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Abstract

Genetic algorithms are adaptive methods which may be used to solve search and optimization problems. Genetic algorithms
process a population of search space solutions with three operations: selection, crossover and mutation. An important problem
in the use of genetic algorithms is the premature convergence in a local optimum. Their main causes are the lack of diversity
in the population and the disproportionate relationship between exploitation and exploration. The crossover operator is
considered one of the most determinant elements for solving this problem.

In this paper, we present new crossover operators based on fuzzy connectives for real-coded genetic algorithms. These oper-
ators are designed to avoid the premature convergence problem. To do so, they should keep the right exploitation/exploration
balance to suitably model the diversity of the population. © 1997 Elsevier Science B.V.
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1. Introduction

Genetic algorithms (GA) are search algorithms
that use operations found in natural genetics to guide
the trek through a search space. GA are theoretically
and empirically proven to provide robust search capa-
bilities in complex spaces, offering a valid approach
to problems requiring efficient and effective search
(11,7, 14].

GA process a population of individuals, which rep-
resent search space solutions, employing three opera-
tors: selection, crossover and mutation. The selection
operator is formulated following Darwin’s princi-
ple of survival of the fittest, whereas the crossover
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and mutation operators have been inspired by the
mechanisms of gene mutation and chromosome
recombination found in biological genetics. Their
computational role is to introduce diversity into the
population probing into new regions unexplored by
the selection operator. Fixed-length and binary en-
coded strings (chromosomes) for the representation
of solutions have dominated GA research, since there
are theoretical results that show them to be the most
appropriate, and they are amenable to simple imple-
mentation. But the GA’s good properties do not stem
from the use of bit strings [2, 19]. For this reason,
the path has been lain towards the use of alphabets
with a higher cardinal, followed by the develop-
ment of new genetic operators (crossover and muta-
tion) on these alphabets. Non-binary codings include
real number representation, which would seem
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Fig. 1. Action interval for a gene.

Table 1
Intervals properties

Interval Property

[ai, 2] Exploration

[ai, Bi] Exploitation

[Bi, bi] Exploration
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Fig. 2. Genes generated using F, S, M and L.

With regard to these intervals, we propose four
functions: F, S, M and L defined from [a,b] X [a, 6]
into [a, b], a, b € R, and which fulfil:

(P1) Ve, ¢’ €la,bl, F(c,c') < min{c,c'},

(P2) Ve, ¢’ €{a,b), S(c,c’) = max{c,c'},

(P3) Ve, ¢’ €[a,b], min{c,c'} < M(c,c’)

< max{c,c'},

(P4) Ve, ¢’ €[a,b], F(c,c') < L(c,c’) < S(c,c’),

(P5) F, §, M, and L are monotone and non-

decreasing.

Each one of these functions allows us to combine
two genes giving results belonging to each one of
the aforementioned intervals. This is shown in Fig. 2,
where of = F(2;, ;) and B = S(o;, Bi).

These functions will have different exploration or
exploitation properties depending on their range. Al-
though the only zone that seems natural to be consid-
ered for obtaining offspring is the exploitation zone,
the other two zones may be shown to be appropri-
ate for introducing diversity in the population. The
four functions presented allow all these zones to be
covered.

2.1.1. F, S, M and L functions using fuzzy
connectives

Using t-norms, t-conorms, averaging functions and
generalized compensation operators [15, 16], we shall
associate to F a t-norm, to S a t-conorm, to M an
averaging operator and to L a generalized compensa-
tion operator. In order to do so, we need to transform
the genes, that will be combined, there from the
interval [a,b] into [0,1] and, later, the results into
[a,b].

Complying with a set of fuzzy connectives,
{T, G, P, C}, a set of functions {F, S, M, L}, associ-
ated with it, is built as described below: If ¢, ¢’ € [a, b]
then

F(e,dY=a+ (b—a)- T(s,s"),
S(c,c'y=a+(b—a)- G(s,5),
M(c,c'Y=a+ (b —a)- P(s,s"),
L, dY=a+ (b—a)-C(s,s"),

where s = (¢ — a)/(b — a) and ' = (¢’ - a)/(b — a).

