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AbstratGeneti algorithms (GAs) represent a lass of adaptive searh tehniquesinspired by natural evolution mehanisms. The searh properties of GAsmake them suitable to be used in mahine learning proesses and for devel-oping fuzzy systems, the so-alled geneti fuzzy systems (GFSs).In this ontribution, we disuss genetis-based mahine learning proessespresenting the iterative rule learning approah, and a speial kind of GFS, amulti-stage GFS based on the iterative rule learning approah, by learningfrom examples.Keywords: Fuzzy logi, fuzzy rules, geneti algorithms, mahine learning.1 IntrodutionGeneti Algorithms (GAs) are searh algorithms that use operations found in nat-ural genetis to guide the trek through a searh spae. GAs are theoretially andempirially proven to provide robust searh apabilities in omplex spaes, o�eringa valid approah to problems requiring eÆient and e�etive searhing.Muh of the interest in GAs is due to the fat that they provide a set of ef-�ient domain-independent searh heuristi whih are a signi�ant improvementover traditional methods without the need for inorporating highly domain-spei�knowledge.Although GAs are not learning algorithms, they may o�er a powerful anddomain-independent searh method for a variety of learning tasks. In fat, therehas been a good deal of interest in using GAs for mahine learning problems [22, 14℄.Two alternative approahes, in whih GAs have been applied to learning pro-esses, have been mainly used, the Mihigan ([29℄) and the Pittsburgh ([38℄) ap-proahes. In the �rst one, the hromosomes orrespond to lassi�er rules whih�This work has been supported by the CICYT under Projets TIC95-0453 and TIC96-0778233



234 A. Gonz�alez & F. Herreraare evolved as a whole, whereas in the Pittsburgh approah, eah hromosomeenodes a omplete set of lassi�ers. A third way will be presented as an alterna-tive to these models, the iterative rule learning approah where eah hromosomesrepresents only one rule learning.On other hand, GAs have proven to be a powerful tool for automating the def-inition of the fuzzy systems knowledge base (KB), sine adaptive ontrol, learningand self-organization fuzzy systems an be onsidered in a lot of ases as optimiza-tion or searh proesses. Their advantages have extended the use of GA s in thedevelopment of a wide range of approahes for designing fuzzy systems in the lastfew years. These approahes reeive the general name of Geneti Fuzzy Systems(GFSs) [8℄.The KB is omposed of two omponents, a Data Base (DB), ontaining themembership funtions of the fuzzy sets speifying the meaning of the linguistiterms, and a Rule Base (RB), onstituted by the olletion of fuzzy rules rep-resenting the expert knowledge. It is possible to distinguish di�erent groups ofGFSs aording to the KB omponents inluded in the learning proess: learningor tuning the DB with a �xed set of rules, learning the RB with �xed membershipfuntion sets and learning the KB, that is, the fuzzy membership funtions andfuzzy rules.The geneti learning proesses belonging to the latter two last lasses an dothe learning simultaneously or in various stages. In the following we present amulti-stage GFS (MSGFS) for learning RBs or KBs based on the iterative rulelearning approah.In order to do so, the paper is organized as follows: The next Setion is devotedto presenting the GAs; in Setion 3, we introdue the geneti learning approaheswith speial attention to the iterative rule learning approah; in Setion 4 the GFSsand the MSGFS are presented; and in the �nal Setion, some onluding remarksare made.2 Geneti AlgorithmsGAs are searh algorithms that use operations found in natural genetis to guidethe trek through a searh spae. GAs use a diret analogy of natural behaviour.They work with a population of hromosomes, eah one representing a possiblesolution to a given problem. Eah hromosome is assigned a �tness sore aordingto how good a solution to the problem it is. GAs are theoretially and empiriallyproven to provide robust searh in omplex spaes, giving a valid approah toproblems requiring eÆient and e�etive searhing [15℄.Any GA starts with a population of randomly generated solutions, hromo-somes, and advanes toward better solutions by applying geneti operators, mod-eled on the geneti proesses ourring in nature. In these algorithms we maintain apopulation of solutions for a given problem; this population undergoes evolution ina form of natural seletion. In eah generation, relatively good solutions reprodueto give o�spring that replae the relatively bad solutions whih die. An evaluationor �tness funtion plays the role of the environment to distinguish between good



