acceptable, whereas the Michigan approach seems to be more useful inon-line and real-time environments in which radical changes in behavior cannot be tolerated.Our study concerns third approach to the GA-based learning control problem and, moreconcretely, a class of general purpose reinforcement learning control systems, known as learningclassi�er systems (LCSs), inspired by the Michigan approach and whose foundations were laidby Holland in [Hol75] and later developed in [Hol76, Hol78].5.2 Description of Learning Classi�er SystemsLCSs are de�ned as a massively parallel, message-passing, rule-based systems that are capableof environmental interaction and reinforcement learning through credit assignment and rulediscovery [Boo89]. They typically operate in environments, such as robot world, economicsystems, mammalian vision systems, games as chess, and others, which exhibit some of followingcharacteristics: perpetually novel events accompanied by large amounts of noisy or irrelevantdata; continual, often real-time, requirements for action; implicitly or inexactly de�ned goals;and, sparse payo� or reinforcement obtainable only through long action sequences.
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There is a considerable variety in the structural and functional details of the LCSs presentedin the literature [Hol78, Gre88, Gol89, Smi91, Par93, Wil94]. The prototypical organization ofa LCS is composed of the following three main parts, as it is illustrated in �gure 7:� The Performance System.� The Credit Assignment (CA) System.� The Classi�er Discovery System.5.2.1 The Performance SystemThis is the part of the overall system that interacts directly with the environment. Its activitiesare environmental interaction and messages processing. It is composed of the six basic elements:1. An input interface, which consists of at least one detector that translates the current stateof the environment into standard messages (external messages). Generally, all messagesare required to be of a �xed length over a speci�ed alphabet, typically k-bit binary strings.2. An output interface, which consists of at least one e�ector that translates some messages(action messages) into actions that modify the state of the environment.3. A set of rules, called classi�er list, represented as strings of symbols over a three-valuedalphabet (A = f0; 1;#g) with a condition/action format. The condition part speci�es themessages that satisfy (activate) the classi�er and the action part speci�es the messages(internal messages) to be sent when the classi�er is satis�ed. A limited number of classi�ers�re in parallel in each cycle. Details on classi�ers coding are given in [Gol89, Boo90].4. A pattern-matching system, which identi�es which classi�ers are matched or satisfaid(matched classi�ers) in each cycle of the LCS.5. A message list, which contains all current messages, i.e., those generated by the detectorsand those sent by �red classi�ers.6. A con
ict-resolution (CR) system, which has two functions:(a) Determining which matched classi�ers �re when the size of the message list is smallerthan the number of matched classi�ers.(b) Deciding which actions to choose in case of inconsistency in the actions proposed toe�ectors, e.g. "turn left" and "turn right".The CR system acts according to some usefulness measures associated to each competingclassi�ers, i.e. the relevance to the current situation or speci�city and the strength orpast usefulness. The CR system is based on an economic analogy and consists of a bidcompetition between classi�ers. In this system, matched classi�ers bid a certain proportionof their usefulness measures and classi�er con
icts are resolved based on a probabilitydistribution over these bids. Higher bidding classi�ers are favored to �re and post theirmessages. If a classi�er �res, it must pay out its bid. Thus, each classi�er that �res risks acertain percentage of its strength with the possibility of receiving reward as compensation.No global information is maintained to suggest which classi�ers compete with one another.Each classi�er maintains only its own statistics, which are updated only when the classi�eris active.Generally, the CR and AC systems make up the complete inference engine of LCS and i.e.their activities are interrelated as we shall see later.



A descriptive scheme of the performance system is presented in the �gure 8.
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ict-resolution parameters of classi�er set, i.e., their strengths. There aremany di�erent CA system scheme types proposed in the literature. The most important onesare two:1. The traditional scheme of the Bucket Brigade Algorithm (BBA) [Boo82, Hol85, Boo89,Gol89], which is a local learning scheme that requires a few memory and computationalrequeriments. Usually, the BBA is linked to the CR system and set up the mechanism ofa competitive economy known as CA/CR system. In this classical LCS CA/CR system,each satis�ed classi�er Cj makes a bid Bidj,Bidj = b � Strj � Specjwhere b is a small constant less than 1, called risk factor, Strj is Cj 's strength (initializedwith the same value for all classi�ers), and Specj is Cj's speci�city; and i.e., a quantityexpressing the classi�ers relevance to particular environmental situations. The probalilitythat a bidding classi�er Cj wins the competition is given byBidjPCl2B Bidlwhere B is the set of all bidding classi�ers. A winning classi�er Cj reduces its strength bythe amount of its bid according to this expression,Strj = Strj � Bidj;