These operators have the properties of being con-
tinuous and non-decreasing, and satisfy the respective
properties (P1)—(P5).

In this paper we shall use the families of fuzzy
connectives shown in Table 2.

These fuzzy connectives fulfill the following
property:

(P6) T4$T3 <T2 <T1 <Pj (]:1,,4)

<G <6 €G3 €06,

2.2. FCB-crossovers: F-crossover, S-crossover,
M-crossover and L-crossover

As follows, we shall present the use of the F, §, M
and L functions as crossover operators for RCGA.

Let us assume that Q€ {F,S,M,L} and C| =
(ch...ch)and C, =(c}...c}) are two chromosomes
that have been selected to apply the crossover
operator to them. We can generate the chromosome
H=(h ...hy)as

hi:Q(c},c?), i=1,...,n

This operator applies the same F, §, M or L
function for all the genes in the chromosomes to
crossover. For this reason, they will be called F-
crossover, S-crossover, M-crossover and L-crossover
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particularly natural when tackling optimization prob-
lems of parameters with variables in continuous do-
mains. So a chromosome is a vector of floating point
numbers whose size is kept the same as the length of
the vector which is the solution to the problem. GA
with this type of coding shall be called real-coded
GA (RCGA).

An important problem in the use of GA is prema-
ture convergence; the search becomes trapped in a
local optimum before the global optimum is found.
Premature convergence can be blamed on [18]: the
loss of critical alleies due to selection, the schemata
disruption due to crossover, and the parameter
setting such as mutation rate, crossover rate and pop-
ulation size. Mainly, all these issues produce two
effects which cause the problem [12]: the lack of
diversity in the population and a disproportionate
exploitation/exploration relationship; e.g., adequate
balance between a broad search and a sufficient re-
finement is not established.

In order to solve the problem, some tools are needed
to monitor the genetic process. In fact, there are sev-
eral strategies for maintaining population diversity and
a good exploitation/exploration relationship, such as
modified selection and crossover operators and opti-
mization of control parameters studies. A review of
these solutions can be found in [18].

The crossover operator plays a central rule in the
GA. It exploits the available information from the
population about the search space. It could be con-
sidered to be one of the algorithm’s defining charac-
teristics, and it is one of the components to be borne
in mind to improve the GA behaviour [13]. In [9] it
was pointed out that the crossover operator is a key
point for solving the premature convergence problem.
Numerous investigations have been attempted to find
optimal crossover rates and alternate more powerful
crossover (see [18]). Thus, solutions to this problem
can be found by designing new alternatives to this op-
erator, which should allow suitable levels of explo-
ration and exploitation to be established.

In this paper, in order to deal with this problem, we
present the fuzzy connectives based crossovers (FCB-
crossovers ), new crossover operators for RCGA based
on the use of fuzzy connectives: t-norms, t-conorms,
average functions and generalized compensation op-
erators [15, 16]. Furthermore, we propose a set of off-
spring selection mechanisms (OSM) which choose the

chromosomes (produced by the crossover) that will
be members of the population. These crossover oper-
ators allow us to introduce different exploration and
exploitation degrees and the OSM establish a rela-
tionship between these properties so that they induce
different diversity levels in the population and there-
fore the premature convergence problem may be erad-
icated. Experiments have been carried out in order
to study the efficiency of the proposed crossovers in
comparison with other crossover operators proposed
in the literature.

2. Fuzzy connectives based crossover operators
for RCGA

Next, we present new crossover operators for
RCGA which allow us to establish different explo-
ration and exploitation degrees and OSM inducing
different diversity levels in the population. In order to
do so, we need to develop the following steps.

1. Define genes combination functions.

2. Use these functions to define crossover operators
between two chromosomes.

3. Apply the crossover operators to the individuals
in the population, establishing the number and type of
operators along with the OSM to be used. Then, we
can design different RCGA families.

