
NORTH- HOLLAND 

A Three-Stage Evolutionary 
Process for Learning 

Descriptive and 
Approximate 

Fuzzy-Logic-Controller 
Knowledge Bases 
From Examples* 

O. Cord6n and F. Herrera 
Department  o f  Computer  Science and Artificial Intelligence, 

University o f  Granada, Spain 

A B S T R A C T  

Nowadays fuzzy logic controllers have been successfully applied to a wide range of 
engineering control processes. Several tasks have to be performed in order to design an 
intelligent control system of  this kind for a concrete application. One of the most 
important and difficult ones is the extraction of  the expert known knowledge of  the 
controlled system. The aim of  this paper is to present an evolutionary process based on 
genetic algorithms and evolution strategies for learning the fuzzy-logic-controller knowl- 
edge base from examples in three different stages. The process allows us to generate two 
different kinds of  knowledge bases, descriptive and approximate ones, depending on the 
scope of  the fuzzy sets giving meaning to the fuzzy-control-rule linguistic terms, taking 
preliminary linguistic-variable fuzzy partitions as a base. The performance of the 
method proposed is shown by measuring the accuracy of  the fuzzy logic controllers 
designed in the fuzzy modeling of  three three-dimensional surfaces presenting different 
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characteristics, and by comparing them with others generated by means of three 
methods based on Wang and Mendel's knowledge-base generation process. © 1997 
Elset,ier Science Inc. 
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1. INTRODUCTION 

Fuzzy logic controllers (FLCs), initiated by Mamdani and Assilian in the 
work [35], are now considered as one of the most important applications of 
fuzzy set theory. FLCs are knowledge-based controllers that make use of 
the known knowledge of the process, expressed in the form of fuzzy 
linguistic control rules collected in the FLC knowledge base (KB), to 
control it (for further information about FLCs see [16, 31]). The advantage 
of this approach with respect to classical control theory is that it does not 
need to express the relationships existing in the system by means of a 
mathematical model, which constitutes a very difficult task in many real 
situations presenting nonlinear characteristics or complex dynamics. 

Several tasks have to be performed in order to design an intelligent 
control system of this kind for a concrete application. One of the most 
important and difficult ones is the extraction of the expert known knowl- 
edge of the controlled system. The difficulty reported by human process 
operators in expressing their knowledge in the form of control rules has 
made researchers develop automatic techniques for performing this task. 
In the last few years, many different approaches have been presented, 
taking genetic algorithms (GAs) as a base, and obtaining the so-called 
genetic fuzzy systems (GFSs). 

In this paper we present an evolutionary process based on GAs and 
evolution strategies (ESs) for learning the KB from examples. The process 
presents two variants allowing us to generate a KB either with a descrip- 
tive nature (the classical working mode characterized by the existence of a 
fixed relationship between the linguistic labels and the fuzzy sets giving 
meaning to them, i.e., the meaning of the labels is the same for all the 
fuzzy control rules contained in the KB) or with an approximate nature (a 
different approach in which this relationship does not exist and the 
linguistic variables take different fuzzy sets as values depending on the 
concrete fuzzy control rule). The performance of both variants is compared 
with that of other processes based on the Wang-Mendel fuzzy rule genera- 
tion method by using them to develop a fuzzy modeling of three three-di- 
mensional control surfaces derived from mathematical functions. 

In the next section we briefly present some preliminary concepts: FLCs, 
evolutionary algorithms (with a short introduction to GAs and ESs), and 
genetic fuzzy systems. Some considerations about the KB learning process 
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are discussed in Section 3. The proposed method is introduced by describ- 
ing the first stage composing it in Sections 4, 5, and 6, and the remaining 
two in Sections 7 and 8, respectively. In Section 9, we show the experi- 
ments developed and the different results obtained. Finally, in Section 10 
some concluding remarks are made. 

2. PRELIMINARIES: FUZZY LOGIC CONTROLLERS, 
EVOLUTIONARY ALGORITHMS, AND GENETIC FUZZY SYSTEMS 

2.1. Fuzzy Logic Controllers 

An FLC is composed of a knowledge base, which comprises the informa- 
tion given by the process operator in the form of linguistic control rules; a 
fuzzification interface, which has the effect of transforming crisp data into 
fuzzy sets; an inference system, which uses these together with the knowl- 
edge base to make inference by means of a reasoning method; and a 
defuzzification interface, which translates the fuzzy control action thus 
obtained into a real control action using a defuzzification method. 

The knowledge base is the FLC component comprising the expert 
knowledge known about the controlled system. Thus, it is the only compo- 
nent of the FLC depending on the concrete application, and it makes the 
accuracy of the FLC depend directly on its composition. It has two 
components, a data base (DB), containing the definitions of the fuzzy-con- 
trol-rule linguistic labels and the universe-of-discourse scaling factors, and 
a rule base (RB), constituted by the collection of fuzzy control rules 
representing the expert knowledge. There are different kinds of fuzzy 
control rules proposed in the specialized literature regarding the expres- 
sion of the consequent. Below we suppose a KB constituted by n Mam- 
dani-type rules with the form 

IF X 1 is A 1 a n d . . ,  and X, is A,  THEN Y is B, 

with X i and Y being linguistic system variables, and Ai and B the 
linguistic labels associated with fuzzy sets which specify their meaning. 

The fuzzification interface defines a mapping from an observed input 
space to fuzzy sets in certain input universes of discourse, thereby obtain- 
ing the membership function associated to each one of the crisp system 
inputs. 

The inference system is based on the application of the generalized 
modus ponens, an extension of the classical-logic modus ponens. It is done 
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by means of the compositional rule of inference (CRI)  given by the 
following expression: 

x E X  

with I~A(X) = T(i~a,,(x) . . . . .  I~A~°(X)), T, T '  being connectives, and I be- 
ing an implication operator.  

As the input x corresponding to the state variables of  the controlled 
system is crisp, x = x 0, the fuzzy set A '  is a singleton, that is, I~A,(X) = 1 if 
X = X 0 and i~A,(x) = 0 if x v~ x 0. Thus the CRI  is reduced to 

( y)  = y ) ) .  

Since from each rule R i is obtained a fuzzy set B~ from the inference 
process, the defuzzification interface uses an aggregation opera tor  G which 
composes them and applies a defuzzification method D to translate the 
fuzzy sets obtained in this way into values corresponding to the control 
vsariables of the system. Hence,  denoting by S to FLC, by x 0 the input 
value, and by Y0 the crisp value obtained from the defuzzification, we have 

/x , , (y)  = G{/x,,  (y ) , /xe~(y)  . . . . .  /x , ; (y)} ,  

Yo = S (xo)  = D ( I ~ , , ( y ) ) .  

At present, the commonly used defuzzification methods may be de- 
scribed as the max criterion, the mean of  maximum (MOM), and the center 
o f  area (COA) [12, 16, 31]. 

Several factors with a significant influence have to be analyzed in order 
to design an FLC for a concrete process. Concretely, there are two main 
decisions that have to be made: to derive a KB for the system and to 
decide the reasoning method to use. The first one depends directly on the 
concrete application. The design tasks that have to be developed in order 
to decide the FLC reasoning method are the selection of the fuzzy 
operators  I, T, and G, and the defuzzification operator  D. The problem of 
selecting them has been analyzed by the authors in prior work [9]. For 
more information about FLCs see [12, 16, 31]. 

2.2. Evolutionary Algorithms 

Ecolutionary computation (EC) uses computat ional  models of evolution- 
ary processes as key elements in the design and implementat ion of com- 
puter-based problem-solving systems. There  are a variety of evolutionary 
computational  modes that have been proposed and studied, which are 
referred to as ecolutionary algorithms (EAs). There  have been three well- 
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defined EAs which have served as the basis for much of the activity in the 
field: GAs [19, 25], ESs [1, 40], and evolutionary programming (EP) [17, 18]. 

An EA maintains a population of trial solutions, imposes random 
changes to these solutions, and incorporates selection to determine which 
ones are going to be maintained in future generations and which will be 
removed from the pool of the trials. There are however important differ- 
ences between EAs. GAs emphasize models of genetic operators as 
observed in nature, such as crossover (recombination) and point mutation, 
and apply these to abstracted chromosomes. ESs and EP emphasize 
mutational transformations that maintain the behavioral linkage between 
each parent and its offspring. 

In the following we briefly review the GAs and the ESs, both of which 
will be used in this paper. 

2.3. Genetic Algorithms 

GAs [19] are theoretically and empirically proven algorithms that pro- 
vide a robust search in complex spaces, thereby offering a valid approach 
to problems requiring efficient and effective searches. 

Any GA starts with a population of randomly generated solutions 
(chromosomes) and advances toward better  solutions by applying genetic 
operators, modeled on the genetic processes occurring in nature. In these 
algorithms we maintain a population of solutions for a given problem; this 
population undergoes evolution in the form of natural selection. In each 
generation, relatively good solutions reproduce to give offspring that 
replace the relatively bad solutions, which die. An evaluation or fitness 
function plays the role of the environment to distinguish between good and 
bad solutions. The process of going from the current population to the 
next population constitutes one generation in the execution of a GA. 

2.4. Evolution Strategies 

ESs [1, 40] were initially developed by Rechenberg and Schwefel in 1964 
with a strong focus on building systems capable of solving difficult real-val- 
ued parameter  optimization problems. The natural representation was a 
vector of real-valued genes that were manipulated primarily by mutation 
operators designed to perturb the real-valued parameters in useful ways. 

