
NORTH- HOLLAND

A Three-Stage Evolutionary
Process for Learning

Descriptive and
Approximate

Fuzzy-Logic-Controller
Knowledge Bases
From Examples*

O. Cord6n and F. Herrera
Department o f Computer Science and Artificial Intelligence,

University o f Granada, Spain

A B S T R A C T

Nowadays fuzzy logic controllers have been successfully applied to a wide range of
engineering control processes. Several tasks have to be performed in order to design an
intelligent control system of this kind for a concrete application. One of the most
important and difficult ones is the extraction of the expert known knowledge of the
controlled system. The aim of this paper is to present an evolutionary process based on
genetic algorithms and evolution strategies for learning the fuzzy-logic-controller knowl-
edge base from examples in three different stages. The process allows us to generate two
different kinds of knowledge bases, descriptive and approximate ones, depending on the
scope of the fuzzy sets giving meaning to the fuzzy-control-rule linguistic terms, taking
preliminary linguistic-variable fuzzy partitions as a base. The performance of the
method proposed is shown by measuring the accuracy of the fuzzy logic controllers
designed in the fuzzy modeling of three three-dimensional surfaces presenting different

Address correspondence to Francisco Herrera, Department of Computer Science and Artificial
Intelligence, E.T.S. de Ingenierla Inform6tica, University of Granada, 18071-Granada, Spain.
E-mail: herrera@decsai . ugr. es.

*This research has been supported by CICYT TIC96-0778.

International Journal of Approximate Reasoning 1997; 17:369-407
© 1997 Elsevier Science Inc. All rights reserved. 0888-613X/97/$17.00
655 Avenue of the Americas, New York, NY 10010 PII S0888-613X(96)00133-8

370 O. Cord6n and F. Herrera

characteristics, and by comparing them with others generated by means of three
methods based on Wang and Mendel's knowledge-base generation process. © 1997
Elset,ier Science Inc.

KEYWORDS: fuzzy logic controllers, fuzzy-logic-controller knowledge base,
genetic algorithms, evolution strategies, niching, inductive learning

1. INTRODUCTION

Fuzzy logic controllers (FLCs), initiated by Mamdani and Assilian in the
work [35], are now considered as one of the most important applications of
fuzzy set theory. FLCs are knowledge-based controllers that make use of
the known knowledge of the process, expressed in the form of fuzzy
linguistic control rules collected in the FLC knowledge base (KB), to
control it (for further information about FLCs see [16, 31]). The advantage
of this approach with respect to classical control theory is that it does not
need to express the relationships existing in the system by means of a
mathematical model, which constitutes a very difficult task in many real
situations presenting nonlinear characteristics or complex dynamics.

Several tasks have to be performed in order to design an intelligent
control system of this kind for a concrete application. One of the most
important and difficult ones is the extraction of the expert known knowl-
edge of the controlled system. The difficulty reported by human process
operators in expressing their knowledge in the form of control rules has
made researchers develop automatic techniques for performing this task.
In the last few years, many different approaches have been presented,
taking genetic algorithms (GAs) as a base, and obtaining the so-called
genetic fuzzy systems (GFSs).

In this paper we present an evolutionary process based on GAs and
evolution strategies (ESs) for learning the KB from examples. The process
presents two variants allowing us to generate a KB either with a descrip-
tive nature (the classical working mode characterized by the existence of a
fixed relationship between the linguistic labels and the fuzzy sets giving
meaning to them, i.e., the meaning of the labels is the same for all the
fuzzy control rules contained in the KB) or with an approximate nature (a
different approach in which this relationship does not exist and the
linguistic variables take different fuzzy sets as values depending on the
concrete fuzzy control rule). The performance of both variants is compared
with that of other processes based on the Wang-Mendel fuzzy rule genera-
tion method by using them to develop a fuzzy modeling of three three-di-
mensional control surfaces derived from mathematical functions.

In the next section we briefly present some preliminary concepts: FLCs,
evolutionary algorithms (with a short introduction to GAs and ESs), and
genetic fuzzy systems. Some considerations about the KB learning process

Learning FLC KBs from Examples 371

are discussed in Section 3. The proposed method is introduced by describ-
ing the first stage composing it in Sections 4, 5, and 6, and the remaining
two in Sections 7 and 8, respectively. In Section 9, we show the experi-
ments developed and the different results obtained. Finally, in Section 10
some concluding remarks are made.

2. PRELIMINARIES: FUZZY LOGIC CONTROLLERS,
EVOLUTIONARY ALGORITHMS, AND GENETIC FUZZY SYSTEMS

2.1. Fuzzy Logic Controllers

An FLC is composed of a knowledge base, which comprises the informa-
tion given by the process operator in the form of linguistic control rules; a
fuzzification interface, which has the effect of transforming crisp data into
fuzzy sets; an inference system, which uses these together with the knowl-
edge base to make inference by means of a reasoning method; and a
defuzzification interface, which translates the fuzzy control action thus
obtained into a real control action using a defuzzification method.

The knowledge base is the FLC component comprising the expert
knowledge known about the controlled system. Thus, it is the only compo-
nent of the FLC depending on the concrete application, and it makes the
accuracy of the FLC depend directly on its composition. It has two
components, a data base (DB), containing the definitions of the fuzzy-con-
trol-rule linguistic labels and the universe-of-discourse scaling factors, and
a rule base (RB), constituted by the collection of fuzzy control rules
representing the expert knowledge. There are different kinds of fuzzy
control rules proposed in the specialized literature regarding the expres-
sion of the consequent. Below we suppose a KB constituted by n Mam-
dani-type rules with the form

IF X 1 is A 1 a n d . . , and X, is A, THEN Y is B,

with X i and Y being linguistic system variables, and Ai and B the
linguistic labels associated with fuzzy sets which specify their meaning.

The fuzzification interface defines a mapping from an observed input
space to fuzzy sets in certain input universes of discourse, thereby obtain-
ing the membership function associated to each one of the crisp system
inputs.

The inference system is based on the application of the generalized
modus ponens, an extension of the classical-logic modus ponens. It is done

372 O. Cord6n and F. Herrera

by means of the compositional rule of inference (CRI) given by the
following expression:

x E X

with I~A(X) = T(i~a,,(x) I~A~°(X)), T, T ' being connectives, and I be-
ing an implication operator.

As the input x corresponding to the state variables of the controlled
system is crisp, x = x 0, the fuzzy set A ' is a singleton, that is, I~A,(X) = 1 if
X = X 0 and i~A,(x) = 0 if x v~ x 0. Thus the CRI is reduced to

(y) = y)) .

Since from each rule R i is obtained a fuzzy set B~ from the inference
process, the defuzzification interface uses an aggregation opera tor G which
composes them and applies a defuzzification method D to translate the
fuzzy sets obtained in this way into values corresponding to the control
vsariables of the system. Hence, denoting by S to FLC, by x 0 the input
value, and by Y0 the crisp value obtained from the defuzzification, we have

/x , , (y) = G{/x,, (y) , /xe~(y) /x , ; (y)} ,

Yo = S (xo) = D (I ~ , , (y)) .

At present, the commonly used defuzzification methods may be de-
scribed as the max criterion, the mean of maximum (MOM), and the center
o f area (COA) [12, 16, 31].

Several factors with a significant influence have to be analyzed in order
to design an FLC for a concrete process. Concretely, there are two main
decisions that have to be made: to derive a KB for the system and to
decide the reasoning method to use. The first one depends directly on the
concrete application. The design tasks that have to be developed in order
to decide the FLC reasoning method are the selection of the fuzzy
operators I, T, and G, and the defuzzification operator D. The problem of
selecting them has been analyzed by the authors in prior work [9]. For
more information about FLCs see [12, 16, 31].

