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Abstract 

A new consensus model for the consensus reaching process, in a linguistic framework, is presented in heterogeneous 
group decision making problems, called rational consensus model. It is guided by some linguistic consensus and linguistic 
consistency meaures. All the measures are calculated from a set of linguistic preference relations used to provide experts' 
opinions. This consensus model allows more rational consensus solutions to be obtained and thus, more human consistency 
to be incorporated in decision support systems. @ 1997 Elsevier Science B.V. 
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1. Introduction 

Human beings are constantly making decisions in 
the real world. In many situations, making decisions 
depends on numerous factors and therefore, given the 
limitations o f  human ability, it is very difficult to deal 
with. In such a case, the use o f  computerized decision 
support systems may be very helpful in solving deci- 
sion making problems. In these systems, the problem 
is how to introduce intelligence, i.e., how to incor- 
porate human consistency in decision making models 
o f  decision support systems. This problem has been 
dealt with successfully by means of  fuzzy-logic-based 
tools, obtaining interesting results in the different de- 
cision making models. A classification for all o f  them 
is shown in [19], according to the number o f  stages 
before the decision is reached. We are interested in 
one fuzzy model  in single-stage decision making, i.e., 
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a fuzzy multi-person decision making model  applied 
to group decision theory. 

A group decision making problem may be defined 
as a decision situation in which there are two or more 
experts ( i)  each of  them characterized by his /her  own 
perceptions, attitudes, motivations, and personalities, 
(ii) who recognize the existence of  a common prob- 
lem, and (iii)  who attempt to reach a collective deci- 
sion. When the experts '  opinions are not considered 
with the same intensity, it is known as a heterogeneous 
group decision making problem, and in another case, 
it is known as a homogeneous group decision making 
problem. In this paper, we focus on the heterogeneous 
group decision making model. 

In a classical fuzzy environment, a heterogeneous 
group decision problem is considered as follows. It 
is assumed that there is a finite set o f  alternatives 
X = {xl . . . . .  xn} as well as a finite set of  experts E = 
{el . . . . .  em} with their respective importance degrees 
defined as a fuzzy subset, such that, #a(k)  E [0, 1] 
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denotes the importance degree of  expert ea.. Each ex- 
pert ek E E provides his/her opinions on X as a fuzzy 
preference relation PkC X x X ,  with p f /~  [0, 1] denot- 
ing the preference degree of  the alternative xi over Xi" 

Usually, in fuzzy environments, a standard assump- 
tion to express experts' preferences p)) is by using 
numerical values assessed in a unit interval [0, 1]. 
However, there are some decision problems where ex- 
perts are not able to give exact numerical values to 
their preferences. In such cases, an alternative option 
considered has been the use o f  linguistic assessments, 
instead o f  numerical values to express preferences [6, 
8, 10, 20, 25, 26, 28]. Then, according to the prob- 
lem domain, an appropriate linguistic term set is cho- 
sen and used by experts to describe their preferences. 
On the other hand, there are some decision problems 
where some experts prefer expressing their prefer- 
ences with numerical values and others with linguistic 
values. Therefore, from this point of  view, a group de- 
cision problem can be presented in a numerical frame- 
work (classical fuzzy environment), or in a linguistic 
framework, or a numerical and linguistic framework, 
depending on the nature of  the expert 's preferences. 
In this paper, we shall work in a linguistic framework, 
we shall consider that experts' opinions are provided 
by means o f  linguistic preference relations and their 
respective importance degrees by means o f  linguistic 
terms. 

In a group decision making situation there are ba- 
sically two problems to solve: 

(i) a l t e rna t i v e s  se lec t ion  p r o b l e m ,  i.e., how to 
obtain solution alternative(s) set, and 

(ii) consensus  p r o b l e m ,  i.e., how to achieve the 
maximum consensus degree from a group of  experts 
for a solution alternative(s) set when they have di- 
verging opinions. Both problems have been studied 
involving a numerical framework in [ 17,18]. We have 
studied and proposed solutions, in a linguistic frame- 
work, to the problem (i) in [9-13,15] and, in a numer- 
ical and linguistic framework to the problem (ii) in 
[14]. Here, we shall focus on the consensus problem. 

In a usual context, the consensus problem is solved 
by means of  a consensus  reachin.q p r o c e s s  [3, 16, 20, 
14]. This is viewed as a dynamic and iterative process 
where a moderator, via the exchange of  information 
and rational arguments, tries to persuade the experts 
to alter their opinions. At each step, the degree o f  con- 
sensus existing among experts' opinions is measured 

by means of  a consensus  measure .  The moderator uses 
this consensus measure to control the process. This 
is repeated until experts' opinions become sufficiently 
similar. 

On the other hand, usually, a group of  experts ini- 
tially presents inconsistencies in their opinions, i.e., 
they are not perfectly coherent in their judgments 
about the alternative set. In such a case, a desirable 
objective is to find a way of  removing the inconsis- 
tencies of  experts' judgments before obtaining the 
consensus solution, since otherwise, there may be no 
selective consensus solution (e.g., if it incorporates 
all the alternatives) or it may be distorted (e.g., if it 
does not incorporate the best alternatives). To solve 
the problem, we have considered incorporating a con- 
s i s t encv  m e a s u r e  in the consensus reaching process, 
which indicates the consistency degree of  each expert 
at each moment of  the process and, may be used by 
the moderator, together with a consensus measure, to 
control the process, and thus reach a more rational 
consensus solution. This is shown in Fig. 1. 

In short, on the basis o f  above ideas, here, we 
present a ra t i ona l  consensus  m o d e l  for heterogeneous 
groups of  experts using our model presented in [14]. It 
is developed in a linguistic framework and guided by 
several linguistic consensus and linguistic consistency 
measures. In this way, we propose a new consensus 
model, that allows more rational consensus solutions 
to be obtained, i.e., less distorted consensus solutions 
due to inconsistencies in the experts' opinions. 

In order to do so, the paper is structured as follows: 
there is an appendix (Appendix A) with the linguis- 
tic framework considered, which should be read by 
researchers who are unfamiliar with the subject; Sec- 
tion 2 presents the rational consensus model; Section 
3 describes its consensus measuring process; Section 
4 describes its consistency measuring process; and 
finally, Section 5 contains our conclusions. 

2. R a t i o n a l  c o n s e n s u s  m o d e l  

As we said at the beginning, we are assuming a finite 
set of  alternatives X = {xl . . . . .  x,,} as well as a finite 
and heterogeneous set of  experts E -- {el . . . . .  era}. 

For each expert e~ C E, we shall suppose a defined 
importance degree, linguistically assessed in the term 
set, S (defined in Appendix A), and l l (;(k)  c S,  from 
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Fig. 1. Consensus reaching process guided by consensus and consistency measures. 

33 

so, standing for 'definitely irrelevant' and ST, stand- 
ing for 'definitely relevant', through all intermediate 
values. Then, the described model considers that each 
expert ek E E provides his/her opinions on X as a 
linguistic preference relation, pk, l~e~ : X × X --* S, 
where ¢tp~(xi,xj) = p~j c S represents the linguis- 
tically assessed preference degree o f  the alternative 
xi over xj. Following [1], we assume that pk is soft- 
reciprocal in the sense, 

1. By definition Pi~i = so Vxi E X (the minimum 
label in S). 

k ~  2. If  p~i ~>sr/2, then P j i  "< ST/2. 
Condition 1 is a convection; ifxi is considered singly, 
no preference is assigned. Condition 2 seems plausi- 
ble, because when p~). ~>sr/2, according to our defini- 
tion of  linguistic preference relations, given in Section 
2, it is reasonable to think that the complementary pre- 
ference P~v should automatically be <<,ST..2, since 
otherwise we would have a contradiction. In [1, 
14], the second condition was established as p~. = 

Neg(pf/),  but here we have relaxed it in order to 
allow more freedom in the experts' opinions. 