and this amount (Bidj) is shared among those classi�ers (predecessors) whose precedingactivities enabled Cj to became active according to the following rule:Stri = Stri + BidjjPj j 8 Ci 2 Pj ;where Pj is the set of predecessors, that is,Pj = f8Ci : 9T 2 Tj 9m 2 T (Cisent m)gwhere Tj is the set of all messages tuples that satisfy Cj and m a message.Obviously, if a classi�er does not bid enough to win the competition, it pays nothing.Additionally, if an external reward is received from the environment then it is equallydistributed among the classi�ers that sent the e�ector-activating messages. In this wayall classi�ers directly or indirectly that are useful in achieving speci�c goals are rewardedalthough they are not active when the external reward is obtained. Some variants of BBAcan be found in [Dor91,Wei91,Wil87a].2. The Pro�t Sharing Plan (PSP) [Hol78,Gre88], which is a global learning scheme thattypically achieves a clearly better performance than the BBA. Here, the bidding andselection of the winning classi�ers is done as in BBA and the external reward Ext isdistributed among sequences of active classi�ers, that is, among classi�ers Cj that wasactive at least one time during a episode (where an episode is de�ned as the time intervalbetween the receipts of two succesive external rewards) according to ruleStrj = Strj �Bidj + b � Ext:Therefore, the BBA is an incremental learning algorithm according to which the strengthsare updated each cycle; against that, the PSP is an episodical learning algorithm accordingto which the strengths are only updated at the end of each episode. Some variants of PSPcan be found in [Gre88,Wei92].There exist some approaches to a synthesis of aforementioned CA schemes. For example theGrefenstette's system called RUDI [Gre88], and most recently, GerhardWeiB has proposed a newCA system approach, the Hierarchical Chunking Algorithm (HCA) [Wei94], which approachesto both the lower computational requirements of the BBA and higher performance level of thePSP and, have been designed to solve the locality/globality dilemma (see [Wei94] for moreinformation).5.2.3 The Classi�er Discovery SystemThe classi�er discovery process for LCS uses AGs for its task. The system develops its learningprocess generating new classi�ers from classi�er set by means of AGs. Basically a GA selectshigh �tness classi�ers as parents forming o�springs by recombining components from the parentclassi�ers. The �tness of a classi�er is determined by its usefulness or strenght calculated withthe CA system instead of a �tness function. In typical LCS implementations, the GA populationis a portion of the classi�er set consisting of those high strength ones. In order to preserve thesystem performance the GA is allowed to replace only a subset of the classi�ers, i.e., a subset ofthe worst m classi�ers is replaced by another of m new classi�ers created by the application ofthe GA on the selected portion of the classi�er population. As AG uses classi�ers strength as ameasure of �tness, it can be usefully applied to the set of classi�ers only when the CA system hasreached steady-state, i.e., when a classi�er strength accurately re
ects its usefulness. Therefore,it is applied with a lower frequency, usually between 1000 and 10000 CA system cycles. A AGbasic execution cycle is as follows:



Step 1. Take the classi�er set as initial population P.Step 2. Rank individuals of P in decreasing �tness order using the strength associated to everyclassi�er as a measure of �tness.Step 3. Choose 2k individuals to be replaced among low ranked-useless-ones.Step 4. Choose k pairs of individuals to be replicated among high ranked-useful-ones.Step 5. Apply genetic operators to the k pairs selected at step 4, creating o�spring classi�ers.Step 6 Replace the 2k individuals selected at step 3 with the o�springs created at step 5.5.2.4 Basic Operation of a LCSA LCS basic execution cycle that combines the aforementioned systems consists of the followingssteps:Step 0. Initially, a set of classi�ers is created randomly or by some algorithm that takes into accountthe structure of the problem domain and they all have assigned the same strength.Step 1. Allow the input interface to code the current environmental output signals as messages.Step 2. Add all messages from the input interface to the message list.Step 3. The pattern-matching system determines the set of classi�ers that are matched by thecurrent messages of the message list.Step 4. The CR system resolves con
icts between matched classi�ers and determines the set ofactive classi�ers.Step 5. Purge the message list.Step 6. Place the messages suggested by the active classi�ers on the message list.Step 7. Allow any e�ectors that are matched by the current message list to submit their actionsto the environment. In the case of inconsistent actions call to CR system.Step 8. If a reward signal is present, distribute it with the CA system.Step 9. If the CA system has reached steady-state applying GAs over classi�er set.Step 9. Return to step 1.5.2.5 Future in LCSs ResearchNowadays there are de�ned many questions into LCSs research. In The First InternationalWorkshop on Learning Classi�er Systems holded on October 6-9, 1992 at Johnson Space Centerin Houston, Texas, were pointed out some main questions as:1. What methods can create cooperation in LCS?.2. What discovery mechanisms can help the GA to �nd and maintain useful classi�er sets?.3. What is an appropiate syntax or representation in LCS?4. How can one insure e�ective credit assignment in LCS?5. How can the LCS creates computationally useful internal message processing?



