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ABSTRACT 

Assuming a linguistic framework, a model for the consensus reaching problem in 
heterogeneous group decision making is proposed. This model contains two types of 
linguistic consensus measures: linguistic consensus degrees and linguistic proximities 
to guide the consensus reaching process. These measures evaluate the current consensus 
state on three levels of action: level of the pairs of alternatives, level of the 
alternatives, and level of the relation. They are based on a fuzzy characterization of 
the concept of coincidence, and they are obtained by means of several conjunction 
functions for handling linguistic weighted information, the LOWA operator for aggregat- 
ing linguistic information, and linguistic quantifiers representing the concept of fuzzy 
majority. © 1997 Elsevier Science Inc. 

K E Y W O R D S :  Linguistic modeling, group decision making, linguistic prefer- 
ence relations, consensus degrees. 

1. I N T R O D U C T I O N  

Consensus or  synthesis consists in combining a data  set provided by 
different informat ion sources with a view to obtaining more  elaborate  
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information [31, 32]. When the information sources provide imprecise 
information, the use of fuzzy set theory to deal with this type of informa- 
tion is most advisable. A usual situation, in the real world, which presents 
the appropriate characteristics to apply consensus theory and fuzzy set 
theory together, is the group decision making (GDM) situation. 

In a classical GDM situation there is a problem to solve, a set of 
possible solution alternatives, and a group of two or more experts, who 
express their opinions about the set of solution alternatives and attempt to 
reach a collective decision with the maximum possible consensus on this 
question: what is/are the best solution alternative(s) to the problem?. 
Many papers on consensus theory applied to GDM make use of Arrow's 
work [1] as a starting point and a basic guide. Arrow proposed a qualitative 
setting composed by a set of axioms, which any acceptable consensus tool 
for GDM should satisfy. Arrow's impossibility theorem was an important 
result thereof. According to this theorem, it is impossible to aggregate 
individual preferences into group preference in a completely rational way. 
This is a problem that disappears in a cardinal setting in a fuzzy context, 
on introducing preference intensities, which provide additional degrees of 
freedom to any aggregation model [13, 9]. 

In a fuzzy context, the application of consensus theory to GDM prob- 
lems presents two ways to relate to different decision schemata [6]. The 
first way, called algebraic consensus, consists in establishing a group choice 
process which obtains a decision scheme as a solution to the GDM 
problem. The second way, called topologic consensus, consists in establish- 
ing a group consensus reaching process, which, guided by means of a 
measure of closeness among different decision schemata, called the con- 
sensus measure, attempts to achieve the maximum possible degree of 
consensus on solution alternative(s). Both consensus types may be com- 
bined in a resolution scheme (see Figure 1). Given that the set of experts 
initially have diverging opinions, firstly, topologic consensus is applied, and 
in each step, the degree of existing consensus among experts' opinions is 
measured. If the moderator thinks that the consensus degree is satisfac- 
tory, then algebraic consensus is applied in order to obtain a solution; 
otherwise, the experts are persuaded to update their opinions. In this way, 
a GDM process may be defined as a dynamic and iterative process, in 
which the experts, via the exchange of information and rational arguments, 
agree to update their opinions until they become sufficiently similar, and 
then the solution alternative(s) is/are obtained. Here, we shall focus our 
research on the topologic consensus. 

As was mentioned earlier, the topologic consensus is guided by means of 
a consensus measure. Assuming numerical preference relations for provid- 
ing the experts' opinions, several authors introduced hard consensus mea- 
sures varying between 0 (no consensus or partial agreement) and 1 (full 
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consensus or complete agreement) [2, 3, 28, 29]. However, consensus as a 
full and unanimous agreement is far from being achieved in real situations, 
and even if it is, in such a situation, the consensus reaching process could 
be unacceptably costly. So, in practice, a more realistic approach is to use 
"softer consensus measures" [24], which assess the consensus degree in a 
more flexible way, and therefore reflect the large spectrum of possible 
partial agreements, and guide topologic consensus until widespread agree- 
ment (not always full) is achieved among experts. 

Along this line of reasoning, but in different fuzzy GDM  contexts, 
several alternative consensus measures have been proposed: in a numeri- 
cal context, i.e., with numerical assessments on the unit interval [0, 1], by 
Kacprzyk [24], Kacprzyk and Fedrizzi [25, 26], and Fedrizzi, Kacprzyk, and 
Nurmi [15]; and in a linguistic context, i.e., with linguistic assessments on a 
preestablished label set S, by Fedrizzi and Mich [14], Mich, Gaio, and 
Fedrizzi [27], Herrera, Herrera-Viedma, and Verdegay [21, 23], and Bor- 
dogna, Fedrizzi, and Pasi [5]. In all these cases, the authors have based 
their consensus measures on the concept of coincidence, i.e., observing the 
existing coincidence among experts' opinions. Different coincidence mean- 
ings have been considered, some based on strict coincidence, i.e., accepting 
only the total coincidence or null coincidence cases [24-26, 15, 27, 21, 23], 
and others on less strict coincidence, i.e., accepting different coincidence 
degrees [24-26, 15, 14, 5]. 

Here, in a linguistic context, we propose to use a more flexible idea of 
the concept of coincidence, i.e., using it as a fuzzy concept. We present 
fuzzy coincidence as a fuzzy set defined on the set of expert pairs and 
characterized by closeness observed among their respective opinions. In 
particular, we assume a heterogeneous linguistic context to introduce the 
new fuzzy coincidence concept, i.e., we define the gradation of the coinci- 
dence degree existing among two experts from a label set, S, used to 
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express the experts' opinions, to a new and more appropriate (preestab- 
lished) label set, in order to express the coincidence degrees, G. In this 
way, we present various ways to measure the closeness observed among 
experts' opinions. Moreover, we study the fuzzy coincidence among experts 
on three levels of action: the level of the pairs of alternatives, the level of the 
alternatives, and the level of the relation. Then, using this new idea of fuzzy 
coincidence, we further advance our previous consensus models [21, 23] for 
deriving some new softer linguistic consensus measures, which are applied 
on the three coincidence levels. All consensus measures are obtained using 
different conjunction functions to manipulate weighted linguistic informa- 
tion [16], the linguistic ordered weighting averaging (LOWA) operator [18, 
22] to aggregate linguistic information, and the linguistic quantifiers [42] 
representing the fuzzy majority concept. 