Multi-stage Geneti Fuzzy Systems Based on the Iterative Rule... 235and bad solutions. The proess of going from the urrent population to the nextpopulation onstitutes one generation in the exeution of a GA.Although there are many possible variants of the basi GA, the fundamentalunderlying mehanism operates on a population of hromosomes or individuals andonsists of three operations:(1) evaluation of individual �tness,(2) formation of a gene pool (intermediate population) and(3) reombination and mutation.The next proedure shows the struture of a simple GA.Proedure Geneti Algorithmbegin (1)t = 0;initialize P (t);evaluate P (t);While (Not termination-ondition) dobegin (2)t = t+ 1;selet P (t) from P (t� 1);reombine P (t);evaluate P (t);end (2)end (1)A �tness funtion must be devised for eah problem to be solved. Given apartiular hromosome, a solution, the �tness funtion returns a single numerial�tness, whih is supposed to be proportional to the utility or adaptation of theindividual whih that hromosome represents.There are a number of ways of making this seletion. We might view the pop-ulation as mapping onto a roulette wheel, where eah hromosome is representedby a spae that proportionally orresponds to its �tness. By repeatedly spinningthe roulette wheel, hromosomes are hosen using "stohasti sampling with re-plaement" to �ll the intermediate population. The seletion proedure proposedin [1℄, and alled stohasti universal sampling is one of the most eÆient, wherethe number of o�spring of any struture is bound by the oor and eiling of theexpeted number of o�spring.After seletion has been arried out the onstrution of the intermediate popu-lation is omplete, then the geneti operators, rossover and mutation, an our.A rossover operator ombines the features of two parent strutures to formtwo similar o�spring. It is applied at a random position with a probability ofperformane, the rossover probability, P. A mutation operator arbitrarily altersone or more omponents of a seleted struture so as to inrease the struturalvariability of the population. Eah position of eah solution vetor in the population



236 A. Gonz�alez & F. Herreraundergoes a random hange aording to a probability de�ned by a mutation rate,the mutation probability, Pm.It is generally aepted that a GA to solve a problem must take into aountthe following �ve omponents:1. A geneti representation of solutions to the problem,2. a way to reate an initial population of solutions,3. an evaluation funtion whih gives the �tness of eah hromosome,4. geneti operators that alter the geneti omposition of o�spring during repro-dution, and5. values for the parameters that the GA uses (population size, probabilities ofapplying geneti operators, et.).The basi priniples of GAs were �rst laid down rigorously by Holland [28℄, andare well desribed in many books suh as [15, 35℄.3 Geneti Learning ApproahesSine the beginning of the 80s there has been growing interest in applying methodsbased on GAs to automati learning problems, espeially the learning of produtionrules on the basis of attribute-evaluated example sets. The main problem in theseappliations onsists of �nding a "omfortable" representation in the sense that itmight be apable both of gathering the problem's harateristis and representingthe potential solutions.Classially, two geneti learning approahes have been proposed:The Mihigan approah: The hromosomes are individual rules and arules set is represented by the entire population. The olletion of rulesare modi�ed over time via interation with the environment. This modelmaintains the population of lassi�ers with redit assignment, rule disoveryand geneti operations applied at the level of the individual rule.There is a onsiderable variety in the strutural and funtional details of thismodel. The prototype organization is omposed of three parts:1. the performane system that interats with the environment,2. the redit assignment system developing learning by the modi�ationand adjustment of onit-resolution parameters of the lassi�er set,their strengths; Holland's Buket Brigade is one example of it [30℄, and3. the lassi�er disovery proess that generates new lassi�ers from a las-si�er set by means of GAs.A omplete desription is to be found in [3℄.