On the other hand, following [4], completeness is 
required in order to ensure that all the experts consider 
the alternative set about which they are expressing 
their opinions, as feasible and comprehensive, where 
completeness is defined as p~)~>Neg(p~i), V(xi,x/). 

As was previously mentioned, consensus models 
are guided by consensus measures, i.e., measures 
o f  the degree of  agreement between all the experts' 
opinions. For example, in [3, 16], in a numerical con- 
text, and in [20], in a linguistic context, consensus 
models are guided by numerical consensus measures. 
In [14], in a numerical and linguistic context, we 
proposed a new fuzzy logic based consensus model 

guided by several linguistic consensus measures. 
Now, we present a variation of  our consensus model 
presented in [14] called as the 'rational consensus 
model', which is developed in a linguistic environ- 
ment and guided by several linguistic consensus and 
linguistic consistency measures. Its basic idea is that 
it develops a consensus reaching process which al- 
lows social consensus solutions and rational solutions 
to be obtained. It is guided by two types of  mea- 
sures: linguistic consensus and linguistic consistency 
measures. 

Linguistic consensus measures are those described 
in [14], but calculated from a different perspective. In 
[14] we used an average consensus policy, i.e., each 
consensus value is obtained considering all the group 
of  experts with a coincidence majority and their re- 
spective preference values. Here, we use a strict con- 
sensus policy, i.e., each consensus value is obtained 
by considering the preference value on the fact that 
the greatest degree of  coincidence exists and its re- 
spective expert set, in other words, the largest group 
of  experts and its respective preference value. They 
are applied in three acting levels: level o f  preference, 
level o f  alternative, and level o f  preference relation. 
These measures are: 

1. Consensus degrees. Used to evaluate the current 
consensus stage, made up by three measures: the pre- 
Ji~rence linguistic consensus degree, the alternative 
linguistic consensus degree, and the relation lin- 
guistic consensus degree. 

2. Linguistic distances. Used to evaluate the indi- 
viduals' distance from social opinions, made up of  
three measures: the preference linguistic distance, the 
alternative linguistic distance, and the relation lin- 
guistic distance. 
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There are two types of  linguistic consistency mea- 
sures, depending on the level of computation (expert 
or group of experts) and within these types, may 
be based either in qualitative aspects, i.e., obtained 
according to the intensity of the nature of the incon- 
sistencies existing in the experts' opinions, or in 
quantitative aspects, i.e., obtained as a function of the 
quantity (in number) of inconsistencies existing 
amongst the experts' opinions: 

1. Individual consistency measures, to evaluate the 
current consistency degree existing in the opinions of  
each expert. They are formed by two measures: the 
quality-based individual consistency measure and the 
quanti ty-based individual consistency measure. 

2. Collective consistency measures, to evaluate the 
current consistency degree existing in the opinions of  
a group of experts. They are formed by two measures: 
the quality-based collective consistency measure and 
the quanti ty-based collective consistency measure. 

All measures in the rational consensus model  are 
obtained in two processes: 
• Consensus measuring process,  where consensus 

measures are calculated. 
• Consistency measuring process, where consistency 

measures are calculated. 
Both processes are developed in a parallel way at each 
step of the consensus reaching process until accept- 
able consensus and consistency degrees are achieved. 
The rational consensus model  is reflected in Fig 2. 

In the following sections, we analyze in detail each 
measuring process. 

3. Consensus measuring process 

This process follows the same scheme described in 
[14], i.e., it is developed in three phases: 

1. Counting process. To count the individuals' 
opinions about preference values. From linguistic 
preference relations given by individuals, the num- 
ber of  individuals who are in agreement about the 
preference value of each alternative pair (x i ,x j )  is 
calculated and stored in the two coincidence arrays. 

2. Coincidence process. To calculate the coinci- 
dence degree, i.e., the proportion of individuals who 
are in agreement in their preference values, and also to 
calculate the consensus labels', i.e., the majority opin- 
ion about preference values. This process is based on 

the idea of coincidence of experts and preference val- 
ues. We consider that coincidence exists over a label 
assigned to a preference value, when more than one 
expert has chosen that label. 

Using the above coincidence arrays, two relations 
are calculated: 

1. Labels consensus relation (LCR),  which con- 
tains the consensus labels' about each preference, and 

2. Individuals consensus relation (ICR), which 
contains the coincidence degrees of each preference. 

3. Computing process. Finally, in this process the 
consensus measures about the aforementioned consen- 
sus relations are calculated in their respective level. 

These processes are analyzed in detail in the fol- 
lowing subsections. 

3.1. Counting process 

First, from the set of  linguistic preference relations 
pk, we define an array, V,j, for the T + 1 possible 
labels that can be assigned as preference value. Each 
component V/j[&], i , j  = 1 . . . . .  n, t = 0 . . . . .  T, is a set 
of the experts' identification numbers, who selected 
the value st as a preference value of the pair (xi ,xj) .  
Each Vij is calculated according to this expression, 
v,v[st] = { k i p S - - s , ,  k =  1 , . . . , m } , V s t  E S. 

Now, we define a pair of  arrays, called coincidence 
arrays, to store information referring to the number 
of  experts and their respective importance degrees: 
• The first, symbolized as V/c, and called individu- 

als coincidence array, contains in each position, st, 
the number of  experts, which coincides when as- 
signing the label st as the preference value. The 
components of this array are obtained as, ViC[st] = 
~(Vij[st]) ,  Vs t E S, where g stands for the cardinal. 

• The second, symbolized as V/G, and called degrees 
coincidence array, contains in each position st the 
average label of  the experts' importance degrees, 
which coincides when assigning the label st as the 
preference value. 

v,~[s,] = 

{ ~Q' (/2G(ZI), [,,tG(Z2 ) . . . . .  ]~G(Zq ))  
if ViC[st] > 1, zs< e V?[st], q = ViC[st], 

so otherwise, 

where 4bQ, is the LOWA operator whose weights 
are calculated using the quantifier Q1. 
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Fig. 2. Rational consensus model under linguistic assessments. 

The linguistic quantifier QI must be chosen properly to 
obtain a well-proportioned average importance degree. 

3.2. Coincidence process 

From the coincidence arrays, (V/c, V/g), the con- 
sensus relations, LCR and ICR are calculated under a 
strict consensus policy,  which obtains consensus val- 
ues (labels or the number of  experts) as the maximum 
values of the coincidence arrays values. 

1. Labels  consensus relation (LCR ). Each element 
( i , j )  in the labels" consensus relation, denoted by 
LCRij, represents the consensus label on the prefer- 
ence of each alternative pair (xi ,x j) .  It is obtained as 
the linguistic index st of the maximum component 
V/C[s,], such that, vie[st] > 1. That is, the linguistic la- 

bel st, which has been selected the most by experts to 
evaluate the preference of the alternative pair (xi, x j ) .  
When there are several maximum labels, we choose 
the label chosen by experts with the highest average 
importance degree. 

Before calculating LCR, we define the following 
parameter nij, which contains the maximum number 
of experts, who choose a given label, st to evaluate 
each alternative pair (X i ,X j )  , nij = MAX,,c, { v,C[st]}. 
Then we define label sets Mij, for each alternative pair 
(xi,xj), 

a4,j = {s l V/[[sy] = , u ,  sy < s} ,  

which contain linguistic labels which have been cho- 
sen by the maximum number of experts nij to evaluate 
the preference of the respective alternative pair. Then 
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if  we call the label s~j such that, 

G Vi} ( sij ) = MAX,, c M,, { Vi~ ( s y ) }, 

we calculate each LCRij, according to the following 
expression, 

= ~ sij if ~iC[Sij] > 1, 
LCR~. { Undefined otherwise. 