2.1. Genes combination functions

Let us consider c}, cf' € [a;, b;] two genes to be com-
bined and »; =min{c}, ¢}} and §; = max{c}, c¢}}. The
action interval [a;, b;] of these genes can be divided
into three intervals [a;, o;], [o;, f;] and [B;, b;]. These
intervals bound three regions to which the resultant
genes of some combination of the former may belong.
Moreover, considering a region [of, f/] with o] < «;
e B! = B would seem reasonable. Graphically it is
demonstrated in Fig 1.

The intervals described above could be classified
as exploration or exploitation zones. The interval with
both genes being the extremes is an exploitation zone,
the two intervals that remain on both sides are explo-
ration zones and the region with extremes o] and f;
could be considered as a relaxed exploitation zone.
Table 1 shows these considerations which are related
to Fig. 1.
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Table 4

Exploration and relaxed exploitation levels

Operators  Exploration Operators ~ Relaxed exploitation
level level
Fi 8 = Bj=p L =0 f=4p
F, & — Ly —
Fy S + Ls +
oj=a; Bl=b ol =a; fl =5
Table 5

The two most promising offspring of the four sub-
stitute their parents in the population.

ES4: For each pair of chromosomes from a total
of % - pe - N, four offspring are generated, the result
of applying an F-crossover, an S-crossover, an M-
crossover, and an L-crossover to them.

All four offspring will form part of the population,
in such a way that two of them substitute their par-
ents and the other two substitute two chromosomes
belonging to the remaining % of the population that
should undergo crossover.

These four strategies represent four ways to intro-
duce diversity as we describe below.

e ESI1 introduces two offspring which come from
crossover operators with exploration properties and
another one generated by crossover operators with
exploitation property.

o With regard to ES2, the properties or the form of
the search space will have an influence on the selec-
tion. With this strategy, the exploitation level of the
best regions is very high since it chooses the best
individuals from a set of four: two with exploitation
properties and two with exploration properties.

e ES3, the same as ES2, introduces a high exploita-
tion level, but with more underlying exploration,
caused by the use of an L-crossover instead of an
M-crossover.

e With ES4, four offspring are produced, each one
having been generated by crossover operators with
different exploitation and exploration properties.
Table 5 shows all these observations. With respect

to the aforementioned features, we considered three

types of diversity levels: strong, high and weak.

During the execution of a GA, the diversity lev-
els of the population can be observed by means of
the comparison of the Online measure [5], which is

Diversity levels associated with
the presented OSM

Strategy Diversity
ES1 Strong
ES2 Weak
ES3 Weak
ES4 High

defined as the average of all adaptation values up to
a determined trial. The further it is from the optimum
the more diversity would exist. It should be pointed
out that the features of the diversity levels will depend
on the crossover operators used.

3. Algorithms

Four families of algorithms using fuzzy con-
nectives based crossovers were built: RCGA-ES],
RCGA-ES2, RCGA-ES3 and RCGA-ES4. All these
families are made up by four algorithms, each one
of them uses an FCB-crossover class from Table 3
(Logical, Hamacher, Algebraic and Einstein). For an
RCGA-ES; family they will be denoted as RCGA-
ESi-Logical, RCGA-ESi-Hamacher, RCGA-ESi-
Algebraic and RCGA-ESi-Einstein respectively,
every algorithm uses its respective OSM STi.