Multi-stage Geneti Fuzzy Systems Based on the Iterative Rule... 237The Pittsburgh approah: Eah hromosome enodes a whole lassi�erset. Credit is assigned to the omplete set of rules via interation with theenvironment. Crossover serves to provide a new ombination of rules andmutation provides new rules. In some ases, variable-length lassi�er sets areused, employing modi�ed geneti operators for dealing with these variable-length and position independent genomes.This model was initially proposed by Smith in 1980 [38℄. Reent instanes ofthis approah are the GABIL [13℄ and GIL [31℄ systems.As mentioned in [12℄, the Mihigan approah will prove to be most useful inan on-line, real-time environment in whih radial hanges in behaviour annot betolerated, whereas the Pittsburgh approah will be more useful for o�-line environ-ments in whih more leisurely exploration and more radial behavioral hanges areaeptable.As ommented in [4℄, the roles of the GAs in the Pittsburgh and Mihiganapproahes are rather di�erent, and the distintion arises from the di�erene inthe level at whih the GAs are applied. Both approahes, at least in their simplestforms, su�er from distint known problems whih arise from the di�erent way inwhih the GA is applied.The major problem in the Mihigan approah is that of resolving the onitbetween the individual and olletive interests of lassi�ers within the system. Theultimate aim of a learning lassi�er system is to evolve a set of o-adapted ruleswhih at together in solving some problem. In a Mihigan style system, withseletion and replaement at the level of the individual rule, rules whih ooperateto e�et good ations and reeive payo� also ompete with eah other under theation of the GA. Suh a onit between individual and olletive interests ofindividual lassi�ers does not arise with Pittsburgh-style lassi�er systems, sinereprodutive ompetition ours between omplete rule sets rather than individualrules. However, maintenane and evaluation of a population of omplete rule-sets inPittsburgh-style systems an often lead to a muh greater omputational burden(in terms of both memory and proessing time). Therefore, problems with thePittsburgh approah have proven to be, at least, equally as hallenging. Althoughthe approah avoids the problem of expliit ompetition between lassi�ers, largeamounts of omputing resoures are required to evaluate a omplete population ofrule-sets.As ompared to the two lassi models (the Mihigan and Pittsburgh ones), inreent literature we may �nd di�erent algorithms that use a new learning modelbased on GAs, the iterative rule learning approah. In the latter model, as in theMihigan one, eah hromosome in the population represents a single rule, but on-trary to the latter, only the best individual is onsidered as the solution, disardingthe remaining hromosomes in the population. Therefore, in the iterative model,the GA provides a partial solution to the problem of learning. This model has beenused in papers suh as [42, 16, 18, 19, 24, 25, 9℄ and attempts to redue the searhspae for the possible solutions.In order to obtain a set of rules, whih will be a true solution to the problem,the GA has to be plaed within an iterative sheme similar to the following:



238 A. Gonz�alez & F. Herrera1. Use a GA to obtain a rule for the system.2. Inorporate the rule into the �nal set of rules.3. Penalize this rule.4. If the set of rules obtained is adequate to represent the examples in thetraining set, the system ends up returning the set of rules as the solution.Otherwise return to step 1.A very easy way to penalize the rules already obtained, and thus be able tolearn new rules, onsists of eliminating from the training set all those examplesthat are overed by the set of rules obtained previously. Some learning algorithmsnot based on GAs, suh as those in the AQ family or the CN2 algorithm [5℄, usethis way of penalizing rules.This learning way is to allow "nihes" and "speies" formation. Speies forma-tion seems partiularly appealing for onept learning, onsidering the proess asthe learning of multimodal onepts.The main di�erene with respet to the Mihigan approah is that the �tnessof eah hromosome is omputed individually, without taking into aount ooper-ation with other ones. This redues substantially the searh spae, beause in eahsequene of iterations only one rule is searhed.In the literature we an �nd some geneti learning proesses that use this modelsuh as SLAVE [18℄, SIA [42℄ and the geneti generation proess proposed in [24℄.These three geneti learning proesses use the iterative rule learning approah withlight di�erene:� SLAVE launhes a new GA to �nd a new rule after having eliminated theexamples overed by the last rule obtained. SLAVE was designed to workwith or without linguisti information.� SIA uses a single GA that goes on deteting rules and eliminating the exam-ples overed by the latter. SIA an only work with risp data.� The geneti generation proess runs a GA for obtaining the best rule aordingto di�erent features, assigns a relative overing value to every example, andremoves the examples with a overing value greater than a onstant.From the desription above, we may see that in order to implement a learningalgorithm based on GAs using the iterative rule learning approah, we need, atleast, the following:1. a riterion for seleting the best rule in eah iteration,2. a penalization riterion, and3. a riterion for determining when enough rules are available to represent theexamples in the training set.