2.2. Evolutionary Algorithms

Ecolutionary computation (EC) uses computat ional models of evolution-
ary processes as key elements in the design and implementat ion of com-
puter-based problem-solving systems. There are a variety of evolutionary
computational modes that have been proposed and studied, which are
referred to as ecolutionary algorithms (EAs). There have been three well-

Learning FLC KBs from Examples 373

defined EAs which have served as the basis for much of the activity in the
field: GAs [19, 25], ESs [1, 40], and evolutionary programming (EP) [17, 18].

An EA maintains a population of trial solutions, imposes random
changes to these solutions, and incorporates selection to determine which
ones are going to be maintained in future generations and which will be
removed from the pool of the trials. There are however important differ-
ences between EAs. GAs emphasize models of genetic operators as
observed in nature, such as crossover (recombination) and point mutation,
and apply these to abstracted chromosomes. ESs and EP emphasize
mutational transformations that maintain the behavioral linkage between
each parent and its offspring.

In the following we briefly review the GAs and the ESs, both of which
will be used in this paper.

2.3. Genetic Algorithms

GAs [19] are theoretically and empirically proven algorithms that pro-
vide a robust search in complex spaces, thereby offering a valid approach
to problems requiring efficient and effective searches.

Any GA starts with a population of randomly generated solutions
(chromosomes) and advances toward better solutions by applying genetic
operators, modeled on the genetic processes occurring in nature. In these
algorithms we maintain a population of solutions for a given problem; this
population undergoes evolution in the form of natural selection. In each
generation, relatively good solutions reproduce to give offspring that
replace the relatively bad solutions, which die. An evaluation or fitness
function plays the role of the environment to distinguish between good and
bad solutions. The process of going from the current population to the
next population constitutes one generation in the execution of a GA.

2.4. Evolution Strategies

ESs [1, 40] were initially developed by Rechenberg and Schwefel in 1964
with a strong focus on building systems capable of solving difficult real-val-
ued parameter optimization problems. The natural representation was a
vector of real-valued genes that were manipulated primarily by mutation
operators designed to perturb the real-valued parameters in useful ways.

The first ES algorithm, the so-called (1 + 1)-ES, was based on only two
individuals per generation, one parent and one descendent. This algorithm
is based on evolving the parent string by applying a mutation operator to
each one of its components. The mutation strength is determined by a
value o-, the standard deviation of a normally distributed random variable.
This parameter is associated to the parent and it is evolved in each process

374 O. Cord6n and F. Herrera

step as well. If the evolution has been performed successfully, then the
descendent replaces the parent in the next generation. The individual
adaptation is measured by using a fitness function. The process is iterated
until a determined finishing condition is satisfied.

The mutation operator mut has two components. The first one, mu,~,
evolves the value of the standard deviation cr using Rechenberg's 1_success
rule:

(~r/~cc if p > 1,

~ r ' = m u ¢ (~ r) = /~v~- if if PP<}': g,1

where p is the relative frequency of successful mutations and c is a
constant determining the updating amount of o-. The second one, mu x,
mutates each component of the real coded string by adding normally
distributed variations with standard deviation o-' to it:

x ' = mUx(X) = (x 1 + Z l , . . . , x~ + z n)

where z i ~ Si(0 , o-'2)o

2.5. Genetic Fuzzy Systems

The KB derivation is a task, directly depending on the controlled system,
that has to be performed in order to design an FLC, and it has significative
importance in the design process [12, 16, 31]. The most used method for
performing this task is based directly on extracting the expert experience
from human process operators. The problem arises when these are not
able to express their knowledge in terms of fuzzy control rules. In order to
avoid this drawback, automatic learning methods for designing FLCs by
automatically deriving an appropriate KB are needed.

GAs have been demonstrated to be a powerful tool for automating the
definition of the KB, since adaptive control, learning, and self-organization
may be considered in a lot of cases as optimization or search processes.
Their advantages have extended the use of GAs in the development of a
wide range of approaches for designing FLCs over the last few years. In
particular, the application to the design, learning, and tuning of KBs has
produced quite promising results. These approaches can be given the
general name of g e n e t i c f u z z y s y s t e m s (GFSs) [8]. Figure 1 shows this idea.

EAs (specially GAs in the great majority of the cases) are applied to
modify/ learn the DB a n d / o r the RB. Therefore, they may act on one or
both KB components introduced in Section 2.1. It is possible to distinguish

Learning FLC KBs from Examples 375

D ~ I G N PROCESS

/ I o-°,,.^,.o.,...-. I \
I I

I ,.,.,..... H . . . ,_ H o . ._ .
Environment Computation widl Fuzzy Systems Environment

Figure 1. Genetic fuzzy systems.

three different groups of genetic FLC design processes according to the KB
components included in the learning process. These are the following [8]:

1. Genetic definition of the fuzzy logic controller data base [3, 20, 26,
411.

2. Genetic derivation of the fuzzy logic controller rule base [4, 24, 27,
30, 42].

3. Genetic learning of the fuzzy logic controller knowledge base [6, 9,
14, 21, 22, 28, 32-34, 37, 39].

For a wider description of approaches belonging to each one of them see
[8], and for an extensive bibliography see [13] (Section 3.13). Different
approaches may be found in [23].

Carse et al. [7] divide the third family into two different subgroups
depending on the simultaneity in the learning of the two KB components.
Namely, they differentiate between learning the DB and the RB in stages
(for example, the approaches presented in [9, 14, 21, 22, 28]) and learning
them simultaneously (as in the remaining approaches cited).

In this paper we present a GFS belonging to this third family and to the
first subgroup. In this way, the process allows us to automatically generate
a complete KB (when a training set formed by numerical input-output
problem variable pairs is available) in three stages.

376 O. Cord6n and F. Herrera

3. ON THE GENETIC LEARNING PROCESS

In this section we are going to introduce the basis followed by the
proposed GFS by analyzing the following aspects in depth.

3.1. Type of Fuzzy Models and Structure of the Input-Output Data Sets

We shall focus on Mamdani ' s model for multiple-input single-output
(MISO) systems, where the knowledge base of a fuzzy controller consists of
a collection of fuzzy rules (with the logical connective ALSO between them)
describing the control actions in the form

R i : I F X 1 is Ai l a n d . . , and x n is Ain THEN y is B,

where x 1 xn and y are the process state variables and the control
variable respectively; and Ai~ Ain, B are fuzzy sets in the universes of
discourse U 1 U n, V. These fuzzy sets are characterized by their mem-
bership functions

A ~ j (B) : ~ (V) ~ [0,1], j = 1 n.

We consider every fuzzy set associated with a normal i led triangular
membership function. A computat ional way to characterize it is by using a
parametr ic representat ion achieved by means of the 3-tuples (a~j, b~j, c~j),
(ai, hi, ci) , j = 1 , n.

The classical Mamdani model is a linguistic model based on collections
of IF-THEN rules with fuzzy quantities associated with linguistic labels, and
the fuzzy model is essentially a qualitative expression of the system. A KB
in which the fuzzy sets giving meaning (semantic) to the linguistic labels
are uniformly defined for all rules included in the RB constitutes a
descriptive approach, since the linguistic labels take the same meaning for
all the fuzzy control rules contained in the RB.