The value of the 2 parameter, used by the fuzzy
connective P;(-, -) associated with each M;-crossover,
is 0.35 for the RCGA-ES2 family and 0.5 for the re-
maining families. We propose the use of non-uniform
mutation [14] which is considered the most suitable
mutation operator for RCGA [14, 10]. Its definition is
the following:
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Table 2
Families of fuzzy connectives

Family t-norm t-conorm Averaging fun. (0 < 1< 1) Gen. comp. op.
Logical Ti(x, y) = min(x, y) Gi(x, y) = max(x, y) Pl y)=(1—Ax+2y Ci=T/"*. G}
Hamacher hx,y)= ﬁy——xy Ga(x, y) = f—i—{:}% Py(x,y) = m ¢ 2= Py(T2,G;)
xy
Algebraic Ty(x, y)=xy Gi(x,y)=x+y —xy Pi(x,y) =x'"%y* €3 = P3(T3,G3)
Einstein Ty(x,y) = 1——0»-(—1——)‘%)(1—-——)5 Gy(x, y) = Ix—:)-cy; Pylx, y)= - (2~X )?—A(ﬂ)i Cs == Py(T4, Gs)
x ¥
Table 3

Set of crossover operators

Gene combination functions Crossover operators

Fy, 81, My, L) Logical
Fy, 85, My, Ly Hamacher
F3, 83, Ms, Ly Algebraic
Fy, S4, My, Ly Einstein

when the F, §, M and L functions are applied respec-
tively. It should be emphasized how these crossover
operators have different properties: the F-crossover
and S-crossover operators show exploration, the
M-crossover operators show exploitation and the
L-crossover operator shows relaxed exploitation.

Using the families of fuzzy connectives in Table 2
we can build four families of crossover operators. Each
one of them shall be called the same as the related
fuzzy connective family. Table 3 shows these.

According to the property (P6) of the families of
fuzzy connectives in Table 2, we can see that the de-
gree, in which each crossover operator shows its re-
lated property, will depend on the fuzzy connective on
which it is based. Thus, we dispose of F;-crossover
and S;-crossover operators with different exploration
levels; the Fs-crossover and Si-crossover show the
maximum exploration, whereas the F-crossover and
the S;-crossover represent the minimum exploration.
These operators give results between the extremes
of the exploration domain. With respect to the L;-
crossover, the level of relaxed exploitation directly
depends on the T;, G; and P; used for its definition.
Table 4 shows the behaviour of the interval definition
for the crossover operators.

2.3. Application of the FCB-crossovers

We considered four strategies for applying the pre-
sented crossover operators to the population, these
shall be called ES1-ES4. These strategies establish an
exploration/exploitation relationship by selecting the
most suitable offspring; therefore they induce required
diversity levels in the population and the premature
convergence can be eradicated.

ES1: For each pair of chromosomes from a total of
%- pe-N (obtained from a sampling scheme), where p,
is the crossover probability, N is the population size
and p¢-N is the number of chromosomes which should
undergo crossover, three offspring are generated, the
result of applying an F-crossover, an S-crossover and
an M -crossover to them.

The OSM introduce the three offspring into the pop-
ulation in such a way that two of them substitute their
parents and the remaining one substitutes a chromo-
some belonging to the remaining % of the population
that should undergo crossover.

ES2: For each pair of chromosomes from the total
population that undergoes crossover, four offspring are
generated, the result of applying an F-crossover, an
S-crossover, and two M-crossovers to them. Both M-
crossovers are based on the same averaging operator;
however the parameter A of one of them is 1 —~ 4 of
the other.

The OSM choose the two most promising offspring
of the four to substitute their parents in the population.

ES3: For each pair of chromosomes from the total
population that undergoes crossover, four offspring are
generated, the result of applying an F-crossover, an S-
crossover, an M-crossover and an L-crossover to them.
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chromosomes are built: H = (c},cl, ..., ¢}, ¢Z 5. ..,
cyand Hy =(cl,c3, ..., ¢t clyysenns cl).

Discrete crossover [17]: The chromosome H; =
(hy, ..., Ay, ..., hy) is generated, where A; is a ran-
domly (uniformly) chosen value of the set {c],c?}.

BLX-x crossover [6]: The chromosome H; =
(hy, ..., hsy ..., hy) is generated, where h; is a
randomly (uniformly) chosen number from the
interval [ —7 o, ™ 47 -a], ¢™* = max(c},c?),
et = min(c},c?), and I = " — cmin,

In [10], experiments with several values of o are
tried. The value which allowed the best results to be
obtained was o = 0.3.