Note that value undefined means non-existence of  co- 
incidence on the label assigned according to the pref- 
erence for a given alternative pair, i.e., its experts '  
coincidence array has all the components, viC[st] ~< 1. 

2. Individuals consensus relation (ICR). Each el- 
ement ( i , j )  of  the individuals consensus relation, de- 
noted by ICRij, represents the proportional number 
of  experts whose preference value have been used to 
calculate the consensus label LCRij. Since we are in- 
terested in knowing the experts '  importance degrees, 
we define two components for each ICRij. The first 
ICRi l, containing the proportional number of  experts, 
and the second ICR 2., containing their respective av- 
erage importance degree. Each component of  ICRij 
is obtained as follows, 

viC[sij]/m if  C Vi) [sij] > 1, 
ICRi} = 0 otherwise, 

ICR2={ "VsoiGj [stJ] otherwise.ifVf[sij]> l, 

3.3. Computing process 

This process constitutes the last step in the consen- 
sus measuring process, in which the linguistic con- 
sensus measures are calculated. As mentioned earlier, 
there are two types of  consensus measures: 
• Linguistic consensus degrees. Used to evaluate 

current consensus existing among experts, and 
therefore the distance to the ideal maximum 
consensus (s t ) .  This type of  measure helps the 
moderator to decide on the necessity to continue 
the consensus reaching process. Three linguistic 
consensus degrees are defined: the preference lin- 
guistic consensus degree, the alternative linguistic 
consensus degree, and the relation linguistic con- 
sensus degree. 

• Linguistic distances. Used to evaluate how far the 
experts '  opinions are from current consensus labels. 

This type of  measure helps the moderator to identify 
which experts are furthest from the current majority 
consensus labels, and in which preferences the dis- 
tance exists. Three linguistic distances are defined: 
preference linguistic distance, alternative linguis- 
tic distance, and relation linguistic distance. 

The three measures for both types are calculated by 
distinguishing between three levels of  computation: (i) 
Level of  the preference; (ii) Level o f  the alternative; 
(iii) Level o f  the preference relation. 

We obtain one measure of  each type in its respective 
level. We calculate the linguistic consensus degrees 
using: (i) Quantifier, Q:, to represent the concept o f  
fuzzy  majority, and (ii) Individuals" consensus rela- 
tion, ICR. We calculate the linguistic distances using: 
(i) Preference relations of  experts, (ii) L O W A  oper- 
ator, (iii) Quantifier Ql, to represent the concept o f  
fuzzy  majority, and (iv) Labels' consensus relation, 
LCR. The computing process is shown in Fig. 3. 

Next, we define each linguistic consensus measure 
in its respective level, by means of  the aforementioned 
elements. 

3.3.1. Linguistic consensus degrees 
Before defining each degree, we introduce the con- 

cept o f  consensus importance over preference of  pair 
(xi,xj), abbreviated by #l(Xij), defined as #i(xij) = 
ICR~j, representing the importance of  the consensus 
degree achieved over each preference value. Futher- 
more, we use the linguistic valued quantifier, Q2, 
which represents a linguistic Ji~zzy majority of  con- 
sensus. 

1. Level 1: Preference linguistic consensus degree 
This degree is defined on the labels assigned to 

the preference of  each pair (xi,xj), and it is denoted 
by PCRij. It indicates the consensus degree existing 
among all the m preference values attributed by the 
m experts to a specific preference. I f  we call PCR to 
the relation of  all PCRij, then PCR is calculated as 
follows, 

PCRij = Q2 (ICR]j) A Itz(xij), 

i , j  = 1 . . . . .  n, and i C j .  

Therefore, in this model we always require the fol- 
lowing condition L = S, i.e., the term set used by Q2 
must be equal to the one used by the group of  experts 
to express their preferences. 
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2. Level  2: Alternative linguistic consensus degree 
This degree is defined on the label set assigned to 

all the preferences o f  one alternative xi, and it is de- 
noted by PCRi. It allows us to measure the consensus 
existing over all the alternative pairs where a given 
alternative is present. It is calculated as 

PCRi = ~Q, (PCRij, j = 1 . . . . .  n, i ¢ j ) ,  

i =  1 , . . . ,n .  

3. Level  3: Relation linguistic consensus degree 
This degree is defined on the preference relations o f  

experts' opinions, and it is denoted by RC. It evaluates 
the social consensus, that is, the current consensus ex- 
isting among all the experts about all the preferences. 
This is calculated as follows, 

RC = d~Q,(PCRij, i , j  : 1 . . . . .  n, and i ~ : j ) .  

3.3.2. Linguistic distances 
The linguistic distances are defined similarly, by 

distinguishing between three acting levels, and using 
the above cited concepts. The idea is based on the eval- 
uation o f  the approximation among experts' opinions 
and the current consensus labels o f  each preference. 

1. Level  1: Preference linguistic distance 
This distance is defined about the consensus label 

o f  the preference o f  each pair (x/, x j). It measures the 
distance between the opinions o f  an expert k about one 
preference and its respective consensus label. This is 
denoted by D~, and obtained as: 

{p~ - LCRi j  if p~ > LCRij ,  
_ k i fLCRij~>p~,  i C j  D~ = LCRij pq 

ST otherwise, 

w i t h i , j  = 1 . . . . .  n, a n d k  = 1 . . . . .  m and, where if 
p~ = st and LCRij = st. then p/~ - LCRij is defined 
as Sw, such that, w = t - v. 

2. Level  2: Alternative linyuistic distance 
This distance is defined about the consensus la- 

bels of  the preferences o f  one alternative xi. It mea- 
sures the distance between the preference values of  an 
expert k about an alternative and its respective con- 
sensus labels. It is denoted by D~, and obtained as 
follows 

D~ = ~bQ,(D~, j = 1 . . . . .  n, j 7~ i), 

k =  1 , . . . , m , i =  1 . . . .  ,n. 
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3. Level  3: Relation linguistic distance 
This distance is defined about the consensus la- 

bels of  group preference relation, LCR. It measures 
the distance between the preference values of  an ex- 
pert k over all alternatives and their respective con- 
sensus labels. It is denoted by DkR and obtained as 
follows, 

Let us consider four individuals, whose linguistic 
preferences, using the above label set are: 

e I z 

- SC EL VLC ] 
MC - ML EL 
SC SC - VLC ' 
EL 1M ML 

DkR = d?Q,(D~, i , j =  1 . . . . .  n, j ¢ i), k =  1 . . . . .  m. 

In short, the main feature of  the process described 
is of being very complete, because its measures allow 
the moderator to have plentiful information about the 
current consensus stage. In a direct way: information 
about the consensus degree by means of the linguistic 
consensus degrees, information about the consensus 
labels in every preference with the label consensus 
relation, and the behavior of the individuals during the 
consensus process, managing the linguistic distances. 
In an indirect way: information about the individuals, 
who are less in agreement, and in which preference this 
occurs, or information about the preferences where the 
agreement is high. 

Below, we show the use of this process in one step 
of the consensus formation process, with a theoretical 
but clear example. 