One can consider a KB for which each fuzzy control rule presents its
own meaning, i.e., the linguistic variables involved in the rules do not take
as value any linguistic label from a global term set. In this case, the
approach is called approx imate [8] and the linguistic variables become fuzzy
variables. In this second approach we say that the rules present free
semant ics . The difference between the two approaches is shown in Fig-
ure 2.

We will treat both approaches in this paper. For the generation process
we consider classical Mamdani- type fuzzy control rules, all of which
present the same meaning for the linguistic terms involved, and rules with
a free semantics, without any associated linguistic syntaxis, but based on an

Learning FLC KBs from Examples 377

a) Descriptive Knowledge Base

NB NM NS ZR PS PM PB

XI Xr

Y

NB NM NS ZR PS PM PB

YI Yr

RI: I f X is NB then Y is NB
R2: If X is NM then Y is NM
R3: If X is NS then Y is NS
R4: If X is ZR then Y is ZR

R5: If X is PS then Y is PS
R6: If X is PM then Y is PM
R7: If X is PB then Y is PB

b) Approximate Knowledge Base

R i: If X is /"x. then Y is ["-.
R 2 : I f X i s ,/ax t h e n Y i s /x
R3: I f X is /'1 then Y is , / "x
R4: If X is ~ then Y is

Figure 2. Examples of descriptive and approximate knowledge bases.

initial domain fuzzy partition. Therefore, the GFS designer may choose the
desired fuzzy model before running the whole process. This choice will
affect the composit ion of the first and third process stages: the evolution-
ary fuzzy rule generation and genetic tuning respectively. If he decides to
work with the approximate approach, then the first stage will include an
ES for locally tuning the fuzzy control rule membership functions and an
approximate tuning process will be used at the third stage. On the other
hand, when the usual descriptive fuzzy model is chosen, no local tuning is
per formed in the first stage and a descriptive genetic tuning process is
applied in the last stage.

We also consider an inductive approach for designing GFSs. Thus, there
is a need to have a training data set, Ep, composed of p numerical
input-output (state-control) problem variable pairs, experimental ly
recorded, in order to perform the learning. These examples present the
following structure:

e t = (e x t l e x tn , e y l) , l = 1 p .

3.2. Properties Required for the Generated Knowledge Base

Several important static propert ies have to be verified by the KB in
order to obtain an FLC presenting good behavior. Below we are going to

378 O. Cord6n and F. Herrera

discuss the consideration two of them: completeness and consistency [16,
311.

A. COMPLETENESS OF A KNOWLEDGE BASE It is clear that an FLC
should always be able to infer a proper control action for every state of the
controlled system. This property is called completeness. The completeness
of a KB relates to its two components, the DB and the RB, in the
following way [31]:

• The DB strategy is concerned with the supports on which primary
fuzzy sets are defined. The union of these supports should cover the
related universe of discourse in relation with some level set o- ~ [0, 1].
This property of an FLC is called o--completeness. In general, when
the DB is defined by means of a uniform fuzzy partition of the input
spaces, we choose the level o- at the crossover point, as shown in
Figure 3, according to our belief about the positive sense of the fuzzy
control rules forming the RB. In this way, with s ~ S being a system
state and S i being the fuzzy sets giving meaning to the linguistic labels
for the input space, the property of o--completeness can be formally
defined in the following way:

Vs ~ S, U Si(s) > o-.

• The RB strategy refers to the fuzzy control rules themselves. The
property of completeness is incorporated into the RB through design
experience and engineering knowledge. An additional rule is added
whenever a fuzzy condition is not included in the RB or whenever the
degree of partial matching between some inputs and the predefined
fuzzy conditions is lower than some desired level. An RB will be
o--complete when the following condition is verified [16]:

Vs ~ S, hgt(OUT(S)) > o-

N B N M NS ZR PS PM PB

0.5

m M

Figure 3. Graphical representation of a possible fuzzy partition.

Learning FLC KBs from Examples 379

where hgt(.) represents the height of a fuzzy set and OUT represents
the fuzzy control action obtained from the input s by means of the
FLC inference process using the concrete KB.

As was ment ioned in [16], it must be noticed that many usual practical
applications controlled by FLCs do not present a complete KB. This is due
to the fact that there are certain regions in the input domain that are not
of interest for controlling the process. An example of this kind of systems
is the well-known problem of the inverted pendulum.

Thus, we need a training data set that adequately represents the process
control surface when performing inductive learning of the KB, because
this set will determine the completeness of the generated KB, as we shall
see later. Both these conditions will be incorporated into the learning
process by means of the following expressions. The generic value ~r is
called ~- in the latter:

Cn(el) = [,3 R i (e t) > "c, 1 = 1 , p ,
i = 1 T

Ri(et) = , (Ai(exl) ,Bi(eyl)) ,

Ai(ex') = * (A,l(ex~) A,,(ext~)),

where * is a t-norm, and Ri(e 1) is the compatibility degree between the rule
R i and the example e t.

Given a KB composed of T fuzzy control rules Ri, the covering value of
an example e t ~ Ep is defined as

T

CVR(et) = y ' Ri(el) ,
i = 1

and we require the following condition:

CVR(e t) > e, l = 1 , . . . , p

A good KB must satisfy both the conditions presented above, to verify
the completeness property and to have an adequate final covering value.

B. CONSISTENCY OF A KNOWLEDGE BASE A generic set of IF-THEN
rules is consistent if it does not contain contractions. This concept is clear
in other knowledge-based systems, but it is difficult to translate it into the
field of fuzzy logic control.

When the RB is generated via human opera tor experience, the rules
obtained may be subject to different performance criteria. For example,

380 O. Cord6n and F. Herrera

high accuracy and low fuel consumption in a process are potentially
contradictory. This may lead to an inconsistent RB in which the resulting
fuzzy control action obtained from an input state may be multimodal, that
is, two or more rules present the same antecedent and different conse-
quents. Anyway, this multimodality disappears in the defuzzification, al-
though in many cases the control obtained may not be effective on either
of the two aforementioned criteria. Thus, a deeper study of the RB is
required for eliminating or replacing the main inconsistent rules.

In [16] it is questioned whether an RB is inconsistent or not even when
presenting rules with the same antecedent and different consequent.
There is a need to relax the consistency requirement for considering it in
fuzzy KBs. We do this by means of the concepts of positive and negative
examples [21]. An example is considered positive for a fuzzy control rule
when it matches with its antecedent and consequent, and is considered
negative when it matches with its antecedent and not with its consequent.
Hence, the fewer negative examples the fuzzy control rules have, the more
consistent the KB can be considered. The existence of some negative
examples for a rule is accepted when it presents a sufficiently large number
of positive examples. We shall consider this property in the learning
process. For its formulation refer to the next section.

3.3. Some Considerations on the Learning Approach

When the problem of designing a GFS is considered, there is a need to
encode the possible solutions into a genetic representation for translating
the FLC parameter space into a certain space in which the GA can
operate. The FLC parameters considered in the learning process will
condition the dimension and properties of this space, making problem
solving faster or slower and even tractable in a lower or higher degree. As
was noted in [38], research indicates that the string length and the problem
complexity play a critical role in these factors.

This drawback may appear when designing GFSs belonging to the third
family presented in the previous section, i.e., when the generation of the
whole KB is considered in the genetic process. In this case, a large number
of KB components must be included in the genetic representation, which
becomes larger. This fact will be more pronounced if an approximate fuzzy
model is considered. The use of different membership-function definitions
for each rule makes the number of KB parameters increase, which makes
the search space more complex, making the problem computationally
intractable.