Linear crossover [21]: Treating the parents as two
points p; and ps, three offspring are generated: 0.5p, +
0.5p2, 1.5p1 —0.5p; and —0.5p; + 1.5p,. The two most
promising points are selected to substitute the parents
in the population.

The algorithms that use each one of these
crossovers shall be called RCGA-Simple, RCGA-
Discrete, RCGA-BLX and RCGA-Linear respec-
tively. The mutation operator used in RCGA-Discrete
is Miihlenbein’s mutation [17]. The non-uniform
mutation is used for the remaining algorithms.

Also, a binary-coded GA (BCGA) has been in-
cluded, which is based on a two-point crossover.
For this purpose, we used the GENESIS program
[8]. The number of binary genes assigned to each
variable is 26 for f; and 11 for the remaining
functions. Therefore, the precision is approximately
1078,

We carried out our experiments using the follow-
ing parameters: the population size is 61 individuals,
the crossover probability p. = 0.6, the probability of
chromosome update p, = p,, - 25 =0.6, the parameter
b used by the non-uniform mutation is 5, the selection
procedure was linear ranking [3] and elitist selection
[5] and the sampling model used was stochastic uni-
versal sampling [4]. We executed all the algorithms 5
times, each one with 5000 generations. For f5>, we re-
peated the experiments with 10 000 generations, since
it is highly complex.

4.1. Results

Table 6 shows the average values of the results
obtained. For each function the best in 5000 (for f>

10 000 as well) generations is shown and the final On-
line measure.

For the RCGA-ES2 and RCGA-ES3 families, Ta-
ble 7 shows the percentages in which each crossover
operator generated a chromosome that was chosen
by the respective OSM to form part of the pop-
ulation. With these values, we shall discover the
levels in which each operator produced promising
offspring.

4.2. Results analysis

In general, the best algorithms belong to the RCGA-
ES2 and RCGA-ES3 families. These families use an
OSM that provides a weak diversity in the popula-
tion; we can see that the values of the Online measure
returned by these families are similar to the ones re-
turned by the RCGA with simple, discrete, BLX-x and
linear crossovers. The results of RCGA-ES3 in fi, f3
and f; are slightly lower than the ones in RCGA-ES2,
since the use of the relaxed exploitation zone produces
greater diversity levels (observe the Online measure).
In the difficult /5, this allowed the best solutions to be
found.

We can point out the suitability of the OSM that
chooses two individuals from a set of four: two with
exploration properties and two with exploitation prop-
erties. However, this mechanism is very expensive
since it needs too many evaluations.

In most functions, the RCGA-ES1 and RCGA-
ES4 families returned low results; the replacement
in the population of two parents by a set of three
or four offspring produces too much diversity and
thus slow convergence. To sum up, the exploration
property related to these offspring selection mecha-
nisms leads to a high diversity level during the GA
execution; the Online measure in these families is
greater than in the remaining executed algorithms.
However, in f; this property was useful (RCGA-ES1-
Hamacher has returned the second best result for this
function).

Among the FBC-crossovers the Logical crossovers
show the best behaviours. If we study Table 7 we can
observe that for the Logical families the use of the F'-
crossover and S-crossover was considerable. This has
allowed a suitable exploitation/exploration balance to
be reached.
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Non-uniform mutation: f C = (¢y,..., ¢y ..., Cp)
is a chromosome and c¢;€{a;,b;] is the ele-
ment to be mutated, the resulting vector will be

C'=(c1,..., ¢}, ..., cn), where ¢/ is determined by
; Cj+A(t,bi —C,') if‘C:O,

c: =

! c,-—A(t,c,v—a,-) ift=1,

7 being a random number which can have a value of
zero or one, and

_ Ty
At y) = y(1 = 1701,

where r 1s a random number from the interval [0, 1],
T is the maximum number of generations and & is a
parameter chosen by the user, which determines the
degree of dependency on the number of iterations.
This function gives a value in the range [0, y] such
that the probability of returning a number close to
zero increases as the algorithm advances. This prop-
erty causes this operator to make a uniform search in
the initial space when ¢ is small, and very locally at
later stages.