Multi-stage Geneti Fuzzy Systems Based on the Iterative Rule... 239The �rst riterion is normally assoiated with one or several harateristis thatare desirable so as to determine good rules. Usually riteria about the rule strengthhave been proposed (number of examples overed), riteria of onsisteny of therule or riteria of simpliity.The seond riterion is often assoiated, although it is not neessary, with theelimination of the examples overed by the previous rules.Finally, the third riterion is assoiated with the ompleteness of the set ofrules and must be taken into aount when we an say that all the examples inthe training set are suÆiently overed and no more rules are needed to representthem.4 Geneti Fuzzy SystemsIn this Setion we briey introdue the GFSs and present a fuzzy rule genetilearning proess, the MSGFS for learning either RBs or KBs in di�erent stages,generating the fuzzy rules using the iterative rule learning approah.4.1 Regarding Geneti Fuzzy SystemsThe GAs' properties make them suitable to be used in order to design and optimizefuzzy systems. The automati de�nition of the KBmay be onsidered in many asesas optimization or searh proesses. The appliation to the learning and/or tuningof KB has provided fairly promising results.As mentioned in the introdution, GAs are applied to modify/learning the DBand/or the RB, and it is possible to distinguish three di�erent groups of GFSsdepending on the KB omponents inluded in the geneti learning proess.Geneti de�nition of the DB. The tuning of the fuzzy rule membership fun-tions is an important task in the design of fuzzy systems. The tuning method usingGAs �ts the membership funtions of the fuzzy rules dealing with their parametersaording to a �tness funtion. Several methods have been proposed in order tode�ne the DB using GAs, based on the existene of a previously de�ned RB. Eahhromosome involved in the evolution proess represents di�erent DB de�nitions,that is, eah hromosome ontains a oding of the whole membership funtionsgiving meaning to the linguisti terms. Two possibilities an be onsidered de-pending on whether the fuzzy model nature is desriptive or approximative, eitherto ode the fuzzy partition maintaining a linguisti desription of the system, orto ode the rule membership funtions tuning the parameters of a label loally forevery rule, thereby obtaining a fuzzy approximative model. Di�erent approahesare presented in [32, 39, 2, 23℄.Geneti derivation of the RB. All the methods belonging to this family aresuppose the existene a olletion of fuzzy set membership funtions giving meaningto the labels, a DB, and learning a rule base. Some approahes are presented in[33, 40, 36, 18, 19℄.



240 A. Gonz�alez & F. HerreraGeneti learning of the KB. There are many approahes for the geneti learn-ing proesses of a omplete KB, fuzzy rules and membership funtions. We �ndapproahes presenting variable hromosome length, others oding a �xed number ofrules and their membership funtions, several working with hromosomes enodingsingle ontrol rules instead of a omplete KBs, et. Some approahes are presentedin [6, 34, 37, 25, 41, 4, 9℄.For a more detailed desription see [8℄, for an extensive bibliography see [7℄(setion 3.13), and some approahes may be found in [27℄.In the following, we present the MSGFS for learning RB or KB based on theiterative rule learning approah.4.2 A Multi-Stage Geneti Fuzzy SystemLearning algorithms that use the iterative rule learning approah do not envisageany relationship between them in the proess for obtaining rules. Therefore, the�nal set of rules usually needs an a posteriori proess that will modify and/or �tthe said set. The methodology that is presently applied inludes di�erent proessesthat are not neessarily applied simultaneously. This methodology, whih we allmulti-stage geneti fuzzy systems and has been abbreviated as MSGFS, onsists ofthree omponent parts:I A geneti generation stage for generating fuzzy rules using the iterative rulelearning approah.II A postproessing stage working on the rule set obtained in the previous stagein order to either to re�ne rules or eliminate redundant rules.III A geneti tuning stage that tunes the membership funtions of the fuzzy rules.We desribe these shortly below.4.2.1 Geneti generation stageIn this stage the iterative rule learning approah is used for learning fuzzy rulesapable of inluding the omplete knowledge from the set of examples.A hromosome represents a fuzzy rule, the generation method selets the bestrule aording to di�erent features inluded in the �tness funtion of the GA,features that inlude general properties of the KB and partiular requirements tothe fuzzy rule. This features lead to the de�nition of the overing degree between arule and an example and the use of the onept of positive and negative examples.The iterative rule learning approah uses a overing method of the set of exam-ples. This overing method assigns a relative overing value to every example, andremoves the examples with an adequate overing value, aording to a overingriterion.As we have indiated, this model may be used for learning RB as SLAVE [16, 18℄and for learning KB as the geneti generation proess proposed in [24, 25℄. In thefollowing we shortly show how both learning algorithms use this approah.



