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Abstract 

A study of the different roles played by the fuzzy operators in fuzzy control is developed in this paper. The behavior of 
a very large amount of fuzzy operators is analyzed and a comparison of the accuracy of many fuzzy logic controllers 
designed by means of these operators is carried out. In order to do that, a comparison methodology is defined and two 
fuzzy control applications are selected, the Inverted Pendulum problem and the fuzzy modeling of the real curve Y = X. 
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1. Introduction 

The purpose of any controller is to look period- 
ically at the values of the state variables of the 
controlled system and to obtain the values asso- 
ciated to their control variables by means of the 
relationships existing between them. If these rela- 
tionships can be expressed in a mathematical  way, 
it is not too difficult to design the controller. The 
problem comes when, as it happens in a lot of real 
world nonlinear systems with complex dynamics, 
there is no mathematical  model representing the 
existing relationships. 

Fuzzy Logic Control is the main topic of this new 
field known as Expert Control. Fuzzy Logic Con- 
trollers (FLCs), initiated by Mamdani  and Assilian 
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[26], are now considered as one of the most impor- 
tant applications of the Fuzzy Set Theory suggested 
by Zadeh in 1965 [41]. FLCs are knowledge based 
controllers usually derived from a knowledge ac- 
quisition process or automatically synthesized from 
a self-organizing control architecture [4]. 

During the past years, many applications of 
Fuzzy Logic Control  have been developed success- 
fully (see [-18, 4, 21, 3]) and FLCs have been proved 
to be superior in performance to conventional sys- 
tems in many applications. 

An FLC is composed by a Knowledge Base, that 
comprises the information given by the process 
operator  in the form of linguistic control rules, 
a Fuzzification Interface, which has the effect of 
transforming crisp data into fuzzy sets, an Inference 
System, that uses them joined to the Knowledge 
Base to make inference by means of a reasoning 
method, and a Defuzzification Interface, that 
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translates the fuzzy control action into a real 
control action using a defuzzification method. The 
generic structure of an FLC is shown in Fig. 1. 

Complete information about FLCs can be found 
in [3, 15, 21]. 

As is known, the accuracy of an FLC depends 
directly on the following two factors: 

(a) The composition o f  the F L C  Knowledge Base, 
that is, the set and type of the fuzzy control rules 
forming the Rule Base [15, 21] and the scaling 
factors, the number of linguistic terms in the fuzzy 
partition of the input and output spaces and the 
shape of the linguistic variables membership func- 
tions of the primary fuzzy sets collected in the Data 
Base [2, 6, 9, 17]. 

(b) The desion parameters o f  the Inference 
Mechanism. 

In this paper we will focus on the second one, 
taking as base a generic Knowledge Base con- 
stituted by m Mamdani type fuzzy control rules 
Ri, i  = 1 . . . .  ,m, with the form: 

I f  X la  is A l l  and . . ,  and X1 ,  is A1, then Y is B1 
also 
... (1.1) 

also 
I f  X , , l  is A,,1 and ... and X ~ ,  is A,, ,  then Y is Bin. 

There are several parameters which have a signif- 
icant influence in the behavior of this FLC com- 
ponent [20]: 

1. The form of the mathematical definition of the 
fuzzy implication in the fuzzy control rules ( I f X  is 
A then Y is B), that is, the selection of the fuzzy 
implication operator I representing the fuzzy rela- 
tion R existing between A and B and defined in 
X × Y (X and Y being the universes of the variables 

X and Y, respectively): 

V x  e X ,  y ~ Y: I~g(x,y) = l(l~a(x),#B(y)). (1.2) 

2. The form of the mathematical definition of the 
sentence connective and, that is, the selection of the 
conjunctive operator T to be used when the fuzzy 
control rules have more than one variable in the 
antecedent part (like the ones shown in expression 
1.1): 

~A(Xo) = T ( ~ I  (xl) ,  . . . ,  ~ , ( x , ) ) ,  (1.3) 

where Xo = (xl, ... ,x,). 
3. The form of the mathematical definition of 

composition of fuzzy relations existing in the Com- 
positional Rule of Inference (CRI): 

#w(y)  = Sup{T'(I~A,(X),I(#~(X),IJB(y)))}. (1.4) 
x ~ X  

4. The form of the mathematical definition of the 
sentence connective also, that is, the selection of the 
aggregation operator U (see expression 1.1): 

~ , ( y )  = v {~,,~ (y) . . . . .  ~B,,(y)}. (1.5) 

5. The way of defining the defuzzification oper- 
ator D: 

Yo = S(xo) = D(l~,,(y)). (1.6) 

The purpose of this paper is to study the behav- 
ior of a large amount of fuzzy operators proposed 
in the specialized literature in the different fuzzy 
control roles mentioned, complementing the analy- 
sis developed until now. In order to put this into 
effect we design a lot of FLCs combining these 
operators and define a comparison methodology 
based on different FLC performance measures that 

I Fuzziflcatlon Interface ~ - - ~  

T State Variables 

Knowledge Base [ 

Inference System ~ t ~  Defuzzlflcation Interface 

Controlled System L,, Control Variables 
r 

Fig. 1. Generic structure of a fuzzy logic controller. 
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allow us to determine their accuracy in two differ- 
ent problems, the fuzzy control of the Inverted 
Pendulum and the fuzzy modeling of the math- 
ematical function Y = X. In this way, we consider 
a difficult nonlinear problem widely studied in 
Control Theory requiring a quick and accurate 
FLC response [40] joined to a very simple problem 
that avoids losing the generality of the fuzzy model 
and makes the system behavior more dependent on 
the concrete FLC accuracy [6]. 

In order to do that, this paper is set up as follows. 
The next section presents a short review of the 
studies developed until now based on the use of 
fuzzy operators in FLCs. Section 3 introduces 
some preliminaries as the t-norm, t-conorm and 
implication function definitions. Section 4 analyzes 
more widely the Defuzzification Interface, present- 
ing two different modes of operation and several 
defuzzification strategies for each one of them. 
A comparison methodology of the different FLCs 
behavior is defined in Section 5, while the fuzzy 
control applications used for developing our study 
are presented in Section 6. Section 7 includes the 
experimental results obtained, which are discussed 
in Section 8. Finally, several concluding remarks 
are commented on in Section 9. 

2. Previous studies on the use of fuzzy operators in 
the design of fuzzy logic controllers 

Due to the input x corresponding to the state 
variables of the controlled system is crisp, x = Xo, 
the application of the Fuzzification Interface makes 
the fuzzy set A' to be a singleton, that is, #a,(x) = 1 
ifx = Xo and #a,(x) = 0 for x # x0. Thus the CRI is 
reduced to the following expression: 

ltB,(y) = I(#a(Xo), #n(y)). (2.1) 

Hence it is found that it depends directly on the 
implication operator selected. In the specialized 
literature it is proposed that a huge amount of 
operators can be used as implication operators in 
the fuzzy control inference process. Many authors 
have presented and analyzed several implication 
operators such as: implications introduced from 
many-valued logic systems [29], implication func- 
tions [34, 24], t-norms [28, 12, 13] and a wide 

range of other kind of implications [20, 5, 6]. Ana- 
lyzing these works, it is possible to draw the con- 
clusion that the selection of the best implication 
operator has become one of the principal problems 
of inference in fuzzy control. 

Many studies adding some information in order 
to select this operator have been developed in the 
specialized literature. In [29], Mizumoto and Zim- 
merman introduced some implication operators of 
many-valued logic systems and studied their behav- 
ior in fuzzy reasoning based on the G M P  and on 
the Generalized Modus Tollens when the inputs to 
the Inference System are fuzzy concepts. In a later 
work, Mizumoto [27] analyzed the accuracy of 
several of these inference operators in the fuzzy 
control of a plant model. Kiszka and his colleagues 
[20] collected 36 implication operators and studied 
their accuracy in the fuzzy modeling of a d.c. series 
motor. Cao and Kandel [5, 6] defined a new meth- 
odology of comparison and analyzed the behavior 
of the operators employed by Kiszka using them in 
the fuzzy modeling of different mathematical func- 
tions. Finally, in [13], Gupta and Qi studied the 
behavior of several implication operators based on 
t-operators in the same problem considered by 
Mizumoto. Other studies have been carried out in 
[22, 30, 37, 7, 8, 10]. 

Several of these works analyze the other five 
factors discussed. In [20, 5, 6, 22], the mathemat- 
ical definition of the connective also is studied, 
using the operators Max and Min in this role. In 
the first two works, 72 different inference processes 
are composed using these two aggregation oper- 
ators and the 36 implication operators collected. In 
[13] different t-operators are used for the same 
purpose and to represent the connective and of the 
control rules. In [8] six t-norms are used to repre- 
sent this connective in the fuzzy control of the 
Inverted Pendulum problem. Finally, in [14-16, 19, 
31, 32, 7] a wide variety of defuzzification methods 
are presented and deeply studied. 

3. Preliminaries: t-norms, t-conorms, implication 
functions and other implication operators 

In this section we introduce the definition of the 
fuzzy operators that have been proposed in the 
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specialized literature to be used in the fuzzy control 
inference process. 

A function T: [0, 1] × [0, 1] ~ [0, 1] is a t-norm iff 
Vx, y, z E [0, 1] verifies the following properties 
[28, 12]: 

(T1) Existence of a unit 1: T(1,x) = x. 
(T2) Monotonicity: If x ~< y then T(x,z) ~< 

T(y ,z ) .  
(T3) Commutativity: T (x,y) = T (y, x). 
(T4) Associativity: T (x, r (y, z)) -- r ( r  (x, y), z). 
(r5) T (0, x) = 0. 

A function S: [0, 1] x [0, 1] ~ [0, 1] is a t-conorm 
iff Vx, y, z ~ [0, 1] verifies the following properties 
t28, 12]: 

($1) Existence of a unit 0: S(0,x) = x. 
($2) Monotonicity: If x ~<y then S(x,z)  <~ 

S(y, z). 
($3) Commutativity: S (x, y) = S (y, x). 
($4) Associativity: S (x, S(y, z)) = S (S (x, y), z). 
($5) Existence of a unit 1: S(1,x) = 1. 

T-norms and T-conorms (triangular norms and 
conorms respectively) were introduced and studied 
in the context of statistical metric spaces. Later, 
several authors introduced both operators into 
Fuzzy Set Theory to represent the intersection and 
union of fuzzy sets [1]. 

We employ them in different FLC roles in this 
paper. Both operators will be used to define the 
aggregation operator also (expression 1.5) as well as 
the relation R existing in the Knowledge Base con- 
trol rules as an implication operator (expression 
1.2). On the other hand, t-norms will be used to 
define the connective and of expression 1.3 
as well. 

Regarding the t-norms, in this work we use for 
the first purpose Zadeh's conventional connective, 
Minimum. For the other two roles we have selected 
the following six t-norms: Logical (TI,I8) (Min- 
imum), Hamacher (T2,I40), Algebraic (T3,I25), 
Einstein (T4,I41), Bounded (T5,I31) and Drastic 
(T6,I10) Products. Moreover, with regard to the 
t-conorms, the one used to define the sentence 
connective also will be Maximum and the selected 
ones that will be used as implication operators are: 

Logical (I32) (Maximum), Algebraic (I23), Bounded 
(I30) and Drastic (I33) Sums. The mathematical 
expressions of all the t-operators selected can be 
found in Appendix A. 