In order to do so, in the next section we present some prior considera- 
tions on some consensus measures proposed in the literature with a view 
to clarifying the contributions in this paper. In Section 3, we present briefly 
the linguistic setting of the G D M  problem considered. In Section 4, we 
present the new linguistic consensus measures. In Section 5, 6, and 7, we 
show the derivation model of the consensus measures, and finally, some 
conclusions are pointed out. 

2. BACKGROUND ON CONSENSUS MEASURES 

As we said at the beginning, in a fuzzy context, several alternative softer 
consensus measures have been proposed. In this section, we briefly analyze 
these measures with a view to better  clarifying the new developments 
proposed in this paper. 

In a numerical context, Kacprzyk [24] presented three numerical consen- 
sus measures, which are: 

• assessed on unit interval, [0, 1]; 
• developed in a simple G D M  context with a homogeneous group of 

experts (all experts' opinions have the same importance degree) and a 
homogeneous set of alternatives (all the alternatives have the same 
relevance degree); 

• calculated across the global set of the alternatives in a hierarchical 
pooling process from the experts' opinions, provided by means of  the 
numerical preference relations, and using the fuzzy majority concept 
represented by a linguistic quantifier [42]; and finally 

• obtained: (1) the first measure, using a strict idea of the concept of 
coincidence, that is, establishing a particular pair of  alternatives: if the 
opinions of two experts are equal then they are in agreement (value 
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1), and otherwise they are in disagreement (value 0); (2) the second 
one, using a less strict idea of the concept of coincidence, that is, 
establishing a particular alternative pair: if the opinions of two experts 
are more or less equal according to a degree a (preestablished), then 
they are in agreement (value 1), and otherwise, they are in disagree- 
ment (value 0); and (3) the third one, using another less strict idea of 
the concept of coincidence represented by a function, s : [0, 1] ~ [0, 1] 
defined on the closeness between experts' opinions. 

Kacprzyk and Fedrizzi [25, 26] extended Kacprzyk's measures of GDM 
contexts with a heterogeneous set of alternatives and a heterogeneous 
group of experts, respectively. Fedrizzi, Kacprzyk, and Nurmi [15] modified 
the definition of Kacprzyk and Fedrizzi's measures and calculated them 
using the ordered weighted averaging (OWA) operator [34]. 

On the other hand, in a linguistic context, Fedrizzi and Mich [14] 
presented a new numerical consensus measure, which is: 

• developed in a homogeneous GDM context with multiple criteria; 
• calculated for each alternative, independently, from the experts' opin- 

ions provided by linguistic labels (not preference relations) by means 
of computation on a fuzzy representation of linguistic labels 
(trapezoidal membership functions); and 

• obtained using a less strict coincidence concept represented by means 
of a euclidean distance d, which implements the linguistic approxima- 
tion [30]. 

Mich, Gaio, and Fedrizzi [27] modified this measure and obtained it by 
applying a strict coincidence concept, which divided the expert group into 
subsets according to their evaluations. Herrera, Herrera-Viedma, and 
Verdegay [21] presented two types of linguistic consensus measures, one to 
measure the consensus degree and another to measure the closeness 
between experts opinions. Both are: 

• assessed on the same label set, S, used to express experts' opinions; 
• developed in a GDM context with a heterogeneous group of experts 

and a heterogeneous set of the alternatives with importance and 
relevance degrees assessed on [0, 1]; 

• calculated from the experts' opinions, provided by linguistic prefer- 
ence relations, using linguistic quantifiers and a linguistic aggregation 
operator by direct computation on the labels (the LOWA operator 
[18, 22]) on three levels of action: preference on the pairs of alterna- 
tives, preference on the individual alternatives, and preference on the 
global set of the alternatives; and 

• obtained by applying a strict coincidence concept, similar to Mich, 
Gaio, and Fedrizzi's concept, but according to an average consensus 
policy, that is, using every subset of experts with over two experts. 
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In their second paper [23], Herrera, Herrera-Viedma, and Verdegay 
modified their measures to work in a GDM context with heterogeneous 
groups of experts with importance degrees assessed on S, and homoge- 
neous sets of alternatives. The consensus measures were obtained accord- 
ing to a strict coincidence concept but by means of a strict consensus 
policy, that is, considering only the subset of experts with maximum 
cardinality. This consensus model incorporated a new development: it 
integrated two types of linguistic rationality measures to achieve less dis- 
torted consensus solutions. Finally, Bordogna, Fedrizzi, and Pasi [5] pre- 
sented a linguistic consensus measure, which is: 

• assessed on the same label set, S, used to express the experts' 
opinions; 

• developed in a linguistic GDM context, similar to Herrera, Herrera- 
Viedma, and Verdegay's, but with a heterogeneous set of criteria and 
having linguistic importance degrees assessed on S; 

• calculated for each alternative independently, from the experts' opin- 
ions, provided by linguistic labels, by means of the linguistic version of 
the OWA operator [35] and considering linguistic quantifiers; and 

• obtained using a less strict coincidence concept represented by means 
of a usual distance function d defined directly on S and proposed 
initially by Herrera, Herrera-Viedma, and Verdegay [21]. 

Now, we present a consensus model with a structure similar to [21, 23], 
i.e., with two types of linguistic consensus measures calculated on three 
levels of action, but with the following peculiarities: 

• it is designed for GDM situations with heterogenous groups of experts 
and heterogeneous sets of alternatives 'using linguistic weighting de- 
grees; 

• it is developed in a heterogeneous linguistic context, i.e., using differ- 
ent linguistic domains to express the opinions, the importance, and 
relevance degrees, as well as the consensus measures; 

• its consensus measures are obtained using a fuzzy formulation of the 
concept of coincidence. 

3. LINGUISTIC SETI'ING OF THE GDM PROBLEM 

As was mentioned earlier, we assume a GDM problem developed in a 
linguistic context, i.e., the experts use linguistic terms instead of numerical 
values to express their preferences [10, 12, 18, 22, 30, 35, 40]. We consider 
finite and totally ordered term sets on [0, 1], S = {si}, i ~ H = {0 . . . . .  T}, 
with an odd cardinal, in which the middle label represents an uncertainty 
of "approximately 0.5" and the remaining terms are placed around it 
symmetrically, as in [4]. Moreover, the term set must have the following 
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characteristics: 
1. The set is ordered: s i >_ sj if i >_ j. 
2. There is the negative operator: Neg(s i) -- sj such that j -- T - i. 
3. Maximization operator: Max(s  i, sj) = si if s i >_ sj. 