3, 4. Application example o f  consensus measuring 
process 

To illustrate the consensus reaching process pro- 
posed, from a practical point of view, consider the fol- 
lowing nine linguistic label sets with their respective 
associated semantic, [2]: 

C Certain (1, 1,0,0) 
EL Extremely_l ikely  (0.98, 0.99, 0.05, 0.01 ) 
ML Most_likely (0.78, 0.92, 0.06, 0.05) 
MC Meaningful_chance (0.63, 0.80, 0.05, 0.06) 
IM I t J n a y  (0.41,0.58, 0.09, 0.07) 
SC Small_chance (0.22,0.36,0.05,0.06) 
VLC Very_low_chance (0.1,0.18, 0.06, 0.05) 
E U  Extremely_unl ikely  (0.01,0.02,0.01,0.05) 
I Impossible (0, O, O, 0 ) 

represented graphically in Fig. 4. 

p 2  z 

- MC 1M VLC ] 
1M - ML IM 
IM SC VLC ' 
ML MC EL - 

p 3  

I -- EL C I 
IM - MC SC 
EU IM - VLC 

C EL ML - 

p 4  z EL - IM SC 
ML - VLC ' 
MC C - 

respectively, and, whose respective linguistic impor- 
tance degrees are: 

p G ( 1 ) = E L ,  #6(2) = C, 

/~a(3) = SC, #a(4) = EU. 

We shall use the linguistic quantifier Q = 'At least 
half '  with the pair (0.0,0.5) for the process with its 
two versions, the numerical and linguistic values. 

Then, some examples of components of  coincidence 
vectors obtained in the counting process are: 

VI3[MC ] = {4}, V23[C] = {~}, 

V24[SC ] - -  {3,4}, V41[C] = {3,4}, 

with their respective components ( v, iC [s,], V~ [st ]): 

V~[MC] = l ,  V2~[C]  = 0,  

VC[SC] -- 2, VC[C] -- 2, 

Vg[MC] = I, V~[C] = I, 

V~[SC] = SC, V~[C] = SC. 

In the coincidence process are obtained the rela- 
tions: 
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i 
0.0 0.5 1.0 

Fig .  4. D i s t r i bu t i on  o f  the  n ine  l ingu i s t i c  labels .  
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Individuals consensus relations ( ICR 1 , ICR 2 ): 

ICR l = 

- 0.5 0 
0.5 - 0.5 
0.5 0.5 - 
0.5 0.5 0.5 

0.5 
0.5 

1 ' 

ICR 2 = 
i EL I @ ]  

- C 

C - -  

SC C EL - 

Labels consensus relation (LCR):  

LCR = I ~Mc SC ? VLC I M  - ML SC 
SC - VLC 
M C  ML - 

Note that the symbol ? of  LCR indicates an undefined 
value in LCR13 because there is no label value with a 
coincidence value greater than 1. 

From these consensus relations, we obtain the 
following linguistic consensus degrees and linguistic 
distances: 

A. Consensus degrees 
A. 1. Level  o f  preference. The preference linguistic 

consensus degrees are: 

PCR = 
C - C 

EL C - 
SC C EL - 

As may be observed, there are seven preferences 
where the consensus degree is total, according to 

the fuzzy majori ty o f  consensus established by the 
quantifier 'A t  least half ' .  

A.2. Level  o f  alternative. The alternative linguistic 
consensus deyrees,{PCRi} are: 

PCRI = C, PCRe =- C, 

PCR3 = C, PCR4 = C. 

A.3. Level  o f  relation. The relation linguistic con- 
sensus degree RC is 

RC = C. 

Remarks .  According to the concept of  linguistic 
f u z z y  majority o f  consensus introduced by the lin- 
guistically valued quantifier, Q, we obtain some 
conclusions: ( i )  social consensus degree is total, (i i)  
there is no consensus on the preference value o f  the 
pair (xl ,x3),  ( i i i)  a great consensus degree exists on 
the majori ty of  preference values, and ( iv)  all the al- 
ternatives present a total consensus degree, however,  
we can observe that consensus degrees over the pref- 
erence values o f  alternative Xl, although high, are the 
smallest ones. 

13. The linguistic distances. The lingu&tic distances 
of  each expert ek from social consensus labels, with 
k = I , . . . , 4 ,  are: 

B. 1. Level  o f  preference. The preference linguistic 
distances are: 

D ! ~_ 

- I C I 

E U  - I I M  
E U  I - I 
E U  E U  I - 
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0 2 z 

0 3 z 

0 4 z 

I - I 
EU 1 - 
VLC I EU 

I - E U  
EU - 
VLC 1 

i I C EU SC - VLC I 
SC - I 
I VLC - 

B.2. Level  o f  alternative. The alternative linguistic 
distances with Q'  are: 

Expert 1: D I = MC, D~ = SC, 

D~ = EU, D] = EU, 

Expert 2: D~ = ML, D~ = EU, 

D~ = I ,  D 2 = VLC, 

Expert 3: D~ = EL, D32 = EU, 

D~ = VLC, D34 = EU, 

Expert 4: D~ -- ML, D~ = SC, 

0 4 = VLC, D 4 = EU. 

B.3. Level o f  relation. The relation linguistic dis'- 
tances using Q1 are: 

= S C ,  = V L C ,  

D 3 = s c ,  = s c .  

Remarks.  We can draw some conclusions: (i) second 
expert presents less distance from the current social 
cosensus stage, (ii) all individuals are in disagreement 
on the current preference value o f  the pair (xj,x3), 
we must remember that LCR13=?, and (iii) in the 
preference o f  alternative Xl there is more disagreement 
and, in the preference for alternative x4 there is less 
disagreement. 

4. Consistency measuring process 

As mentioned earlier, an important aspect o f  
the theory of  group decision making is the prob- 
lem (~( consistency or rationality o f  the group o f  
experts. Clearly, this problem itself includes two 
problems: 

(i) when an expert, considered individually, is said 
to be rational, and 

(ii) when a whole group of  experts are considered 
rational. 
In both cases, trying to give a full and definitive math- 
ematical formalization of  the general idea of  ratio- 
nality may be too abstract and complex. However, if 
the problem of  rationality definition is focused from 
a point of  view of  the expert 's opinions, that is, if the 
problem is analyzed according to the preferences ex- 
pressed by experts, the problem may be more or less 
mathematically characterizable [5]. 

In a crisp context, where every expert expresses 
his/her opinions about pairs o f  alternatives of  X by 
means o f  a crisp binary preference relation, R, the 
concept o f  consistencT has traditionally been ex- 
plained in terms ofacyclicity [24], i.e., that the binary 
relation presents no sequence xl,x2 . . . . .  xk ( a 'cycle ' ,  
being xt-+l = xl ) with X~ R xj+l Vj  = 1 . . . . .  k. On the 
other hand, in a fuzzy context, where every expert 
expresses his/her opinions by means of  a fuzzy pref- 
erence relation P, a well known standard assumption 
to characterize consistency is max-rain transitivity 
[32]. Then, in both cases, an expert either is or is 
not considered consistent if his/her respective prefer- 
ence relaton either is or is not atTcliciO' (max-min  
transitive, respectively), and thus, in this sense, con- 
sistency is a crisp property. However, according to 
Montero [21, 22], we assume that the consistency o f  
experts is clearly a fuzzy concept, since one expert's 
opinions can be considered more consistent than an- 
other expert 's opinions. Therefore, consistency can 
be viewed as a fuzzy set defined by an appropriate 
membership function, called Juzzy rationality mea- 
sure, which assigns to each expert a consistency value 
(degree) between 0 (absolute inconsistency) and 1 
(absolute consistency), thereby obtaining a fuzzy 
classification of  experts. In this sense, Montero pro- 
vides, in [21, 22], a fuzzy rationality measure based in 
a particular weighted sum of  all acyclicity paths and, 
Cutello and Montero propose in [5] an axiomatic def- 
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inition that any explicitly consistent fuzzy rationality 
measure must satisfy. Here, working with linguistic 
preference relations, we propose two definitions o f  
linguistic consistency measures in order to measure 
consistency of  an expert, called individual consistency 
measure, and consistency of  group of  experts, called 
group consistency measure. Their definition is based 
on the acyclicity idea of  Sen [24] and, following the 
definition of  f u z z y  rationality given by Montero in 
[21, 22], but in a linguistic context. 