A continuous function I : [ 0 , 1 ] x [ 0 , 1 ] ~  
t0,1] is an implication function iff Vx,  x ' ,y ,y ' ,  
z ~ [0, 1] verifies the following properties [34]: 

(I1) I fx  ~< x' then I (x ,y)  >>, I(x',y). 
(I2) I f y  ~< y' then I (x ,y)  <~ I(x,y') .  
(I3) Falsity Principle: I(0,x) = 1. 
(I4) Neutrality Principle: I(1, x) = x. 
(I5) Exchange Principle: I(x, I(y, z)) = I(y, I(x, z)). 

The implication functions have been widely 
studied by many authors as ways to define the 
implication relation existing in the G M P  rules 
[34, 24]. They are classified in the different follow- 
ing families: 
• Stron9 implications or S-implications: Corres- 

ponding to the definition of implication in classi- 
cal Boolean Logic: A ~ B  = ~ A  V B. They 
present the form: l (x ,  y) = S(N(a), b), S being a t- 
conorm and N a negation function. 

• Residual implications or R-implications: Ob- 
tained by residuation of a continuous t-norm 
T in the way I ( x , y ) =  Sup{c: c e t0, 1]/T(c ,x)  

• Quantum mechanics implications or QM-implica- 
tions: Corresponding to the definition of im- 
plication in Quantum Logic: A ~ B  =-qA V 
(A A B). Defined in fuzzy logic by means of 
I (x ,y)  = S (N(x ) ,T (x ,y ) ) ,  S being a t-conorm, 
N a negation function and T a t-norm. 
In this paper we use the implication functions to 

represent the fuzzy implication in the fuzzy control 
rules (expression 1.2). For this purpose we selected 
the following implication functions belonging to 
the different families above. Their mathematical 
expressions can be found in Appendix A: 
• S-implications: Diene (16), Dubois-Prade (I39) 

and Mizumoto (122). 
• R-implications: G6guen (I4), G6del (127) and 

Lukasiewicz (I5), this last implication function 
belonging to the S-implications family as well. 

• QM-implications: Early-Zadeh (I7). 
Many operators not belonging to any of these 

well-defined families have been introduced in fuzzy 
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logic literature to be used as implication operators. 
We are going to use 24 ones collected in the works 
[29, 20, 5, 37, 7, 8, 10]. 

Thus we have 41 operators to be used as implica- 
tion operators. Thirty-six of them have been col- 
lected in [-20], so we will name them in the same 
way used in this work (I1 to I36). The other five 
implication operators selected will be named from 
137 to I41. A study of the mathematical properties 
satisfied by these operators is presented in Appen- 
dix B. In order to put it into effect we analyze the 
properties verified by the three families of fuzzy 
operators presented in this section and in Section 2 
and collect the different existing ones, denoting 
them from P1 to P11. O being an implication oper- 
ator Vx, x ' ,y ,y ' ,z  E [0, 1], they are the following: 

(P1) 
(P2) 
(P3) 
(P4) 
(PS) 
(P6) 
(P7) 
{PS) 
(P9) 

(PIO) 
(Pl l)  

If x ~< x' then O(x,y) >>, O(x',y). 
If y ~< y' then O(x,y) ~< O(x,y'). 
o(0,  x) = 1. 
O(1, x) = x. 
O(x, O(y,z))  = O(y, O(x,z)).  
If x ~< x' then O(x,y) ~< O(x',y). 
O(x,y)  = O{y,x). 
o (x, o (y, z)) = 0 (0  (x, y), z). 
o(0,  x) = 0. 
o(0 ,  x) = x. 
O(1,x) = 1. 

The last two properties considered in our study, 
P12 and P13, are obtained from the classification 
presented in [11] which discriminates the implica- 
tion operators into two different families, those 
being an extension of the boolean implication 
(like the implication functions) and those being 
an extension of the boolean conjunction (like 
the t-norms). Thus an implication operator will 
verify P12 or P13 if it belongs to any of the two 
families, that is, if it satisfies one of the following 
truth tables (clearly, both properties are mutually 
exclusive): 
1. Extensions of the boolean implication (P12): 

a\b 0 1 

0 1 1 
1 0 1 

2. Extensions of the boolean conjunction (P13): 

a\b 0 1 

0 0 0 
1 0 1 

4. The Defuzzif icat ion Interface 

The Defuzzification Interface is the component 
of the FLC that combines the fuzzy information 
contained in the individual fuzzy sets inferred 
and translates it to a crisp control action that 
will be applied in the controlled system. It is pos- 
sible to choose between two different modes of 
operation: 

(a) Mode A: aggregation first, defuzzification 
after: In this case the Defuzzification Interface per- 
forms the following tasks: 

(i) aggregation of the individual fuzzy sets B'i in- 
ferred to get the final output fuzzy set B', by means 
of the fuzzy operator representing the sentence con- 
nective also, U. 

(ii) defuzzification of this fuzzy set B' which 
yields a nonfuzzy control action from it, by means 
of a defuzzification method D. 

(b) Mode B: defuzzification first, aggregation 
after: In this second modus operandi the contribu- 
tion of each fuzzy set inferred is considered individ- 
ually and the final crisp control action is obtained 
by taking a calculus (an average, a weighted sum or 
a selection of one of them) over a concrete crisp 
Characteristic Value obtained from each one of 
them. The computation of the final fuzzy set B' is so 
avoided. This operation constitutes a different ap- 
proximation to the concept represented by the con- 
nective also. 

With the purpose of developing both modes of 
operation, we introduce the following terminology 
[7]. BI being the fuzzy set obtained by firing the rule 
Ri in the inference process and #B'i its membership 
function, we define two different kind of values of 
significative importance in the Defuzzification 
process: 
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. The Importance Degrees of the rule Ri 
(a) The area of the surface contained by the 

membership function/~,i with the X-axis, si: 

si = f r  PB;(Y) dy. (4.1) 

(b) The height of B'i, Yi: 

Yi = Sup tzB,i(x), V x. (4.2) 

(c) The matching of the fuzzy sets in the anteced- 
ent of the rule Ri, hi, which depends on the t-norm 
T used (expression 1.3): 

hi = T (#A1 (X1) . . . .  , pa,(Xn)). (4.3) 

2. The Characteristic Values of the fuzzy set B'i 
(a) The maximum value (MV) of the membership 

function ps,i, Gi: 

Gi = x • X [ Pn,i(x) = Yi. (4.4) 

When there are more than one x satisfying the 
condition, it can be obtained in several different 
ways [14-16]: taking the lower (First-of-Maxima) or 
the higher (Last-of-Maxima) of them, or taking the 
average of these two values (Middle-of-Maxima). 

(b) The center of gravity (CG) of B'i, Wi: 

Wi = ~r Y' #n,(Y) dy (4.5) 
Ir #B~(Y) dy 

We obtain the MV by means of the Middle-of- 
Maxima procedure in order to develop our study. 

Taking as base the definitions above and ana- 
lyzing some works existing in the specialized litera- 
ture [14-16, 19, 32, 31, 7], several defuzzification 
methods working in the two different operation 
modes can be collected. 

The defuzzification methods used classically in 
mode A are those obtaining directly the Character- 
istic Values of the final aggregated fuzzy set B', that 
is, the Center of Gravity and the First, Last and 
Middle of Maxima (MOM). In this way, another 
question that has to be solved in this modus oper- 
andi is the selection of the fuzzy operator represent- 
ing the connective also. It is possible to choose 
between two different options, using a t-norm or 
a t-conorm in this role. The most used t-operators 
are the classical Minimum and Maximum oper- 
ators [20, 5, 6, 22]. In this work we are going to use 

these two operators for this task and the defuzzifi- 
cation methods Middle of Maxima (Dla) and 
Center of Gravity (D2a). 

Other more complex defuzzification strategies 
used in mode A can be found in [33, 38, 39]. 

Regarding the second mode of operation, mode 
B, most of the defuzzification methods used can be 
classifed into two principal groups of defuzzifica- 
tion methods [7]: based on the CG and based on the 
MV.  Both main groups can be subdivided into two 
subgroups, according to the calculus used to com- 
bine the Characteristic Values obtained from every 
fuzzy set inferred, either using a weighted sum with 
respect to each concrete Importance Degree or 
selecting the Characteristic Value of the fuzzy set 
that presents the largest value of an Importance 
Degree. 

Thus, denoting by Yo the crisp value obtained 
from the defuzzification process, we have the fol- 
lowing defuzzification methods belonging to each 
group (i = 1, ...,m): 
• Weighted Sum with respect to an Importance De- 

gree [35, 16, 7]: 
(Dlb) CG weighted by si: 

Eisi" Wi 
yo = - -  (4.6) 

~iSi  

(D2b) CG weighted by Yi: 

Yo = ~"iyi" W--i (4.7) 
EiYi  

(D3b) CG weighted by hi: 

r,i hi" Wi (4.8) 
Yo = Zihi 

(D4b) MV weighted by si: 

Eisi " Gi 
Yo = - -  (4.9) 

ZiSi  

(D5b) MV weighted by yi: 

Yo = ]F"iYi' Gi (4.10) 
~-.iYi 

(D6b) MV weighted by hi: 

Y~i hi" Gi (4.11) 
Yo = ~,i hi 
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• Based  on the f u z z y  set  with largest  Impor tance  
Degree: 
(D7b) CG of the fuzzy set with largest si 

[14-16, 31, 32, 7]: 

B'k = B'il& = Max(st), V t e  {1 . . . . .  m}, 
(4.12) 

Yo = W k ,  

(D8b) CG of the fuzzy set with largest Yi [7]: 

B'k = B'i lYi = Max(y,), Vt e {1 . . . . .  m}, 
(4.13) 

yo = Wk. 

(D9b) CG of the fuzzy set with largest h~ [7]: 

B' k = B' i [h i = Max(hi), Vt e {1 . . . . .  m}, 
(4.14) 

Yo = W k .  

(D10b) MV of the fuzzy set with largest si [7]: 

B~ = B'i Isi = Max(s,), Vt ~ {1 . . . . .  m}, 
(4.15) 

Yo = Gk. 

(D1 lb) MV of the fuzzy set with largest y~ [7]: 

B'k = B'i[yi = Max(y,), V t 6  {1 . . . .  ,m}, 
(4.16) 

Yo = Gk. 

(D12b) MV of the fuzzy set with largest hl [7]: 

B~, = B'i Ihl = Max(h,), Vt ~ {1, ... ,m}, 
(4.17) 

Yo = Gk. 