4. Minimization operator: Min(s i, sy) = s i if s i <_ sj. 

We consider that the semantic of the elements in the term set is given by 
fuzzy numbers defined on the interval [0, 1], which are described by linear 
trapezoidal membership functions. This representation is achieved by the 
4-tuple (ai, bi, ai, fli). T h e  first two parameters indicate the interval in 
which the membership value is 1; the third and fourth parameters indicate 
the left and right width. 

Example 3.1. The following seven label set, S, verifies the aforementioned 
properties: 

M A  M a x i m u m  (1, 1, .25, 0) 
1/34 Very_Much  (.75, .75, .15, .25) 
M u  M u c h  (.6, .6, .1, .15) 
M Med ium (.5, .5, .1, .1) 
L Little (.4, .4,. 15,. 1) 
VL Very_Little (.25, .25, .25, .15) 
M I  M i n i m u m  (0, 0, 0, .25) 

In this linguistic context, the mathematical model of the G D M  problem 
considered is the following. Let X = { x l , . . . , x  n} be a heterogeneous, 
nonempty, and finite set of alternatives to be analyzed by a heterogeneous, 
nonempty, and finite set of experts E = {e l , . . . ,  era}. Assuming a label set, 
V = {vi}, i ~ I = {0 . . . . .  M}, to express importance and relevance degrees, 
for each alternative, x i ~ X, we suppose that a linguistic relevance degree is 
defined, la.R(i)E V, from t30 standing for "definitely irrelevant" to v M 
standing for "definitely relevant," across all the intermediate values. Simi- 
larly, for each expert e k E E, we assume that a linguistic importance degree 
is known, / .rE(k)~ V, assigned by a distinguished person, called the 
moderator, to each expert e k. Then, each expert e k provides h is /her  
opinions on X as a linguistic preference relation, p k  c X >( X ,  with 
membership function /zek : X × X ~ S, where /zek(xi, xj) = pk denotes 
the linguistic preference degree of the alternative x i over xj. We assume, 
without loss of generality, that pk is reciprocal in the sense that p~ = 
Neg(pk), and by definition piki = s o (the minimum label in S). 

Given an expert e k, his importance degree, /zE(k), is interpreted as the 
degree to which the expert is really a decision maker in relation to the 
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decision problem. And given an alternative xi, its relevance degree, ~R(i), 
is interpreted as the degree to which the alternative is really an option in 
relation to the problem domain. 

EXAMPLE 3.2 Assume the following nine label set V to express the 
importance and relevance degrees: 

T Total (1, 1, 0, 0) 
E H  Extremely_High (.98, .99, .05, .01) 
VH Very_High (.78, .92, .06, .05) 
H High (.63, .80, .05, .06) 
M Medium (.41, .58, .09, .07) 
L Low (.22, .36, .05, .06) 
VL Very_Low (.1, .18, .06, .05) 
EL Extremely_Low (.01, .02, .01, .05) 
N Null (0, O, O, O) 

Let X = {xl, x2, x3, X 4} be a heterogeneous set of four alternatives, for 
which the respective linguistic relevance degrees are 

/ZR(1) = EH, /ZR(2) = M, /xR(3) = VH, /xR(4) = VL. 

Let E = {el, e 2, e3, e 4} be a heterogeneous group of four experts, for which 
the respective linguistic importance degrees are 

~e(1)  = M ,  ~e(2)  = VH, ~E(3) = M ,  ~e(4)  = L. 

Then, following Example 3.1, linguistic preference relations over X, in this 
linguistic context, may be considered as: 

- -  VL VM VL] 
p l =  VM - -  M M 

VL L - -  VL ' 
VM L VM - -  

p 2  ~ 

p3 = M - -  VM p4 = 
_ 

M VM 

V L  - -  

VM M VM 

- -  L VM VL] 
M - -  L VL 
VL M - -  VL " 
VM VM VM - -  

In the GDM problem, in order to aggregate linguistic labels, we use the 
LOWA operator [18, 22], which allows us to represent the concept of fuzzy 
majority in the aggregation processes. The LOWA operator is based on 
the ordered weighted averaging (OWA) operator defined by Yager [34], and 
on the convex combination of linguistic labels defined by Delgado et al. [11]. 
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DEFINITION 3.1 Let A = {al , . . .  , am} be a set of  labels to be aggregated. 
Then the LOWA operator d~ is defined as 

t~ (a  1 . . . . .  a m ) = ~ 'B  T = ~ m { w k ,  bk ,  k = 1 , . . . ,  m}  

= WlQ)b 1 ~) (1 - w 1) Q)~C~rn- 1{ flh, bh,  h = 2 . . . .  , m} 

where W = [w 1 . . . . .  win], is a weighting vector such that (i) w i ~ [0, 1] and 
(ii) Ei = 1, flh = Wh/E~Wk, h = 2 , . . . ,  m, and B = {b 1 . . . . .  b m} is a 
vector associated with A such that B = t r (A)  = {a~(1) . . . .  , a,~(,)}, where 

a~( h < a~(i) Vi < j, with tr being a permutation over the set of labels A.  

~m is the convex combination operator of m labels, and if m = 2, then it is 
defined as 

~ 2 { w i , b i ,  i = l , 2 } = W l Q ) S j ~ ( 1 - W l ) Q ) s i = s k ,  s j , s i E S  ( j > i )  

such that, k = MIN{T, i + round(w 1 • ( j  - i))}, where round is the usual 
rounding operation, and b I = sj, b 2 = s i. I f  wj = 1 and w i = 0 with i ~ j 
Vi, then the convex combination is defined as ~m {wi, bi ' i = 1 . . . . .  m} = 
bj. 
Other approaches to aggregation of linguistic labels may be found in [4, 

11, 30, 35, 36, 38-40]. 
How to calculate the weighting vector of the L O W A  operator, W, is a 

basic question to decide. Yager proposed in [34, 37] an interesting way to 
compute the weights of the OWA aggregation operator using linguistic 
quantifiers [42], representing the concept of fuzzy majority. In our case, we 
use two types of fuzzy majority: 

• Fuzzy majority of  alternatives, used to quantify the different fuzzy 
coincidence degrees according to one pair of experts' opinions. 

• Fuzzy majority of  experts, used to quantify the different consensus 
measures according to every pair of experts' opinions. 