For more information see [Boo92,Smi92].In the following section we shall study the appropiate representation problem and analizea type of LCS, called the Fuzzy LCSs (FLCSs), which merge the ideas behind LCSs and fuzzycontrollers, allowing to work with continous input and output variables due to the advanges ofFuzzy Sets Theory to deal imprecise information. Finally, in the last section we shall presentsome of the most important applications of LCSs in systems control.5.3 Fuzzy Learning Classi�er SystemsIn many complex environments, e.g. in identi�cation and adaptive control of dynamic systems,the LCSs have not had much application due in part to the limitations of the their syntaxto represent continuously varying variables. A simple and promising way of dealing with thisproblem is through Fuzzy Sets Theory.A Fuzzy Learning Classi�er System is a genetic based machine learning system whose clas-si�er list is a fuzzy rule base. The FLCS learns by creating fuzzy rules which relate the valuesof the input varibles to internal or output variables. The FLCS integrates the same elements ofthe LCS, but working in fuzzy environment.Three fuzzy logic-based LCS approaches have been proposed, Valenzuela's approach [Val91a,Val91b], Parodi & Bonelli's approach [Par93] and Carse & Fogarty's approach [Car94]. In whatfollows, these approaches will be described.5.3.1 The Valenzuela's Fuzzy Learning Classi�er SystemValenzuela-Rend�on gives the �rst description of a FLCS [Val91a, Val91b]. Some peculiarities ofhis FLCS model are:� It operates over inputs, outputs and internal variables, and it allows them to take contin-uous values over given ranges.� For each variable, n component fuzzy sets are de�ned so that their membership functionsspan the interval [0,1]. The number of these componet sets is de�ned by the user accordingto the precision required and membership functions are �xed and set by hand.� The classi�ers are fuzzy rules, similarly to fuzzy controllers. Each classi�er is a binarystring that encodes the membership function of the fuzzy sets de�ned for variables involvedin the problem, so that the number of bits in a condition or an action is the number offuzzy sets de�ned over the given variable. A "1" indicates that the corresponding fuzzyset is part of the condition or action.� Each condition or action presents a non-fuzzy binary tag which indicates to which variablethe condition or action is referring to.� The FLCS syntax does not include the wildcard character #.� There is de�ned a fuzzi�cation process in the input interface of FLCSs, which fuzzi�esinputs into fuzzy messages by creating minimal messages, one for each fuzzy set de�nedover the variable.� Each message has an associated activity level which measures the degree of belonging ofthe input variable to the fuzzy set de�ned by the membership function represented by themessage. The messages are deposited in message list.� The pattern-matching system acts at two steps. First, the tags of the message and condi-tion are compared; if they are the same they refer to the same variable, if so, the rest ofthe message and condition are compared. And second, if at least there is one position inwhich the condition has a "1" and the message also, then the condition is satis�ed.