Other defuzzification methods that can be used 
in the second defuzzification modus operandi are 
the following: 

(D13b) Middle of Maximum (MOM): 

ZiG/ 
Yo - (4.18) 

m 

(D14b) Middle of Greater and Lower MV: 

Gmi n = Min Gi, V i ~  {1, . . . ,  m},  

Gma x = Max Gi, V i e  {1, ... ,m}, (4.19) 

Gmin q- Gmax 
Y o -  2 

(Dl5b) Center of Sums [14-16]: 

Yo - ~Y y" Ei PB;(Y) dy (4.20) 
fr 2i#n' ,(Y) d y  

To finish this section, we have to point out that 
using two of the implication operators selected, 13 
and 119, the fuzzy set inferred is not continuous. 
The one inferred by means of 119 presents a mem- 
bership function with only two nonzero values 
(concretely, with value 1). In [32], a basic con- 
straint of defuzzification algorithms, a one-element, 
is presented. This constraint is characterized by 
a fuzzy set with only a nonzero value. Runkler and 
Glesner enunciate that the one-element is defuzzi- 
fled to this single element exactly. In our case, we 
will work similarly and these fuzzy sets with two 
nonzero values will be defuzzified to the average of 
the two elements. Due to the discontinuity that 
appears using these two implication operators, we 
will use 119 only in the defuzzification mode B, that 
is, we will not aggregate fuzzy sets of this kind by 
means of a t-operator and we will not work with 13. 
The same problem is presented using I1, I2 and I10 
to make inference when the membership functions 
of the control rules fuzzy sets are triangular-shaped 
(they make the inferred fuzzy set a crisp value) and 
it is solved in the same way. 

5. Comparison methodology 

In order to analyze the behavior of the fuzzy 
operators selected, different FLCs using them in the 
different roles discussed are designed. Thus 
S [ i , j , k , l ]  denotes an FLC using the t-norm Ti 
representing the connective and as conjunctive op- 
erator (i = 1 . . . .  ,6) and the implication operator 
j representing the implication of the fuzzy control 
rules (j = 1 . . . .  ,41). With regard to the index k, it 
will be equal to 0 when the FLC employs mode B as 
defuzzification modus operandi and equal to 1 or 
2 when it works in mode A. Its values will be 
1 when the Minimum t-norm is used as aggregation 
operator and 2 when the connective also is repre- 
sented by the t-conorm Maximum. Therefore, 
k = 0, 1,2. Finally, the index l refers to the defuzzifi- 
cation method used by the FLC. If k = 0, then the 
designed FLC's Defuzzification Interface works in 
mode A and l = lb . . . . .  15b, that is, the 15 mode 
B defuzzifiers presented in the previous section. 
Otherwise, if k ¢ 0 then l = la,2a, the two mode 
A ones commented on. On the other hand, the 
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output of the FLC will be denoted by S[ i , j , k , l ]  
(Xk), Xk being the array of state variables values 
(inputs) provided by the controlled system. 

Our next step is to define the comparison meth- 
odology. To develop this purpose, there is need to 
study some FLC performance measures which 
allow us to establish several measures of compari- 
son of the accuracy of the FLCs designed. In [7, 15] 
were defined several performance measures belong- 
ing to two families that appear classified in [7] into 
the two following families: 

1. Measures of  Convergence: These kind of 
measures are based on the speed of reply of the 
system. They are employed in regulatory control 
systems, that is, systems presenting a point of equi- 
librium (for instance, the inverted pendulum). It is 
possible to define them through the oscillations 
produced around this point. In this way, we can 
define a Measure of  Convergence (MC)  as 

M C ( S [ i , j , k , l ] )  - ~'~=" I e(h)l 
(n - m)/At ' (5.1) 

where e(ti) is the system state at time tl; 
At = I ti - ti x I is the amplitude in seconds of the 
system time unit and m, n are the ends of the 
interval of time studied. 

It is necessary to point out the impossibility of 
assigning a value to this measure when the FLC 
S[i, j, k, 1] loses the control of the controlled system 
during the interval of time between m and n. In such 
a case it is considered that MC takes infinity value. 

2. Measures o f  Error: These measures employ 
a set of system evaluation data formed by N arrays 
of numerical data, Zk, constituted by the values of 
the state variables, xk, and the corresponding 
values of the associated control variables, Yk: 

Z ,  = (Xk,Yk), k = 1, . . . , N .  (5.2) 

In this way, this kind of measures are not limited 
to be applied only to regulatory control systems. As 
measures of error, we can consider the following 
[-20, 5-8]: 

• Maximum Linear Error (MLE): 

MLE(S [i, j, k,/]) = Max l Yk -- S [i, j, k, l] (Xk)I. 
k 

(5.3) 

• Medium Linear Error (LE): 

3]~=1 lYk -- S[ i , j ,k , l ] (xk)l  
LE(S[ i , j , k , l ] )  

N 
(5.4) 

• Medium Square Error (SE): 

1 N 
SE(S [i, j, k,/]) = ~ Zk = 1  ( Yk - -  S [i, j, k, l] (Xk))2 

N 

(5.5) 

In [15] it was remarked that the choice of a per- 
formance measure depends on the type of response 
that the control system designer wishes to achieve. 
Taking as base this idea, in [7] were presented 
several Measures of  Adaptation obtained as perfor- 
mance indexes associated to the above measures. 
The purpose of these indexes is making easier the 
comparison of the accuracy of the different FLCs 
designed. Thus we define an Adaptation Degree 
associated to a performance Measure of  Error M of 
the FLC S[i, j, k, l], AD_ME [i, j, k, l], by means of 
the following quotient: 

Min V = Min(M(S[i ,  j, k,/])), 
i , j ,k,l  

Max V = Max(M(S[i ,  j, k,/])), ( 5 . 6 )  
i , j ,k,l  

M ( S  [i, j, k, 1]) - Min V 
A D _ M E [ i , j , k , 1 ]  = 1 - Max V - Min V ' 

M being any of the above Measures of Error  (MLE, 
LE, SE). 

Regarding the Adaptation Degree associated to 
a Measure of Convergence, AD_MC[i ,  j ,k , l ] ,  it 
requires a different definition because when any of 
the analyzed combinations loses the control of the 
system, the value Max V is equal to infinity and the 
Adaptation Degree cannot be computed by means 
of expression 5.6. For  this kind of measures, we are 
going to employ the following definition: 

Min V = Min(M(S[i ,  j, k,/])), 
i , j ,k,l  

Max VMC = Max(M(S[ i ,  j, k,/])), 
i , j ,k,l  

Vi, j , k , l / M ( S [ i , j , k , l ] )  ~ oo, 
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AD M C [ i , j , k , l ] =  1 -  
M ( S [ i , j , k , l ] )  - Min V 

2(Max VMC - Min V) 

if M ( S [ i , j , k , l ] )  # oc,, 

A D [ i , j , k , l ]  = 0 

if M(SLi,  j , k , 1 ] ) =  oc. (5.7) 

Analyzing the above definitions, it is easy to 
conclude that an FLC will present better behavior 
when more near to 1 is its value in the respective 
Adaptation Degree. In this way, the values of both 
Adaptation Degrees of an FLC S[i, j, k, l] are char- 
acterized for being included in the interval [0, 1], 
V i, j, k, I. The difference among them consists of the 
fact that, while in the AD_ME the values are 
equally distributed in the commented interval, the 
values corresponding to the AD_MC are distrib- 
uted in the same way in the interval [0.5, 1] and 

only are out of it when the FLC loses the control of 
the system, in which case the value of the AD_MC 
associated to the measure is 0. This assumption 
allows us to distinguish more easily between com- 
binations presenting good and bad behavior in the 
task of controlling the system. 

Another question remarked in [15] is the fact 
that for more complex control problems, the FLC 
performance is measured by the level of satisfaction 
of any number of different goals and constraints. 
We translate this concept to the field of the Adapta- 
tion Degrees defining a performance index based 
on the combination of different ones associated to 
several measures. 

A particular case is to combine an Adaptation 
Degree associated to a Measure of Convergence 
and to a Measure of Error. This new measure has 
the characteristics of these two discussed families of 
performance measures. The value of adaptation 

Table  1 
Defini t ion of M a x i m u m ,  M i n i m u m  and  M e d i u m  Adap ta t i on  Degrees  

Conjunc t ive  ope ra to r  Impl ica t ion  opera to r  

M a x i m u m  A D  M A X A D C  [i] = M a x  (AD [i, j, k , / ] )  
j , k , l  

M i n i m u m  A D  M I N A D C  [i]  = M i n ( A D  [i, j ,  k, 1]) 
j , k , l  

M e d i u m  A D  if k = 0 then 
1 4 0  15b 

M E D A D C [ i ] = ~ . j ~ 1 .  = ,=3b ~ AD[i,j,k,l] 

else 
1 4 0  2 2a 

= - - "  ~ ~ ~ gD[i,j,k,l] M E D A D C [ i ]  40"2"2  j = l  k = l  l = l a  

M A X A D I [ j ]  = M a x ( A D [ i ,  j, k , / ] )  
i ,k , l  

M I N A D I  [ j  ] = M i n ( A D  [i, j ,  k, l] ) 
i ,k , l  

if k = 0 then 
1 s 15b 

M E D A D I [ i ] = ~ . 6 "  ~ ~ AD[i,j,k,I] 
i = 1  l = 3 b  

else 

M E D A D I [ J ] = 5 . 2 . 2  i = l k = l l = l ,  

Aggrega t ion  ope ra to r  Defuzzificat ion m e t h o d  

M a x i m u m  A D  M A X A D A [ k ]  = M a x ( A D [ i ,  j, k,/3) 
i , j , l  

M i n i m u m  AD M I N A D A  [k]  = M i n ( A D  [i, j, k, l]) 
i , j , l  

M e d i u m  A D  if k = 0 then  

M E D A D A [ k ]  = • ~" AD[i,j,k,l] 
5 - 4 0 . 6  ~=1 ~=i t=ab 

else 

M E D A D A [ k ]  = - - .  ' " 5 . 4 0 - 2  i=1 j = l l  AD[t,j,k,l] 

M A X A D D [  l] = M a x ( A D [ i ,  j, k, I] ) 
i , j , k  

M I N A D D [  l] = M i n ( A D [ i ,  j, k,/3) 
i , j , k  

if k = 0 then 

M E D A D D [ I ]  = ' AD[i,j,k,l] 

else 

M E D A D D [ k ]  
5 . 4 0 , 2  i = l  ~=l k=t 
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that receives a concrete controller S[i, j, k, l] will be 
more suitable than that which would receive from 
an only measure of one of the two groups. A perfor- 
mance index of this type was presented in [7] 
combining the above presented Measure of 
Convergence and Medium Square Error by means 
of an average function, obtaining then a Conjunc- 
tive Adaptation Degree (CAD), defined in the 
following way: 

CAD [i, j, k, l] = f (AD_SE [i, j, k, l], 

AD_MC [i, j, k,/]), (5.8) 

AD_SE and AD_MC being the ADs associated to 
the measures SE and MC respectively and f sat- 
isfying Min(x,y) <~f(x,y) <~ Max(x,y). The func- 
tion f selected in that work was 

{~ +Y) if x # 0  and y # 0 ,  
f ( x ,  y) = 2 (5.9) 

otherwise. 