The first ES algorithm, the so-called (1 + 1)-ES, was based on only two 
individuals per generation, one parent and one descendent. This algorithm 
is based on evolving the parent string by applying a mutation operator  to 
each one of its components. The mutation strength is determined by a 
value o-, the standard deviation of a normally distributed random variable. 
This parameter  is associated to the parent and it is evolved in each process 
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step as well. If the evolution has been performed successfully, then the 
descendent replaces the parent in the next generation. The individual 
adaptation is measured by using a fitness function. The process is iterated 
until a determined finishing condition is satisfied. 

The mutation operator mut has two components. The first one, mu,~, 
evolves the value of the standard deviation cr using Rechenberg's 1_success 
rule: 

(~r/~cc if p > 1, 

~ r ' = m u ¢ ( ~ r ) =  /~v~- if if PP<}': g,1 

where p is the relative frequency of successful mutations and c is a 
constant determining the updating amount of o-. The second one, mu x, 
mutates each component of the real coded string by adding normally 
distributed variations with standard deviation o-' to it: 

x '  = mUx(X) = (x 1 + Z l , . . . , x~  + z n) 

where z i ~ Si(0 , o-'2)o 

2.5. Genetic Fuzzy Systems 

The KB derivation is a task, directly depending on the controlled system, 
that has to be performed in order to design an FLC, and it has significative 
importance in the design process [12, 16, 31]. The most used method for 
performing this task is based directly on extracting the expert experience 
from human process operators. The problem arises when these are not 
able to express their knowledge in terms of fuzzy control rules. In order to 
avoid this drawback, automatic learning methods for designing FLCs by 
automatically deriving an appropriate KB are needed. 

GAs have been demonstrated to be a powerful tool for automating the 
definition of the KB, since adaptive control, learning, and self-organization 
may be considered in a lot of cases as optimization or search processes. 
Their advantages have extended the use of GAs in the development of a 
wide range of approaches for designing FLCs over the last few years. In 
particular, the application to the design, learning, and tuning of KBs has 
produced quite promising results. These approaches can be given the 
general name of g e n e t i c  f u z z y  s y s t e m s  (GFSs) [8]. Figure 1 shows this idea. 

EAs (specially GAs in the great majority of the cases) are applied to 
modify/ learn the DB a n d / o r  the RB. Therefore, they may act on one or 
both KB components introduced in Section 2.1. It is possible to distinguish 
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Figure 1. Genetic fuzzy systems. 

three different groups of genetic FLC design processes according to the KB 
components included in the learning process. These are the following [8]: 

1. Genetic definition of the fuzzy logic controller data base [3, 20, 26, 
411. 

2. Genetic derivation of the fuzzy logic controller rule base [4, 24, 27, 
30, 42]. 

3. Genetic learning of the fuzzy logic controller knowledge base [6, 9, 
14, 21, 22, 28, 32-34, 37, 39]. 

For a wider description of approaches belonging to each one of them see 
[8], and for an extensive bibliography see [13] (Section 3.13). Different 
approaches may be found in [23]. 

Carse et al. [7] divide the third family into two different subgroups 
depending on the simultaneity in the learning of the two KB components. 
Namely, they differentiate between learning the DB and the RB in stages 
(for example, the approaches presented in [9, 14, 21, 22, 28]) and learning 
them simultaneously (as in the remaining approaches cited). 

In this paper we present a GFS belonging to this third family and to the 
first subgroup. In this way, the process allows us to automatically generate 
a complete KB (when a training set formed by numerical input-output 
problem variable pairs is available) in three stages. 
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3. ON THE GENETIC LEARNING PROCESS 

In this section we are going to introduce the basis followed by the 
proposed GFS by analyzing the following aspects in depth. 

3.1. Type of Fuzzy Models and Structure of the Input-Output Data Sets 

We shall focus on Mamdani ' s  model for multiple-input single-output 
(MISO) systems, where the knowledge base of  a fuzzy controller consists of 
a collection of fuzzy rules (with the logical connective ALSO between them) 
describing the control actions in the form 

R i : I F  X 1 is Ai l  a n d . . ,  and x n is Ain THEN y is B, 

where x 1 . . . . .  xn and y are the process state variables and the control 
variable respectively; and Ai~ . . . . .  Ain, B are fuzzy sets in the universes of 
discourse U 1 . . . . .  U n, V. These fuzzy sets are characterized by their mem- 
bership functions 

A ~ j ( B )  : ~ ( V )  ~ [0,1],  j = 1 . . . . .  n. 

We consider every fuzzy set associated with a normal i led triangular 
membership  function. A computat ional  way to characterize it is by using a 
parametr ic  representat ion achieved by means of the 3-tuples (a~j, b~j, c~j), 
(ai,  hi, ci) , j = 1 . . . .  , n. 

The classical Mamdani  model is a linguistic model based on collections 
of  IF-THEN rules with fuzzy quantities associated with linguistic labels, and 
the fuzzy model is essentially a qualitative expression of the system. A KB 
in which the fuzzy sets giving meaning (semantic) to the linguistic labels 
are uniformly defined for all rules included in the RB constitutes a 
descriptive approach, since the linguistic labels take the same meaning for 
all the fuzzy control rules contained in the RB. 

One can consider a KB for which each fuzzy control rule presents its 
own meaning, i.e., the linguistic variables involved in the rules do not take 
as value any linguistic label from a global term set. In this case, the 
approach is called approx imate  [8] and the linguistic variables become fuzzy 
variables. In this second approach we say that the rules present free 
semant ics .  The difference between the two approaches is shown in Fig- 
ure 2. 

We will treat  both approaches in this paper.  For the generation process 
we consider classical Mamdani- type fuzzy control rules, all of which 
present  the same meaning for the linguistic terms involved, and rules with 
a free semantics, without any associated linguistic syntaxis, but based on an 
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a) Descriptive Knowledge Base 

NB NM NS ZR PS PM PB 

XI Xr 

Y 

NB NM NS ZR PS PM PB 

YI Yr 

RI:  I f X  is NB then Y is NB 
R2: If X is NM then Y is NM 
R3: If X is NS then Y is NS 
R4: If X is ZR then Y is ZR 

R5: If X is PS then Y is PS 
R6: If X is PM then Y is PM 
R7: If X is PB then Y is PB 

b) Approximate Knowledge Base 

R i: If X is /"x. then Y is ["-. 
R 2 : I f X i s  ,/ax t h e n Y i s  /x 
R3: I f X  is /'1 then Y is , / "x  
R4: If X is ~ then Y is 

Figure 2. Examples of descriptive and approximate knowledge bases. 

initial domain fuzzy partition. Therefore,  the GFS designer may choose the 
desired fuzzy model before running the whole process. This choice will 
affect the composit ion of the first and third process stages: the evolution- 
ary fuzzy rule generation and genetic tuning respectively. If  he decides to 
work with the approximate approach,  then the first stage will include an 
ES for locally tuning the fuzzy control rule membership  functions and an 
approximate tuning process will be used at the third stage. On the other  
hand, when the usual descriptive fuzzy model is chosen, no local tuning is 
per formed in the first stage and a descriptive genetic tuning process is 
applied in the last stage. 

We also consider an inductive approach for designing GFSs. Thus, there 
is a need to have a training data set, Ep, composed of p numerical 
input-output  (state-control)  problem variable pairs, experimental ly 
recorded, in order to perform the learning. These examples present the 
following structure: 

e t = ( e x t l  . . . . .  e x tn ,  e y l ) ,  l = 1 . . . . .  p .  

3.2. Properties Required for the Generated Knowledge Base 

Several important  static propert ies  have to be verified by the KB in 
order to obtain an FLC presenting good behavior. Below we are going to 
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discuss the consideration two of them: completeness and consistency [16, 
311. 

A. COMPLETENESS OF A KNOWLEDGE BASE It is clear that an FLC 
should always be able to infer a proper  control action for every state of the 
controlled system. This property is called completeness. The completeness 
of  a KB relates to its two components,  the DB and the RB, in the 
following way [31]: 

• The  DB strategy is concerned with the supports on which primary 
fuzzy sets are defined. The union of these supports should cover the 
related universe of  discourse in relation with some level set o- ~ [0, 1]. 
This property of  an FLC is called o--completeness. In general, when 
the DB is defined by means of a uniform fuzzy partition of the input 
spaces, we choose the level o- at the crossover point, as shown in 
Figure 3, according to our belief about the positive sense of the fuzzy 
control rules forming the RB. In this way, with s ~ S being a system 
state and S i being the fuzzy sets giving meaning to the linguistic labels 
for the input space, the property of o--completeness can be formally 
defined in the following way: 

Vs ~ S, U Si(s)  > o-. 

• The RB strategy refers to the fuzzy control rules themselves. The 
property of  completeness is incorporated into the RB through design 
experience and engineering knowledge. An additional rule is added 
whenever a fuzzy condition is not included in the RB or whenever the 
degree of partial matching between some inputs and the predefined 
fuzzy conditions is lower than some desired level. An RB will be 
o--complete when the following condition is verified [16]: 

Vs ~ S, hgt(OUT(S)) > o- 

N B  N M  NS ZR PS PM PB 

0.5 

m M 

Figure 3. Graphical representation of a possible fuzzy partition. 
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where hgt(.) represents the height of a fuzzy set and OUT represents 
the fuzzy control action obtained from the input s by means of the 
FLC inference process using the concrete KB. 