According to Yager [34, 37] the weights can be obtained by means of the 
following expression: 

Q ( i )  Q ( i ~ n l  ) 
w i--- - - , i =  1 , . . . , n ,  

n 

where Q is a nondecreasing proportional quantifer  represented by the 
following membership function: 

! if r < a, 
- - a  

Q ( r ) =  if a < r < b ,  
a 

if r > b  

with a, b, r ~ [0, 1]. 
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EXAMPLE 3.3 Some proportional quantifiers are shown in Figure 2, in 
which the parameters (a, b) are (0.3, 0.8), (0, 0.5), and (0.5, 1), respectively. 

When a fuzzy linguistic quantifier Q is used to compute the weights of 
the L O W A  operator ~b, it is symbolized by ~bQ. 

4. LINGUISTIC MEASURES BASED ON FUZZY COINCIDENCE 
FOR REACHING CONSENSUS 

Assuming the aforementioned linguistic G D M  problem setting, we pre- 
sent new linguistic consensus measures based on a fuzzy characterization 
of the concept of coincidence. They allow us to know the current state of 
consensus from different viewpoints, and therefore, to guide more cor- 
rectly the consensus reaching processes. As in [21, 23], we present two 
types of consensus measures, one to measure the concensus degree among 
experts' opinions, called consensus degrees, and another to measure the 
closeness among experts' opinions and group opinion, called linguistic 
proximities. These measures evaluate the consensus state on three levels of 
action: the level of  the alternative pairs, the level of  the alternatives, and the 
level of  the relation. 

Therefore, the consensus degrees are: 
1. Pair linguistic consensus degree: measuring the social consensus de- 

gree considering the experts' opinions expressed on a single pair of 
alternatives (xi, xi). 

2. Alternative linguistic consensus degree: measuring the social consensus 
degree considering the experts' opinions expressed on the subset of 
pairs of alternatives determined by a single alternative, x i. 

3. Relation linguistic consensus degree: measuring the social consensus 
degree considering the total set of experts' opinions, i.e., the relation 
pk. 

0.3 0.8 ~ 0 0.5 

"Most" "At least half" 

O.5 

"As many s s  possible" 

Figure 2. Proportional fuzzy linguistic quantifiers. 
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And 
1. 

. 

. 

the linguistic proximities are: 
Pair linguistic proximity: measuring the closeness degree among opin- 
ions given by a single expert, ek, and the remaining ones, on a single 
pair of the alternatives (x i, x) .  
Alternative linguistic proximity: measuring the closeness degree among 
opinions given by a single expert, ek, and the remaining ones, on the 
subset of pairs of alternatives determined by a single alternative, xi. 
Relation linguistic proximity: measuring the closeness degree among 
opinions given by a single expert, e k, and the remaining ones, on the 
total set of the pairs of the alternatives, i.e., on the relation, pk. 

Each measure is defined on its own level, and helps the moderator to 
decide about the need to continue the consensus reaching process and to 
make his recommendations. 

The derivation model of these linguistic consensus measures may be 
viewed as a hierarchical amalgamation model shown in Figure 3, developed 
from the lower level, the level of the pairs of alternatives, to the upper 
level, the level of the relation. It is formed by two processes: 

1. Coincidence process~ which evaluates the fuzzy coincidence between 
every different pair of experts in each level of action. 

2. Computing process, which evaluates the consensus measures among 
and for all the experts in each level of action. 

Each process is formed by three phases: (1) working on the pairs of 
alternatives, (2) working on the alternatives, and (3) working on the relation. 
These phases are applied consecutively, beginning with phase 1 of the 
coincidence process. Briefly, the derivation model is developed as follows: 

1. Working on the pairs of alternatives. First, working on the level of the 
alternative pairs, for each pair of the alternatives, (xi, x) ,  the fuzzy 
coincidence degrees on the pair are found out according to every pair 
of experts, considering the closeness among their preferences as- 
signed to this pair. Then, linguistic consensus measures of this level 
of action are obtained. 

2. Working on the alternatives. Second, working on the level of the 
alternative, for each alternative x i, the fuzzy coincidence degrees on 
the alternative are found out according to every pair of experts, 
considering the fuzzy coincidence degrees obtained in the previous 
phase for all pairs in which the alternative x i appears. These fuzzy 
coincidence degrees are calculated by amalgamation by means of the 
LOWA operator, some linguistic conjunction functions [16], and an 
appropriate linguistic quantifier, Q2, which expresses the fuzzy major- 
ity of the alternative. The, linguistic consensus measures of this level 
of action are obtained. 



320 F. Herrera et al. 

COINCIDENCE PROCESS 

ON 1HE 

IELA'IION 

c~l ltE 

;U.IIEIi~ [ 

.4d.IER~'I~ l '-L[ 

C 

~ (XIICC:IIXd~K~ 
ON 1HE I~LAllON 

F+, 
F U ~ ' ~  

t 
FLJIZY O011qC~IqlClE 

ON 1HE PAIR 

T 
L I N O U I S T I O  ] 

PREFERENCE 
RELATIONS 

RELA1K)N ~ 
CONIINBJ I~GIB 

ELA1ON ~ 
PlIQ~MITY 

I AL1ERNA1NE 
. ~)NmClUS IX-~EIE 

AL1ERNAllVE 
moxu~Y 

PAIR ~ C  
¢:X:~IIEII~IJ D~-~IEE 

PlID)0kllY 

Figure 3. Hierarchical amalgamation model. 
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3. Working on the relation. And finally, working on the level of the 
relation, the fuzzy coincidence degrees on the overall set of the 
alternatives, X, are found out according to every pair of experts, 
considering the fuzzy coincidence degrees obtained in the previous 
phase for all alternatives. Similarly, they are calculated as in the 
previous phase. Then, linguistic consensus measures of this level of 
action are obtained. 

In all these phases, linguistic consensus measures are derived by amalga- 
mation of these respective fuzzy coincidence degrees together with the 
importance degrees by means of the LOWA operator, some linguistic 
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conjunction functions, and an appropriate linguistic quantifier QI, which 
expresses the fuzzy majority of experts. In this regard, 

• the pair linguistic consensus degree expresses the consensus state of the 
Q1 pairs of experts according to their preferences on a pair of 
alternatives, 

• the alternative linguistic consensus degree expresses the consensus state 
of the Q~ pairs of experts according to their preferences on Q2 pairs 
of alternatives in which one given alternative appears, 

• the relation linguistic consensus degree expresses the consensus state of 
the Qt pairs of experts according to their preferences on Q2 pairs of 
alternatives, 

• the pair linguistic proximity expresses the state of agreement of an 
expert, e~, with the Q1 remaining experts according to their prefer- 
ences on a pair of alternatives, 

• the alternative linguistic proximity expresses the state of agreement of 
an expert, ek, with the Q1 remaining experts according to their 
preferences on Q2 pairs of alternatives in which one given alternative 
appears, and 

• the relation linguistic proximity expresses the state of agreement of an 
expert, e~, with the Q1 remaining experts according to their prefer- 
ences on Q2 pairs of alternatives. 