Finally, for comparing easily the accuracy of 
some designed FLC, we use the definitions of the 
Maximum, Minimum and Medium Adaptation 
Degree for a conjunctive, implication or aggrega- 
tion operator and defuzzification method of any of 
the studied measures. Note that AD can be equal to 
AD_MC, AD_MLE, AD_LE, AD_SE or any 
CAD in the definitions included in Table 1. The 
values m,n,o and p represent the number of con- 
junctive, implication and aggregation operators 
and defuzzification methods used to develop the 
different FLCs (in this work, i = 1 . . . .  ,5; j  = 1, . . . ,  
40; k = 0, . . . ,2;  if k = 0 then l =  {3b,6b,9b, 12b, 
13b, 15b} and l = {la, 2a} otherwise, as we will see 
in Section 7). 

papers [5, 6] making a fuzzy modeling of the func- 
tion Y = X. 

The Inverted Pendulum system [40] is shown in 
Fig. 2. On the assumption [ O J ~< 30 °, the behavior 
of the pendulum is managed by the following 
equation: 

I z 
m ~ co = ½ ( - F  + mg sin O - kog), (6.1) 

where m is the mass of the pendulum, 21 its length 
and ko9 is an approximation of the friction strength. 

The system state variables are the pendulum 
angle, 69, and the change of angle, o9, whereas the 
control variable is the force F to apply over its 
gravity center. The universes of discourse of these 
variables are the following: 

09 ~ [-0.8645,0.8645] rad/s, (6.2) 

O ~ [-0.5283,0.5283] rad, (6.3) 

F e [ -  3003.8, 3003.8] Nw. (6.4) 

In order to develop our study, we have worked 
with a simulation model of the system using the 
parameters m = 5 kg and 21 = 5 m. 

The linguistic variables are partitioned by using 
the seven linguistic labels contained in the follow- 
ing set [40, 23]: 

{NB, NM, NS, ZR, PS, PM, PL}, (6.5) 

where N is negative, P is positive, B is big, M is 
medium, S is small and ZR is zero. 

The membership functions corresponding to 
each element in the linguistic set have been ob- 
tained following the methodology proposed in 

6. Experiments selected: the Inverted Pendulum and 
the fuzzy modeling of a mathematical function 

Two applications have been selected to study the 
accuracy of the different FLCs designed using the 
fuzzy operators presented. On the one hand, the 
Inverted Pendulum, a problem widely studied in 
Control Theory [40]. On the other hand, we will 
work in the way proposed by the authors of the 

,o.g  

Fig. 2. The Inverted Pendulum. 
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NB NM NS ZR PS PM PB 

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

Fig. 3. The domain partition in the Inverted Pendulum problem. 

. VS S M L VL 

o I I-- 
1 2 3 4 5 6 7 8 9 10 

Fig. 4. The domain partition in the fuzzy modeling of function 

Y = X .  

Table 2 
Control rule map  of F 

O 

co NB N M  NS ZR PS PM PB 

NB 
NM 
NS 
ZR 
PS 
PM 
PB 

NS ZR 
NM ZR PM 

ZR PS 

[23]. The trapezoidal-shaped membership func- 
tions shown in Fig. 3 are used scaling the interval 
[ - 6 ,  6] to the one corresponding to the concrete 
variable (expressions 6.2, 6.3 and 6.4). 

The Knowledge Base used to control the system 
is constituted by the seven linguistic control rules 
shown in Table 2 [40]. 

The selection of the second application is based 
on the studies developed in [6]. The authors 
enunciate that the independence between the ap- 
plication considered and the accuracy obtained by 
the FLC is a very important fact in the comparison 
of the influence of the fuzzy operators used to 
design it. Hence in order to avoid losing the gener- 
ality of a fuzzy model, we are going to work with 
the simplest functional relation Y - - X ,  making 
a fuzzy modeling of this real curve in the interval 
[0, 103. 

In this case, the five following linguistic labels are 
used to partition the domain of the linguistic vari- 
ables X and Y: 

{VS, S, M, L, VL}, (6.6) 

where V is very, S is small, M is medium and L is 
large. The corresponding membership functions, 
triangular-shaped like in [6], are shown in Fig. 4. 

The Knowledge Base presents the following five 
control rules: 

If X is VS then Y is VS 
also 
I f X i s S t h e n  Y i s S  
also 
If X is M then Y is M (6.7) 
also 
I f X i s L t h e n  Y i s g  
also 
If X is VL then Y is VL. 

7. Experiments and results 

The first application, Inverted Pendulum, is 
characterized to be a regulatory control problem. 
In this way, it is possible to employ a Measure of 
Convergence to study the behavior of the FLC used 
to control it. As we have remarked in Section 5, 
a performance index combining measures belong- 
ing to the two introduced families is a very good 
measure to determine the accuracy of the different 
FLCs. We use the Conjunctive Adaptation Degree 
defined by means of expressions 5.8 and 5.9 to 
compare the behavior of the FLCs designed in this 
problem. 

On the other hand, the second application does 
not present a point of equilibrium, so it is not 
possible to use performance measures belonging to 
the first family. In this case we will only employ 
a Measure of Error, the SE, to determine the accu- 
racy of the FLCs. 
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We will show in this section several tables con- 
taining the medium results obtained by the con- 
junctive, implication and aggregation operators 
and the defuzzification methods considered in their 
application to both problems, as well. In order to 
achieve, we define another Conjunctive Adaptation 
Degree, CAD_SE, that combines the values of the 
previously defined CAD in the Inverted Pendulum 
problem and the AD_SE in the fuzzy modeling of 
the function Y = X with the same average function 
used in expression 5.9. We present the values of the 
Medium CAD_SE for the different operators ob- 
tained by means of the expressions defned in 
Table 1. 

The set of evaluation data used to compute the 
SE have 200 data arrays in the form (value of 69, 
value of co, value of F) belonging to the intervals 
O ~ I--0.2569,0.2569] rad, co ~ [-0.4244,0.4244] 
rad/s and F ~ [ -1474.05,  1474.05] Nw in the In- 
verted Pendulum problem. In the other application 
selected, this set is constituted by 41 data arrays 
(value of X, value of Y) with a frequency of 0.25 in 
the interval [0, 10]. 

Regarding the fuzzy operators and defuzzifica- 
tion methods presented up to now, we have to 
point out that not all of them are going to be used 
in the design of the FLCs studied in this work 
because it will make this paper excessively exten- 
sive. As we have remarked at the end of Section 4, 
we do not use the implication operators inferring 
a discontinuous fuzzy set in FLCs whose Defuzzifi- 
cation Interface works in mode A. In the different 
tables of results shown, these combinations will 
present an asterisk in the respective cell. Further- 
more, it is clear that the t-norms selected to be used 
as rule antecedent conjunctive operators (expres- 
sion 1.3) are not employed in the FLCs designed for 
the second application because the rules antecedent 
presents only one variable. 

As our principal purpose is to study the applica- 
bility of fuzzy operators in the different FLC roles, 
we are going to use only six of the 15 presented 
mode B defuzzification methods in order not to 
overload the paper. We take as base the study 
developed in [7] to make the selection of the six 
ones. In this paper it is drawn that matching is the 
most important characteristic of defuzzification at 
the sight of the average results shown. We select the 

four defuzzification methods using this Importance 
Degree (D3b, D6b, D9b and Dl2b) together with 
the widely used M O M  and Center of Sums (D13b 
and D15b respectively). On the other hand, in [8] it 
is pointed out that the sixth t-norm selected, Dras- 
tic Product (T6), does not work well when it is used 
as conjunctive operator in an FLC. As remarked in 
that work, its bad behavior is probably due to it not 
being a continuous function, a fact that seems to be 
a drawback for the fuzzy control inference process, 
based on interpolative reasoning. For  this reason, 
this t-norm is not used in our study. 

It is important to note that, with the purpose 
of making the paper more readable, we will main- 
tain only the tables containing global results in 
this section, moving those corresponding to the 
individual performance measures and indexes 
(Tables 8-11) to Appendix C. These tables are use- 
ful because they show the accuracy of each concrete 
combination in the application and they are com- 
mented on in the following. Note that all tables 
present the maximum and minimum values re- 
marked in bold, and italics and bold respectively. 

Table 8: It includes the Adaptation Degree 
AD_SE values obtained by the different FLCs in 
the fuzzy modeling of the function Y = X problem. 
The minimum and maximum values of the Medium 
Square Error in all combinations are 0 and 11.9726 
respectively, so it is easy to obtain the concrete 
value of this performance measure for any of the 
FLCs by means of expression 5.6. 

Table 9: The results shown in this table corres- 
pond to the Adaptation Degree of the average 
Medium Square Error obtained by the five FLCs 
using the t-norms from T1 to T5 as conjunctive 
operator. In this way, every cell of this table shows 
the Adaptation Degree associated to the average of 
the values obtained by the five FLCs using the 
implication and aggregation operators and defuz- 
zification method determined by its indexes, and 
the conjunctive operators from T1 to T5, in the 
commented measure. The minimum and maximum 
values of the performance measure in the table are 
8037.8420 and 351631.0620. 

Table 10: The results collected in this table cor- 
respond to the Adaptation Degree of the average 
Measure of Convergence obtained by the five FLCs 
using the t-norms from T1 to T5 as conjunctive 
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operator in a similar way to that used in the pre- 
vious table. The main difference is we are not work- 
ing with the average of the five results now but we 
are using the following average function: 

~5= 1 M f [ i , j , k , 1 ]  
M C [ j , k , l ]  = 5 ' 

if M C [ i , j , k , 1 3  # 0% V i  (7.1) 

M C [ j , k , l ]  = oc, otherwise. 

Its minimum and maximum values are respec- 
tively 51.7399 and 86.9292 and the parameters  used 
to compute the data corresponding to the Measure 
of Convergence of the different combinations (see 
the parameters  defined in expression 5.1) are the 
following: 
• The limits of the time interval are: m = 0s,  

n =  10s. 
• The extent of the system time unit is: At = 

100 ms. 
• The FLC acts every 600 ms. 
• The system initial state parameters  are: O = 

0.25 rad, co = 0.4 rad/s. 
As can be observed, we have selected a very extreme 
initial system state in order to obtain data that 
allow us to distinguish between good and bad 
combinations. 

Table  11: This table presents the results corres- 
ponding to the Conjunctive Adaptation Degree 
(CAD) selected for the Inverted Pendulum prob- 
lem. As noted, it combines the Adaptation Degree 
associated to the Medium Square Error (AD_SE, 
Table 9) and to the Measure of Convergence 
(AD_MC, Table 10) by means of the average func- 
tion presented in expression 5.9. These results en- 
able us to analyze in the correct way the behavior 
of the FLCs in the considered problem as they cor- 
respond to a performance index containing 
information about  the two families of performance 
measures commented on. As can be viewed, many  
of the combinations take value 0 in the defined 
Conjunctive Adaptat ion Degree due to their bad 
results in the Measure of Convergence. This fact 
allow us to distinguish clearly between good and 
bad combinations. 