The measures are calculated in the consistency mea- 
suring process in two phases, 

1. Detecting process, from linguistic preference re- 
lations given by experts, the inconsistent preference 
cycle sets considered in each relation are detected and 
obtained. 

2. Computing process, from the aforementioned 
cycle sets detected for each expert, linguistic con- 
sistency measures are calculated. 

Below, we analyze each process. 

4.1. Detecting process 

The aim of  this process is to detect an inconsistent 
preference cycle set derived from each expert 's pref- 
erence relation. To do so, the cycles are not detected 
directly from each initial relation, but from each re- 
spective strict relation. The use o f  a strict relation is 
clearer observing real preference value existing among 
alternatives. Thus, a strict binary relation is defined 
for each binary relation and, inconsistent preference 
cycle sets are obtained therefrom. Each strict relation 
is obtained in Orlovski 's sense [23] as follows. 

Definition. Let P be a complete and soft reciprocal 
linguistic preference relation on X = {xl . . . . .  xn} 
assessed in the term set S, ltP: X x X -+ S, where 
[Ip(Xi,Xi) Pij. Then, ps = (p~)  is a strict linguis- 
tic prefi~rence relation assessed in the term set, S~= 
S U {0}, liP' " X  × X --+ S:, where /tp,(X~,Xy) = Pi~, 
such that, p~ = Oifp~j  < p / i ,  or Pi~ = s k c S i f  11 

P(i >~ Pji with p(i = sz, Pji = st and l = t + k. 

Therefore, working with strict preference relations, 
an alternative pair (xi ,x/)  can present any of  these 
three basic relations: 

1. PreJerence relation (R): xi preferred to xj, i.e., 
xi R xj ~ p~/ > so. 

2. No preference relation (NR): xi not preferred to 
x:, i.e., xi NR xj ~ p~j = ~. 

3. Indifference relation (I):  xi indifferent to xj, i.e., 
xi I xj 4=> pi~j = so. 
Inverse relations o f  each relation (R, NR, I )  are defined 
as: (1) R -1 = NR, (2) NR -I = R, and (3) 1-1 = I. 

Observing ps, it is clear that given a chain xl - 
x2 . . . . .  xk - xl of  k/> 3 distinct alternatives will 
be an inconsistent preference cycle, if and only if 
xlRlx2R2. . .xkRkxl ,  where either 

Case 1: Rh E { R , I }  Vh = 1,2 . . . . .  k and NR E 
{Rh :h  = 1,2 . . . . .  k}; or 

Case 2: Rh E {NR, I}  Vh = 1,2 . . . . .  k a n d R E  
{Rh :h  = 1,2 . . . . .  k}. 
In other words, a chain will be an inconsistent pre- 
ference cycle in each case, if Rh is either R (NR, 
respectively) or l,  but having at least one R (NR, 
respectively). 

Lemma.  Let  ps be a strict linguistic preference re- 
lation associated to a linguistic preference relation 
P, i f  xlRlXzR2 . . .  XkRkXl is' an inconsistent preJerence 
cycle o f  ps, according to any case (1 or 2), then 
xl R k l xk ... R 2 lx2R~ ix1 is an inconsistent preference 
cycle o f  P s, according to the remaining case (2 or 1 ). 

Proof.  It is simple to demonstrate. 

Therefore, we shall consider only inconsistent pref- 
erence cycles in a single sense, i.e., we shall find 
only the cycles according to case 1, called positive in- 
consistent preference cycles, or according to case 2, 
called negative inconsistent preJerence o,eles. Here, 
we have chosen the first option. 

Theorem. Let  ps be a strict linguistic preJerence re- 
lation associated to a linguistic preference relation 
P, then any positive (negative) inconsistent prefer- 
ence cycle G = xiRlxzR2 . . .xkRkxl o f  k>.4 distinct 
alternatives imply at least one inconsistent preference 
cycle o f  three distinct alternatives. 

Proof.  Given in Appendix B. 

Therefore, based on the above lemma and theorem 
we have decided to use only positive inconsistent 
preference cycles with three distinct alternatives to 
evaluate our consistency measures, and so, positive 
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inconsistent preference cycle sets with three distinct 
alternatives of each linguistic preference relation 
Pk, denoted by C k, are the output of  the detecting 
process. 

4.2. Computing process 

In this process, we present two types of  linguis- 
tic consistency measures, distinguishing between two 
levels of  computation: (i) level o f  exper t  and, (ii) level 
o f  group o f  experts,  and between two perspectives of  
evaluation: (i) qualitative perspective and, (ii) quan- 
titative perspective: 

1. Individual consis temT measures. Used to eval- 
uate the current consistency degree that an expert ek 
presents in his/her opinions. This type of measures 
help the moderator to advise changes to experts in their 
opinions during the consensus reaching process. The 
individual consistency measures that we define are: 
the quality-based individual consistency measure and 
the quanti ty-based individual consistency measure. 

2. Collective consistency measures. Used to eval- 
uate the current average consistency degree that group 
of experts present in their opinions. This type of mea- 
sures, together with linguistic consensus degrees, help 
the moderator to decide over the necessity to continue 
the consensus reaching process. We define two col- 
lective consistency measures: the quality-based col- 
lective consistency measure and the quanti ty-based 
collective consistency measure. 

The consistency measures are obtained as follows. 

4.2.1. Individual consistency measures 
1. Quality-based individual consistency measure. 

This quality-based measure gives a qualitative per- 
spective of a consistency situation existing in a prefer- 
ence relation provided by one expert. It evaluates the 
quality of  the expert's consistency considered accord- 
ing to the quality of relationships existing between al- 
ternatives contained in considered inconsistent cycles, 
i.e., according to the strict preference value intensi- 
ties of considered inconsistent cycles. This measure 
is based on Montero's rationality measure [21, 22]. 
Montero's rationality measure is based on the acyclic- 
ity degree of a preference relation, and it is calculated 
using numerical weights obtained from the relation- 
ships existing between alternatives of  all possible con- 
sistent cycles of the preference relation. Our measure 

is based on the non-acyclicity degree and, it is cal- 
culated using only linguistic weights obtained from 
the relationships existing between alternatives of  posi- 
tive inconsistent cycles with three distinct alternatives 
of relations. Therefore, this measure is a linguistic- 
weights-based measure, denoted by IC~ and obtained 
as follows: any positive inconsistent preference cycle 
c/k E C k presents the following structure xt - x , .  - 

xw - x t , V t ,  v ,w E {1,2 . . . . .  n}. For each c~, we define 
its linguistic weight z~ as, z~ = Min{pt"~,, p~,,~,, P~',.t}. 
Thus, IC~ is obtained as follows, 

f N e g ( N A  k) i f C  k¢13, 
ICka 

( sr  otherwise, 

where NA k = Maxi{z~,i = 1 . . . . .  ~(Ck)} is the non- 
acyclicity degree of pk. 