� When classi�er conditions are satis�ed, it posts a new message in the message list with anactivity level proportional to the classi�er own activity level. Where the activity level of aclassi�er is equal to the minimum of the satisfaction levels of all its conditions, being thesatisfaction level of a condition equal to the maximum activity level of the messages thatmatch this condition.� When the output interface detects messages refered to output variables, it develops adefuzzi�cation process, based on gravity center procedure, which translates them into realvalues.� It has a CR/CA system which reassemble those of common learning classi�er systems, i.e.,the bucket brigade algorithm, but with a fuzzy nature.� The classi�ers that do not participate in the competition pays a living tax, (i.e. a smallportion of their strength every cycle) whose purpose is to eliminate non-used classi�ers.� It uses a GA with the crossover and mutation operators to create new classi�ers andtherefore allows the evolution of adapted classi�er set, but only the evolution of classi�ers.Valenzuela tested his FLCS in the identi�cation of static one-input one-output systems usinga stimulus-response FLCS without AC system, and he obtained good and promising results.Some drawbacks of this approach are: (i) if the variables present many sets the classi�erscan be very long; (ii) FLCS presents many parameters dependent on user; and (iii) membershipfunctions are set and �xed by hand, which does not seem to be an easy task to perform incomplex cases.5.3.2 The Parodi & Bonelli's Fuzzy Learning Classi�er SystemThis is a new and original approach to FLCSs that can be viewed as an extension of Wilson'sBoole LCS [Wil87b] and which eliminates drawbacks of aforementioned approach. Some of itspeculiarities are:� Each variable has associated a fuzzy set, and i.e. each variable is described by a member-ship function. This description is variable and will evolve through genetic search. Thisapproach suggest the use of symmetric membership functions, e.g. it chooses triangles.� Each classi�er contains the actual description of the membership functions that correspondto each input and output variable, which consists of parameters that de�ne the associatedfuzzy set. There is also an associated strength to each classi�er that indicates its credibility.� The pattern-matching system follows a process similar to a fuzzy controller process. Acrisp input values vector is broadcast to the classi�ers. All classi�ers are activated inparallel to a di�erent degree. The degree to which each classi�er is activated is calculatedby taking the minimum of the current inputs membership values with respect to thefuzzy sets present in the condition part of each classi�er. All fuzzy sets of the action ofeach classi�er are partially activated in parallel according to a proportional expresion tocorrepondient classi�er activity degree.� In the output interface the partially activated fuzzy sets of same output variables arecombined using the weighted sum method to produce a �nal fuzzy set for each outputvariable. And �nally, in order to produce numerical output values vector, each outputfuzzy set is defuzzied according to fuzzy centroid procedure using the center of massformula.



� Its CA system only works with positive rewards. It deducts a fraction of each activeclassi�er strength and distributes a payo� quantity of the obtained reward to each activeclassi�er strength according to a measure of goodness. This measure determines the qualityof the classi�ers action and the quality of the classi�ers conditions for this particular input.� Its classi�er discovery system works with a GA that uses the crossover operator and anumerical creep mutation operator.� Its main advantages are that it allows learning of membership functions as well as classi�ersand it reduces the problems of classi�ers representation.Parodi & Bonelli tested their model with the same examples used by Valenzuela, and theyobtained better results.5.3.3 Caser & Fogarty's Fuzzy Learning Classi�er SystemBrian Carse & Terence C. Fogarty proposed in [Car94] a new FLCS using the Pittsburgh model.Some of its peculiarities are:� In this FLCS genetic operators and strength asignment apply over classi�er sets ratherthan over individual classi�ers.� The classi�er sets representation is based on Parodi & Bonelli's representation, whichallows the discovery component the learning of membership functions as well as fuzzyrelations (classi�ers).� It includes variable length classi�er sets.� Its discovery component involves a numerical creep mutation operator and a new crossoveroperator based on weak positional dependence.They tested also its system with the same examples used by Valenzuela, and obtained betterresults than Parodi & Bonelli's system and than Valenzuela's sytem.The three aforementioned approaches have exhibited good results, but they have not beenenough developed yet. Many issues remain open for research, see [Val91b, Par93, Car94].5.4 Applications of LCSs in Control ProcessesThere exist many useful cases of LCSs application in control of real systems where they showgood results. In this section we shall brie
y comment some of main applications of LCSs insystems control.In 1983 Goldberg applied a LCS to the control of two engineering systems: the pole-balancingproblem and a natural gas pipeline-compressor systems. The simulations were in the stimulus-response format and with conventional structure of a LCS. For more information see [Gol83].In robotic, Dorigo has developed a learning control system of a real robot, with great suc-cess. He has designed the system according to a parallel distributed model of learning basedon LCSs and parallel machines (transputer networks). He decomposes the complex learningcontrol problem of a robot in many simpler learning control problems. Each one of them isassigned to a LCS. Each component of LCS is implemented on a transputer network, each LCSis implemented as a subset of transputer nerwork and thus, the whole learning control system ofrobot is implemented as a set of transputer network subsets. In this way, the proposed systemimplements both a low-level parallelism within the structure of a single LCS (among its compo-nent systems) and a high-level type of concurrency, which allows various LCSs to work togetherby means of appropiate coordination strategies of competition and cooperation. These systemspresents the following advantages:



� Increasing speed and 
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