Hence, the learning process must be carefully designed to avoid these
problems. We will perform a global simplification on the whole learning

Learning FLC KBs from Examples 381

process by dividing it into three different stages, making the search space
simpler than in a single-stage design process. The proposed method will
consist of the following three steps, maintaining the generic structure used
in [9, 14, 21]:

1. An evolutionary generation process for generating fuzzy control rules,
with two components: a fuzzy-rule generating method based on an
inductive algorithm with an optional ES that locally tunes the rules,
and an iterative covering method for the system behavior example
set. As we are going to show in the following section, the use of the
ES will determine the nature of the fuzzy model: approximate if it is
applied, or descriptive if not. This process allows us to obtain a set of
rules covering the training set in an adequate form.

2. A genetic simplification process for selecting rules, based on a binary-
coded genetic algorithm and a measure of the FLC performance in
the control of the system being identified. This will avoid the over-
learning that the previous component may cause due to the existence
of redundant rules in obtaining the final RB.

3. A genetic tuning process, based on a real coded GA and a measure of
the FLC performance. It will give the final KB as output by tuning
the membership functions for each fuzzy control rule or for the
complete RB, according as the fuzzy model is approximate or descrip-
tive.

Figure 4 presents a block diagram of the' proposed learning process,
showing the section of the paper in which each component is described.

4. THE EVOLUTIONARY GENERATION PROCESS

As commented earlier, the first stage consists of two processes, a
generating method for obtaining desirable fuzzy rules from examples, and a
covering method for the set of examples.

1. The fuzzy-rule-generating method finds the best rule in every run over
the set of examples according to the features included in a fitness
function. It may include an optional ES that locally tunes the fuzzy
control rules obtained. Its application will determine if the final KB
generated will be approximate or descriptive.

2. The covering method allows us to obtain a set of fuzzy rules covering
the set of examples. This method is developed as an iterative process.
In each iteration, it runs the generating method choosing the best
fuzzy control rule, considers the relative covering value that this rule
yields over the example set, and removes the examples with a cover-
ing value greater than a value e provided by the controller designer.

The following two sections present both methods in depth.

382 O. Cord6n and F. Herrera

EVOLUTIONARY GENERATION PROCESS [Sects. 4,5,6]

F U Z Z Y R U L E G E N E R A T I N G M E T H O D [Sect. 5.3]

D E S C R I P T I V E [Sect . 5.1]
F I T N E S S F U N C T I O N : Frequent is t ic Cri ter ia

A P P R O X I M A T E [Sect . 5.2]

] [C O D I N G S C H E M E

[M U T A T I O N P R O C E S S]
[FITNESS: Niche Concept -b Frequentistic Criteria]

C O V E R I N G M E T H O D [Sect . 6]

G E N E T I C S I M P L I F I C A T I O N P R O C E S S [Sect . 711

G E N E T I C T U N I N G P R O C E S S

A P P R O X I M A T E

D E S C R I P T I V E

[Sect. 8]

[Sect. 8.1]1

[Sect. 8.2]

Figure 4. Block-diagram architecture of the proposed learning process.

5. THE FUZZY RULE GENERATING METHOD

5.1. Generating Descriptive Fuzzy Control Rules

This generating method was introduced in [10]. A previously defined DB
constituted by uniform fuzzy partitions with triangular membership func-
tions crossing at height 0.5 is considered. The number of linguistic terms
forming each one of them can be specified by the GFS designer in order to
obtain the desired granularity level. Figure 3 shows the generic structure
of a fuzzy partition with seven linguistic labels.

Each time the generating method is run, it produces a set of candidate
fuzzy rules by generating the fuzzy rule best covering every example from
the training set. These rules are obtained by taking the fuzzy-partition
linguistic label that best matches the example component value for each

Learning FLC KBs from Examples 383

variable. The accuracy of the candidates is measured by using a multicrite-
rion fitness function, designed to take into account three different criteria.
This allows us to ensure the completeness and consistency of the final set
of generated rules. Finally, the best fuzzy control rule is selected from the
set of candidates and given as process output. The criteria used by the
fitness function are:

1. High frequency value [21]. The frequency of a fuzzy control rule R i
through the set of examples Ep is defined as

~ 1 Ri(el)
~Ep(Ri) -

P

2. High average covering degree over positive examples [21]. The set of
positive examples to R i with a compatibility degree greater than or
equal to oJ is defined as

E+(Ri) = {e t ~ EpJR,(e,) >_

with n+(Ri) being equal to IE+(Ri)]. The average covering degree on
E+(Ri) can be defined as

Ri(et)
G,o(Ri) = y ' (Ri) .

el~Eo+(R~) n +

3. Small negative-example set [11]. The set of the negative examples for
R i is defined as

E - (R i) = (e t ~ Ep]Ri(e l) = 0 a n d Ai(ex l) > 0}.

An example is considered negative for a rule when it best matches
some other rule that has the same antecedent but a different conse-
quent. The negative examples are always considered over the com-
plete training set. With nR, = IE (Ri)l being the number of negative
examples, the penalty function on the negative examples set will be

g , (R 7) =
1 1

nR, -- kn+(Ri) + exp(1)

if n R < kn+(Ri),
i -

otherwise,

where we allow up to a certain fraction of the number of positive
examples, kn+(Ri), of negative examples per rule without any penalty.
This fraction is determined by the pa ramete r k ~ [0, 1].

384 O. Cord6n and F. Herrera

These three criteria are combined into a fitness function using any
aggregation function increasing in the three variables. In this paper we
work with the product in the following way:

F(R~) = ~E,(R~)G~o(R~)g.(R~).

Rules obtaining higher values of this function will be more accurate.

5.2. Generating Approximate Fuzzy Control Rules

It should be noted that the above generating method produces fuzzy
control rules of a descriptive nature. All the linguistic labels involved in
the rules generated in the different generating method runs will present
the same meaning, defined by the primary fuzzy partitions considered for
each linguistic variable, and so the final rule set will present a descriptive
behavior as well.

Nevertheless, when the ES is applied to optimize the best fuzzy control
rule selected from the candidate rule set, it modifies the shapes of the
concrete membership functions involved in the rule, without taking into
account the meaning of the other rules previously generated. This causes
the locally adjusted rule to present an approximate nature. This modifica-
tion to the generating method, introduced in [11], is described below.

Among the different types of ESs developed until now, we have selected
the well-known (1 + 1)-ES introduced in Section 2 for our purpose. This
optimization technique was used for the same task in [9, 14] but with two
differences. First, it acted as a GA genetic operator in combination with
several crossovers and mutations. Secondly, since that approach was based
on generating fuzzy rules with constrained free semantics, the modification
that the ES developed over the membership functions was also constrained
by a set of intervals of performance determined by a previous fuzzy
partition. Since in this case we are considering fuzzy rules with uncon-
strained free semantics, the membership functions of the fuzzy rules
obtained from the ES are only constrained to be meaningful.

Below we describe the three main aspects of the designed ES: coding
scheme, mutation process, and fitness function. Then we finish this section
by analyzing the global behavior of the approximate generating method.

A. CODING SCHEME In order to apply the ES, the fuzzy control rule is
encoded into a real string by using the membership function parametric
representation introduced in Section 3. Each triangular-shaped member-
ship function involved in the rule is encoded into a 3-tuple of real
numbers, and the aggregation of the partial codings forms the ES individ-
ual.