2. Quanti ty-based individual consistency mea- 
sure. This quantity-based measure gives a quantita- 
tive perspective of the consistency situation existing 
in the preference relation provided by one expert. It 
assesses the quantity of expert's consistencies con- 
sidered (expressed by the number of consistencies), 
which, in our case, is done by using positive inconsis- 
tent cycles with three distinct alternatives detected in 
his/her preference relation. Therefore, this measure 
is an inconsistent-cycles-based measure, denoted by 
IC~, and obtained using the concept of  fuzzy majority, 
by means of a linguistic quantifier Q2, as follows: the 
cardinal of set of all possible cycles with three distinct 
alternatives in a set of  n alternatives ct is determined 
by a combination of n elements taken 3 by 3, i.e., 

Therefore, an expert ek presents the following rate 
of inconsistent cycles with three distinct alternatives, 
r k = ~(Ck)/ct,  and then, IC~ = Q2(I - rk). It is clear 
that these two measures, ICa k and IC~, do not have the 
same sense of assessment of  consistency and, even, 
they may sometimes present a contradictory situation. 
For example, there may be an expert ek with only one 
positive inconsistent cycle with three distinct alterna- 
tives with a linguistic weight of  s t ,  then IC~ would 
be high and, however, IC~ would be low. Therefore, 
we must try to achieve a balance between both mea- 
sures and, thus, the moderator must use both in the 
consensus reaching process to advise each expert. 
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4.2.2. Collective consistency measures 
These measures arise intuitively after defining the 

individual consistency measures. Therefore, there are 
two of  them: 

1. Quality-based collective consistency measure 
(CCa) 

2. Quantity-based collective consistency measure 
(CCh) 
They are obtained from individual consistency mea- 
sures a n d / t o ( k ) ,  using the LOWA operator and the 
concept o f  fuzzy majority symbolized by a linguistic 
quantifier Q1, according to the following expressions, 

CCa qSQ, ((ICla A/2G(1)) . . . . .  (ICa m A/tG(rn))), 

and 

CCb = qSQ, ((IC~ A/to(1 )) . . . .  , (IC~ A fiG(m))), 

respectively. 
It is important to note that these measures may be 

used as a parameter to validate the final solution ob- 
tained in the consensus reaching process. Values of  
collective consistency measures close to s r  indicate 
a better social rational consensus solution, and values 
far away from s r  indicate a worse one. In any case, as 
in the previous section, the moderator must guide the 
consensus reaching process by considering both col- 
lective consistency measures, i.e., achieving a balance 
between both measures. 

This computing process is shown in Fig. 5. 
In short, the process described is very useful to the 

moderator, because its measures allow the moderator 
to have plentiful information on the current consis- 
tency stage. Directly: individual consistency measures 
provide information about the consistency degree for 
each expert and its detecting process information about 
conflict preference values and, the collective con- 
sistency measures provide information about global 
consistency degrees. Indirectly: information about the 
individuals, who are less consistent in their opinions, 
and in which preference this occurs, or information 
about the preferences where inconsistency is high. 

Below, we show the use of  the consistency mea- 
suring process in one step of  the consensus formation 
process, using the example presented in Section 3. 

4. 3. Application example o f  consistency measuring 
process 

Assuming the preference relations provided by four 
experts in Section 3, the respective strict preference 
relations are: 

p l , s  

- 13 IM 
VLC - SC 

0 13 - 
M C  13 0 

0 
SC 
IM ' 

p2,s = 
i VLC I 

- SC 
13 - 

I M  E U  MC 

13 
13 
13 , 

p3.s = 

- SC EL [3 
13 - E U  13 
13 13 - 13 
C IM 1M - 

p4,s z 
- 13 EU Vi ] IM - 13 C 
13 VLC 

MC (3 MC - 

In the detecting process, the detected sets of  posi- 
tive preference intensity cycles with three distinct al- 
ternatives are the following: 
• Expert 1: C l = {(Xl ,X3,X4,X I ) } .  

• Expert 2: C 2 = {(Xl,Xe,X3,Xl )}. 
• Expert 3: C 3 = {0}. 
• Expert 4: C 4 = {(xl ,x3,x2,xj) ,(x2,x4,x3,x2)}.  
Then the linguistic consistency measures are: 

A. Individual consistency measures 
A.1. Quality-based individual consistency mea- 

sure. The linguistic weights of  the detected cycles are: 
• Linguistic weights of  Cl: {SC}. 
• Linguistic weights of  C2: {I}. 
• Linguistic weights of  C3: {0}. 
• Linguistic weights of  C4: {EU, VLC}, 
where, for example, E U  = Min{ p41~3(EU), p4~( VLC), 
p4"~(IM)}. Then, the experts '  quality-based consis- 
tency degrees are: 

{ic'o = M c ,  ic2o : c, IC3o : c,  Ic4o : E L } .  
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-INCONSISTENT CYCLES C k 

-QUANTIFIER Q 2 

QUALITY-BASED 
INDIVIDUAL LEV 

CONSISTENCY < 

MEASURE 

(IC~) 

QUANTITY-BASED 
INDIVIDUAL LE~ 

CONSISTENCY "~ 
MEASURE 

(IC~) 

/ %  
/ \ 

INDIVIDUAL 

CONSISTENCY 

MEASURES 

S T E P 1  

~L1 .~  Q U A L I T A T I V E  

EL1 *--~ Q U A N T I T A T I V E  p 
) 

-IMPORTANCE DEGREES 
-LOWA OPERATOR t 
-QUANTIFIER Q 
-,CI AND IC~ 

LE 

LE 

C O N S I S T E N C Y  M E A S U R E S  C O M P U T I N G  P R O C E S S  

QUALITY-BASED 
tEL 2 COLLECTIVE 

:::" CONSISTENCY 
MEASURE 

( C C )  

QUANTITY-BASED 
tEL 2 COLLECTIVE 

~CONSISTENCY 

MEASURE 
(cc j 

/ COLLECTIVE 'l 

CONSISTENCY 

MEASURES 

STEP 2 

Fig. 5. Consistency computing process. 

A.2. Quantity-based individual consistency mea- 
sure. The number o f  possibles cycles are ct = 4, and 
thus, the rates of  detected cycles are, 
• Expert one: r I = 0.25. 
• Expert two: r 2 : 0.25. 
• Expert three: r 3 = 0. 
• Expert four: r 4 : 0 . 5 ,  

2 Then, the experts' where, for example, r 4 :  7" 
quantity-based consistency degrees using the quanti- 
fier QZ,'at least half ' ,  are: 

{ I C ~ = C ,  IC 2 = C ,  IC 3 : C ,  IC 4 : C } .  

B. Collective consistency measures 
B.1. Quality-based collective consistency mea- 

sure. Using the numerical variant o f  the linguistic 
quantifier and the experts' importance degrees, we 
find: 

CC. = OQ,((MC AEL) , (C  A C), 

(C A SC), (EL A EU))  = EL. 

B.2. Quantity-based collective consisten( T mea- 
sure. Using the numerical variant of  the above linguis- 
tic quantifier and importance degrees o f  experts, we 

have: 

CC/, - OQ~((C A EL),(C A C), 

(C A S C ) , ( C  A EU))  : c. 

Remarks.  According to the concept of  fuzzy majority 
represented by the linguistic quantifier 'at least half '  
we can draw the following conclusions: (i) from a 
quantitative view point the expert set is more consis- 
tent than from a qualitative view point, (ii) from a 
quantitative view point all the experts are considered 
absolutely consistent in their preference values, how- 
ever, from a qualitative view point only experts e2 and 
e 3 are considered in a similar way, (iii) from both the 
view points the experts e2 and e3 are considered ab- 
solutely consistent, (iv) if we observe the nature and 
number of  inconsistent preference cycles, expert e3 is 
the most consistent one. 

5. Conclusions 

We have presented a new consensus model in a 
complete linguistic framework, in group decision 
making guided by consistency and consensus mea- 
sures. It includes several linguistic consensus mea- 
sures and several linguistic consistency measures 
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defined in different action levels. The measures allow 
analysing, controlling and monitoring the consensus 
reaching process, describing the current consensus 
and current consistency stage. Futhermore, consis- 
tency measures allow the inconsistencies of  the ex- 
perts '  preferences to be detected and the possibility 
of  removing them during the consensus reaching pro- 
cess. So, to sum up, we have defined a new consensus 
model with more human consistency which is more 
rational. 