Next, we develop the derivation model in detail, studying its phases with 
their coincidence and computing processes. 

5. PHASE 1: WORKING ON THE PAIRS OF ALTERNATIVES 

5.1. Coincidence Process 

In this step the fuzzy coincidence concept among experts' opinions is 
defined, working on the level of the pair of alternatives. 

As we said at the beginning, we assume a label set to be established, 
G = {gi}, i ~ J = {0 . . . .  , U}, to express the new linguistic consensus mea- 
sures, with an appropriate meaning to express the fuzzy coincidence 
degrees, different from that used to provide the experts' opinions. Here, 
we do not deal with the way to obtain it. A possible option is to consider 
that experts decide about it before beginning the GDM process. In the 
following we present the definition of the fuzzy coincidence on a pair of 
alternatives according to the ideas previously mentioned. 

DEFINITION 5.1 The fuzzy coincidence on a pair of alternatives, (xi, x ) ,  
i ~ j, is defined as a fuzzy set, Cq, in the nonfuzzy set of pairs of experts, 
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E 2 = {ekt = (e k, el), k = 1 . . . . .  m - 1, l = k + 1 . . . . .  m}, namely Cij = 
{(ekl , la.ci(ekl))}, characterized by a membership function, i~cij : E 2 ~ G, 

with i~c ij( e kt ) = Neg(d(p~, p~j)), indicating the coincidence degree between 
experts e k and et's opinions on a pair o f  alternatives, where d stands for a 
closeness measure among opinions assessed linguistically on G, i.e., d : S × 
S ~ G .  

In order to define the closeness measure d among linguistic opinions 
(labels), two main approaches may be considered: the first one by agree- 
ment among experts using the definition table, and the second one by 
linguistic approximation using associated membership functions [4, 30, 14]. 
Most of the available techniques belong to the latter kind. However, its 
difficulty is that it obtains fuzzy sets which do not correspond to any label 
in the original term set, and if one finally wants to have a label, then a 
"linguistic approximation" is needed [4, 30, 14]. Therefore, since, in our 
context, we consider an environment where experts can discriminate 
perfectly the same label set under a similar conception, and since we use 
linguistic aggregation operators by direct computation on labels, in this 
paper we assume the first approach. 

This approach consists in establishing an ad hoc closeness table, lq : S × 
S ~ G, according to the experts' feeling, in such a way that if pk = St and 
p~j = s v then d(p~ ,  p~j) = lq(st, sv), l-l(s t, s~) E G, t, v ~ {0 . . . . .  T}. This, 
together with the determination of the label set G, may be done in a state 
prior to the GDM process. 

EXAMPLE 5.1 Assume the label set given in Example 3.1 to express the 
opinions; and as the label set to express linguistic consensus measures, G, 
assume the set V that was given in Example 3.2 to express importance and 
relevance degrees, i.e., G = II. Then the table may be defined as shown in 
Figure 4. 

Let us point out that we do not deal here with how the table is obtained, 
i.e., it is not built according to the axiom set, but it should be the result of 
the particular way of evaluation of the group of experts. Therefore, we may 
find curious situations, such as for example in Figure 4, where Iq(MI,  L )  = 
FL and I-I(MI, FL)  = FL.  

EXAMPLE 5.2 Let d be  the closeness table l-I considered in Example 5.1. 
Then, in the Gi )M context given in Example 3.2, for each pair of 
alternatives (xi, xj), its set of fuzzy coincidences, C 0. in E 2 is obtained, 
resulting in 

C12 = {(el2 , V H ) ,  (el3 , M),  (e l4 ,  V/- / ) ,  (e23 , M ) ,  (e24 , T), (e34 , M)}. 

C13 = {(e12 , M ) ,  (e13 , T ) , ( e l 4  , T ) ,  (e23 , M ) , ( e 2 4  , M ) , ( e 3 4  , T ) } ,  
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Figure 4. Ad hoc closeness table. 
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Ct4 = {(etz, T) ,  (e13, F H ) ,  (e14, T) ,  (e23, VH) ,  (ez4 , T) ,  (e34 , 1,I/-/)}, 

C21 = {(el2 , M ) ,  (el3, M ) ,  (e14, M ) ,  (e23 , T) ,  (e24 , T) ,  (e34, T)},  

C23 = {(el2 , M ) ,  (el3 , M ) ,  (e14, M ) ,  (e23 , T) ,  (e24 , L ) ,  (e34, L)} ,  

C24 = {(el2 , M ) ,  (el3 , M ) ,  (el4, M ) ,  (e23 , T) ,  (e24 , VH) ,  (e34 , I /H)},  

C31 = {(el2 , V/-/), (el3 , T) ,  (el4, T) ,  (e23 , V/--/), (e24 , V/-/), (e34 , T)}, 

C32 = {(el2 , VH) ,  (el3 , l /H) ,  (el4 , M ) ,  (e23 , T ) ,  (e24 , M ) ,  (e34 , T)},  

C34 = {(el2 , T) ,  (el3 , T) ,  (el4 , T) ,  (e23 , T) ,  (e24, T) ,  (e34 , T)},  

C41 = {(e12, T) ,  (el3 , H ) ,  (el4, N ) ,  (e23 , n ) ,  (e24 , T) ,  (e34 , T)},  

C42 = {(el2 , M ) ,  (el3 , M ) ,  (el4 , L ) ,  (e23 , T) ,  (e24 , M ) ,  (e34 , M)} ,  

C43 = {(el2 , T) ,  (el3 , T) ,  (el4 , T) ,  (e23 , T) ,  (e24, T) ,  (e34, T)}.  