Learning FLC KBs from Examples 385

B. MUTATION PROCESS Two changes to the generic ES mutat ion scheme
have to be per formed in order to apply this technique to the problem
considered: the definition o f multiple step sizes and the incremental optimiza-
tion o f the individual parameters. We analyze them below:

• Definition o f multiple step sizes. As the mutat ion strength depends
directly on the value ~ of the standard deviation of the normally
distributed random variable zi, the step size cannot be a single value.
In our case the membership functions encoded are defined over
different universes and require different order mutations. Therefore,
a step size o-i = ors s for each component was used in the (1 + 1)-ES.
In any case the relations of all cr i were fixed by the values s~, and only
the common factor o- was adapted, following the assumptions pre-
sented in [1].

• Incremental optimization o f the individual parameters. Usually, the dif-
ferent parent components are not related and the ES is used in its
usual working mode in which all of them are adapted at the same
time. Unfortunately, in our problem each three correlative parame-
ters, (x 0, x~, x2), define a triangular-shaped membership function, and
the property x 0 < x~ < x 2 must be verified in order to obtain mean-
ingful fuzzy sets. Therefore, there is a need to develop an incremental
optimization of the individual parameters because the intervals of
performance for each one of them will depend on the value of any of
the others.
As we are considering an unconstrained free semantics, a global
interval of performance (in which the three parameters defining the
membership function may vary freely) is defined for each fuzzy set
involved in the fuzzy rule being optimized. With C i = (x0, Xl, x 2)
being the membership function currently adapted, the associated
interval of performance is [C[, C[] = [x 0 - (x 1 - x0) /2 , x 2 + (x 2 -
x~)/2]. The incremental adaptation is based on generating the mu-
tated fuzzy set C~ = (x~, X'l, x~) by first adapting the modal poitat Xl,
obtaining the mutated value x' 1 defined in the interval [x0, x2] , and
then adapting the left and right points x 0 and x 2, obtaining the values
x' 0 and x~ defined respectively in the intervals [C[, x' 1] and [x'l, C[]. It
may be clearly observed that the progressive application of this
process allows us to obtain fuzzy sets freely defined in the said interval
of performance.

The value of the pa ramete r s (x i) determining the particular step sizes,
~r i = o's(xi) , is computed each time the component x i is going to be
mutated. When i = 1, i.e., the modal point is being adapted, s(x 1) is equal
to min(x 1 - x o , x 2 - x l) / 2 . In the other two cases, i = 0 and i = 2, we
have s (x o) = min(x 0 - C[, x' 1 - x0) /2 and s(x 2) = min(x 2 - x'l, C r -
x2) /2 . Hence when tr takes value 1 at the first ES generation, the

386 0. Cordh and F. Herrera

obtaining of a large number of zi normal values performing a successful xi
mutation [i.e., the corresponding xj = xi + zi with zi - NiTi(O, a/‘> lying in
the expected interval for xi] is ensured. If the mutated value lies outside of
it, it is assigned the value of the interval extent closer to xi + zi.

The next algorithm summarizes the application of the adaptation pro-
cess on a membership function encoded in the parent. With Ci =
(x,, xi, x2) being the fuzzy set currently adapted, the steps to follow are:

1. Compute the step size of the central point, $(x1) + min{x, -x,,,

x2 - x1)/2.

2. Generate z1 - NO, a:> and compute x; in the following way:

x; +

i

Xl + 21 if x1 + z1 E [x,,x21,

x0 if x1 fz, <x0,

x2 if x, +z, >x,.

3. Adapt the remaining two points:
(a) s(xJ + min{x, - Cf, x; - x,)/2.

Generate z0 - MO, v,‘).

xb +-

1

x0 + =o if xc, +z, E [Cf,x;],

C; if x,,+z,<C!,

x; if x,, + z. > x;.

(b) s(x2) + minlx, - xi, CLr - x21/2.
Generate z2 - MO, ai>.

x2 + =2 if x2 + z2 E [x;,C:l,

x; + x; if x2 tz, <x;,

C,! if x2 + z2 > Cl.

C. FITNESS FUNCTION The fitness function is based on the same criteria
used in the descriptive gnerating process with the addition of a new one
related to the fuzzy-control-rule interaction level. While the interaction
level among the neighboring rules in an descriptive rule set is fixed and
equal to the union of the primary-fuzzy-set supports (T (see the discussion
of DB strategy in Section 3.21, this does not occur in an approximate rule
set. In the case in which an ES is considered in the generation process, we
have selected the approximate approach, and the membership functions
differ between some generated fuzzy control rules and others. This causes
variable interaction levels among the neighboring rules composing the
final rule set generated. Therefore, it is necessary to consider this aspect in
the generation process to obtain the best possible rule set representing the

Learning FLC KBs from Examples 387

knowledge contained in the training data set. To put this into effect, we
shall make use of the GA niche concept [15, 19]. Below we introduce this
concept, analyze some previous applications of it in GFS design, describe
its use in our approximate generating method, and present the final
expression of the fitness function.

• The niche concept. The niche and species concepts were introduced in
GAs in order to improve their behavior when dealing with multimodal
functions with peaks of unequal value. As in nature, the formation of
stable subpopulations of organisms surrounding separate niches by
forcing similar individuals to share the available resources is induced.
One of the most usually employed methods for introducing niches and
species in GAs is based on indiuidual fitness sharing [15, 19]. In this
scheme, the population is divided into different subpopulations
(species) according to the similarity of the individuals, forming niches
in two possible solution spaces: the gene and the decoded parameter
ones, genotypic and phenotypic sharing respectively. The individuals
belonging to each niche share the associated payoff amongst them. A
sharing function is defined to determine the neighborhood and degree
of sharing for each string in the population.

• Preuious applications of niching in GFS design. The idea of using this
concept for designing GFSs is not new. Satyadas and Krishnakumar
analyze it in [38] and propose a genetic design process using it in [29].
Another process making use of the concept is proposed in [9, 12].
Both schemes are based on phenotypic sharing, which seems to be the
most suitable approach for the GFS design problem. However, in the
two schemes the purpose of niching is quite different. While the first
method employs it to generate different optimal fuzzy models for a
concrete control problem, the second one uses it to improve the FLC
design, generating a KB formed by fuzzy control rules with a suitable
interaction between them.

• Applying niching to our approximatice generating method. We are going
to use the second kind of niche in our generation process, translating
it from the GA field to the ES one, by means of the low niche
interaction rate [9] criterion.
Since this criterion is based on GA niching, some considerations must
be taken into account to design it by means of a sharing function. We
noted that the concept of niching is always associated with the GAs
and is not usually applied in the ES field. Although the type of ES
considered is based on the existence of a single individual parent in
the optimization process, the role of the sharing function continues to
be the sharing of the global payoff between the individuals located in
the same niche. In this case, the only change is that the individuals
that share their fitness do not belong to a genetic population. The