As was ment ioned in [16], it must be noticed that many usual practical 
applications controlled by FLCs do not present a complete KB. This is due 
to the fact that there are certain regions in the input domain that are not 
of interest for controlling the process. An example of  this kind of systems 
is the well-known problem of the inverted pendulum. 

Thus, we need a training data set that adequately represents the process 
control surface when performing inductive learning of the KB, because 
this set will determine the completeness of the generated KB, as we shall 
see later. Both these conditions will be incorporated into the learning 
process by means of the following expressions. The generic value ~r is 
called ~- in the latter: 

Cn(el) = [ ,3  R i ( e t )  > "c, 1 = 1 . . . .  , p ,  
i = 1  . . . . .  T 

Ri(et) = , (  Ai(exl) ,Bi(eyl)) ,  

Ai( ex') = * (A,l(ex~) . . . . .  A,,(  ext~) ), 

where * is a t-norm, and Ri(e 1) is the compatibility degree between the rule 
R i and the example e t. 

Given a KB composed of T fuzzy control rules Ri, the covering value of 
an example e t ~ Ep is defined as 

T 

CVR(et) = y '  Ri(el) , 
i = 1  

and we require the following condition: 

CVR(e t) > e, l = 1 , . . . , p  

A good KB must satisfy both the conditions presented above, to verify 
the completeness property and to have an adequate final covering value. 

B. CONSISTENCY OF A KNOWLEDGE BASE A generic set of  IF-THEN 
rules is consistent if it does not contain contractions. This concept is clear 
in other  knowledge-based systems, but it is difficult to translate it into the 
field of  fuzzy logic control. 

When the RB is generated via human opera tor  experience, the rules 
obtained may be subject to different performance criteria. For example, 



380 O. Cord6n and F. Herrera 

high accuracy and low fuel consumption in a process are potentially 
contradictory. This may lead to an inconsistent RB in which the resulting 
fuzzy control action obtained from an input state may be multimodal, that 
is, two or more rules present the same antecedent and different conse- 
quents. Anyway, this multimodality disappears in the defuzzification, al- 
though in many cases the control obtained may not be effective on either 
of the two aforementioned criteria. Thus, a deeper study of the RB is 
required for eliminating or replacing the main inconsistent rules. 

In [16] it is questioned whether an RB is inconsistent or not even when 
presenting rules with the same antecedent and different consequent. 
There is a need to relax the consistency requirement for considering it in 
fuzzy KBs. We do this by means of the concepts of positive and negative 
examples [21]. An example is considered positive for a fuzzy control rule 
when it matches with its antecedent and consequent, and is considered 
negative when it matches with its antecedent and not with its consequent. 
Hence, the fewer negative examples the fuzzy control rules have, the more 
consistent the KB can be considered. The existence of some negative 
examples for a rule is accepted when it presents a sufficiently large number 
of positive examples. We shall consider this property in the learning 
process. For its formulation refer to the next section. 

3.3. Some Considerations on the Learning Approach 

When the problem of designing a GFS is considered, there is a need to 
encode the possible solutions into a genetic representation for translating 
the FLC parameter  space into a certain space in which the GA can 
operate. The FLC parameters considered in the learning process will 
condition the dimension and properties of this space, making problem 
solving faster or slower and even tractable in a lower or higher degree. As 
was noted in [38], research indicates that the string length and the problem 
complexity play a critical role in these factors. 

This drawback may appear when designing GFSs belonging to the third 
family presented in the previous section, i.e., when the generation of the 
whole KB is considered in the genetic process. In this case, a large number 
of KB components must be included in the genetic representation, which 
becomes larger. This fact will be more pronounced if an approximate fuzzy 
model is considered. The use of different membership-function definitions 
for each rule makes the number of KB parameters increase, which makes 
the search space more complex, making the problem computationally 
intractable. 

Hence, the learning process must be carefully designed to avoid these 
problems. We will perform a global simplification on the whole learning 
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process by dividing it into three different stages, making the search space 
simpler than in a single-stage design process. The proposed method will 
consist of the following three steps, maintaining the generic structure used 
in [9, 14, 21]: 

1. An evolutionary generation process for generating fuzzy control rules, 
with two components: a fuzzy-rule generating method based on an 
inductive algorithm with an optional ES that locally tunes the rules, 
and an iterative covering method for the system behavior example 
set. As we are going to show in the following section, the use of the 
ES will determine the nature of the fuzzy model: approximate if it is 
applied, or descriptive if not. This process allows us to obtain a set of 
rules covering the training set in an adequate form. 

2. A genetic simplification process for selecting rules, based on a binary- 
coded genetic algorithm and a measure of the FLC performance in 
the control of the system being identified. This will avoid the over- 
learning that the previous component  may cause due to the existence 
of redundant  rules in obtaining the final RB. 

3. A genetic tuning process, based on a real coded GA and a measure of 
the FLC performance. It will give the final KB as output by tuning 
the membership functions for each fuzzy control rule or for the 
complete RB, according as the fuzzy model is approximate or descrip- 
tive. 

Figure 4 presents a block diagram of the' proposed learning process, 
showing the section of the paper in which each component  is described. 

4. THE EVOLUTIONARY GENERATION PROCESS 

As commented earlier, the first stage consists of two processes, a 
generating method for obtaining desirable fuzzy rules from examples, and a 
covering method for the set of examples. 

1. The fuzzy-rule-generating method finds the best rule in every run over 
the set of examples according to the features included in a fitness 
function. It may include an optional ES that locally tunes the fuzzy 
control rules obtained. Its application will determine if the final KB 
generated will be approximate or descriptive. 

2. The covering method allows us to obtain a set of fuzzy rules covering 
the set of examples. This method is developed as an iterative process. 
In each iteration, it runs the generating method choosing the best 
fuzzy control rule, considers the relative covering value that this rule 
yields over the example set, and removes the examples with a cover- 
ing value greater than a value e provided by the controller designer. 

The following two sections present both methods in depth. 
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EVOLUTIONARY GENERATION PROCESS [Sects. 4,5,6] 

F U Z Z Y  R U L E  G E N E R A T I N G  M E T H O D  [Sect. 5.3] 

D E S C R I P T I V E  [Sect .  5.1] 
F I T N E S S  F U N C T I O N :  Frequent is t ic  Cri ter ia  

A P P R O X I M A T E  [Sect .  5.2] 

] [ C O D I N G  S C H E M E  

[ M U T A T I O N  P R O C E S S  ] 
[ FITNESS: Niche Concept -b Frequentistic Criteria ] 

C O V E R I N G  M E T H O D  [Sect .  6] 

G E N E T I C  S I M P L I F I C A T I O N  P R O C E S S  [Sect .  711 

G E N E T I C  T U N I N G  P R O C E S S  

A P P R O X I M A T E  

D E S C R I P T I V E  

[Sect. 8] 

[Sect. 8.1]1 

[Sect. 8.2] 

Figure 4. Block-diagram architecture of the proposed learning process. 

5. THE FUZZY RULE GENERATING METHOD 

5.1. Generating Descriptive Fuzzy Control Rules 

This generating method was introduced in [10]. A previously defined DB 
constituted by uniform fuzzy partitions with triangular membership func- 
tions crossing at height 0.5 is considered. The number of linguistic terms 
forming each one of them can be specified by the GFS designer in order to 
obtain the desired granularity level. Figure 3 shows the generic structure 
of a fuzzy partition with seven linguistic labels. 

Each time the generating method is run, it produces a set of candidate 
fuzzy rules by generating the fuzzy rule best covering every example from 
the training set. These rules are obtained by taking the fuzzy-partition 
linguistic label that best matches the example component value for each 
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variable. The accuracy of the candidates is measured by using a multicrite- 
rion fitness function, designed to take into account three different criteria. 
This allows us to ensure the completeness and consistency of the final set 
of  generated rules. Finally, the best fuzzy control rule is selected from the 
set of candidates and given as process output.  The criteria used by the 
fitness function are: 

1. High frequency value [21]. The frequency of a fuzzy control rule R i 
through the set of  examples Ep is defined as 

~ 1 Ri(el)  
~Ep( Ri) - 

P 

2. High average covering degree over positive examples [21]. The set of 
positive examples to R i with a compatibility degree greater  than or 
equal to oJ is defined as 

E+(Ri )  = {e t ~ EpJR,(e,) >_ 

with n+(Ri) being equal to IE+(Ri)]. The average covering degree on 
E+(Ri)  can be defined as 

Ri(et)  
G,o(Ri) = y '  (Ri)  . 

el~Eo+(R~) n + 

3. Small negative-example set [11]. The set of the negative examples for 
R i is defined as 

E - ( R  i) = (e t ~ Ep]Ri(e l) = 0 a n d  Ai(ex l) > 0}. 

An example is considered negative for a rule when it best matches 
some other  rule that has the same antecedent  but a different conse- 
quent. The negative examples are always considered over the com- 
plete training set. With nR, = IE (Ri)l being the number  of  negative 
examples, the penalty function on the negative examples set will be 

g , ( R  7 ) = 
1 1 

nR, -- kn+(Ri)  + exp(1) 

if n R < kn+(Ri  ), 
i -  

otherwise, 

where we allow up to a certain fraction of the number  of positive 
examples, kn+(Ri), of negative examples per  rule without any penalty. 
This fraction is determined by the pa ramete r  k ~ [0, 1]. 
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These three criteria are combined into a fitness function using any 
aggregation function increasing in the three variables. In this paper we 
work with the product in the following way: 

F(R~) = ~E,(R~)G~o(R~)g.(R~). 