4. Experiments

Minimization experiments on the following four
functions were carried out in order to study the efh-
ciency of the algorithms proposed.

Sphere model [5]
n
filx) = Zl x;

=512 <x <5.12

fT:f1(0750):0

Generalized Rosenbrock’s function [5]
n—1

Sa(x) = >(100 - (x4, ——xiz)2 +(x; —1)?)
i=1

=512 <x; €512

fi=f21,...,1)=0

Generalized Rastringin's function [20)]

f3(x) = An + Xn:x,z — Acos(wx;)
A=10,0=21

=512 <x < 5.12
f3=7300,...,0)=0

Ackley's function [1]

fa(x) =—a - exp (—b LS x,2>

n
—exp(% 3" cos(c -xi)) +a+te
=i
a=20,6=02,¢c=2n
—32.768 < x; < 32.768

fi=f4(0,...,0)=0
where n = 25.

/1 is a continuous, strictly convex and unimodal
function. f; is a continuous and unimodal function,
with the optimum located in a steep parabolic valley
with a flat bottom. This feature will probably cause
slow progress in many algorithms since they should
permanently change their search direction to reach the
optimum. f3 is a scalable, continuous and multimodal
function which is made from f| by modulating it with
A cos(wx;). Finally, f4 is a continuous and multimodal
function. It is formed by a platform with a lot of local
optimums and a large hole where the global optimum
is located. This hole has some local optimums placed
on small plains. This may cause a problem when
the search direction goes down towards the global
optimum.

A GA does not need too much diversity to reach
the global optimum of f7 since there is only one op-
timum which could be easily accessed. On the other
side, for the multimodal functions, the diversity is
fundamental for finding a way to lead towards the
global optimum. Also, in the case of f;, diversity can
help to find solutions close to the parabolic valley,
and so avoid slow progress.

We executed all the algorithms presented along with
three RCGA based on other crossover operators pro-
posed in the literature. These operators were widely
studied in [10] and they seem very adequate.

Simple crossover [21, 14]: A position i€ {l,2,
...,n — 1} is randomly chosen and the two new
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Table 7
Utilization percentage of the crossover operators

Functions Algorithms F-crossover S-crossover M-crossover M- or L-crossover
fi RCGA-ES2-Logical 18.836889 18.778556 31171111 31.213444
RCGA-ES2-Hamacher 0.006889 0.315333 49.841222 49.836556
RCGA-ES2-Algebraic 0.000000 0.004444 49997778 49.997778
RCGA-ES2-Einstein 0.000000 0.000111 49.999889 50.000000
RCGA-ES3-Logical 13.728889 14.455000 36.168000 35.648111
RCGA-ES3-Hamacher 0.386556 12.493889 49.613444 37.506111
RCGA-ES3-Algebraic 0.237778 8.879556 49.939444 40943222
RCGA-ES3-Einstein 5.585111 9.787111 48.796889 35.830889
i) RCGA-ES2-Logical 19.552667 19.788889 30.355778 30.302667
RCGA-ES2-Hamacher 0.073778 1.005556 49.461556 49459111
RCGA-ES2-Algebraic 0.000222 0.103667 49.948444 49.947667
RCGA-ES2-Einstein 0.000000 0.011222 49.994444 49.994333
RCGA-ES3-Logical 15.924333 15.966333 33.717889 34.391444
RCGA-ES3-Hamacher 0.554556 14.404556 49.444667 35.596222
RCGA-ES3-Algebraic 0.245556 8.466444 49.943778 41344222
RCGA-ES3-Einstein 4.264444 7.874111 49.270444 38.591000
b RCGA-ES2-Logical 27.052111 27.001111 22.949444 22997333
RCGA-ES2-Hamacher 13.189111 15.415444 35.724000 35.671444
RCGA-ES2-Algebraic 0.025111 0.241839 49.868222 49.864778
RCGA-ES2-Einstein 0.000667 0.035000 49.979667 49.984667
RCGA-ES3-Logical 25378111 25.324333 24.014667 25.282889
RCGA-ES3-Hamacher 15.125444 26.221667 29.544889 29.108000
RCGA-ES3-Algebraic 17.545111 22.616556 32.736444 27.101889
RCGA-ES3-Einstein 19.394444 22.209778 32.836222 25.559556
Ja RCGA-ES2-Logical 19.621000 19.655889 30.360111 30.363000
RCGA-ES2-Hamacher 0.008000 0.326111 49.834667 49.831222
RCGA-ES2-Algebraic 0.000111 0.005556 49.996889 49.997444
RCGA-ES2-Einstein 0.000111 0.000778 49.999444 49.999667
RCGA-ES3-Logical 14.542000 15307556 35.153889 34.996556
RCGA-ES3-Hamacher 0.393667 12.557667 49.598222 37.450444
RCGA-ES3-Algebraic 14.437667 20.777222 36.198222 28.586889
RCGA-ES3-Einstein 20.576444 24.509000 29.183111 25.731444