388 O. Cord6n and F. Herrera

sharing is developed between the individual currently being optimized
and the fuzzy control rules already generated. Therefore, the payoff
associated to this individual will be lower when it is closer to a niche
center determined by the previously generated rules.
We should also note that one of the most important drawbacks of the
classical sharing scheme is the need to know where each niche is and
h o w big it is in order to allow the fitness sharing. Typically, this
requirement is addressed by the assumption that if two individuals are
close together, within a distance known as the niche radius, then their
fitness must be shared. Although several methods have been proposed
to determine this radius (see [15]), its calculation is a very difficult task
in a large number of cases.
Fortunately, in our case it is easy to determine the location and size of
the different existing niches. As we are working in the phenotypic
space, each individual represents a fuzzy control rule formed by n
input linguistic variables and an output one. Each variable takes as its
value a triangular-shaped fuzzy number encoded in the string. There-
fore, the center of the niche in the solution space will be an (n + 1)-
dimensional point, whose coordinates corresponds to the modal points
of the triangular membership functions. Two individuals will share
their payoff if there is any interaction between the different fuzzy
numbers giving values to the linguistic variables, i.e., if the fuzzy sets
associated to the same variable in the two chromosomes overlap each
other. Hence the algorithm does not present a fixed niche radius value
as in the classical sharing scheme, but rather the size of the niche
depends on the membership-function shapes encoded in the different
individuals.
With N i = (Nix, N~y) being the centers of the rules (niches) deter-
mined until now (i = 1 d, where d is the number of generating
process runs developed), and C being the individual encoding the
fuzzy control rule being adapted, the low n iche interact ion rate penal-
izes the fitness associated to C in the following way:

L N I R (C) = 1 - N I R (C) ,

N I R (C) = m a x i (h i } ,

h i = * (M (N i x) , B (n i Y)) , i = 1 , d ,

n (N ~ x) = , (n l (N ~ x ,) n n (N ~ x n)) ,

C ~ IF X 1 is A 1 a n d . . , and x n is A n THEN y is B

Hence LNm(C) is defined in [0, 1]. It gives the maximum value (no
penalization) when the rule encoded in C does not interact with any

Learning FLC KBs from Examples 389

of the rules generated until now. The minimum value (maximum
penalization) is obtained when this rule is equal to one of those
generated previously.
Figure 5 graphically shows a situation where there is interaction
between the rule encoded by C and any of the rules generated until
now:

° Final fitness-function expression. Finally, the fitness function for this
approximate generating method is the following:

F (R i) -- qtE(Ri)" G,o(R i) "g~(R~,) • LNIR(Ri)

D. BEHAVIOR AND ADVANTAGES OF THE APPROXIMATE GENERAT-
ING METHOD The combined action of the low-niche-interaction criterion
and the covering method modifies the fitness landscape on two different
levels at each algorithm step. The purpose of these changes in the
individual fitness payoff is to encourage the generation of individuals
exploring new zones of the solution space in the subsequent runs while
penalizing the ones located in existing niches. The two different modifica-
tion levels are discussed below:

• The covering method removes examples from the training data set,
eliminating the payoff associated to the space zones where these
examples were located. This is a high-level modification in that it

R 1
° ° ° ° ° ° ° * * ° ° , * * o

A
N i i X l N i i x n N i ! Y

° ° , . . o ° ° ° ° ° o ° o o

R d

" R .
!

'- C
Figure 5. Interaction between the current rule and the predetermined ones.

390 O. Cord6n and F. Herrera

translates the search focus to another space zone. This modification
encourages adequate space exploration.

• When a niche has been located in a space zone and it continues to be
the most promising one (i.e., the examples located in it have not been
yet covered and they have a big associated payoff), new fuzzy rules will
be generated in the same zone and they will interact with the ones
generated so far. An adequate interaction rate is desirable to make
the best use of the FLC interpolative reasoning capabilities. This is
obtained by using a niche penalizing function that penalizes excessive
proximity of the new rule to the previously generated ones.
The three frequentistic criteria for the fitness function try to widen the
supports of the generated fuzzy control rules to extend their applica-
bility and cover more examples. The niching criterion tries to narrow
their support by penalizing excessive proximity. A combination of
these four criteria enables us to obtain a suitable interaction level
among neighboring rules.
This is a low-level modification in that the algorithm continues working
in the same space zone but penalizes excessive proximity to the niches
located therein. This modification encourages adequate space ex-
ploitation.

Therefore, the approximate generation process will allow us to verify the
two following fundamental aspects:

• The process will ensure that fuzzy control rules are obtained in each
space zone in which the control problem is defined, i.e., in each zone
in which any example exists. The KB completeness is verified in this
way.

• In the same way, it will maintain an adequate rule distribution in each
one of the niches present in the solution space. A suitable interaction
between the KB fuzzy control rules is thus obtained.

5.3. The Generating Algorithm

Finally, the generating method may be summarized in the following
algorithm:

• Initialize the candidate fuzzy rule set B c to empty.
• For every e t E Ep, generate the fuzzy rule Rc best covering it by

taking the linguistic label of the fuzzy partition best matching with the
component value of e t for each variable. If R~ ~ B ~, add it to B c.

• Evaluate all the fuzzy rules contained in B c, and select the one
yielding the highest value of the fitness function, R r.

• If desired, optimize R r by using the proposed ES for locally tuning the
membership functions involved in it, obtaining a new fuzzy control
rule of approximate nature.

Learning FLC KBs from Examples 391

6. THE COVERING METHOD

The covering method is developed as an iterative process that allows us
to obtain a set of fuzzy rules covering the example set. In each iteration, it
runs the generating method, obtaining the best fuzzy control rule accord-
ing to the current state of the training set, considers the relative covering
value this rule imposes on it, and removes from it the examples with a
covering value greater than e. The covering method is developed as
follows:

1. Initialization:
(a) Introduce k, to, and e.
(b) Set the example covering degree CV[/] ~ 0, l = 1 p.
(c) Initialize the final set of rules B g to empty.

2. Over the set of examples Ep, apply the generating method, obtaining
as output the best fuzzy control rule R r according to the current state
of Ep.

3. Introduce R r in B g.
4, For every e l ~ F~ do

(a) CV[/] *-- CV[/] + Rr(el),
(b) If CV[/] >_ e, then remove it from Ep.

5. If Ep = Q, then STOP, else return to step 2.
Since two similar rules may be obtained, i.e., B g may present redundant

rules, it is necessary to simplify the complete rule set obtained from this
process for deriving the final KB, thereby allowing the system to be
controlled.

7. THE GENETIC SIMPLIFICATION PROCESS

It is possible that the iterative nature of the generation process may
cause overlearning. This occurs when some examples are covered to a
higher degree than the desired one, and it makes the obtained RB perform
worse due to the existence of redundant rules. In order to solve this
problem and improve its accuracy, it is necessary to simplify the rule set
obtained from the previous process, removing the redundant rules for
deriving the final RB allowing the system to be controlled.

The simplification process used was proposed in [21]. It is based on a
binary-coded GA, in which the selection of the individuals is developed
using the stochastic universal sampling procedure together with an elitist
selection scheme, and the generation of the offspring population is put
into effect by using the classical binary multipoint crossover (performed at
two points) and uniform mutation operators.

392 O. Cord6n and F. Herrera

The encoding scheme generates fixed-length chromosomes. Considering
the rules contained in the rule set B g derived from the previous step
counted from 1 to m, an m-bit string C = (c 1 c m) represents a subset
of candidate rules to form the RB finally obtained as this stage's output,
B s, such that

IF C i = 1 THEN R i ~ B s ELSE R i ~ B s.

The initial population is generated by introducing a chromosome repre-
senting the complete previously obtained rule set B g, that is, with all
c i = 1. The remaining chromosomes are selected at random.

As regards the fitness function, E(.), it is based on an application-specific
measure usually employed in the design of GFSs, the mean squared error
(SE) over a training data set, ETD s, which is represented by the following
expression:

1
E(Cj) - 21ETDs I ~ [ey l - S(exl)] 2,

e I ~= ETD S

where S(ex l) is the output value obtained f rom the FLC using the RB
coded in Ci, R(Cj), when the state variable values are ex l, and ey I is the
known desired value.