Rules obtaining higher values of this function will be more accurate. 

5.2. Generating Approximate Fuzzy Control Rules 

It should be noted that the above generating method produces fuzzy 
control rules of a descriptive nature. All the linguistic labels involved in 
the rules generated in the different generating method runs will present 
the same meaning, defined by the primary fuzzy partitions considered for 
each linguistic variable, and so the final rule set will present a descriptive 
behavior as well. 

Nevertheless, when the ES is applied to optimize the best fuzzy control 
rule selected from the candidate rule set, it modifies the shapes of the 
concrete membership functions involved in the rule, without taking into 
account the meaning of the other  rules previously generated. This causes 
the locally adjusted rule to present an approximate nature. This modifica- 
tion to the generating method, introduced in [11], is described below. 

Among the different types of ESs developed until now, we have selected 
the well-known (1 + 1)-ES introduced in Section 2 for our purpose. This 
optimization technique was used for the same task in [9, 14] but with two 
differences. First, it acted as a GA genetic operator  in combination with 
several crossovers and mutations. Secondly, since that approach was based 
on generating fuzzy rules with constrained free semantics, the modification 
that the ES developed over the membership functions was also constrained 
by a set of intervals of performance determined by a previous fuzzy 
partition. Since in this case we are considering fuzzy rules with uncon- 
strained free semantics, the membership functions of the fuzzy rules 
obtained from the ES are only constrained to be meaningful. 

Below we describe the three main aspects of the designed ES: coding 
scheme, mutation process, and fitness function. Then we finish this section 
by analyzing the global behavior of the approximate generating method. 

A. CODING SCHEME In order to apply the ES, the fuzzy control rule is 
encoded into a real string by using the membership function parametric 
representation introduced in Section 3. Each triangular-shaped member- 
ship function involved in the rule is encoded into a 3-tuple of real 
numbers, and the aggregation of the partial codings forms the ES individ- 
ual. 
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B. MUTATION PROCESS Two changes to the generic ES mutat ion scheme 
have to be per formed in order  to apply this technique to the problem 
considered: the definition o f  multiple step sizes and the incremental optimiza- 
tion o f  the individual parameters. We analyze them below: 

• Definition o f  multiple step sizes. As the mutat ion strength depends 
directly on the value ~ of the standard deviation of the normally 
distributed random variable zi, the step size cannot be a single value. 
In our case the membership  functions encoded are defined over 
different universes and require different order mutations. Therefore,  
a step size o-i = ors s for each component  was used in the (1 + 1)-ES. 
In any case the relations of all cr i were fixed by the values s~, and only 
the common factor o- was adapted, following the assumptions pre- 
sented in [1]. 

• Incremental optimization o f  the individual parameters. Usually, the dif- 
ferent parent  components  are not related and the ES is used in its 
usual working mode in which all of them are adapted at the same 
time. Unfortunately,  in our problem each three correlative parame-  
ters, (x 0, x~, x2), define a triangular-shaped membership  function, and 
the property x 0 < x~ < x 2 must be verified in order to obtain mean- 
ingful fuzzy sets. Therefore,  there is a need to develop an incremental 
optimization of the individual parameters  because the intervals of 
performance for each one of them will depend on the value of any of 
the others. 
As we are considering an unconstrained free semantics, a global 
interval of performance (in which the three parameters  defining the 
membership  function may vary freely) is defined for each fuzzy set 
involved in the fuzzy rule being optimized. With C i = (x0, Xl, x 2) 
being the membership  function currently adapted, the associated 
interval of performance is [C[, C[] = [x 0 - (x 1 - x0) /2 ,  x 2 + ( x  2 - 
x~)/2]. The incremental adaptation is based on generating the mu- 
tated fuzzy set C~ = (x~, X'l, x~) by first adapting the modal  poitat Xl, 
obtaining the mutated value x' 1 defined in the interval [x0, x2] , and 
then adapting the left and right points x 0 and x 2, obtaining the values 
x' 0 and x~ defined respectively in the intervals [C[, x'  1 ] and [x'l, C[]. It 
may be clearly observed that the progressive application of this 
process allows us to obtain fuzzy sets freely defined in the said interval 
of performance.  

The value of the pa ramete r  s (x  i) determining the particular step sizes, 
~r i = o's(xi) ,  is computed  each time the component  x i is going to be 
mutated.  When i = 1, i.e., the modal point is being adapted, s(x 1) is equal 
to min(x 1 - x  o , x  2 - x l ) / 2 .  In the other two cases, i = 0 and i = 2, we 
have s ( x  o) = min(x 0 - C[, x' 1 - x0) /2  and s(x 2) = min(x 2 - x'l, C r - 
x2) /2 .  Hence  when tr takes value 1 at the first ES generation, the 
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obtaining of a large number of zi normal values performing a successful xi 
mutation [i.e., the corresponding xj = xi + zi with zi - NiTi(O, a/‘> lying in 
the expected interval for xi] is ensured. If the mutated value lies outside of 
it, it is assigned the value of the interval extent closer to xi + zi. 

The next algorithm summarizes the application of the adaptation pro- 
cess on a membership function encoded in the parent. With Ci = 
(x,, xi, x2) being the fuzzy set currently adapted, the steps to follow are: 

1. Compute the step size of the central point, $(x1) + min{x, -x,,, 

x2 - x1)/2. 

2. Generate z1 - NO, a:> and compute x; in the following way: 

x; + 

i 

Xl + 21 if x1 + z1 E [x,,x21, 

x0 if x1 fz, <x0, 

x2 if x, +z, >x,. 

3. Adapt the remaining two points: 
(a) s(xJ + min{x, - Cf, x; - x,)/2. 

Generate z0 - MO, v,‘). 

xb +- 

1 

x0 + =o if xc, +z, E [Cf,x;], 

C; if x,,+z,<C!, 

x; if x,, + z. > x;. 

(b) s(x2) + minlx, - xi, CLr - x21/2. 
Generate z2 - MO, ai>. 

x2 + =2 if x2 + z2 E [x;,C:l, 

x; + x; if x2 tz, <x;, 

C,! if x2 + z2 > Cl. 

C. FITNESS FUNCTION The fitness function is based on the same criteria 
used in the descriptive gnerating process with the addition of a new one 
related to the fuzzy-control-rule interaction level. While the interaction 
level among the neighboring rules in an descriptive rule set is fixed and 
equal to the union of the primary-fuzzy-set supports (T (see the discussion 
of DB strategy in Section 3.21, this does not occur in an approximate rule 
set. In the case in which an ES is considered in the generation process, we 
have selected the approximate approach, and the membership functions 
differ between some generated fuzzy control rules and others. This causes 
variable interaction levels among the neighboring rules composing the 
final rule set generated. Therefore, it is necessary to consider this aspect in 
the generation process to obtain the best possible rule set representing the 
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knowledge contained in the training data set. To put this into effect, we 
shall make use of the GA niche concept [15, 19]. Below we introduce this 
concept, analyze some previous applications of it in GFS design, describe 
its use in our approximate generating method, and present the final 
expression of the fitness function. 

• The niche concept. The niche and species concepts were introduced in 
GAs in order to improve their behavior when dealing with multimodal 
functions with peaks of unequal value. As in nature, the formation of 
stable subpopulations of organisms surrounding separate niches by 
forcing similar individuals to share the available resources is induced. 
One of the most usually employed methods for introducing niches and 
species in GAs is based on indiuidual fitness sharing [15, 19]. In this 
scheme, the population is divided into different subpopulations 
(species) according to the similarity of the individuals, forming niches 
in two possible solution spaces: the gene and the decoded parameter 
ones, genotypic and phenotypic sharing respectively. The individuals 
belonging to each niche share the associated payoff amongst them. A 
sharing function is defined to determine the neighborhood and degree 
of sharing for each string in the population. 

• Preuious applications of niching in GFS design. The idea of using this 
concept for designing GFSs is not new. Satyadas and Krishnakumar 
analyze it in [38] and propose a genetic design process using it in [29]. 
Another process making use of the concept is proposed in [9, 12]. 
Both schemes are based on phenotypic sharing, which seems to be the 
most suitable approach for the GFS design problem. However, in the 
two schemes the purpose of niching is quite different. While the first 
method employs it to generate different optimal fuzzy models for a 
concrete control problem, the second one uses it to improve the FLC 
design, generating a KB formed by fuzzy control rules with a suitable 
interaction between them. 