5. Conclusions

In this paper, we presented tools to model the pop-
ulation diversity of the RCGA. These tools are made
up of two components
e Crossover operators families that introduce different

exploitation and exploration degrees.

e OSM that allow us to induce different diversity lev-
els once the operator family is fixed.

The results of the experiments show the suitability
of using the Logical FCB-crossovers and the OSM that
choose the two best elements from a set of four where

the exploitation and exploration properties are equi-
tably assigned. However, other types of combinations
stood out for some functions (for example RCGA-
ES1 for f3). Then, for a particular problem, it should
be the user who can select the more suitable family
of operator and OSM to induce the best diversity lev-
els, and so avoid the premature convergence problem.
Tables 4 and 5 can help him to do so.

Finally, we consider the following question about
the FCB-crossovers: What kind of operators are they
really?. For Eshelman [6] a crossover operator should
take into account the iterations between the genes of
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Table 6
Results
N f f Ja

Algorithms 5000 Online 5000 10000 Online 5000 Online 5000 Online
BCGA 6.0E—10 3.6E+00 31.1E+01 1.6E+01 2.9E+03 1.7E+01 3.2E+01 6.9E—05 2.9E+00
RCGA-Simple 1.2E—12 9.7E4+-00 1.3E+01 3.0E+01 8.6E+03 5.3E+00 5.6E+01 4.6E—-06 6.0E+00
RCGA-Discrete 8.5E—-07 1.5E+00 49E+01 2.3E+01 7.8E+02 3.1E-04 1.4E+01 4.8E-03 2.7E+00
RCGA-BLX 7.5E—14 5.3E4+00 2. 1E401 2.0E+01 3.6E+03 1.3E+01 1.0E+02 1.3E—06 5.5E+400
RCGA-Linear 1.7TE—14 8.0E+00 2.1E4+01 2.0E+01 6.2E+03 1.5E+01 1.7E+02 6.9E—07 6.0E+00
RCGA-ES1-Logical 45E—11 3.7E+00 2.2E+01 2.1E+01 2.7E+03 1.0E+01 7.3E+01 3.7E-05 4.6E+00
RCGA-ES1-Hamacher 1.1E—03 1.0E+02 1.3E+01 1.2E+01 8.2E+04 2.0E+01 3.6E4+02 8.7E—01 1.7E+01
RCGA-ESI-Algebraic  7.3E—03 3.5E+02 1.3E+02 6.6E-+01 7.3E+05 2.7E+01 5.6E+02 1.3E+00 2.1E+01
RCGA-ES1-Einstein 4.7E-03 3.9E+02 1.6E+02 8.3E+01 8.3E+05 2.5E+01 5.7E+02 1.4E+00 2.1E+01
RCGA-ES2-Logical 22E—15 12E+00 2.1E4+01 20E+01 8.6E-02 4.8E—13 22E+01 23E-07 2.9E+00
RCGA-ES2-Hamacher 1.6E—12 4.6E+00 22E+01 2.1E+01 18E-+03 1.6E+01 19E+02 5.7E-06  4.8E+00
RCGA-ES2-Algebraic 1.3E—12 3.3E+00 2.2E+01 2.1E+01 1.5E+03 1.5E+4-01 8.9E+01 6.3E—06 4.4E+00
RCGA-ES2-Einstein 1.6E—12 2.9E+00 2.2E+01 2.1E+01 1.6E+03 1.9E+01 9.1E+01 6.6E—06 42E+00
RCGA-ES3-Logical 1.0E—14 1.4E+00 2.1E+01 2.0E+01 8.9E-+02 1.5E—12 2.4E401 4.6E—07 3.2E+00