For  example, lzc42(e12) is obta ined as 

/Xc,~(e12) = Neg(d(p~2 ,  p422)) = N e g ( d ( L ,  M ) )  

= Neg( t~ ( s  2, s3)) = N e g ( M )  = M,  

since L = s  2 and M - - s  3. 
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5.2. Computing Process 

In this first step of the computing process, for each pair of alternatives, 
(x i, xj), the different pair linguistic consensus measures are calculated 
according to the following definitions: 

DEFINITION 5.2 The pair linguistic consensus degree, PCq, is defined 
according to this expression: 

P C i j = d g Q l ( L C - ' ( t Z c q ( e k l ) , r k l ) , k =  l . . . . .  m - 1 ,  l = k  + 1  . . . . .  m), 

and rkt = dp( lzE(k) , lxe(l)) , with weighting vector o f  the L O W A  operator, 
w = [0.5,  0.5]. 

rkl is an averaging importance degree, which represents the importance 
degree of the coincidence degree of the pair of experts, e~l. It is obtained 
by means of the LOWA operator th with that weighting vector in order to 
achieve a mean aggregation of the importance degrees. L C  -~ represents a 
family of connectives, i.e., linguistic conjunction functions [17]. We shall use 
as linguistic conjunction functions the following t-norms, which are mono- 
tonically nonincreasing in the weights w, and satisfy the properties re- 
quired for any transformation function of the weighted information (a, w) 
[16, 17]: 

1. The classical Min operator: 

L C (  (a, w) = Min(a, w). 

2. The nilpotent Min operator: 

Min(a,w) if w > Neg(a), 
LCZ" (a,  w) = ~ go otherwise. 

3. The weakest conjunction: 

[ Min(a, w) if Max(a, w) = gM, 
L C S  (a, W) 

[ go otherwise. 

And ~Q1 is the LOWA operator for which the weighting vector is 
obtained by means of the linguistic quantifier, 01 , used to represent the 
concept of fuzzy majority of experts. 

REMARK 5.1 Note that Definition 5.2 explicitly requires this restriction, 
G = IT, i.e., that the linguistic domain used to express consensus measures 
is the same one used to express importance and relevance degrees. This 
limitation may be bridged if we use a method to transform labels among 
different linguistic domains, but this is not our goal in this paper. 
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EXAMPLE 5.3 Continuing with the G D M  context given in Example 3.2, 
from importance degrees of experts, for each pair of experts, eke, the 
averaging importance degrees, rkl ~ V, are calculated, 

{r12 = H,  r13 = M, r14 = M, r23 = H,  r24 ----- H ,  r34 = M}, 

in which, for example, as /Ze(1) = M = u 4 and /ze(2) = VH = v 6, then 
r12 --- H = v 5, since 5 = MIN{8, 4 + round((6 - 4) × 0.5)}. 

Here  and in the next examples, we assume the nilpotent Min operator, 
L C ~ ,  to manipulate linguistic weighted information, and as the linguistic 
quantifier Q1 the quantifier given in Example 3.3, "As many as possible," 
with the pair (0.5, 1). 

Then, in this context, from the fuzzy coincidence sets obtained in 
Example 5.2 and from the previous averaging importance degrees, on each 
pair of alternatives, (xi, xj), i 4= j, we calculate the pair linguistic consensus 
degree, PCij, by means of the conjunction function, LCZ' ,  and of the 
L O W A  operator, ~bQ,, with the weighting vector, W = [0, 0, 0, 0.32, 0.35, 
0.33]: 

{PC12 = EL, PCI3 = M ,  PC14 = M,}, 

{PC21 --- EL, PC23 = N, PC24 = EL,}, 

{PC31 = M, PC32 = EL, PC34 = M,}, 

{ PC41 = L, PCa2 = N, PC43 = M,}, 

in which, for example, PC41 is obtained as 

PC41 = ~ b Q , ( L C  2 (T, H) ,  LC~' (H,  M) ,  LC Z' (N,  M),  

L C 2  (H,  H) ,  LC 2 ( r ,  H) ,  LC Z' ( r ,  M))  = L. 

COMMENT 5.1 In general, the consensus degrees are low. For example, on 
the pairs of alternatives (x2, x3) and (x 4, x2), there is no consensus among 
the experts' opinions, and on the set of pairs of alternatives {(Xl, x2), (x2, 
xl), (Xa, x4), (x3, Xe)} the consensus is too low. Only a maximum consensus 
degree with a value M is achieved on some pairs of alternatives. However, 
if we observe the sets of fuzzy coincidences obtained in Example 5.2, their 
membership functions present, in general, values above the middle value, 
M, which should result in high consensus degrees. So, from this viewpoint, 
apparently, there is a contradiction. However, we must not forget that we 
are working implicitly in a heterogeneous G D M  context with different 
meanings of fuzzy majority. So, this situation sometimes is due to the 
influence of the chosen conjunction function, and in others, it is due to the 
influence of the chosen linguistic quantifier. In our case, both the conjunc- 
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tion function, LCS" and the linguistic quantifier "As many as possible" 
induce a pessimistic influence of the consensus state. So, for example, if 
LC(  ~ is chosen as a conjunction function, then PC12 = M, and similarly, 
other consensus degrees will be higher. In the same way, if "At least half" 
is chosen as a linguistic quantifier, maintaining L C f ,  then PC12 = H. 
Therefore, in short, we must choose both appropriate conjunction func- 
tions and linguistic quantifiers in tune with our consensus idea. 

Now, similarly, from the fuzzy coincidence on the pairs of alternatives, 
we define another pair linguistic consensus measure. 

DEFINITION 5.3 The pair linguistic proximity PPi~ of an expert e k is 
defined according to this expression: 

= 4 'o , (LC- ' ( lZc, j (ek , ) , lx•( , ) ) , ,  = 1  . . . . .  m , ,  ¢ k), PP,  
knowing that when tZc,j(e~t) ¢~ Cij then tZc,(e~t) = iXc,(et~). 

REMARK 5.2 Note that in this definition, as in Definition 5.2, the consen- 
sus measure is defined by means of the LOWA operator 4'0' and the 
conjunction function LC-* ,  and using the sets of fuzzy coincidence of 
Definition 5.1, but in this case considering only the importance degrees of 
the remaining experts and not the averaging importance degrees. There- 
fore, in this sense, /xe(1) is used as the importance degree given to the 
coincidence degree observed between the expert analyzed and another 
expert e~ in the group. 