• Applying niching to our approximatice generating method. We are going 
to use the second kind of niche in our generation process, translating 
it from the GA field to the ES one, by means of the low niche 
interaction rate [9] criterion. 
Since this criterion is based on GA niching, some considerations must 
be taken into account to design it by means of a sharing function. We 
noted that the concept of niching is always associated with the GAs 
and is not usually applied in the ES field. Although the type of ES 
considered is based on the existence of a single individual parent in 
the optimization process, the role of the sharing function continues to 
be the sharing of the global payoff between the individuals located in 
the same niche. In this case, the only change is that the individuals 
that share their fitness do not belong to a genetic population. The 
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sharing is developed between the individual currently being optimized 
and the fuzzy control rules already generated. Therefore,  the payoff 
associated to this individual will be lower when it is closer to a niche 
center determined by the previously generated rules. 
We should also note that one of the most important drawbacks of the 
classical sharing scheme is the need to know where each niche is and 
h o w  big it is in order  to allow the fitness sharing. Typically, this 
requirement is addressed by the assumption that if two individuals are 
close together, within a distance known as the niche  radius, then their 
fitness must be shared. Although several methods have been proposed 
to determine this radius (see [15]), its calculation is a very difficult task 
in a large number of cases. 
Fortunately, in our case it is easy to determine the location and size of 
the different existing niches. As we are working in the phenotypic 
space, each individual represents a fuzzy control rule formed by n 
input linguistic variables and an output one. Each variable takes as its 
value a triangular-shaped fuzzy number encoded in the string. There- 
fore, the center of the niche in the solution space will be an (n + 1)- 
dimensional point, whose coordinates corresponds to the modal points 
of the triangular membership functions. Two individuals will share 
their payoff if there is any interaction between the different fuzzy 
numbers giving values to the linguistic variables, i.e., if the fuzzy sets 
associated to the same variable in the two chromosomes overlap each 
other. Hence the algorithm does not present a fixed niche radius value 
as in the classical sharing scheme, but rather the size of the niche 
depends on the membership-function shapes encoded in the different 
individuals. 
With N i = (Nix, N~y) being the centers of the rules (niches) deter- 
mined until now (i = 1 . . . . .  d, where d is the number of generating 
process runs developed), and C being the individual encoding the 
fuzzy control rule being adapted, the low n iche  interact ion rate penal- 
izes the fitness associated to C in the following way: 

L N I R ( C )  = 1 - N I R ( C ) ,  

N I R ( C )  = m a x i ( h i } ,  

h i = * ( M ( N i x ) , B ( n i Y ) ) ,  i = 1 . . . .  , d ,  

n ( N ~ x )  = , ( n l ( N ~ x , )  . . . . .  n n ( N ~ x n ) ) ,  

C ~ IF X 1 is A 1 a n d . . ,  and x n is A n THEN y is B 

Hence LNm(C) is defined in [0, 1]. It gives the maximum value (no 
penalization) when the rule encoded in C does not interact with any 
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of the rules generated until now. The minimum value (maximum 
penalization) is obtained when this rule is equal to one of those 
generated previously. 
Figure 5 graphically shows a situation where there is interaction 
between the rule encoded by C and any of the rules generated until 
now: 

° Final fitness-function expression. Finally, the fitness function for this 
approximate generating method is the following: 

F ( R  i) -- qtE(Ri)" G,o(R i) "g~(R~, ) • LNIR(Ri) 

D. BEHAVIOR AND ADVANTAGES OF THE APPROXIMATE GENERAT- 
ING METHOD The combined action of the low-niche-interaction criterion 
and the covering method modifies the fitness landscape on two different 
levels at each algorithm step. The purpose of these changes in the 
individual fitness payoff is to encourage the generation of individuals 
exploring new zones of the solution space in the subsequent runs while 
penalizing the ones located in existing niches. The two different modifica- 
tion levels are discussed below: 

• The covering method removes examples from the training data set, 
eliminating the payoff associated to the space zones where these 
examples were located. This is a high-level modification in that it 

R 1 
° ° ° ° ° ° ° * * ° ° , * * o  

A ..... 
N i i X l  N i i x n N i ! Y  

° ° , . . o ° ° ° ° ° o ° o o  

R d  

" R .  
! 

'- C 
Figure 5. Interaction between the current rule and the predetermined ones. 
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translates the search focus to another  space zone. This modification 
encourages adequate space exploration. 

• When a niche has been located in a space zone and it continues to be 
the most promising one (i.e., the examples located in it have not been 
yet covered and they have a big associated payoff), new fuzzy rules will 
be generated in the same zone and they will interact with the ones 
generated so far. An adequate interaction rate is desirable to make 
the best use of the FLC interpolative reasoning capabilities. This is 
obtained by using a niche penalizing function that penalizes excessive 
proximity of  the new rule to the previously generated ones. 
The three frequentistic criteria for the fitness function try to widen the 
supports of  the generated fuzzy control rules to extend their applica- 
bility and cover more  examples. The niching criterion tries to narrow 
their support  by penalizing excessive proximity. A combination of 
these four criteria enables us to obtain a suitable interaction level 
among neighboring rules. 
This is a low-level modification in that the algorithm continues working 
in the same space zone but penalizes excessive proximity to the niches 
located therein. This modification encourages adequate space ex- 
ploitation. 

Therefore,  the approximate generation process will allow us to verify the 
two following fundamental  aspects: 

• The process will ensure that fuzzy control rules are obtained in each 
space zone in which the control problem is defined, i.e., in each zone 
in which any example exists. The KB completeness is verified in this 
way. 

• In the same way, it will maintain an adequate rule distribution in each 
one of the niches present  in the solution space. A suitable interaction 
between the KB fuzzy control rules is thus obtained. 

5.3. The Generating Algorithm 

Finally, the generating method may be summarized in the following 
algorithm: 

• Initialize the candidate fuzzy rule set B c to empty. 
• For every e t E Ep, generate the fuzzy rule Rc best covering it by 

taking the linguistic label of the fuzzy partition best matching with the 
component  value of e t for each variable. If  R~ ~ B ~, add it to B c. 

• Evaluate all the fuzzy rules contained in B c, and select the one 
yielding the highest value of the fitness function, R r. 

• If desired, optimize R r by using the proposed ES for locally tuning the 
membership  functions involved in it, obtaining a new fuzzy control 
rule of  approximate nature. 
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6. THE COVERING METHOD 

The covering method is developed as an iterative process that allows us 
to obtain a set of fuzzy rules covering the example set. In each iteration, it 
runs the generating method, obtaining the best fuzzy control rule accord- 
ing to the current state of the training set, considers the relative covering 
value this rule imposes on it, and removes from it the examples with a 
covering value greater than e. The covering method is developed as 
follows: 

1. Initialization: 
(a) Introduce k, to, and e. 
(b) Set the example covering degree CV[/] ~ 0, l = 1 . . . . .  p. 
(c) Initialize the final set of rules B g to empty. 

2. Over the set of examples Ep, apply the generating method, obtaining 
as output the best fuzzy control rule R r according to the current state 
of Ep. 

3. Introduce R r in B g. 
4, For  every e l ~ F~ do 

(a) CV[/] *-- CV[/] + Rr(el), 
(b) If CV[/] >_ e, then remove it from Ep. 

5. If Ep = Q, then STOP, else return to step 2. 
Since two similar rules may be obtained, i.e., B g may present redundant 

rules, it is necessary to simplify the complete rule set obtained from this 
process for deriving the final KB, thereby allowing the system to be 
controlled. 

7. THE GENETIC SIMPLIFICATION PROCESS 

It is possible that the iterative nature of the generation process may 
cause overlearning. This occurs when some examples are covered to a 
higher degree than the desired one, and it makes the obtained RB perform 
worse due to the existence of redundant rules. In order to solve this 
problem and improve its accuracy, it is necessary to simplify the rule set 
obtained from the previous process, removing the redundant rules for 
deriving the final RB allowing the system to be controlled. 

The simplification process used was proposed in [21]. It is based on a 
binary-coded GA, in which the selection of the individuals is developed 
using the stochastic universal sampling procedure together with an elitist 
selection scheme, and the generation of the offspring population is put 
into effect by using the classical binary multipoint crossover (performed at 
two points) and uniform mutation operators. 
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The encoding scheme generates fixed-length chromosomes.  Considering 
the rules contained in the rule set B g derived from the previous step 
counted from 1 to m, an m-bit  string C = (c 1 . . . . .  c m) represents a subset 
of  candidate rules to form the RB finally obtained as this stage's output, 
B s, such that 

IF C i = 1 THEN R i ~ B s ELSE R i ~ B s. 

The initial population is generated by introducing a chromosome repre- 
senting the complete previously obtained rule set B g, that is, with all 
c i = 1. The remaining chromosomes are selected at random. 

As regards the fitness function, E(.),  it is based on an application-specific 
measure usually employed in the design of GFSs, the mean squared error 
(SE) over a training data set, ETD s, which is represented by the following 
expression: 

1 
E(Cj)  - 21ETDs I ~ [ey l - S(exl)] 2, 

e I ~= ETD S 

where S(ex l) is the output value obtained f rom the FLC using the RB 
coded in Ci, R(Cj), when the state variable values are ex l, and ey I is the 
known desired value. 

There  is a need to keep the completeness property considered in the 
previous stage. We will ensure this condition by forcing every example 
contained in the training set to be covered by the encoded RB to a degree 
greater  than or equal to ~-, 

Cn(cj)(e l) = [,.J R j (e  z) >__ r Vet E ETD S and R i ~ R(Cj ) ,  
j = l  . . . . .  7" 

where r is the minimal training-set completeness degree accepted in the 
simplification process. Usually, r is less than or equal to ~o, the compatibil- 
ity degree used in the generation process. 