Multi-stage Geneti Fuzzy Systems Based on the Iterative Rule... 241SLAVE is a learning system developed in [16, 18℄, that uses indution andfuzzy rules for representing knowledge. This learning algorithm obtains a set ofrules for desribing the onsequent variable. The seletion of the best rule in eahiteration is done by a GA and the goal of this GA is �nding the rule that oversthe maximum number of positive examples and it satis�es the weak onsistenyondition.Given the onept of the best rule, the learning algorithm will use it for seletingthe set of rules that best desribe the examples. Thus, one a lass is seleted,we obtain the best rule for this lass and eliminate the examples overed by thisrule and this proess is repeated. Two important elements in this yle must belari�ed: the onept of overing when the examples and rules are fuzzy, and theriterion of termination of this yle, i.e., how we know when the urrent rule setis suÆient for desribing a lass. In the �rst problem, SLAVE uses a onept ofpartial overing based on a � parameter and for the seond problem it uses thede�nition of weak ompleteness ondition proposed in [18℄. The GA is used forseleting the best rule in eah iteration of the learning proess and this GA andits parameters are desribed in [17℄. The goal of the GA is to return the rulewith the maximum number of positive examples satisfying the weak onsistenyondition. Two di�erent de�nitions have been proposed on this ondition in [18℄,the k-onsisteny ondition and the k1k2-onsisteny ondition.The geneti generating proess proposed in [24, 25℄ generates fuzzy ruleswith a free semanti, without any initial referential set of fuzzy sets in the universesof disourse, learning the fuzzy rules and the assoiated fuzzy sets. It is developedby means of a real oded GA (RCGA), where a hromosome represents a fuzzyrule, and it is evaluated by means of a frequeny method. The RCGA �nds thebest rule in every running from the set of examples aording to di�erent featuresthat are inluded in the �tness funtion of the GA: High frequeny value, Highaverage overing degree over positive examples, Small negative examples set, Smallmembership funtions width, and High symmetrial membership funtions.The overing method is developed as an iterative proess that permits a setof fuzzy rules to be obtained overing the set of examples. In eah iteration, itruns the RCGA hoosing the best hromosome, assigns the relative overing valueto every example and removes the examples with a overing value greater than avalue �. It �nishes when the set of examples is empty.An additional ondition, the High nihe ondition rate, has been inluded in[10℄ for maintaining a suitable interation between neighbour rules by sharing their�tness payo�. In [9, 11℄ other versions of the method are presented where the ruleshave their semanti within performane intervals established by a fuzzy partitionmembership funtions.The advantage of this approximative representation (free semanti) is its ex-pressive power for learning rules whih present its own spei�ity in terms of thefuzzy sets involved in it.



242 A. Gonz�alez & F. Herrera4.2.2 Postproessing stage: seletion and re�nementAs we mentioned earlier, the iterative rule learning approah does not analyze anyrelationship between the rules that it is obtaining. That is why, one the rule basehas been obtained, it may be improved either beause there are rules that maybe re�ned or redundant rules if high degrees of overage are used. Two possiblepost-proessing methods are briey introdued below, a re�nement algorithm anda seletion or simpli�ation algorithm.A Re�nement algorithmThis algorithm, proposed in [20℄, is basially omposed by a heuristi proessof generation, spei�ation, addition and elimination of rules. The module is om-posed of the following tasks: The �rst one, onsists of improving the orretnessof eah rule. For this purpose, a spei�ation proess is used, trying to makeeah rule over the highest number of well-lassi�ed examples from the originalrule without overing its badly-lassi�ed examples. After this task, it is possiblethat some badly-lassi�ed examples overed by some rules turn into unlassi�edexamples. The next task tries to over these unlassi�ed examples using a generalization proess over the existent rules or adding new rules. The last task in there�nement proess uses a speial generalization proess for determining eah rule,the anteedent variables that are relevant for representing the objets from a lass.The previous tasks are repeated on the rule set until a termination ondition issatis�ed.The re�nement uses a heuristi funtion and a hill limbing strategy for seletingthe most promising ation in eah step of the algorithm toward a good solution. Afuntion is onsidered that measures the global preision of the urrent rule set onthe training set. Thus, in order to de�ne this funtion it is neessary to desribethe preditive module used. The inferene proess begins with an ordered rule setand the lassi�ation of an example is done in the following way: the adaptationbetween the example and the anteedent part of eah rule is evaluated and the lassof the rule with the best adaptation is returned. If there are some rules with thebest adaptation (onit problem), the lass from the rule with the lowest orderin the rule set is returned. Thus, it is neessary to establish a priori riterionof relevane between the rules for sorting them. The re�nement algorithm usesthe same order returned by SLAVE. Basially, this riterion is the following: themost relevant rules are those that removed the highest number of examples in thelearning proess. In this sense, the most relevant rules are in the �rst positions andthe least relevant rules are in the last positions. The heuristi omponent of there�nement algorithm selets rules through the order previously desribed for therule set. However, no speial ordering is onsidered for variables or values. Theyare taken by onsidering the default order.In [20℄ eah one of the steps of the re�nement algorithm are desribed.This re�nement algorithm has been suessfully applied together with SLAVEand it improved the rule set obtained from SLAVE and simpli�ed the problem ofhoosing parameters in the learning algorithm [20℄. The re�nement algorithm hasbeen also suessfully applied to other learning algorithms [21℄.