EXAMPLE 5.4 As in Example 5.3, but this time assuming the importance 
degrees given in Example 3.2 instead of averaging importance degrees, on 
each pair of alternatives, (x/, xj), and for each expert e k, we calculate pair 
linguistic proximities PPi~ by means of the conjunction function L C f ,  and 
the LOWA operator 4'Q, with the weighting vector W = [0, 0.32, 0.68]: 

1. Expert el: 

{PP~e = L,  PP13 = M, PP14 = M, PP11 = N ,  e e l  3 = N ,  P P I  4 = N ,  

PP11 = M, PP~2 = M, PP134 = M,  PP~I = M, PPg2 = N,  PP~3 = M }  

2. Expert e2: 

{pp22 = L,  PP~3 = N,  PP214 = M, PP21 = L,  PP~3 = N,  PP~4 = L,  

PP21 = M,  PPf2 = M,  PPf4 = M, pp2 = M, PP422 = N,  PP423 = M} 

3. Expert e3: 

{ pp32 = L,  pp33 = M, pp34 = M,  Pp32, = L,  pp33 = N,  pp34 = L,  

pp31 = M,  pp32 = M, pp34 = M,  pp3 = M,  PP32 = N,  pP433 = M }  
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4. Expert e4: 

{ PP42 = M, pea3 = M, PP44 = M, PP41 = M, PP43 = N, PP44 = M, 

pp4 = M, PP~2 = N, pp4, = M, pp4 = M, PP442 = N, pp4 = M} 

For example, pp4 is obtained as 

pp4 = 4ao2(LC~ (L ,  M) ,  LC~' (M,  VII),  L C ~  (M,  M) )  = N. 

COMMENT 5.2 Logically, as in Example 5.3 and for the same reasons, 
here, all the experts present very low proximities--in any case, never 
higher than the middle value M. 

6. PHASE 2: WORKING ON THE ALTERNATIVES 

6.1. Coincidence Process 

In this step the concept of fuzzy coincidence among experts' opinions is 
defined, working on the level of the alternatives. 

DEFINITION 6.1 The fuzzy coincidence on an alternative, x i, is defined as 
a fuzzy set C i in the nonfuzzy set of  pairs of  experts, E 2, namely Ci = 
{(ekt, tzG(ekt))}, characterized by a membership function iZc~ : E 2 --~ G 
indicating the coincidence degree between experts e k and et's opinions on 
pairs o f  alternatives in which the alternative x i appears: 

iZci(ekt) = ~bQ2(LC~ ( tZcij(ekt),ri'j),LC-' ( tZcji(ekt),r'ij), 

j ~ i , j =  1 , . . . , n ) ,  

and r;j = c~( tzR(i) , lzR( j)) , with the weighting vector of  the LOWA operator 
given by W = [0.5, 0.5]. 

r;y is an averaging relevance degree, which represents the relevance 
degree of the coincidence degree achieved on the pair of altematives 
(x i, xi). It is obtained in the same way as rkt in Definition 5.2. In this case, 
the coincidence degree iZc~(ekt) is obtained by means of a LOWA operator 
for which the weighting vector is calculated by means of the linguistic 
quantifier QZ used to represent the concept of fuzzy majority of alterna- 
tives. The restriction pointed out in Remark 5.1 is applied here too and in 
the next definitions. 
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EXAMPLE 6.1 Continuing with the GDM context given in Example 3.2, 
from the relevance degrees of the alternatives, for each pair of alterna- 
tives, (xi, x:), the averaging relevance degrees r~: ~ V are 

' = V I I ,  ' = E H ,  ' = H ,  ' = H ,  ' = L ,  ' = M } .  {r12 r13 r14 r23 r24 r34 

in which, for example, as /zR(1)= EH = v 7 and p~R(2)= VH = v6, we 
have rt12 = EH = v 7, since 7 = MIN{8, 6 + round((7 - 6) × 0.5)}. 

Assuming, like Q2, the linguistic quantifier given in Example 3.3, i.e., 
"At least half," with the pair (0, 0.5), then, from the fuzzy coincidence sets 
calculated in Example 5.2 and from the above averaging relevance degrees, 
by means of the LOWA operator ~bO2 with W = [0.33, 0.35, 0.32, 0, 0, 0], 
and the conjunction function LC~' for each alternative x i its fuzzy 
coincidence set C i in E 2, is obtained, resulting in 

C 1 = {(e12 , V H ) ,  ( e l3  , V / - / ) ,  (e14 , EH),  (e23 , V H ) ,  (e24 , V H ) ,  (e34 , E H ) } ,  

C2 = {(e12, H) ,  (el3 , M),  (el4, H) ,  (e23, H),  (e24, H) ,  (e34 , H)},  

C 3 = { (e l2  , n ) ,  ( e l3  , V H ) ,  ( e l 4  , H) ,  (e23 , H) ,  (e24 , M), (e34 , H)}, 

C 4 ~-- {(e12 , n ) ,  ( e l 3  , H) ,  ( e l 4  , M), (e23 , n ) ,  (e24 , n ) ,  (e34 , H)}. 

For example, /Xc,(e14) is obtained as 

tZc,(el,) = 6Qz(LC~ (N,  H) ,  LC~" (M, L), LC Z" (M, M),  

L C ~  ( n ,  n ) ,  LC~" (N,  L),  LC~" (N,  M))  = M. 

6.2. Computing Process 

In this second step, on each alternative, Xg, the different alternative 
linguistic consensus measures are calculated according to the following 
definitions: 

DEFINITION 6.2 The alternative linguistic consensus degree, ACg, is de- 
fined according to this expression: 

AC i = ¢kQl(LC-~(txC(ekl),rkl); k =  1 . . . .  , m -  1 , / =  k + 1 . . . .  ,m).  

EXAMPLE 6.2 In the same way as we did in Example 5.3, on each 
alternative, xg, we calculate the alternative linguistic consensus degree, 
ACg, but this time, considering the aforementioned fuzzy coincidence sets 

{AC 1 = M, A C  2 = M, A C  3 = M, A C  4 --- M}, 
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in which, for example, A C  4 is obtained as 

h C  4 = dpQ~(LC-~ ( H ,  H ) ,  LC-"  ( n ,  M ) ,  LC-~ ( M ,  M ) ,  

LC-~ ( H ,  H ) ,  LC-~ ( H ,  H ) ,  LC  -~ (H ,  M ) )  = M 

COMMENT 6.1 On this level, the effect pointed out in Comment 5.1 also 
appears, since there is a maximum consensus degree with value M on any 
alternative, in spite of the fact that some observed coincidence degrees are 
high. Besides, here the effect of the averaging relevance degrees, used to 
calculate the coincidence degrees, is included. 