Therefore,  we define a training-set completeness degree of R(Cj) over the 
set of examples ETD s as 

T S C D ( R ( C j ) ,  E T D S )  = f ~  CR(G)(e,), 
e I ~ ETD S 

and the final fitness function penalizing the lack of the completeness 
property is 

'E (Cj )  if T S C D ( R ( C j ) ,  ETDS) >~ '7", 
F(Cj)  = 

±E 2 e,~ETDs(eY l)2 otherwise. 
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8. T H E  G E N E T I C  T U N I N G  P R O C E S S  

The genetic tuning process is based on two variants, depending on 
whether  the fuzzy model  is approximate  [20] or descriptive [10]. Both 
processes are based on the previous existence of a complete KB, that is, an 
initial DB definition and a RB constituted by m fuzzy control rules. As we 
are going to see below, the only difference between the two processes is 
the coding scheme. While the first of  them encodes the whole KB into the 
chromosomes for adjusting each one of the membership  functions involved 
in the fuzzy control rules independently, the chromosomes considered in 
the second one only encode the pr imary fuzzy partitions constituting the 
DB in order  to adjust the linguistic labels' membership  functions for all 
the fuzzy control rules contained in the RB. 

The G A  designed for both tuning processes presents a real coding issue 
and uses the stochastic universal sampling as selection procedure together 
with an elitist scheme. The operators  employed for performing the individ- 
ual recombinat ion and mutat ion are Michalewicz's nonuniform mutat ion 
[36] and the max-min arithmetical crossover [20]. A short description 
thereof  is presented below: 

• N o n u n i f o r m  m u t a t i o n .  If C~, = ( c  I . . . . .  c k . . . . .  c n )  is a chromosome 
and the e lement  c k was selected for this mutat ion (the domain of c k 

is [Ckt,  Ckr]) ,  the result is a vector C[, +l  = ( c  1 . . . . .  c'k . . . . .  c H ) ,  with 
k ~ 1 . . . . .  H and 

C k q- A ( t ,  Ckr - -  C k )  if a = 0,  

c'k = c k - A ( t , c  k - c k t )  if a = 1, 

where a is a random number  that may have a value of zero or one, 
and the function A(t, y)  returns a value in the range [0, y] such that 
the probability of A(t, y)  being close to 0 increases as t increases: 

A ( t , y )  = y(1 -- r O-t/T)b),  

where r is a random number  in the interval [0, 1], T is the maximum 
number  of generations, and b is a pa ramete r  chosen by the user, 
which determines the degree of dependence on the number  of  itera- 
tions. This property causes this opera tor  to make a uniform search in 
the initial space when t is small, and a very local one in later stages. 
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• Max-min  arithmetical crossover. If  C[. = ( c  1 . . . . .  c k . . . . .  c H ) and Ct~ = 
(c' 1 . . . . .  c), . . . . .  c~)  are to be crossed, the following four offspring are 
generated: 

C~ +' = aC~ + (1 - a)C[., 

C~ +1 = aC[, + (1 - a)C~,  

t+ 1 = min{c~, c~,} C~+ 1 with c3k 

'+  1 = m a x { c i  ' c ,k}"  C ~ +  1 w i t h  Cak 

This operator  can use a paramete r  a which is either a constant, or a 
variable whose value depends on the age of the population. The 
resulting descendents are the two best of the four aforesaid offspring. 

The preliminary definition of the fitness function was presented in [20] 
and was based on using a training input-output data set, ETD s, and a 
concrete error measure,  the mean squared error. In this way, the adapta- 
tion value associated to an individual Cj was obtained by computing the 
error between the outputs given by the FLC using the KB encoded in the 
chromosome and those contained in the training data set. The fitness 
function was represented by the following expression: 

1 

E ( C j ) -  21ETDs I 
e I E ETD S 

[ey I - S (ex l )]  2. 

In this paper  we are going to consider an extension of this fitness 
function in order to keep the completeness property considered in the two 
previous stages. Hence,  the fitness function defined for the genetic simpli- 
fication process, F(Cj) ,  is going to be used in the tuning one as well. 

Once the aspects common to both genetic tuning processes have been 
introduced, there is a need to present the particular ones for each of them. 
The only differences between the two processes are the coding scheme and 
the generation of the initial population. These particular aspects of both 
variants are commented  on in the following subsections. 

8.1. The Approximative Genetic Tuning Process 

As mentioned earlier, each chromosome forming the genetic population 
will encode a complete KB. More  concretely, all of them encode the 
derived RB, R s, obtained as output from the simplification process, and 
the differences between them are the fuzzy-control-rule membership  func- 
tions. 

Taking into account the parametr ic  representat ion of the triangular- 
shaped membership  functions based on a 3-tuple of  real values introduced 
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in Section 3, each one o f  the rules is encoded  in pieces o f  the c h r o m o s o m e  
Cji, i = 1 . . . . .  m = n + 1, in the following way: 

Cji = (a i l  , b i l ,  Oil . . . . .  a in ,  bin,  Cin, a i ,  bi ,  c i ) .  

There fo re  the comple te  RB with an associated DB is represented  by a 
comple te  c h r o m o s o m e  Cj. 

= cs 2.., cjm. 

The initial gene pool  is created f rom the initial KB. This KB is encoded  
directly into a ch romosome ,  deno ted  as C 1. The  remaining individuals are 
genera ted  by associating an interval of  per formance ,  [Cth, C~,] to every gene 
c h in C 1, h = 1 . . . . .  (n + 1) • m • 3. Each  interval of  pe r fo rmance  will be 
the interval of  adjus tment  for  the cor responding  variable, c h • [c~, c~]. 

If  t mod  3 = 1, then c t is the left value of  the support  o f  a fuzzy number .  
The  fuzzy number  is defined by the three parameters  (c,, t t+l,  Ct+2), and 
the intervals of  pe r fo rmance  are the following: 

Ct+ 1 --  Ct Ct+ 1 - -  Ct ] 
c, • [ c [ , c ; ]  = c, 2 , c ,  + -2- ] '  

Ct+l  --  Ct Ct+2 - -  C t + l  ] 
Ct+ I E [ C t+ l  Ct+l ] r  = Ct+I  2 ' C t+I  + 2 ] ' 

c t + 2  • [ i [ c t + 2  - C,+l c,+3 - c,+2 ] 
Ct+2'Ct+2] = C t + 2  2 ' c ' + 2  + 2 " 

Figure 6 shows these intervals. 

/ 
! // 

I f I r 
C, C, Ct Ct+| Ct+2 Ct+2 Ct+2 

I r 

C t+l C t+l 

Figure 6. Membership function and intervals of performance for the tuning pro- 
cess. 
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Therefore,  we create a population of chromosomes which presents C 1 as 
its first individual and the remaining ones initiated randomly, with each 
gene being in its respective interval of  performance.  

8.2. The Descriptive Genetic Tuning Process 

This second genetic tuning process is a modified version of the approxi- 
mate  one. In this case each chromosome encodes a different DB defini- 
tion. A primary fuzzy partition is represented as an array composed of 3N 
real values, with N being the number  of terms forming the linguistic-varia- 
ble term set. The complete DB for a problem, in which m linguistic 
variables are involved, is encoded into a fixed-length real coded chromo- 
some Cj built by joining the partial representations of each one of the 
variable fuzzy partitions as is shown in the following: 

Cji = (al l  , bil,  Oil . . . . .  aiNi, biNi, CiNi) ,  

= c s j 2 . . ,  cjm. 

The initial gene pool is created making use of the initial DB definition. 
It  is encoded directly into a chromosome,  denoted as C~. The remaining 
individuals are generated in the interval of performance associated to each 
membership  function. As in the approximate approach,  the interval of 
performance associated to every gene c h in Cl, [c~, c~], h =. 1 . . . . .  ~i m 1 3Ni, 
will be the interval of  adjustment for the corresponding gene, c h ~ [Clh, C~h]. 

9. APPLICATION OF THE LEARNING PROCESS TO THE FUZZY 
MODELING OF THREE THREE-DIMENSIONAL MATHEMATICAL 
FUNCTIONS 

To analyze the accuracy of the GFS proposed,  we have selected three 
n-dimensional mathematical  functions to derive theoretical three-dimen- 
sional control surfaces. The mathematical  functions and the variable 
universes of discourse considered are shown below. The spherical model, 
F 1, is a unimodal function; the generalized Rastrigin function, F 2, is a 
strongly mult imodal one; and the third function, F 3, is a smooth one 
presenting discontinuities at (0, 0) and (1, 1 ) - - a s  may be observed in their 
graphical representat ions (Figure 7): 

F , (x  1,x 2) = x  2 + x ~ ,  

Xl,X 2 E [ - - 5 , 5 ] ,  F I ( X l , X 2 )  E [0 ,50] ;  

F z ( x  l , x  2) = x ~  + x 2  2 -  c o s l 8 x  1 - c o s l 8 x  2, 
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0 

Figure 7. Graphical representations of F 1 (at the top), F 2 (lower left), and F 3 
(lower right). 

Xl ,X 2 EE [--1,1], F z ( x l , x  2) ~ [2,3.5231]; 

X 1 - -  X l X  2 

F3(x l , x  2) = 10 
X 1 -- 2XlX 2 Jr-X 2 '  

Xl, X 2 E [0, 1], F3 (Xl ,  x2)  G~ [0, 10]. 