Multi-stage Geneti Fuzzy Systems Based on the Iterative Rule... 243A Seletion algorithmDue to the iterative nature of the geneti generation proess, redundant rulesmay appear. This ours when some examples are overed to a higher degree thanthe desired one and it makes the RB obtained perform worse due to the existeneof redundant rules. In order to solve this problem and improve its auray, it isneessary to simplify the rule set obtained from the previous proess for derivingthe �nal RB.The simpli�ation proess was proposed in [25℄. It is based on a binary odedGA, where the oding sheme maintains �xed-length hromosomes. Consideringthe rules ontained in the RB ounted from 1 to m, an m-bit string C = (1; :::; m)represents a subset of andidate rules to form the RB �nally obtained as this stage'soutput, Bs, suh that,If i = 1 then Ri 2 Bs else Ri 62 Bs :The initial population is generated by introduing a hromosome representingthe omplete previously obtained rule set R, that is, with all i = 1. The remaininghromosomes are seleted at random.Regarding the �tness funtion, E(�), it is based on an appliation spei� mea-sure usually employed in the design of GFSs, either the medium square error (SE)over a training data set, ETDS , in ontrol problems or the perentage of lassi�edexamples in lassi�ation problems.For example, in the ase of designing fuzzy logi ontrollers (FLC), it may berepresented by the following expression:E(Cj) = 12jETDS j Xel2ETDS(eyl � S(exl))2 ;where S(exl) is the output value obtained from the FLC using the RB oded inCj , R(Cj), when the state variables values are exl, and eyl is the known desiredvalue.Anyway, there is a need to keep the rule ompleteness property onsidered ina previous stage. An FLC must always be able to infer a proper ontrol ation forevery proess state. This ondition is ensured by foring every example ontainedin the training set to be overed by the enoded RB to a degree greater than orequal to � ,GR(Cj)(el) = [j=1::T Rj(el) � � , 8el 2 ETDS and Rj 2 R(Cj) ;where Rj(el) is the ompatibility degree between the rule and the example, and� is the minimal training set ompleteness degree aepted in the simpli�ationproess.Therefore, a training set ompleteness degree of R(Cj) over the set of examplesETDS is de�ned as



244 A. Gonz�alez & F. HerreraTSCD(R(Cj); ETDS) = \el2ETDS GR(Cj )(el) :The �nal �tness funtion penalizing the lak of the ompleteness property is:F (Cj) = � E(Cj) if TSCD(R(Cj); ETDS) � �12Pel2ETDS (eyl)2 otherwise.This seletion algorithm has been applied together with the aforementionedgeneti generation proess and improves the rule set obtained from it [25, 9℄.4.2.3 Geneti tuning stageAt this stage the geneti tuning proess is applied over the KB for obtaining a moreaurate one.We an onsider two possibilities, depending on the fuzzy model's nature:a) an approximative model based on a KB omposed of a olletion of fuzzyrules without a �xed relationship between the fuzzy rules and some primaryfuzzy partitions giving meaning to them, orb) a desriptive model based on a linguisti desription of the system with afuzzy partition that assigns a membership funtion to every linguisti label.In both ases, eah hromosome forming the geneti population will enode aomplete DB, but in the �rst ase eah piee of hromosome odes the membershipfuntions assoiated to one rule and in the seond one eah piee of hromosomeodes the fuzzy partition of a variable.We an use RCGAs where every variable value is a gene, this GA and itsomponents are desribed in [23, 26℄. The main di�erene between both proessesis the oding sheme. They are desribed below.Approximative shemeEah hromosome forming the geneti population enodes a omplete KB,eah one of them ontains the RB with a di�erent DB assoiated [23℄.If we onsider an MISO ontrol system where the KB onsists of a olletionof fuzzy rules desribing the ation with the form:Ri : IF x1 is Ai1 and ... and xn is Ain THEN y is B,where x1; :::; xn and y are the proess state variables and the ontrol variable,respetively; and Ai1; :::; Ain, B are fuzzy sets in the universes of disourseU1; :::; Un, V .We an onsider every fuzzy set assoiated with a normalized triangularmembership funtion. A omputational way to haraterize it is by using
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