The following tables show the medium results for 
each one of the fuzzy control roles considered in the 
study. All of them contain average results obtained 

combining the individual ones corresponding to 
the two applications selected (Tables 8 and 11) ex- 
cept those collected in Table 3. It is because the 
conjunctive operators are not used in the fuzzy 
modeling of the Y = X function problem but, in 
this case, values corresponding to the two selected 
measures for the Inverted Pendulum problem are 
presented. We must point out that the combina- 
tions whose values cannot be computed (those 
presenting a * in their respective cell) are not 
considered to work out the different medium re- 
suits. The global results collected in these tables 
make them adequate to draw several conclusions 
about the applicability of the fuzzy operators in the 
different FLC roles, the purpose of this paper. 

Hence Table 3 contains the results correspond- 
ing to the Medium AD_SE and A D _ M C  in the 
Inverted Pendulum problem joined to the average 
of both indexes for each one of the conjunctive 
operators selected. The results presented in it have 
been obtained by means of two tables (one corres- 
ponding to the AD_SE and the other to the 
AD MC) not included in this paper  due to their 
extension (they both are fourth-dimensional tables 
T [ i , j , k ,  1] with the indexes i , j , k  and l taking 
values in the intervals shown at the end of 
Section 5). 

Table 4 shows the values of the Medium Adapta- 
tion Degrees for the different implication operators. 
The first column shows the values of the Medium 
AD_SE for an implication operator  in the fuzzy 
modeling of the function Y = X problem while the 
second one presents those corresponding to the 
Medium Conjunctive Adaptation Degree for an 
implication operator  in the Inverted Pendulum 
problem. The third column presents the average of 
the data in the two front columns. 

Table 3 
Medium Adaptation Degrees for a conjunctive operator 

AD SE AD_MC Average 

TI 0.75994 0.21701 0.48848 
T2 0.76046 0.24371 0.50208 
T3 0.75960 0.22046 0.49003 
T4 0.75707 0.25651 0.50679 
T5 0.76245 0.22516 0.49380 
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Table 4 
Medium Adaptation Degrees for an implication operator 

AD_SEy_x CAD Average 

I1 0.67781 ~00000 0.33890 
I2 0.91267 0.31124 0.61196 
14 0.87488 0.41024 0.64256 
I5 0.83316 0.15562 0.49439 
I6 0.81790 0.23280 0.52535 
I7 0.79934 ~00000 0.39967 
I8 0.98296 0.81830 0.90063 
19 0.60877 ~00000 0.30439 

II0 0.98604 0.62931 0.80767 
I l l  0.47924 ~00000 0.23962 
I12 0.59574 ~00000 0.29787 
I13 0.45576 ~00000 0.22788 
I14 0.64784 ~00000 0.32392 
115 0.88163 0.39898 0.64031 
I16 0.92145 0.08723 0.50434 
I17 0.87972 0.48542 0.68257 
118 0.80627 0.31124 0.55876 
119 0.94248 ~00000 0.47124 
I20 0.58267 ~00000 0.29133 
121 0.59921 ~00000 0.29960 
I22 0.82797 0.25540 0.54169 
I23 0.57838 ~00000 0.28919 
I24 ~36812 ~00000 ~18406 
125 0.97919 0.63666 0.80793 
I26 0.81680 ~00000 0.40840 
I27 0.87405 0.40808 0.64106 
I28 0.79595 ~00000 0.39797 
129 0.87489 0.39696 0.63593 
I30 0.58329 ~00000 0.29164 
I31 0.92765 0.64322 0.78544 
I32 0.56987 ~00000 0.28493 
I33 0.58252 ~00000 0.29126 
I34 0.54532 ~00000 0.27266 
135 0.59787 ~00000 0.29893 
136 0.85922 ~00000 0.42961 
I37 0.42002 ~00000 0.21001 
I38 0.79810 ~00000 0.39905 
139 0.83590 0.24287 0.53939 
I40 0.97866 0.55732 0.76799 
141 0.88124 0.55588 0.71856 

Tables 5 and 6 contain the values of the same 
Medium Adaptation Degrees for the other two 
operators considered, the defuzzification method 
and the aggregation operator. 

Finally, Table 7 presents several average results 
corresponding to the implications belonging to the 
different groups previously commented on in Sec- 

Table 5 
Medium Adaptation Degrees for a defuzzification method 

AD_SEy_x CAD Average 

Dla  0.65914 0.13458 0.39686 
D2a ~64459 ~11246 ~37853 
D3b 0.79930 0.26781 0.53355 
D6b 0.88861 0.35022 0.61941 
D9b 0.78106 0.23795 0.50951 

D12b 0.86406 0.31117 0.58761 
D13b 0.74510 0.12889 0.43699 
D15b 0.69145 0.10640 0.39892 

Table 6 
Medium Adaptation Degrees for an aggregation operator 

AD_SEy-x CAD Average 

k = 0 0.79493 0.23374 0.51433 
k =  1 0.66125 0.13676 0.39901 
k = 2 664248 611027 637638 

tion 3. Thus, the first row contains the grouped 
averaged results of all implication operators se- 
lected in this work being an extension of the 
boolean implication. The second one does the same 
with those belonging to the second family, which 
includes implication operators being an extension 
of the boolean conjunction. The last row presents 
the averaged results obtained by the operators not 
belonging to any of the two groups. 

8. Analysis of results 

In this section we analyze widely the results ob- 
tained in the experiments developed. Those corres- 
ponding to both experiments separately are studied 
first, showing the combinations presenting good 
accuracy and the best operators in each role at the 
sight to the medium results. The analysis is finished 
drawing several general conclusions based on the 
global results averaging those obtained in both 
applications. 

According to the results obtained in the first 
experiment, the fuzzy modeling of the function 



O. Cord6n et al. / Fuzzy Sets and Systems 86 (1997) 15 41 29 

Table 7 
Medium Adaptation Degrees for the different families of Implication operators 

AD_SEy_ x CAD Average Total 

Boolean S-implications 0.82726 0.24369 0.53547 
implications R-implications 0.86070 0.32465 0.59267 

QM-implications 0.79934 0.00000 0.39967 
Others (I2, I20) 0.74767 0.15562 0.45164 

Boolean T-norms 0.95596 0.64012 0.79804 
conjunctions 

Other 0.67545 0.06719 0.37132 
implications 

0.49486 

0.79804 

0.3 7132 

Y -- X, collected in Table 8, it can be remarked the 
following: 

1. Four combinations using the Minimum (T1) 
as aggregation operator, the Middle of Maxima 
(Dla) as defuzzification method and the implica- 
tion operators I4, I5, I15 and I27 present the best 
behavior approximating exactly the function 
Y = X, as can be viewed in Fig. 5. Three of these 
four implication operators (I4, I5 and I27) belong 
to the family of R-implications, constituted in this 
way as a good family of implication operators for 
this application. It is quite strange that several 
previous studies (such as [5, 6, 20]) show that com- 
bining the R-implications I4 and I27 or any of the 
t-norms with this aggregation operator worse be- 
havior is obtained than when using the Maximum 
in this last role. In the same way, the good accuracy 
of the other best implication, I15, is a little strange 
due to this operator only verifying one of the 13 
properties analyzed in this work, as can be viewed 
in Appendix B. 

2. At the sight of the medium values (Table 4, 
column 1), the implication operators results are 
quite different. The best implication operator has 
been the Drastic Product (I10) with little difference 
with regard to the Minimum (I8), the Algebraic 
Product (I25) and the Hamacher Product (140). 
Thus, the t-norms get better behavior than the 
R-implications according to the medium results. 

3. The defuzzification method working in mode 
B go clearly beyond those used in mode A, as can 
be viewed analyzing the Medium ADs for an ag- 
gregation operator and for a defuzzification 

method (Tables 5 and 6). The two methods includ- 
ing the MV and the matching (the MV weighted by 
the matching (D6b) and the MV of the fuzzy set 
with largest matching (D12b)) get the best accuracy 
with a significative difference. It is clear that modus 
operandi A gives worse results than mode B (both 
methods working in mode A present the worst 
behavior) and there is not too much difference 
between the two aggregation operators selected for 
working in this mode, value 0.66125 for the Min- 
imum and 0.64248 for the Maximum (Table 6). 

The other application selected, the Inverted Pen- 
dulum, gives us some new information because it 
allows us to study the influence of a new operator in 
fuzzy control, the conjunctive operator, and to use 
measures belonging to the two families presented to 
study the designed FLCs behavior, as can be 
viewed in the following. 

It has to be pointed out that the initial system 
state selected to compute the AD_MC (data col- 
lected in Table 10) was very extreme in order to 
distinguish more clearly between combinations 
with good and bad accuracy. This implies that 
FLCs which were working well in previous 
measures lose the control of the system and take 
value 0 in the Measure of Convergence. Moreover, 
it must be considered that the data shown in 
Table 10 are obtained by means of the average 
function presented in expression 7.1. Therefore, as 
long as one of the five FLCs considered (varying 
the t-norm used as conjunctive operator) loses the 
control of the system, the result of the AD_MC will 
be equal to 0. 
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The following facts can be underlined at the sight 
of the Inverted Pendulum data obtained: 

1. The results corresponding to the AD_SE 
(Table 9) show that in this case there are five combi- 
nations getting the best behavior. Three of them are 
the same in both applications, the FLCs I4-K1- 
Dla, I5-K1-Dla and I27-K1-Dla (being used in 
combination with any of the five t-norms selected). 
In this way, the R-implications are stronger again 
than the other implications when they are used in 
combination with the aggregation operator T1 and 
the defuzzification method Dla. On the other hand, 
the FLCs I2-K1-Dla and I2-K2-D2a obtain the 
best performance as well. They both employ the 
implication operator I2 whose accuracy was stood 
up in [20]. 

2. According to the AD_MC, the best behavior 
is now presented by the FLCs using Mizumoto's 
S-implication (I22) as implication operator (under- 
lined too in 1-5]), the Minimum t-norm as aggrega- 
tion operator and the Middle of Maxima (Dla) as 
defuzzification method joined to the five t-norms 
selected (T1 . . . . .  T5) as conjunctive operators, 
although the other combinations using this im- 
plication operator have very bad accuracy, losing 
the control of the system in seven of the nine cases. 
The combinations using a t-norm as implication 
operator turn out to be very efficient, losing the 
control of the system only when combined with the 
aggregation operator Minimum in most of the 
cases (it is proved in many studies, as [20], that the 
t-norms do not work well with this aggregation 
operator when used to make inference in fuzzy 
control). 

3. Analyzing the Medium AD_SE and AD_MC 
values for a connective (Table 3), we can remark 
that there is no significative difference among the 
FLCs designed using the selected t-norms 
(T! . . . .  ,T5) as conjunctive operators. In the first 
case, the best behavior corresponds to the t-norm 
T5, Bounded Product, while in the second one, the 
best one is the Einstein Product (T4), which curi- 
ously presented the worst behavior in the previous 
measure. With regard to the average results, the 
most classically used connective, the Minimum 
(T1), results to be the connective with worst accu- 
racy and the Einstein Product results to be the best 
one although the differences continue being tiny. 