There is a need to keep the completeness property considered in the
previous stage. We will ensure this condition by forcing every example
contained in the training set to be covered by the encoded RB to a degree
greater than or equal to ~-,

Cn(cj)(e l) = [,.J R j (e z) >__ r Vet E ETD S and R i ~ R(Cj) ,
j = l 7"

where r is the minimal training-set completeness degree accepted in the
simplification process. Usually, r is less than or equal to ~o, the compatibil-
ity degree used in the generation process.

Therefore, we define a training-set completeness degree of R(Cj) over the
set of examples ETD s as

T S C D (R (C j) , E T D S) = f ~ CR(G)(e,),
e I ~ ETD S

and the final fitness function penalizing the lack of the completeness
property is

'E (Cj) if T S C D (R (C j) , ETDS) >~ '7",
F(Cj) =

±E 2 e,~ETDs(eY l)2 otherwise.

Learning FLC KBs from Examples 393

8. T H E G E N E T I C T U N I N G P R O C E S S

The genetic tuning process is based on two variants, depending on
whether the fuzzy model is approximate [20] or descriptive [10]. Both
processes are based on the previous existence of a complete KB, that is, an
initial DB definition and a RB constituted by m fuzzy control rules. As we
are going to see below, the only difference between the two processes is
the coding scheme. While the first of them encodes the whole KB into the
chromosomes for adjusting each one of the membership functions involved
in the fuzzy control rules independently, the chromosomes considered in
the second one only encode the pr imary fuzzy partitions constituting the
DB in order to adjust the linguistic labels' membership functions for all
the fuzzy control rules contained in the RB.

The G A designed for both tuning processes presents a real coding issue
and uses the stochastic universal sampling as selection procedure together
with an elitist scheme. The operators employed for performing the individ-
ual recombinat ion and mutat ion are Michalewicz's nonuniform mutat ion
[36] and the max-min arithmetical crossover [20]. A short description
thereof is presented below:

• N o n u n i f o r m m u t a t i o n . If C~, = (c I c k c n) is a chromosome
and the e lement c k was selected for this mutat ion (the domain of c k

is [Ckt, Ckr]) , the result is a vector C[, +l = (c 1 c'k c H) , with
k ~ 1 H and

C k q- A (t , Ckr - - C k) if a = 0,

c'k = c k - A (t , c k - c k t) if a = 1,

where a is a random number that may have a value of zero or one,
and the function A(t, y) returns a value in the range [0, y] such that
the probability of A(t, y) being close to 0 increases as t increases:

A (t , y) = y(1 -- r O-t/T)b),

where r is a random number in the interval [0, 1], T is the maximum
number of generations, and b is a pa ramete r chosen by the user,
which determines the degree of dependence on the number of itera-
tions. This property causes this opera tor to make a uniform search in
the initial space when t is small, and a very local one in later stages.

394 O. Cord6n and F. Herrera

• Max-min arithmetical crossover. If C[. = (c 1 c k c H) and Ct~ =
(c' 1 c), c~) are to be crossed, the following four offspring are
generated:

C~ +' = aC~ + (1 - a)C[.,

C~ +1 = aC[, + (1 - a)C~,

t+ 1 = min{c~, c~,} C~+ 1 with c3k

'+ 1 = m a x { c i ' c ,k}" C ~ + 1 w i t h Cak

This operator can use a paramete r a which is either a constant, or a
variable whose value depends on the age of the population. The
resulting descendents are the two best of the four aforesaid offspring.

The preliminary definition of the fitness function was presented in [20]
and was based on using a training input-output data set, ETD s, and a
concrete error measure, the mean squared error. In this way, the adapta-
tion value associated to an individual Cj was obtained by computing the
error between the outputs given by the FLC using the KB encoded in the
chromosome and those contained in the training data set. The fitness
function was represented by the following expression:

1

E (C j) - 21ETDs I
e I E ETD S

[ey I - S (ex l)] 2.

In this paper we are going to consider an extension of this fitness
function in order to keep the completeness property considered in the two
previous stages. Hence, the fitness function defined for the genetic simpli-
fication process, F(Cj) , is going to be used in the tuning one as well.

Once the aspects common to both genetic tuning processes have been
introduced, there is a need to present the particular ones for each of them.
The only differences between the two processes are the coding scheme and
the generation of the initial population. These particular aspects of both
variants are commented on in the following subsections.

8.1. The Approximative Genetic Tuning Process

As mentioned earlier, each chromosome forming the genetic population
will encode a complete KB. More concretely, all of them encode the
derived RB, R s, obtained as output from the simplification process, and
the differences between them are the fuzzy-control-rule membership func-
tions.

Taking into account the parametr ic representat ion of the triangular-
shaped membership functions based on a 3-tuple of real values introduced

Learning FLC KBs from Examples 395

in Section 3, each one o f the rules is encoded in pieces o f the c h r o m o s o m e
Cji, i = 1 m = n + 1, in the following way:

Cji = (a i l , b i l , Oil a in , bin, Cin, a i , bi , c i) .

There fo re the comple te RB with an associated DB is represented by a
comple te c h r o m o s o m e Cj.

= cs 2.., cjm.

The initial gene pool is created f rom the initial KB. This KB is encoded
directly into a ch romosome , deno ted as C 1. The remaining individuals are
genera ted by associating an interval of per formance , [Cth, C~,] to every gene
c h in C 1, h = 1 (n + 1) • m • 3. Each interval of pe r fo rmance will be
the interval of adjus tment for the cor responding variable, c h • [c~, c~].

If t mod 3 = 1, then c t is the left value of the support o f a fuzzy number .
The fuzzy number is defined by the three parameters (c,, t t+l, Ct+2), and
the intervals of pe r fo rmance are the following:

Ct+ 1 -- Ct Ct+ 1 - - Ct]
c, • [c [, c ;] = c, 2 , c , + -2-] '

Ct+l -- Ct Ct+2 - - C t + l]
Ct+ I E [C t+ l Ct+l] r = Ct+I 2 ' C t+I + 2] '

c t + 2 • [i [c t + 2 - C,+l c,+3 - c,+2]
Ct+2'Ct+2] = C t + 2 2 ' c ' + 2 + 2 "

Figure 6 shows these intervals.

/
! //

I f I r
C, C, Ct Ct+| Ct+2 Ct+2 Ct+2

I r

C t+l C t+l

Figure 6. Membership function and intervals of performance for the tuning pro-
cess.

396 O. Cord6n and F. Herrera

Therefore, we create a population of chromosomes which presents C 1 as
its first individual and the remaining ones initiated randomly, with each
gene being in its respective interval of performance.

8.2. The Descriptive Genetic Tuning Process

This second genetic tuning process is a modified version of the approxi-
mate one. In this case each chromosome encodes a different DB defini-
tion. A primary fuzzy partition is represented as an array composed of 3N
real values, with N being the number of terms forming the linguistic-varia-
ble term set. The complete DB for a problem, in which m linguistic
variables are involved, is encoded into a fixed-length real coded chromo-
some Cj built by joining the partial representations of each one of the
variable fuzzy partitions as is shown in the following:

Cji = (al l , bil, Oil aiNi, biNi, CiNi) ,

= c s j 2 . . , cjm.

The initial gene pool is created making use of the initial DB definition.
It is encoded directly into a chromosome, denoted as C~. The remaining
individuals are generated in the interval of performance associated to each
membership function. As in the approximate approach, the interval of
performance associated to every gene c h in Cl, [c~, c~], h =. 1 ~i m 1 3Ni,
will be the interval of adjustment for the corresponding gene, c h ~ [Clh, C~h].