These surfaces will be approximated by different fuzzy models derived 
from several design methods. In the descriptive fuzzy model, the three 
following processes are considered: 

D1. the widely employed Wang-Mendel (WM) method [43], 
D2. a two-stage GFS based on obtaining a complete KB by deriving the 

RB by means of the WM method and defining the DB by means of 
the descriptive genetic tuning method (see Section 8) constituting 
the third stage of the descriptive-fuzzy-model design process pro- 
posed, and 

D3. the three-stage descriptive-GFS proposed in this paper. 

In the approximative fuzzy model, the following two processes are em- 
ployed: 

A1. a two-stage GFS based on obtaining a complete KB by deriving the 
RB by means of the WM method and defining the DB by means of 
the approximate genetic tuning method (see Section 6), and 
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.42. the three-stage approximate GFS proposed in this paper. 
For  each of the functions, a training data set uniformly distributed in the 

three-dimensional definition space has been obtained experimentally. In 
this way, two sets with 1681 values have been generated for functions F 1 
and F 2 by taking 41 values for each one of the two state variables 
considered to be uniformly distributed in their respective intervals. As the 
intervals of  the two input variables are shorter for F 3, the training set has 
been generated in the same way, but considering only 26 values. The final 
data set for this function is composed of 674 values (instead of 676), 
because it is not defined at two space points. 

Three  other  data sets have been generated for use as test sets for 
evaluating the performance of the learning method,  avoiding any possible 
bias related to the data in the training set. The size of these data sets is a 
percentage of the size of the corresponding training set, 10 percent to be 
precise. The data are obtained by generating at random the state-variable 
values in the concrete universes of discourse for each one of them, and 
computing the associated output-variable value. Hence  two test sets formed 
by 168 data and one by 67 are used to measure the accuracy of the FLCs 
designed by computing the mean squared error for them. 

The initial DB used in the generating process is constituted by three 
primary fuzzy partitions (two corresponding to the state variables and one 
to the control variable) formed by seven linguistic terms with triangular- 
shaped fuzzy sets giving meaning to them (as shown in Figure 3), and the 
appropriate  scaling factors to translate the generic universe of discourse 
into the one associated with each problem variable. 

The following paramete r  values, corresponding to the first two stages, 
are combined for determining the different runs of the method to be 
carried out: E = {1, 1.5}, w = 0.05, k = 0.1, and ~- = {0.1, 0.25, 0.5}. This 
leads to an overall total of  12 runs per  function when joined to the two 
different fitness functions used in the tuning process, E(.)  and F(.). With 
respect to the remaining parameters ,  the t-norm * used in the rule 
generation process is the minimum, the ES in the approximate generation 
process is applied until there is no improvement  in 100 generations (the 
paramete r  c of  the ½-success rule is equal to 0.9), and the genetic 
simplification and tuning processes run over 500 and 1000 generations, 
respectively. In all cases, the population is formed by 61 individuals, the 
value of the nonuniform mutation paramete r  b is 5.0, and the crossover 
and mutat ion rates are, respectively, Pc = 0.6 and P m =  0.1 (this last one 
per  individual). The max-min arithmetical crossover pa ramete r  a takes the 
value 0.35. 

Finally, as regards to the FLC reasoning method used, we have selected 
the m i n i m u m  t-norm to play the role of the implication and conjunctive 
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Table  1. Fuzzy Model ing  of F 1 Using Design Methods  D1, D2, and  D3 

Parameters Generation Simplification Tuning 

• ~- FT # R  SEtr a SEts t # R  SEtr a SEts t SEtr a SEts t 

1.0 0.1 E(.) 118 4.3968 4.7109 62 2.0651 1.9786 0.3358 0.2625 
1.0 0.1 F(.) 118 4.3968 4.7109 62 2.0651 1.9786 0.4138 0.2895 
1.0 0.25 E(-) 118 4.3968 4.7109 65 2.1996 2.0667 0.4081 0.3233 
1.0 0.25 F( ' )  118 4.3968 4.7109 65 2.1996 2.0667 0.4142 0.3358 
1.0 0.5 E( ')  118 4.3968 4.7109 74 2.5674 2.4023 0.5036 0.3974 
1.0 0.5 F ( ' )  118 4.3968 4.7109 74 2.5674 2.4023 0.4900 0.4385 
1.5 0.1 E(.) 167 3.5187 3.4986 90 1.4530 1.5083 0.2854 0.3049 
1.5 0.1 F(-) 167 3.5187 3.4986 90 1.4530 1.5083 0.2931 0.3142 
1.5 0.25 E(.) 167 3.5187 3.4986 91 1.6709 1.6225 0.3459 0.3174 
1.5 0.25 F(-) 167 3.5187 3.4986 91 1.6709 1.6225 0.3389 0.3122 
1.5 0.5 E(.) 167 3.5187 3.4986 97 1.6791 1.7355 0.3279 0.3138 
1.5 0.5 F(-) 167 3.5187 3.4986 97 1.6791 1.7355 0.3335 0.3132 

D1 49 2.0481 2.2559 D2 0.3585 0.3771 

operators ,  and  the center of gravity weighted by the matching strategy as the 
defuzzification opera to r  [12]. 

The  results ob ta ined  in the different  exper iments  are collected in Tables  
1"-6, where  # R  stands for the n u m b e r  of rules of the cor responding  KB, 
F T  for the fitness func t ion  used in the genet ic  tun ing  process, and SEtr a 
and SEts t for the values ob ta ined  by the concre te  F LC in the SE measure  
compu ted  over the t ra in ing and  test data  sets, respectively. The  last table 

Table  2. Fuzzy Model ing  of F~ Using  Design  Methods  A1 and  A2 

Parameters Generation Simplification Tuning 

• z FT # R  SEtr a SEts t # R  SEtr a SEts t SEtr a SEts t 

1.0 0.1 E(.) 102 4.7940 3.6363 66 3.2559 2.6212 1.6892 1.1688 
1.0 0.1 F(.) 102 4.7940 3.6363 66 3.2559 2.6212 1.6679 1.1591 
1.0 0.25 E(.) 102 4.7940 3.6363 73 3.4921 2.8006 1.8755 1.3989 
1.0 0.25 F(.) 102 4.7940 3.6363 73 3.4921 2.8006 1.9751 1.5777 
1.0 0.5 E(.) 102 4.7940 3.6363 79 3.6715 2.8745 2.0005 1.5199 
1.0 0.5 F(-) 102 4.7940 3.6363 79 3.6715 2.8745 2.1323 1.5180 
1.5 0.1 E(.) 128 4.1043 3.5518 76 2.5293 1.9513 1.4829 0.9607 
1.5 0.1 F(.) 128 4.1043 3.5518 76 2.5293 1.9513 1.4629 0.9518 
1.5 0.25 E(-) 128 4.1043 3.5518 80 2.6445 2.1978 1.4588 1.1293 
1.5 0.25 F(.) 128 4.1043 3.5518 80 2.6445 2.1978 1.4716 1.2680 
1.5 0.5 E(.) 128 4.1043 3.5518 86 2.8155 2.3975 1.6923 1.2228 
1.5 0.5 F(-) 128 4.1043 3.5518 86 2.8155 2.3975 1.8189 1.3936 

49 2.0481 2.2559 A1 0.4530 0.4543 
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Table  3. Fuzzy Model ing  of F 2 Using Design Methods  D1, D2, and  D3 

Parameters Generation Simplification Tuning 

E r FT # R  SEtr a SEts t # R  SEtr a SEts t SEtr a SEts t 

1.0 0.1 E(-) 281 0.5563 0.6390 195 0.4758 0.5195 0.3692 0.4091 
1.0 0.1 F(-) 281 0.5563 0.6390 195 0.4758 0.5195 0.3766 0.4236 
1.0 0.25 E(.) 281 0.5563 0.6390 198 0.4882 0.5411 0.3824 0.4234 
1.0 0.25 F(.) 281 0.5563 0.6390 198 0.4882 0.5411 0.3991 0.4500 
1.0 0.5 E(.) 281 0.5563 0.6390 214 0.4967 0.5539 0.3732 0.4152 
1.0 0.5 F(.) 281 0.5563 0.6390 214 0.4967 0.5539 0.4123 0.4574 
1.5 0.1 E(-) 373 0.5805 0.6721 249 0.4699 0.4997 0.3676 0.3795 
1.5 0.1 F(-) 373 0.5805 0.6721 249 0.4699 0.4997 0.3723 0.3877 
1.5 0.25 E(.) 373 0.5805 0.6721 243 0.4841 0.5189 0.3780 0.3932 
1.5 0.25 F(.) 373 0.5805 0.6721 243 0.4841 0.5189 0.3918 0.4093 
1.5 0.5 E(-) 373 0.5805 0.6721 263 0.4827 0.5184 0.3708 0.3828 
1.5 0.5 F(.) 373 0.5805 0.6721 263 0.4827 0.5184 0.4019 0.4264 

D1 49 1.7783 2.0490 D2 0.8141 0.9641 

row shows the results cor responding  to both  design processes based on  the 
W M  KB genera t ion  me thod  (the " G e n e r a t i o n "  columns are re la ted to the 
single W M  method,  D1, and the " T u n i n g "  co lumn to the two-stage GFS,  
D2 or A1). 