4. The results corresponding to the selected 
Conjunctive Adaptation Degree (Table 11) are 
strongly dependent on the AD_MC due to the 
definition of the average function used (expression 
5.9). In this way, the best combination is again 
I22-K1-Dla, which presents very good behavior in 
the AD_SE and AD_MC. Combinations using I4 
and I27 as implication operators continue giving 
good behavior in combination with other concrete 
operators in the other roles, but again the t-norms 
give the best results, outstanding the fact that none 
of the FLCs using the Minimum as implication 
operator get value 0 in the CAD. 

From the observation of both the applications 
average results, the following can be highlighted: 

1. The implication operator presenting better 
behavior (see Table 4, column 3) is the Minimum 
t-norm I8, with considerable difference with respect 
to the second, the Algebraic Product, I25 (0.90063 
versus 0.80793). There are no changes with the 
defuzzification methods (Table 5, column 3). The 
MV weighted by the matching is again the best 
adapted and the two working in mode A present 
the worst results (Dla and D2a). Thus, this pro- 
vokes the mode A, aggregation operators Max- 
imum and Minimum, K = 1 and K = 2 respect- 
ively, to present worse behavior than mode B, with 
a considerable difference, as can be viewed in the 
data presented in column 3 of Table 6. 

2. Analyzing the results shown in Table7, 
several important remarks can be made. We can 
observe that the implication operators being an 
extension of the boolean conjunction, that is, 
in our case, the t-norms, give better accuracy than 
those belonging to the other family. Regarding the 
other family of implication operators, the R-im- 
plications present the best behavior and the QM- 
implications the worst (we found similar results in 
our previous study developed in [7]). The other 25 
implications studied do not seem to be useful in 
fuzzy control according to the averaged results 
although some concrete FLCs using them can give 
good accuracy. 

To illustrate more clearly the above comments, 
we present the following three figures showing 
graphically the behavior of several FLCs with an 
outstanding accuracy. In Fig. 5, six combinations 
are compared in the first application. Four of them 
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Fig. 5. Graphical representation of the behavior of several FLCs in the fuzzy modeling of the function Y = X problem. 

are the ones that have better behavior in this ex- 
periment, the FLCs approximating the function 
Y = X with no error. The fifth is designed selecting 
the operators presenting better behavior according 
to the application medium results, the implication 
operator I10 and the defuzzification method D6b. 
The last combination is obtained working in a sim- 
ilar way, but selecting the operators with better 
behavior in the global results, that is, the same 
defuzzification method and the Minimum t-norm 
(18) playing the role of implication operator. 

Fig. 6 is based on the same application. In this 
case, the FLCs studied are designed by means of 
the best implication operator of every one of the 
families and subfamilies commented on. As can be 
viewed studying Appendix B, many of the implica- 
tion operators selected in this work do not belong 
to any of the two families of implication operators 
commented on in Section 3. If we do not take into 
account the implication functions and the t-norms, 
only two of the other 27 implications belong to one 
of the defined families, 12 and 120, implications 
extending the boolean implication. In this way, the 
six combinations compared in this figure use as 
implication operator the following ones: the best of 

every one of the subfamilies included in this family 
(S-implications, 122, R-implications, 14, QM-im- 
plications, 17, and the group constituted by the 
other two implications, I2), the best of the ones 
belonging to the family of the boolean conjunction 
extensions (that is, the best t-norm at the sight of 
the global results, I8) and the best of the other 
implication operators not belonging to any of the 
two families, I17. They are all combined with the 
best global defuzzification operator, D6b. 

Finally, in Fig. 7 we compare several of the 
combinations distinguished in our study with the 
FLC used by Mamdani , ,Tl-18-K2-D2a (that is, 
the Minimum as implication and conjunctive 
operator, the Maximum as aggregation operator 
and the Center of Gravity as defuzzifier). The 
other combinations of the figure are selected in 
a similar way to those which are presented in 
Fig. 5, all employing the same t-norm used by the 
Mamdani controller. The best combinations ac- 
cording to the results of the AD_SE, I2,4,5,27-K1- 
Dla;  the best at the sight of the AD_MC and CAD 
results, I22-K 1-D l a; and the combination designed 
by means of the operators with better behavior, 
I8-K0-D6b. 
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Fig. 6. Graphical representation of the behavior of the FLCs using the best operators according to the average results in the fuzzy 
modelling of the function Y = X problem. 

Control every 600 ms. Initial Change of Angle=0.40 mrad/s, 
Initial Angle=0.25 rad. 
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Fig. 7. Graphical representation of the behavior of several FLCs in the Inverted Pendulum problem. 

9 Concluding remarks 

A study of the different roles played by the fuzzy 
operators in fuzzy control has been carried out 
taking as base the problems of the fuzzy modeling 

of the function Y = X and the Inverted Pendulum. 
According to the results obtained in these experi- 
ments, several conclusions can be drawn: 

(a) The selection of the t-norm playing the role 
of the conjunctive operator does not seem to be of 
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significative importance in fuzzy control because 
the five continuous t-norms studied have given 
similar results. 

(b) On the other hand, the selection of the im- 
plication operator is the main problem of this area, 
as can be viewed taking into account the results 
corresponding to the Measure of Convergence. At 
the sight of the results contained in our study, it can 
be drawn that the implications being an extension 
of the boolean conjunction present better behavior 
in this fuzzy control role than the other ones ex- 
tending the boolean implication. We can remark 
that the implication operators not belonging to any 
of the two families do not have good accuracy as 
well. 

(c) Regarding the Defuzzification Interface, the 
results seem to help the assertion enunciated by us 
in [7], remarking that the matching was the best 
characteristic for the defuzzification in fuzzy con- 
trol. The average data obtained by the four 
methods employing it working in mode B go be- 
yond the other two methods, Middle of Maxima 
and Center of Gravity, working both in mode 
A and mode B. Hence, two assumptions become 
clear: mode B is more accurate than mode A and 
the use of additional information in the defuzzifica- 
tion process (in this case, the consideration of the 
control rules matching) gives better results. 

Anyway, several concrete combinations employ- 
ing defuzzification methods working in mode 
A and implication operators not belonging to t- 
norms family, have demonstrated very good accu- 
racy in different measures in the two applications. 
As we have remarked in Section 8, FLCs using the 
R-implications I4, I5 and I27, the S-implication I22 
and the operator I2 as implication operators and 
working in mode A with the Minimum as aggre- 
gation operator and the defuzzifier Middle of 
Maxima (Dla) have a remarkable accuracy in both 
applications, although the use of these operators in 
combination with the remaining ones playing the 
other fuzzy control roles do not have an accurate 
behavior. 

Thus there are two different ways in which to 
design an FLC to solve a problem: 

1. On the one hand, the accuracy of several con- 
crete combinations of operators not belonging to 
the best families but working well jointly can be 

taken into account and the controller can be built 
using them. This selection could be problematic 
because, although these FLCs have proven good 
behavior in several experiments (see [5, 20] and this 
paper), they could be inaccurate in other ones (in 
[6], some of them do not present good behavior in 
the fuzzy modeling of Y = X, when the Data Bases 
considered employ a different number of linguistic 
terms in the primary fuzzy partition). 

2. On the other hand, the design can be de- 
veloped by taking an operator belonging to the best 
average family for each fuzzy control role. The 
controller obtained in this way will work well for 
many kinds of applications and will be adequately 
accurate (for example, in Section 8 it is pointed out 
that when the t-norms work as implication oper- 
ators in the Inverted Pendulum problem, the con- 
troller only loses the control of the system in a few 
cases although they are not the most accurate oper- 
ators in this role) and its behavior would be per- 
formed in the concrete one studied by using some 
Knowledge Base tuning method (see [17, 15]). In 
this way, this seems to be the best design option. 
The Inference System of this FLC will be composed 
by an implication extending the boolean conjunc- 
tion as implication operator and any continuous 
t-norm as conjunctive operator, while its Defuzzifi- 
cation Interface will work in mode B using a defuz- 
zifier based on the matching. 

Appendix A. Implication operators selected 

(I1) (x,y) = {10 

(I2) (x,y) = {~ 

(I3) (x ,y )={ ly  

(14) (x,y) = ~M in(l 'y/x) if x --/:0 
otherwise 

(I5) (x,y) = Min(1, 1 - x + y) 

(I6) (x,y) = Max(1 - x,y) 

(I7) (x,y) = Max(1 - x, Min(x, y)) 

i f x ¢ l  or y = l  

if x = l  and y ¢ l  

i f x ~ y  
otherwise 

if x = y  
otherwise 
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(18) (x,y) = M i n ( x , y )  (124) (x,y) = Ix - Y l 

(19) (x,y) = M a x ( M a x ( M i n ( x , y ) ,  1 - y), 

M i n ( y ,  1 - x)) 

(ilO) (x,y)= i i f y = l  
i f x = l  
o the rwi se  

J ' x + y  if x + y ~ < l  
( I l l )  (x,y) lo o the rwi se  

(112) (x,y) = M a x ( O , y  - x) 

(i13) (x ,y)= { y -  x if y >~ x 
o the rwise  

(I14) ( x , y ) = { l y  i f y < ~ x  
o the rwi se  

(I 15) ( x , y )  = 

1 

 in(1 x l 

i f x = O  or  1 - y = O  

i f x > O  a n d  l - y > O  

(I16) (x,y) = M i n ( I 2 ( x , y ) ,  I27(1 - x, 1 - y)) 

(125) (x,y) = x .  y 

(126) (x,y) = M i n  { M i n ( M a x ( 1  - x, y), 

M a x ( x ,  1 - y)), M a x ( y ,  1 - y)} 

(127) ( x , y )={ l y  i f x < ~ y  
o the rwi se  

(128) (x,y) = M i n (  I ' y ' ( 1  - x ) ) x  .(1 y) 

(129) (x,y) = y~' 

(130) (x,y) = Min(1 ,  x + y) 

(I31) (x,y) = M a x ( O , x  + y - 1) 

(I32) (x,y) = M a x ( x , y )  

x if y = O  
(I33) (x ,y )= y if x = O  

I o the rwi se  

(I34) (x,y) = M a x ( O , x  - y) 

(135) (x,y) = Min(x ,  1 - y) 

(I36) (x,y) = M i n ( M i n ( x ,  1 - y), M i n ( y ,  1 - x)) 

(137) (x,y) = M a x ( M i n ( x ,  1 - y), M i n ( y ,  1 - x)) 

(I38) (x ,y)= 

(117) (x,y) = M i n ( I 2 7 ( x ,  y), 127(1 - x, 1 - y)) 

(118) (x,y) = M i n ( I 2 7 ( x , y ) ,  12(1 - x, 1 - y)) 

(I19) (x,y) = M i n ( I 2 ( x , y ) ,  I2(1 - x, 1 - y)) 

(120) (x,y) = M a x ( 1  - x, 1 - y) 

M i n  (1 ,Y ,  } - y )  

1 - x  

(I39) (x ,y )= y 
1 

i f x = O  o r  1 - y = O  

i f x > O  a n d  1 - y > O  

if y = O  
i f x = l  
o the rwi se  

(121) (x,y) = Min(1  - x, 1 - y) 

(122) (x,y) -- 1 - x + x . y  

(I23) (x,y) = x + y - x .  y 

(I40) (x ,y)= 
x . y  

x + y - - x . y  

x . y  
(I41) (x,y) - 1 + (1 --  x ) ' ( 1  --  y) 
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Appendix B. Study of the properties verified by the implication operators selected 