Appendix A. Linguistic approach 

In this appendix we are going to specify the three 
essential elements of  a linguistic framework consid- 
ered to develop our rational consensus model for group 
decision making, i.e., linguistic preference relations 
to express experts '  opinions, the linguistic ordered 
weighted averaging ( L O  W A )  operator for aggregat- 
ing linguistic information used for computing some 
of  our consensus and consistency measures and, lin- 
guistic quantifiers to represent the concept o f  fuzzy 
majority inside of  the rational consensus model. 

A. 1. Linguistic preference relations in group 
decision making 

The use of  fuzzy preference relations in decision 
making situations to express experts '  opinions about 
an alternative set, with respect to certain criteria, ap- 
pears to be a useful tool in modelling decision pro- 
cesses. Among others, they appear in a very natural 
way when we want to aggregate experts '  preferences 
into grouped ones, i.e., in the group decision making 
processes. 

As we mentioned earlier, in many cases, an expert 
is not able to estimate his preference degrees with ex- 
act numerical values. So, another possibility is to use 
linguistic labels, i.e., expressing his opinions about al- 
ternatives by means of  a linguistic preference relation. 
Therefore, to fix a label set, it is absolutely essential 
that the experts '  preferences be expressed first. 

In [2], the use of  label sets with odd cardinals was 
studied, the middle label representing a possibility of  
'approximately 0.5', the remaining labels being placed 
symmetrically around it and the limit o f  granularity 
is 11 or no higher than 13. The semantics of  the la- 

bels is given by fuzzy numbers defined in the [0,1 ] in- 
terval, which are described by membership functions. 
As the linguistic assessments are merely approximate 
ones given by the experts, we can consider that linear 
trapezoidal membership functions are good enough to 
capture the vagueness of  these linguistic assessments, 
since obtaining more accurate values may be impos- 
sible or unnecessary. This representation is achieved 
by the 4-tuple (ai, bi, O~i,~i) (the first two parameters 
indicate the interval in which the membership value 
is 1.0; the third and fourth parameters indicate the left 
and right widths of  the distribution). 

We shall consider a finite and totally ordered label 
set S = {Si} ,i E H = {0 . . . . .  T}, in the usual sense 
and with odd cardinality as in [2], where each label si 
represents a possible value for a linguistic real vari- 
able, i.e., a vague property or constraint on [0,1]. The 
following properties are required: 

(1) The set is ordered: si>~sj ifi~> j. 
(2) There is a negation operator: Neg(si)  = sj such 

that j = T -  i. 
(3) Maximization operator: Max(si ,s j)  = si if  

sg >~sj. 
(4) Minimization operator: Min(si, s j ) = Sz i f  si <<. s j. 
Assuming a linguistic framework and a finite set of  

alternatives X = {xl,x2 . . . . .  xn}, the experts '  prefer- 
ence attitude about X can be defined as an nxn linguis- 
tic preference relation, such that, pk = (p~) ,  i , j  = 

1,. . .  ,n, where p~ E S denotes the preference degree 
of  alternative Xg over x j, linguistically assessed, ac- 
cording to expert 's  opinion ek, with 

so<~p~<.sT ( i , j =  1 . . . . .  n), 

and where: 
1. p~. = s r  indicates the maximum degree of  pref- 

erence of  xi over xj. 
2. Sr/2 < p~. < s r  indicates a definite preference 

ofx i  over xj. 
3. Pkij = Sr/2 indicates indifference between xi and 

xj. 

A.2. The L O W A  operator 

An aggregation operator of  linguistic information is 
needed to make good use of  the linguistic preference 
relations for aggregating experts '  preferences. Vari- 
ous approaches have been proposed, some use direct 
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computation on labels [7, 9, 29] and, others use com- 
putation on associated membership functions [2, 25]. 
We work following the first approach, which is inde- 
pendent o f  the semantics o f  the term set, considering 
a similar discrimination by the experts. More specifi- 
cally, we use the linguistic aggregation operator, lin- 
guistic ordered weighted averaging ( L O  WA ), defined 
in [9, 15]. 

The L O W A  operator is based on the ordered 
weighted averaging ( O W A )  operator defined by 
Yager [27], and on the convex combination o f  lin- 
guistic labels defined by Delgado et al. [7]. 

Definition. Let {al . . . .  ,am} be a set of  labels to be 
aggregated, then the LOWA operator, qS, is defined as 

qS(al . . . . .  am) = W . B  T = Cm{wk, bk ,k  1 . . . . .  m} 

= w l  (')bl @(1 W l )  

~ C  ~ ' {fih,bh, h = 2 . . . . .  m}, 

where W - -  [ w  I . . . . .  Wm] , is a weighting vector, such 
m 

that, wi c [0, 1] and ~ i w i  = 1; fi~ = w ~ , / ~  2 w t , h  = 
2 , . . . ,  m, and B is the associated ordered label vector. 
Each element bi E B is the ith largest label in the 
collection a l , . . . , am.  C °' is the convex combination 
operator o fm  labels and i fm = 2, then it is defined as 

C2{wi, bi, i = 1,2} = Wl ~'),~/ :<:~ (1 W]) 

@si = sk,s/ ,s i  C S(j '>~i) 

such that 

k = min{T, i + round(wl (j  - i))}, 

where round is the usual round operation, and b 1 

s j,  b2 = si. 

If  w/ 1 and w, 0 with i ~ j Vi, then the convex 
combination is defined as: 

Cm{wi, bi, i = 1 . . . . .  m} = b/" 

In [15], we demonstrated that the L O W A  operator 
presents some evidence o f  rational aggregation, be- 
cause, on the one hand, it verifies these properties: 
• The LOWA operator is increasin 9 monotonically 

with respect to the argument values. 
• The LOWA operator is commutative.  

• The LOWA operator is an 'orand' operator. 
And, on the other hand, it verifies these axioms: Unre- 
stricted domain, Unanimity or Idempotence, Positive 
association o f  social and individual values, Indepen- 
dence o f  irrelevant alternatives, Citizen sovereignty, 
Neutrality.  

A.3. How to calculate the weights o f  the L O W A  
operator? 

A natural question when defining the LOWA oper- 
ator is, how to obtain the associated weighting vec- 
tor. In [27, 30], Yager proposed two ways for doing 
so. The first approach is to use some kind of  learn- 
ing mechanism using sample data; and the second ap- 
proach is to try to give some semantics or meaning to 
the weights. The later possibility has allowed multiple 
applications in the fields of  fuzzy and multivalued log- 
ics, evidence theory, design of  fuzzy controllers, and 
quantifier guided aggregations. We are interested in 
the field of  quantifier guided aggregations, because our 
idea is to calculate weights using linguistic quantifiers 
for representing the concept o f  Juz zy  majori ty  in the 
aggregations that are made in our rational consensus 
model. Therefore, in the aggregations o f  the LOWA 
operator, the concept of  fuzzy majority is shown by 
means of  the weights. 

In [27, 30], Yager suggested an interesting way to 
compute the weights o f  the OWA aggregation operator 
using linguistic quantifiers, which, in the case of  a 
non-decreasing proportional quantifier Q, is given by 
this expression: 

wi Q(i/n) Q ( ( i -  1)/n), i 1 . . . . .  n, 

where the membership function of  Q can be repre- 
sented as 

0 i f r  < a, 

r a i f a ~ r < . b ,  Q(r)  = b a 

1 if r >  b, 

with a ,b , r  E [0, 1]. When a fuzzy linguistic quanti- 
fier Q is used to compute the weights of  the LOWA 
operator ~b, it is symbolized by qSQ. 