Analyzing these results, the good behavior  p resen ted  by the proposed 
GFS may be observed. All the FLCs designed using it are much more  
accurate than the ones based on the W M  RB genera t ion  me thod  in the 

Table  4. Fuzzy Model ing  of F 2 Us ing  Design Methods  A1 and  A2 

Parameters Generation Simplification Tuning 

E "1 Ell # R  SEtr a SEts t # R  SEtr a SEts t SEtr a SEts t 

1.0 0.1 E(') 279 0.2903 0.3017 193 0.2031 0.2141 0.1878 0.1997 
1.0 0.1 F(.) 279 0.2903 0.3017 193 0.2031 0.2141 0.1868 0.2050 
1.0 0.25 E(') 279 0.2903 0.3017 202 0.2242 0.2374 0.2046 0.2127 
1.0 0.25 F(.) 279 0.2903 0.3017 202 0.2242 0.2374 0.2045 0.2203 
1.0 0.5 E(') 279 0.2903 0.3017 223 0.2361 0.2573 0.2167 0.2340 
1.0 0.5 F(.) 279 0.2903 0.3017 223 0.2361 0.2573 0.2180 0.2392 
1.5 0.1 E(-) 368 0.2870 0.3421 245 0.1810 0.2142 0.1674 0.1988 
1.5 0.1 F( ' )  368 0.2870 0.3421 245 0.1810 0.2142 0.1680 0.2025 
1.5 0.25 E(') 368 0.2870 0.3421 240 0.1961 0.2495 0.1820 0.2268 
1.5 0.25 F(-) 368 0.2870 0.3421 240 0.1961 0.2495 0.1823 0.2293 
1.5 0.5 E(') 368 0.2870 0.3421 267 0.2133 0.2623 0.1988 0.2459 
1.5 0.5 F( ' )  368 0.2870 0.3421 267 0.2133 0.2623 0.1997 0.2434 

49 1.7783 2.0490 A1 1.0188 1.2032 
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Tab le  5. Fuzzy  M o d e l i n g  of  F 3 Us ing  Des ign  M e t h o d s  D1, D2,  and  D3 

Parameters Generation Simplification Tuning 

• r FT # R  SEtr a SEts t # R  SEtr a SEts t SEtr a SEts t 

1.0 0.1 E(.) 106 0.1818 0.1037 67 0.0381 0.0467 0.0185 0.0210 
1.0 0.1 F( .)  106 0.1818 0.1037 67 0.0381 0.0467 0.0194 0.0219 
1.0 0.25 E(-) 106 0.1818 0.1037 67 0.0559 0.0446 0.0292 0.0191 
1.0 0.25 F(-)  106 0.1818 0.1037 67 0.0559 0.0446 0.0291 0.0180 
1.0 0.5 E(.) 106 0.1818 0.1037 81 0.1347 0.0687 0.0604 0.0246 
1.0 0.5 F( .)  106 0.1818 0.1037 81 0.1347 0.0687 0.0715 0.0338 
1.5 0.1 E(.) 156 0.2207 0.1043 97 0.0370 0.0348 0.0185 0.0181 
1.5 0.1 F( .)  156 0.2207 0.1043 97 0.0370 0.0348 0.0182 0.0208 
1.5 0.25 E(-) 156 0.2207 0.1043 98 0.0549 0.0382 0.0273 0.0167 
1.5 0.25 F( .)  156 0.2207 0.1043 98 0.0549 0.0382 0.0325 0.0192 
1.5 0.5 E( ' )  156 0.2207 0.1043 110 0.1269 0.0631 0.0599 0.0315 
1.5 0.5 F( .)  156 0.2207 0.1043 110 0.1269 0.0631 0.0728 0.0457 

D1 49 0.1943 0.0444 D2 0.0602 0.0286 

fuzzy m o d e l i n g  o f  the  t h ree  funct ions .  T h e  two process  var ian ts  m a k e  it 
s t ronge r  because  they  a l low it to  tackle  many  d i f fe ren t  k inds  o f  con t ro l  
surfaces;  s m o o t h  ones,  l ike those  g e n e r a t e d  by m e a n s  of  the  funct ions  F,  
and  F 3, a re  bes t  m o d e l e d  by using descr ip t ive  KBs, whils t  the  a p p r o x i m a t e  
a p p r o a c h  seems  to work  b e t t e r  with complex  surfaces  "with s t rong  changes,  
such as the  one  g e n e r a t e d  f rom F 2. 

Tab le  6. Fuzzy  M o d e l i n g  of  F 3 Us ing  Des ign  M e t h o d s  A1 and  A 2  

Parameters Generation Simplification Tuning 

e T FT # R  SEtr a SEts t # R  SEtr a SEts t SEtr a SEts t 

1.0 0.1 E( ' )  101 0.2255 0.1608 65 0.1457 0.1129 0.0863 0.0766 
1.0 0.1 F ( ' )  101 0.2255 0.1608 65 0.1457 0.1129 0.0965 0.0930 
1.0 0.25 E(-) 101 0.2255 0.1608 65 0.1507 0.3056 0.0929 0.3171 
1.0 0.25 F ( ' )  101 0.2255 0.1608 65 0.1507 0.3056 0.0986 0.1778 
1.0 0.5 E( ' )  101 0.2255 0.1608 70 0.1777 0.3622 0.1153 0.3918 
1.0 0.5 F(-)  101 0.2255 0.1608 70 0.1777 0.3622 0.1230 0.3275 
1.5 0.1 E(-) 132 0.1912 0.1057 87 0.1043 0.0902 0.0795 0.0597 
1.5 0.1 F ( ' )  132 0.1912 0.1057 87 0.1043 0.0902 0.0695 0.0648 
1.5 0.25 E(-) 132 0.1912 0.1057 93 0.1053 0.2930 0.0714 0.0531 
1.5 0.25 F ( ' )  132 0.1912 0.1057 93 0.1053 0.2930 0.0721 0.0522 
1.5 0.5 E(-) 132 0.1912 0.1057 90 0.1113 0.3274 0.0786 0.0537 
1.5 0.5 F ( ' )  132 0.1912 0.1057 90 0.1113 0.3274 0.0774 0.0664 

49 0.1943 0.0444 A1 0.0562 0.0210 
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Two drawbacks may be associated to the proposed process, the KBs 
generated always present more fuzzy control rules than the WM-based 
methods, and the approximate fuzzy model makes the KB lose its readabil- 
ity: 

• A larger number of fuzzy rules does not constitute a drawback when 
working with real problems in which the main requirement is the 
accuracy of the control and not the speed of the controller response. 
Furthermore,  large numbers of fuzzy control rules can always be 
compiled for increased run-time performance [5]. The proposed learn- 
ing process allows the GFS designer to obtain the desired value in the 
relationship between accuracy and number of rules in the KB by 
controlling the value of the parameter  E in the evolutionary learning 
process. The higher the value of this parameter  is, the more rules the 
generated KB presents, but more accurate is the FLC in the great 
majority of the cases. In the same way, the lower it is, the fewer rules 
are obtained, but usually less accurate the FLC is. 

• The loss of KB readability may be justified by the benefit obtained by 
the improved FLC accuracy, which is a main concern in many real 
control problems. 

To illustrate the behavior of the proposed process, some graphical 
representations of the fuzzy modeling obtained on the selected functions 
are shown in figures 8 and 9. Each figure is drawn using the designed FLCs 

!l 
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Figure 8. Graphical representations of the fuzzy modeling obtained for F 1 (at the 
top), F 2 (lower left), and F 3 (lower right). 
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Figure 9. Graphical representations of the fuzzy modeling obtained for F e using 
methods D1 (top left), D2 (top right), D3 (lower left), and A2 (lower right). 

best approaching each one of the functions. These FLCs have been 
selected making use of an index weighting the final value obtained by the 
controller in the SE measure over both data sets by the number of data 
they contain in the following way: 

M = 
IEtral " SEtr a + IEtstl • SEts t 

]Etral + lEts ,] 

Figure 8 shows the obtained fuzzy modeling for the functions F1, F2, 
and F 3 by means of the FLCs presenting lower values in this measure. The 
first and third plots correspond to the runs of the design method D3, the 
descriptive GFS proposed, using the parameter  values • = 1.5 and r = 0.1, 
while the second one corresponds to A2, our approximate GFS, using the 
same parameter  values. 

Figure 9 presents the remaining fuzzy modelings obtained for the second 
function with the purpose of highlighting the difference between the 
descriptive and approximate approaches when dealing with a complex 
function. In view of these representations and the ones shown in Figure 8, 
we can conclude that the approximative approach works better for this 
kind of functions, though presenting a similar number of fuzzy control 
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rules in the KB (249 in the KB derived using method D3, and 245 in the 
one obtained from A2). 

10. CONCLUDING REMARKS 

A GFS has been presented for designing FLCs by learning the KB from 
examples, combining an iterative and ES-based generation and two GA- 
based simplification and tuning processes. Its application to the generation 
of KBs presenting descriptive and approximate behavior for different kinds 
of problems has been considered. Its performance in the fuzzy modeling of 
three three-dimensional control surfaces has been shown and compared 
with other methods based on the WM process. The proposed GFS has 
obtained good results. 

It has been observed that each one of the KB approaches has performed 
better in a given kind of problem. While the smooth control surfaces, like 
the ones generated by means of F~ and F 3, are better modeled by using 
descriptive KBs, the approximate approach works better when applied to 
complex and rough surfaces with strong changes, such as the one gener- 
ated from F 2. This fact makes the proposed process more robust, because 
it is able to work with control surfaces of different natures by means of its 
two variants. 
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