35 

P1 P 2  P3  P 4  P 5  P 6  P 7  P 8  P 9  P I O  P l l  P 1 2  P 1 3  

I1 x x x x 

12 x x x x 

13 x x 

14 x x x x x 

15 x x x x x 

I6  x x x x x 

17 x x x x x 

I8 x x x 

19 x 

110 x x x 

I11 

I12  x x x 

113 

114 

115 x 

116 x 

117 x x 

118 x 

119 x x 

I 2 0  x x 

I21 x 

122 x x x x x 

123 x x 

124 

125 x x x 

I26  x x 

127 x x x x x 

128 x x x 

I29  x x x x 

130 x x 

131 x x x 

132 x x 

133 x x 

134 x 

135 

136 x 

137 x 

I38  x x x 

139 x x x x x 

140 x x x 

141 x x x 

X X X X 

X 

X X X X 

X X 

X 

X 

X X 

X 

X 

X 

X X 

X 

X 

X X X X 

X X X 

X X X X 

X X 

X 

X X X X 

X X X X 

X X X X 

X X X X 

X X 

X X 

X X 

X X 

X X X X 

X X X X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 
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Appendix C. Individual application results 

Table 8 
AD_SE values of the FLCs in the fuzzy modelling of the function Y = X problem 

Mode A (Min) Mode A (Max) Mode B 

Dla  D2a Dla  D2a D3b D6b D9b D12b D13b D15b 

I1 * * * * 0.69315 0.69315 0.69365 0.69365 0.65584 0.63742 
12 * * * * 0.99584 0.99584 0.98277 0.98277 0.82723 0.69158 
14 1.00000 0.99196 0.63458 0.63458 0.98722 0.99584 0.98099 0.98277 0.82723 0.71367 
15 1.00000 0.86266 0.63458 0.63458 0.85048 0.99584 0.87289 0.98277 0.82723 0.67061 
I6 0.96272 0.82234 0.63458 0.63458 0.81576 0.99826 0.83969 0.97580 0.83919 0.65608 
17 0.96476 0.82225 0.63458 0.63458 0.79991 0.94459 0.82387 0.96068 0.75679 0.65141 
I8 0.98650 0.98446 0.98653 0.96853 0.98722 0.99584 0.98099 0.98277 0.98211 0.97469 
19 0.63458 0.78430 0.63458 0.63458 0.43223 0.63458 0.40751 0.63458 0.63458 0.65624 

I10 * * * * 0.99623 0.99826 0.97377 0.97580 0.98633 0.98582 
I l l  0.05586 0.03888 0.63458 0.56614 0.39630 0.93072 0.27445 0.92115 0.58161 0.39273 
112 0.63458 0.63458 ~00#00 0.37907 0.88475 0.88877 0.79541 0.78940 0.60135 0.34946 
113 0.03514 0.03267 0.63458 0.63458 0.56521 0.63458 0.57528 0.63458 0.33479 0.47624 
114 0.63458 0.76416 0.63458 0.63458 0.61559 0.63458 0.62468 0.63458 0.63458 0.66653 
115 1.00000 0.99289 0.63458 0.64514 0.98337 0.99584 0.97995 0.98277 0.82723 0.77456 
116 * * * * 0.99424 0.99584 0.98407 0.98277 0.82723 0.74453 
117 0.99961 0.98977 0.63458 0.64534 0.98201 0.99584 0.97867 0.98277 0.82723 0.76142 
118 0.68029 0.67532 0.63458 0.66738 0.98258 0.99705 0.97892 0.98015 0.72561 0.74088 
119 * * * * 0.99584 0.99584 0.98277 0.98277 0.82723 0.87042 
I20 0.63458 0.44610 0.63458 0.63458 0.50004 0.63458 0.47320 0.63458 0.63458 0.59985 
121 0.63458 0.65992 0.63458 0.64033 0.53959 0.58365 0.47347 0.50725 0.63458 0.68417 
122 0.99782 0.84416 0.63458 0.63458 0.83438 0.99826 0.85742 0.97580 0.83919 0.66353 
123 0.05622 0.03876 0.63458 0.65553 0.69202 0.93969 0.67087 0.91673 0.60858 0.57083 
124 0.05201 0.02787 0.03514 0.43772 0.48487 0.72498 0.42715 0.63458 0.45086 0.40604 
I25 0.94601 0.97396 0.98242 0.97898 0.98858 0.98826 0.98090 0.97580 0.98633 0.98064 
I26 0.95585 0.88172 0.70912 0.63897 0.78930 0.94459 0.82387 0.96068 0.75679 0.70714 
127 1.00000 0.98855 0.63458 0.63458 0.98851 0.99584 0.98095 0.98277 0.82723 0.70745 
128 0.92603 0.92898 0.63458 0.63458 0.87650 0.87656 0.79188 0.77689 0.80271 0.71084 
129 0.99737 0.99276 0.63458 0.63458 0.98671 0.99826 0.98081 0.97580 0.83919 0.70887 
130 0.05078 0.04019 0.63458 0.67085 0.70665 0.93727 0.67995 0.92370 0.58721 0.60173 
131 0.69338 0.69126 0.98242 0.98929 0.99069 0.99826 0.98000 0.97580 0.98633 0.98909 
132 0.05856 0.03724 0.63458 0.63458 0.67145 0.93969 0.64943 0.91673 0.60858 0.54783 
133 0.05026 0.04029 0.63458 0.66975 0.71846 0.92288 0.69383 0.91902 0.55951 0.61667 
134 0.63458 0.39732 0.63458 0.49366 0.46727 0.63458 0.45391 0.63458 0.63458 0.46813 
135 0.63458 0.49701 0.63458 0.59256 0.56904 0.63458 0.57692 0.63458 0.63458 0.57031 
136 0.92342 0.89696 0.88397 0.83452 0.87195 0.88735 0.79169 0.79637 0.87560 0.83038 
I37 0.05309 0.03869 0.03514 0.56563 0.61806 0.71702 0.58016 0.63458 0.43615 0.52170 
138 0.92742 0.92898 0.63458 0.63458 0.87547 0.87878 0.79332 0.79383 0.79629 0.71780 
139 0.98854 0.89259 0.63458 0.63458 0.86764 0.98145 0.89074 0.97810 0.80894 0.68186 
I40 0.94601 0.98134 0.98242 0.97173 0.98755 0.99826 0.98090 0.97580 0.98633 0.97621 
I41 0.94601 0.97093 0.98242 0.98169 0.98918 0.99826 0.98088 0.97580 0.98633 0.98255 
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Table 9 
Average AD_SE values of the FLCs in the Inverted Pendulum problem 

Mode A (Min) Mode A (Max) Mode B 

Dla  D2a Dla  D2a D3b D6b D9b D12b D13b D15b 

I1 0.72748 0,72748 0.49072 0.49072 
I2 1.00000 1.00000 0.49072 0.49072 
14 1.00000 0.98825 0.49072 0.49072 
I5 1.00000 0.88814 0.49072 0.49072 
I6 0.97876 0.86722 0.49072 0.49072 
I7 0.95673 0.85005 0.49072 0.49072 
I8 0.96943 0.96943 0.96434 0.99773 
I9 0.49072 0.60070 0.49072 0.49072 

I10 0.84043 0.83630 0.96434 0.99585 
I1l 0.49072 0.49072 0.49072 0.34619 
112 0.49072 0.49072 0.49072 0.35739 
I13 0.49072 0.49072 0.49072 0.45375 
I14 0.49072 0.65951 0.49072 0.49072 
I15 0.98350 0.98219 0.49072 0.49072 
I16 0.83750 0.82695 0.49072 0.49072 
I17 0.98537 0.98185 0.49072 0.49072 
118 0.49072 0.49072 0.49072 0.49072 
119 * * • • 
120 0.49072 0.22819 0.49072 0.49072 
I21 0.49072 0.66038 0.49072 0.49072 
122 0.99565 0.87871 0.49072 0.49072 
123 0.49072 0.49072 0.49072 0.48762 
I24 0.49072 0.49072 0.49072 0.34741 
125 0.87502 0.94053 0.96434 0.99573 
126 0.85575 0.87806 0.49072 0.49072 
I27 1.00000 0.98625 0.49072 0.49072 
I28 0.63170 0.67603 0.49072 0.49072 
129 0.98167 0.97882 0.49072 0.49072 
130 0.49072 0.49072 0.49072 0.49211 
131 0.86953 0.87267 0.96434 0.99102 
I32 0.49072 0.49072 0.49072 0.48160 
133 0.49072 0.49072 0.49072 0.49378 
I34 0.49072 0.20286 0.49072 0.22444 
I35 0.49072 0.27273 0.49072 0.29531 
136 0.67337 0.68524 0.61152 0.63947 
137 0.49072 0.49072 0.49072 0.36901 
138 0.68576 0.68721 0.49072 0.49072 
I39 0.99583 0.90524 0.49072 0.49072 
140 0.88172 0.96466 0.96434 0.99741 
141 0.87646 0.93180 0.96434 0.99512 

0.32216 0.72861 0.72748 0.72748 0.55313 0.49712 
0.99733 0.99733 0.96434 0.96434 0.62838 0.51390 
0.99733 0.99733 0.96434 0.96434 0.62838 0.53093 
0.89033 0.99733 0.89111 0.96434 0.62838 0.52081 
0.87060 0.99733 0.87241 0.96434 0.62838 0.51721 
0.84953 0.96831 0.85152 0.95230 0.61433 0.51440 
0.99733 0.99733 0.96434 0.96434 0.96943 0.99855 
0.15214 0.49072 0.14009 0.49072 0.49072 0.49819 
0.99733 0.99733 0.96434 0.96434 0.96943 0.99626 
0.02644 0.75945 ~00000 0.72758 0.41879 0.20727 
0.68981 0.68981 0.72758 0.72758 0.40587 0.31886 
0.42591 0.49072 0.42373 0.49072 0.32532 0.36058 
0.48401 0.49072 0.48496 0.49072 0.49072 0.50965 
0.99733 0.99733 0.96434 0.96434 0.62838 0.57102 
0.73126 0.73126 0.67940 0.67940 0.62256 0.55243 
0.99733 0.99733 0.96434 0.96434 0.62838 0.56677 
0.99733 0.99733 0.96434 0.96434 0.49072 0.49072 
0.73126 0.73126 0.67940 0.67940 0.62256 0.59216 
0.24627 0.49072 0.23532 0.49072 0.49072 0.46211 
0.41294 0.49072 0.42290 0.49072 0.49072 0.52976 
0.88120 0.99733 0.88254 0.96434 0.62838 0.51903 
0.52921 0.75945 0.52497 0.72758 0.41879 0.40626 
0.24269 0.51975 0.22630 0.50276 0.34782 0.27810 
0.99733 0.99733 0.96434 0.96434 0.96943 0.99733 
0.84526 0.96831 0.84995 0.95230 0.61433 0.55997 
0.99733 0.99733 0.96434 0.96434 0.62838 0.52914 
0.67647 0.62718 0.72034 0.69362 0.56429 0.51666 
0.99733 0.99733 0.96434 0.96434 0.62838 0.52981 
0.53587 0.75945 0.53069 0.72758 0.41879 0.41351 
0.99733 0.99733 0.96434 0.96434 0,96943 0.99246 
0.51786 0.75945 0.51360 0.72758 0,41879 0.39936 
0.54533 0.75945 0.54017 0.72758 0.41879 0.41973 
0.21646 0.49072 0.20605 0.49072 0.49072 0.21646 
0.28762 0.49072 0.28300 0.49072 0.49072 0.28764 
0.68981 0.68981 0.72758 0.72758 0.68806 0.66372 
0.32214 0.51975 0.31043 0.50276 0.34782 0.31448 
0.68981 0.68981 0.72758 0.72758 0.56588 0.51936 
0.90626 0.99733 0.90599 0.96434 0.62838 0.52615 
0.99733 0.99733 0,96434 0.96434 0.96943 0.99850 
0.99733 0.99733 0,96434 0.96434 0.96943 0.99681 
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Table 10 
Average AD_MC values of the FLCs in the Inverted Pendulum problem 