RCGA-ES3-Hamacher 4.8E—04 1.5E+01 9.3E+00 9.3E+00 2.5E+03 1.9E+01 2.2E+02 8. 1E-01 1.2E+01
RCGA-ES3-Algebraic 1.0E—02 1.7E+02 7.9E+01 5.9E+01 2.5E+05 2.3E+01 4.7E+02 1.1E+00 2.0E+01
RCGA-ES3-Einstein 2.0E-03 2.6E+02 9.5E+01 3.4E+01 5.9E+05 1.7E+01 4.8E+02 1.5E400 2.1E+01
RCGA-ES4-Logical 6.7E—11 34E+00 2.2E+4-01 2.1E+01 2.3E+03 1.3E+01 8.7E+01 43E-05 4.6E+00
RCGA-ES4-Hamacher 3.9E—04 9.3E+01 2.1E+01 1.3E4-01 8.0E+04 2.2E+01 3.7E402 7.2E-01 1.7E+01
RCGA-ES4-Algebraic  2.6E—03 4 8E+02 8.4E+01 7.1E+-01 1.3E+06 2.3E+01 6.4E+02 89E—03 2.0E+01
RCGA-ES4-Einstein 2.6E—-03 5.2E+02 8.3E+01 1.0E4-02 1.5E+06 2.1E+01 6.5E4-02 1.3E-01 2.0E+-01

The decrease in the participation percentage of the
F-crossovers and S-crossovers from the Logical fam-
ilies to the Einstein ones, in which it is approximately
zero, and the increase in the Online measure in RCGA-
ES1 and RCGA-ES4 from the Logical algorithms to
the Einstein ones suggests that diversity is greater
using F-crossover and S-crossover operators distant
from the Logical (which agrees with the properties
shown in Table 4). The reason is that these operators
generate individual ones which do not generally pre-
serve the properties of their parents, and so they in-
troduce greater diversity. Under these circumstances,
in the RCGA-ES2 family the OSM only considers the
offspring generated by the averaging operators produc-
ing the premature convergence. In fact, under these
OSM, the best results were found using the Logical
family. The effect is similar in RCGA-ES3 for fi and

f>. For the multimodal functions (f3 and f4) the re-
laxed diversity of the L-crossover has competed with
the diversity of the F-crossover and the S-crossover
to achieve the best solutions. Since in these functions
the diversity allows good individuals to be found, ap-
proximately all these operators generated the same
proportions of best individuals (see the percentages of
RCGA-ES3 for f5 and f; in Table 7).

If we consider the RCGA-ES2 and RCGA-ES3 fam-
ilies, from the results in Table 7 we could deduce
that the maximum diversity level should be reached
with the use of the Logical crossovers since the per-
centage of generated offspring belonging to the ex-
ploration zones is approximately 40%. However, the
join effect of the use of operators far from the Logi-
cal together with the OSM of ES2 and ES3 produces
over-exploitation, and so high Online measures.