In order to create a more flexible framework, we 
shall use two types o f  relative quantifiers. One, with 
a numerical value described above, and denoted Q1, 
and the other one, described in [ 14], with a linguistical 
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value in a label set L = { l i } , i  c J = {0 . . . . .  U}, and 
denoted Q2, 

Q2 : [0, 1] --*L 

and defined as follows, 

10 i f  r < a, 
Q2(r)  = li i f  a<~r<<,b, 

l v  i f r  > b, 

10 and Its are the minimum and maximum labels in L, 
respectively,  and 

li = Sup/, / EM{lq}, 

with M = ( lq C L 

with a, b, r E [0, 1 ]. Another  definition o f  Q2 can be 
found in [29]. 

Appendix B. Demonstration of the theorem 

We shall demonstrate this only for positive cycles, 
but it is similar for negative cycles. The demonstra- 
tion is done by induction about the number of  distinct 
alternatives (k). 
• For k = 4. 

Let G = XlRlX2R2x3R3xnR4Xl be a positive incon- 
sistent preference cycle. From the definition o f  a pos- 
itive inconsistent preference cycle, we know that at 
least 3h E {1 ,2 ,3 ,4} ,  such that Rh = R. From the 
cases: 

1. I f  h = 1 then, without loss o f  generality, we 
can consider the chain G ~ = xl - x2 - x3 - Xl, which 
presents the following structure o f  relationships, 
x1Rx2R2x3R?Xl, with R2 E { R , I }  and R e E {R, NR, I } .  
Then, from the cases: 

(a) I fR  ? E {R, I}  then clearly the considered chain, 
G ~ = Xl - x 2  - x 3  - X l ,  is a positive inconsistent 
preference cycle with three distinct alternatives. 

(b)  I f  R e = NR then clearly the chain G" = 
Xl - x 4  - x 3  - X l  is a negative inconsistent pref- 
erence cycle with three distinct alternatives, which 
presents the following structure o f  relationships, 
XlR41x4R31x3 NR xl .  

2. I f  h = 2, then, without loss o f  generality, we 
can consider the chain G t = x2 - x3 - -  X 4  - -  X2, which 
presents the following structure o f  relationships, 
x2Rx3R3x4R?x2, with g 3 E {R,I} and R ? C {R, NR, I } .  
Then, from the cases: 

(a)  I f  R e E { R , I }  clearly the considered chain 
G t = x2 - x3 - x4 - x2 is a positive inconsistent pref- 
erence cycle with three distinct alternatives. 

(b)  I f  R e = NR then clearly the chain G" = xl - 

x4 - x 2  - x l  is a negative inconsistent preference cycle 
with three distinct alternatives, which presents the fol- 
lowing structure o f  relationships, XlR 4 Ix4NRx2R(  lxl. 

3. I f  h E {3,4} then, without loss o f  generality, 
we can consider the chain G' = Xl - x3 - x4 - 
xz, which presents the following structure o f  rela- 
tionships, x1R?x3R3x4R4xI, with Rh = R, and Ri C 
{ R , I } ,  i C {3,4, i ~ h}. Then, from the cases: 

(a)  I f R  ? C { R , I }  then clearly the considered chain 
G ~ = Xl - x3 - x4 - Xl is a positive inconsistent pref- 
erence cycle with three distinct alternatives. 

(b)  I f  R e = NR then clearly the chain G" = Xl - 
x3 - x 2  - x l  is a negative inconsistent preference cycle 
with three distinct alternatives, which presents the fol- 
lowing structure o f  relationships, x lNRx3R 2 J x2R 2 l Xl. 

Therefore,  i f  there is a posi t ive inconsistent prefer-  
ence cycle with f o u r  distinct alternatives, then there 
is at least one inconsistent preference cycle with three 
distinct alternatives. 

* Suppose that this is true for k - 1 and, i.e., i f  there 

is a posi t ive inconsistent preference cycle o f  k - 1 
distinct alternatives then there exis t  at  least one 

inconsistent preference cycle o f  three distinct al- 
ternatives. 

• For  k. 
Let G = XlRlX2R2. . .  Rk- lXkRkxl  be a positive incon- 
sistent preference cycle detected in ps .  Then, by defi- 
nition o f  the positive inconsistent preference cycle we 
know that at least 3h C { 1,2 . . . . .  k}, such that, Rh = 
R. From the cases: 

1. I f  h = 1 then, without loss of  generality, we can 
consider the chain G' = Xl - x 2  . . . . .  xk-1 - X l ,  which 
presents the following structure of  relationships, 

XlRx2R2. . .  Rk-2Xk- 1R?xl, 

withRi c { R , I } ,  i =  2 . . . . .  k - 2 ,  andR ? E {R, NR, I } .  
Then, from the cases: 

(a)  I f R  ? E {R, I}  then clearly the considered chain 
G' = Xl - x2 . . . . .  xk-1 - Xl is a positive inconsis- 
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tent preference cycle with k - l distinct alternatives, 
and by using the induction hypothesis, then G' im- 
plies at least one inconsistent preference cycle with 
three distinct alternatives and thus, G implies at least 
one inconsistent preference cycle with three distinct 
alternatives. 

(b) If  R" - -  N R  then clearly the chain G" = 
x~ - x k  - x k  1 - x ~  is a negative inconsistent pref- 
erence cycle  with three distinct alternatives, which 
presents the fol lowing structure of  relationships, 
x l R ~ l x k R ~  1 lXk_ l  N R  x l .  

2. If  h = 2 then, without loss o f  generality, we  can 
consider the chain G' = x2 x3 - x4 . . . . .  xk - x2 ,  

which presents the fol lowing structure of  relation- 
ships, 

xzRx3 R 3 x 4  • • • R k -  1 X k R ? X 2 ,  

withRi E { R , I } ,  i = 3 . . . . .  k - l , a n d R  ? E { R ,  N R ,  I } .  

Then, from the cases: 
(a) I fR ? C { R , I }  then clearly the considered chain 

G' = x2 - x3 - x4 . . . . .  xk x2 is a positive in- 
consistent preference cycle  with k - 1 distinct alterna- 
tives, and by using the induction hypothesis, then G ~ 
implies at least one inconsistent preference cycle with 
three distinct alternatives and thus, G implies at least 
one inconsistent preference cycle with three distinct 
alternatives. 

(b) If  R ? = N R  then clearly the chain G" = 
Xl - x k  - - x 2  - - x l  is a negative inconsistent pref- 
erence cycle  with three distinct alternatives, which 
presents the fol lowing structure of  relationships, 
x i R ~ J x ~  N R  x 2 R ~ I x l .  

3. If  h E {3 . . . . .  k}  then, without loss of  general- 
ity, we can consider the chain G ~ = xj - x3 x4 - 
. . . .  xk - x t ,  which presents the following structure 
o f  relationships, 

X l R' :  x 3 R 3 x 4  . . . R k -  I X k R k x l ,  

with Rh = R andRi  C { R , I } ,  i = 3 . . . . .  k , i  7 ~ h. 

Then, from the cases: 
(a) I fR ? E {R, I }  then clearly the considered chain 

G ~ = x l  - x3 - x4 . . . . .  xk x l  is a positive in- 
consistent preference cycle  of  k - 1 distinct alterna- 
tives, and by using the induction hypothesis, then G ~ 
implies at least one inconsistent preference cycle with 
three distinct alternatives and thus, G implies at least 
one inconsistent preference cycle with three distinct 
alternatives. 

(b) i f  R ? = N R  then clearly the chain G ~' = X l  - 

x3 - x 2  - x l  is a negative inconsistent preference cycle 
with three distinct alternatives, which presents the fol- 
lowing structure o f  relationships, x l N R x 3 R  2 I x 2 R ~  I x l .  
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