Mode A (Min) Mode A (Max) Mode B 

Dla D2a Dla D2a D3b D6b D9b D12b D13b D15b 

11 0.00000 O. 00000 O. 00000 0.00000 0.00000 0.00000 0.00000 O. 00000 O. 00000 O. 00000 
I2 0.00000 0.00000 0.00000 0.00000 0 .65076  0 .65076  0 .50001 0 .50001  0.00000 0.00000 
14 0.00000 0 .99178  0.00000 0,00000 0 .65076  0 .65076  0 .50007  0 .50001  0.00000 0.00000 
I5 0.00000 0.00000 0.00000 0.00000 0.00000 0 .65076  0.00000 0.50001 0,00000 0.00000 
I6 0.56477 0.00000 0.00000 0,00000 0.00000 0 .65076  0.00000 0.50001 0.00000 0.00000 
17 0.00000 O. 00000 O. 00000 O. 00000 O, 00000 O. 00000 O. 00000 O. 00000 O. 00000 O. 00000 
I8 0.74918 0 .74919  0 .50001  0 .71843  0 .65076  0 .65076  0 .50009  0 .50001 0 .74918  0.80628 
19 O. 00000 O. 00000 O. 00000 O. 00000 O. 00000 O. 00000 0.00000 O. 00000 0.00000 0.00000 

I10 0.00000 0.00000 0.50001 0 . 5 8 9 0 6  0 .30152  0 .65076  0 .50009  0 .50001 0 .74918  0.59714 
I 11 O. 00000 O. 00000 0.00000 O, 00000 0.00000 0,00000 O. 00000 O. 00000 0.00000 0.00000 
I 12 O, 00000 O. 00000 O. 00000 O. 00000 O. 00000 O. 00000 O. 00000 0.00000 O. 00000 O. 00000 
I 13 0.00000 O. 00000 O. 00000 0.00000 0.00000 O. 00000 0.00000 O. 00000 0.00000 O. 00000 
I 14 O, 00000 O. 00000 O. 00000 O. 00000 O. 00000 O. 00000 O. 00000 O. 00000 0,00000 0.00000 
I15 0,00000 0 .77259  0.00000 0.00000 0 .65076  0 .65076  0 .50000  0 .50001  0.00000 0.00000 
I 16 0.90718 0. 00000 O. 00000 O. 00000 O. 00000 O, 00000 O. 00000 O. 00000 O. 00000 O, 00000 
II7 0.76199 0 .75426  0.00000 0.00000 0 .65076  0 .6 5 0 7 6  0 .50000  0 .50001  0.00000 0.00000 
I18 0.00000 0.00000 0.00000 0.00000 0 .65076  0 .65076  0 .50000  0 .50001  0.00000 0.00000 
I 19 * * * * O. 00000 O. 00000 O. 00000 0.00000 O. 00000 O. 00000 
I20 0.00000 O. 00000 O, 00000 O, 00000 0.00000 0.00000 O. 00000 O, 00000 0.00000 0,00000 
I21 0.00000 0.00000 0.00000 0.00000 0,00000 0.00000 0.00000 0.00000 0.00000 0.00000 
I22 1.00000 0.00000 0.00000 0.00000 0.00000 0 .65076  0.00000 0.50001 0.00000 0,00000 
123 0.00000 0,00000 0.00000 0,00000 0,00000 0.00000 0,00000 0.00000 0,00000 0.00000 
I24 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
I25 0,00000 0.00000 0 .50001  0 .68163  0 .65076  0 .65076  0 .50001  0 .50001  0 .74918  0.65076 
126 0,00000 0,00000 0.00000 0.00000 0,00000 0.00000 0.00000 0,00000 0,00000 0.00000 
I27 0.00000 0 .95056  0.00000 0.00000 0 .65076  0 .65076  0 .50000  0 .50001 0.00000 0.00000 
128 O. 00000 0.00000 O. 00000 O. 00000 O. 00000 O, 00000 O. 00000 O. 00000 O. 00000 0.00000 
I29 0.73278 0,00000 0.00000 0.00000 0 .65076  0 .65076  0 .50001 0 .50001  0.00000 0.00000 
130 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
I31 0.00000 0.00000 0.50001 0 . 7 3 8 1 7  0 .65076  0 .65076  0 .50001  0 .50001  0 .74918  0.73498 
132 0.00000 O, 00000 O. 00000 O. 00000 O. 00000 O, 00000 O. 00000 O. 00000 O. 00000 0.00000 
133 O, 00000 O. 00000 O. 00000 0.00000 O, 00000 0.00000 O. 00000 O. 00000 O. 00000 O. 00000 
134 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
135 O. 00000 0.00000 O. 00000 O. 00000 0.00000 O, 00000 O. 00000 0.00000 0.00000 O, 00000 
I36 0.00000 0.00000 0.00000 0,00000 0.00000 0.00000 0.00000 0.00000 0,00000 0.00000 
137 O. 00000 O. 00000 O, 00000 O. 00000 O. 00000 O. 00000 O. 00000 O. 00000 O. 00000 0.00000 
I38 0.00000 0.00000 0,00000 0.00000 0.00000 0.00000 0.00000 0.00000 0,00000 0.00000 
139 0.74918 0.00000 0.00000 0.00000 0.00000 0 .65076  0.00000 0.50001 0.00000 0.00000 
I40 0.00000 0.00000 0 .50001  0.00000 0.65081 0 .6 5 0 7 6  0 .50003  0 .50001 0 .74918  0.74001 
141 0.00000 0.00000 0.50001 0 . 7 1 4 6 4  0 .65072  0 .65076  0 .50001  0 .50001  0 .74918  0.00000 
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Table 11 
Conjunctive Adaptation Degree values of the FLCs in the Inverted Pendulum problem 

Mode A (Min) Mode A (Max) Mode B 

Dla  D2a Dla  D2a D3b D6b D9b D12b D13b D15b 

I1 ~00000 ~00000 ~00000 &O0000 &O0000 &O0000 ~00000 ~00000 ~00000 ~00000 
I2 ~00000 ~00000 RO0000 RO0000 0.82405 0.82405 0.73217 0.73217 ~00000 ~00000 
14 &O0000 0.99001 &O0000 600000 0.82405 0.82405 0.73217 0.73217 600000 600000 
15 600000 600000 600000 600000 600000 0.82405 600000 0.73217 600000 600000 
16 0.77177 600000 600000 600000 600000 0.82405 600000 0.73217 600000 600000 
I7 600000 600000 600000 600000 600000 600000 600000 600000 600000 600000 
I8 0.85931 0.85931 0.73217 0.85808 0.82405 0.82405 0.73217 0.73217 0.85931 0.90241 
I9 600000 600000 600000 600000 600000 600000 600000 600000 600000 600000 

110 600000 600000 0.73217 0.79246 0.82405 0.82405 0.73217 0.73217 0.85931 0.79670 
111 600000 600000 600000 600000 600000 600000 600000 600000 600000 600000 
I12 600000 600000 600000 600000 600000 600000 600000 600000 600000 600000 
I13 600000 RO0000 600000 600000 600000 600000 600000 600000 600000 600000 
114 600000 600000 600000 600000 600000 600000 600000 600000 600000 600000 
I15 600000 0.87739 600000 600000 0.82405 0.82405 0.73217 0.73217 600000 600000 
I16 0.87234 600000 600000 600000 600000 600000 600000 600000 600000 600000 
117 0.87368 0.86806 ~00000 600000 0.82405 0.82405 0.73217 0.73217 RO0000 600000 
I18 600000 ~00000 600000 600000 0.82405 0.82405 0.73217 0.73217 600000 600000 
119 • • • • ~00000 ~00000 600000 600000 600000 600000 
120 600000 ~00000 600000 600000 600000 ~00000 600000 ~00000 600000 ~00000 
121 600000 600000 RO0000 600000 600000 ~00000 600000 600000 600000 600000 
122 0.99782 ~00000 600000 &O0000 ~00000 0.82405 ~00000 0.73217 ~00000 600000 
123 600000 ~00000 600000 600000 600000 RO0000 600000 600000 &O0000 600000 
124 600000 600000 RO0000 600000 RO0000 ~00000 600000 600000 RO0000 600000 
125 600000 ~00000 0.73217 0.83868 0.82405 0.82405 0.73217 0.73217 0.85931 0.82405 
I26 600000 600000 600000 ~00000 600000 600000 600000 600000 600000 ~00000 
I27 600000 0.96841 ~00000 ~00000 0.82405 0.82405 0.73217 0.73217 600000 600000 
128 600000 ~00000 600000 RO0000 600000 600000 600000 ~00000 ~00000 600000 
129 0.85722 600000 RO0000 ~00000 0.82405 0.82405 0.73217 0.73217 &O0000 ~00000 
130 RO0000 RO0000 600000 600000 600000 ~00000 ~00000 ~00000 600000 RO0000 
I31 RO0000 600000 0.73217 0.86459 0.82405 0.82405 0.73217 0.73217 0.85931 0.86372 
132 600000 RO0000 RO0000 600000 &O0000 ~00000 600000 600000 RO0000 600000 
133 600000 &O0000 600000 600000 ~00000 ~00000 600000 ~00000 600000 ~00000 
I34 600000 RO0000 600000 600000 RO0000 600000 600000 600000 600000 600000 
135 600000 ~00000 600000 600000 ~00000 600000 ~00000 600000 600000 600000 
136 600000 600000 600000 RO0000 600000 &O0000 600000 ~00000 600000 600000 
137 600000 600000 RO0000 600000 ~00000 ~00000 600000 600000 600000 ~00000 
138 600000 ~00000 RO0000 600000 600000 ~00000 600000 ~00000 ~00000 600000 
139 0.87251 600000 RO0000 600000 600000 0.82405 600000 0.73217 RO0000 600000 
140 600000 &O0000 0.73217 600000 0.82407 0.82405 0.73218 0.73217 0.85931 0.86925 
I41 600000 600000 0.73217 0.85488 0.82403 0.82405 0.73217 0.73217 0.85931 600000 
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