DEFINITION 6.3 The alternative linguistic proximity APi k of  an expert e k is 
defined according to this expression: 

APi k = dpQ~(LC-" ( tZc, (ekt) , l ze( l ) ) , l  : 1 , . . . , m , l  --/: k ) ,  

knowing that when i.tc(ekt) ~ C i, then tXci(ekt) = ~c(etk). 

EXAMPLE 6.3 In the same way we did in Example 5.4, here, on each 
alternative x i for each expert e k, we calculate the alternative linguistic 
proximity AP~ k, but this time, considering the aforementioned fuzzy coinci- 
dence sets 

{AP~ = L ,  AP~ = N,  A P  1 = EL ,  AP41 = EL},  

(AP?  = L ,  = EL ,  AP 3 = EL,  = EL} ,  

{AP3a = L,  AP~ = N,  AP~ = EL,  A P  2 = EL) ,  

{AP~ = M,  A P  4 = M,  A P  4 = M,  A P  4 = EL}.  

Here, for example, AP 4 is obtained as 

A P  4 = d~Q~(LC -~ ( E H ,  U ) ,  LC  " (VH, VII ) ,  L C  -' (EH ,  U ) )  = U .  

7. PHASE 3: WORKING ON THE RELATION 

7.1. Coincidence Process 

In this last phase, the concept of fuzzy coincidence among experts' 
opinions is defined, working on the level of the relation. 

DEFInrrtON 7.1 The fuzzy coincidence on the relation is defined as a fuzzy 
set C = {(ekt, lxC(ekt))} in the nonfuzzy set o f  pairs o f  experts, E 2, charac- 
terized by a membership function, ix c : E 2 ~ G, indicating the coincidence 
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degree between experts e k and el's opinions on all the pairs o f  alternatives: 

I~C(ek,) = q~a2(LC-~(lXc,(ek,), l x n ( i ) ) , i =  1 . . . . .  n).  

REMARK 7.1 In this definition, the coincidence degree, IxC(ekl), is ob- 
tained as in Definition 6.1, i.e., by means of the L O W A  operator ~bo2 and 
of the conjunction function L C  -~ , but in this case, using relevance 
degrees tZn(i) instead of averaging relevance degrees r~j representing the 
relevance degree of the coincidence degree achieved on each alternative 
X i • 

EXAMPLE 7.1 Assuming the relevance degrees given in Example 3.2, as 
was done in Example 6.1, for overall alternatives X, its set of fuzzy 
coincidence, C, in E 2 is obtained from relevance degrees and the fuzzy 
coincidence sets obtained in Example 6.1, by means of the L O W A  opera- 
tor the2 with the weighting vector W = [0.5, 0.5, 0, 0] and the same conjunc- 
tion function, L C { ,  resulting in 

C = {(el2 ,  I / H ) ,  (el3,1, '7-/),  (e14 , V H ) ,  (e23 , l / H ) ,  (e24 , H ) ,  (e34 , V H )} .  

For example, /.tc(el4) is obtained as 

/zc(e14) = ~bQ2(LC-~ (EH,  E H ) ,  L C  ~ ( H ,  M ) ,  

L C  -~ ( H ,  VH) ,  L C  -" (M ,  VL))  = VH. 

7.2. Computing Process 

In this last computing process, on overall opinions, i.e., on the relation, 
the relation linguistic consensus measures are calculated according to the 
following definitions: 

DEFINITION 7.2 The relation of  linguistic consensus degree, RC, is defined 
according to this expression: 

RC = q~QI(LC -~ (i~c(ekt) ,  rkl), k = 1 , . . . ,  m - 1, l = k + 1 . . . . .  m).  

DEFINITION 7.3 The relation o f  linguistic proximity Rpk  of  an expert e k is 
defined according to this expression: 

R e  k = d p Q I ( L C  -~ ( t ~ c ( e k l ) ,  I ~ E ( I ) ) ,  l = 1 , . . . ,  m, I :g k), 

knowing that when tzc(ekt) q~ C then lzc(ekt) = I~c(etk). 

EXAMPLE 7.2 Working as in Examples 6.2 and 6.3, then 

RC = M,  
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and 

respectively. 

{ ~ 1  = L , ~ 2 = E L , ~ 3 = L , ~ 4 = M } ,  

COMMENT 7.1 In view of the resulting consensus measures, which indi- 
cate a medium consensus current state, the consensus reaching process 
can stop or continue. In the second case, then, the moderator  has to make 
some of the following considerations: 

• Advise all the experts to change their opinions on pairs of alternatives, 
and in particular on the set of pairs of alternatives 

{(X 1, X2),(X 2, Xl),(X 2,x3),(x 2 ,  X4),(X 3,x2), (X 4,xl), (X 4, X2)}. 

• Advise the experts {el, e2, e3} to diminish their disagreement among 
them. 

• Decide on the usefulness of maintaining the pessimistic effect of the 
chosen linguistic quantifier to calculate the linguistic consensus mea- 
sures and of the chosen conjunction function in the following step of 
the consensus measuring process. 

8. CONCLUSIONS 

A consensus model is proposed in order  to develop a consensus reaching 
process in a GDM context with heterogeneous groups of experts and a 
heterogeneous set of alternatives in a heterogeneous linguistic framework. 
This model contains two types of consensus measures to guide the consen- 
sus process from two different perspectives. The first type, called linguistic 
consensus degrees, studies the consensus state from a global perspective, 
considering all the experts, and the second type, called linguistic consensus 
proximity, studies the consensus state from a particular perspective, i.e., 
considering particular experts. Furthermore,  all the types of measures are 
applied on three level of actions for representing the current consensus 
state. Therefore,  the consensus model presents three consensus measures 
of each type. The main features of the consensus model are the following 
ones: 

• its measures are based on a fuzzy characterization of the concept of 
coincidence defined from an ad hoc closeness table; 

• it uses different linguistic domains to express the opinions and the 
consensus measures; 

• its measures are calculated by means of the LOWA operator,  several 
conjunction functions, and linguistic quantifiers representing the con- 
cept of fuzzy majority; 
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• it presents a flexible structure, which allows us to use different 
linguistic quantifiers and different conjunction functions, with a view 
to inducing different consensus ideas. 

In short, a flexible consensus model has been presented. 
Finally, we point out two aspects that are outside of our objectives in 

this paper, but are of interest in a decision process too. They are: (1) the 
negotiation process between the experts and the moderator for reaching 
and acceptable consensus level [33], and (2) how to model the possible 
conflicts between experts or goals and their explicit representation [7, 8], 
which can help in the negotiation process and can enhance its explanation. 
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