9. APPLICATION OF THE LEARNING PROCESS TO THE FUZZY
MODELING OF THREE THREE-DIMENSIONAL MATHEMATICAL
FUNCTIONS

To analyze the accuracy of the GFS proposed, we have selected three
n-dimensional mathematical functions to derive theoretical three-dimen-
sional control surfaces. The mathematical functions and the variable
universes of discourse considered are shown below. The spherical model,
F 1, is a unimodal function; the generalized Rastrigin function, F 2, is a
strongly mult imodal one; and the third function, F 3, is a smooth one
presenting discontinuities at (0, 0) and (1, 1) - - a s may be observed in their
graphical representat ions (Figure 7):

F , (x 1,x 2) = x 2 + x ~ ,

Xl,X 2 E [- - 5 , 5] , F I (X l , X 2) E [0 ,50] ;

F z (x l , x 2) = x ~ + x 2 2 - c o s l 8 x 1 - c o s l 8 x 2,

Learning FLC KBs from Examples 397

0

Figure 7. Graphical representations of F 1 (at the top), F 2 (lower left), and F 3
(lower right).

Xl ,X 2 EE [--1,1], F z (x l , x 2) ~ [2,3.5231];

X 1 - - X l X 2

F3(x l , x 2) = 10
X 1 -- 2XlX 2 Jr-X 2 '

Xl, X 2 E [0, 1], F3 (Xl , x2) G~ [0, 10].

These surfaces will be approximated by different fuzzy models derived
from several design methods. In the descriptive fuzzy model, the three
following processes are considered:

D1. the widely employed Wang-Mendel (WM) method [43],
D2. a two-stage GFS based on obtaining a complete KB by deriving the

RB by means of the WM method and defining the DB by means of
the descriptive genetic tuning method (see Section 8) constituting
the third stage of the descriptive-fuzzy-model design process pro-
posed, and

D3. the three-stage descriptive-GFS proposed in this paper.

In the approximative fuzzy model, the following two processes are em-
ployed:

A1. a two-stage GFS based on obtaining a complete KB by deriving the
RB by means of the WM method and defining the DB by means of
the approximate genetic tuning method (see Section 6), and

398 O. Cord6n and F. Herrera

.42. the three-stage approximate GFS proposed in this paper.
For each of the functions, a training data set uniformly distributed in the

three-dimensional definition space has been obtained experimentally. In
this way, two sets with 1681 values have been generated for functions F 1
and F 2 by taking 41 values for each one of the two state variables
considered to be uniformly distributed in their respective intervals. As the
intervals of the two input variables are shorter for F 3, the training set has
been generated in the same way, but considering only 26 values. The final
data set for this function is composed of 674 values (instead of 676),
because it is not defined at two space points.

Three other data sets have been generated for use as test sets for
evaluating the performance of the learning method, avoiding any possible
bias related to the data in the training set. The size of these data sets is a
percentage of the size of the corresponding training set, 10 percent to be
precise. The data are obtained by generating at random the state-variable
values in the concrete universes of discourse for each one of them, and
computing the associated output-variable value. Hence two test sets formed
by 168 data and one by 67 are used to measure the accuracy of the FLCs
designed by computing the mean squared error for them.

The initial DB used in the generating process is constituted by three
primary fuzzy partitions (two corresponding to the state variables and one
to the control variable) formed by seven linguistic terms with triangular-
shaped fuzzy sets giving meaning to them (as shown in Figure 3), and the
appropriate scaling factors to translate the generic universe of discourse
into the one associated with each problem variable.

The following paramete r values, corresponding to the first two stages,
are combined for determining the different runs of the method to be
carried out: E = {1, 1.5}, w = 0.05, k = 0.1, and ~- = {0.1, 0.25, 0.5}. This
leads to an overall total of 12 runs per function when joined to the two
different fitness functions used in the tuning process, E(.) and F(.). With
respect to the remaining parameters , the t-norm * used in the rule
generation process is the minimum, the ES in the approximate generation
process is applied until there is no improvement in 100 generations (the
paramete r c of the ½-success rule is equal to 0.9), and the genetic
simplification and tuning processes run over 500 and 1000 generations,
respectively. In all cases, the population is formed by 61 individuals, the
value of the nonuniform mutation paramete r b is 5.0, and the crossover
and mutat ion rates are, respectively, Pc = 0.6 and P m = 0.1 (this last one
per individual). The max-min arithmetical crossover pa ramete r a takes the
value 0.35.

Finally, as regards to the FLC reasoning method used, we have selected
the m i n i m u m t-norm to play the role of the implication and conjunctive

Learning FLC KBs from Examples 399

Table 1. Fuzzy Model ing of F 1 Using Design Methods D1, D2, and D3

Parameters Generation Simplification Tuning

• ~- FT # R SEtr a SEts t # R SEtr a SEts t SEtr a SEts t

1.0 0.1 E(.) 118 4.3968 4.7109 62 2.0651 1.9786 0.3358 0.2625
1.0 0.1 F(.) 118 4.3968 4.7109 62 2.0651 1.9786 0.4138 0.2895
1.0 0.25 E(-) 118 4.3968 4.7109 65 2.1996 2.0667 0.4081 0.3233
1.0 0.25 F(') 118 4.3968 4.7109 65 2.1996 2.0667 0.4142 0.3358
1.0 0.5 E(') 118 4.3968 4.7109 74 2.5674 2.4023 0.5036 0.3974
1.0 0.5 F (') 118 4.3968 4.7109 74 2.5674 2.4023 0.4900 0.4385
1.5 0.1 E(.) 167 3.5187 3.4986 90 1.4530 1.5083 0.2854 0.3049
1.5 0.1 F(-) 167 3.5187 3.4986 90 1.4530 1.5083 0.2931 0.3142
1.5 0.25 E(.) 167 3.5187 3.4986 91 1.6709 1.6225 0.3459 0.3174
1.5 0.25 F(-) 167 3.5187 3.4986 91 1.6709 1.6225 0.3389 0.3122
1.5 0.5 E(.) 167 3.5187 3.4986 97 1.6791 1.7355 0.3279 0.3138
1.5 0.5 F(-) 167 3.5187 3.4986 97 1.6791 1.7355 0.3335 0.3132

D1 49 2.0481 2.2559 D2 0.3585 0.3771

operators , and the center of gravity weighted by the matching strategy as the
defuzzification opera to r [12].

The results ob ta ined in the different exper iments are collected in Tables
1"-6, where # R stands for the n u m b e r of rules of the cor responding KB,
F T for the fitness func t ion used in the genet ic tun ing process, and SEtr a
and SEts t for the values ob ta ined by the concre te F LC in the SE measure
compu ted over the t ra in ing and test data sets, respectively. The last table

Table 2. Fuzzy Model ing of F~ Using Design Methods A1 and A2

Parameters Generation Simplification Tuning

• z FT # R SEtr a SEts t # R SEtr a SEts t SEtr a SEts t

1.0 0.1 E(.) 102 4.7940 3.6363 66 3.2559 2.6212 1.6892 1.1688
1.0 0.1 F(.) 102 4.7940 3.6363 66 3.2559 2.6212 1.6679 1.1591
1.0 0.25 E(.) 102 4.7940 3.6363 73 3.4921 2.8006 1.8755 1.3989
1.0 0.25 F(.) 102 4.7940 3.6363 73 3.4921 2.8006 1.9751 1.5777
1.0 0.5 E(.) 102 4.7940 3.6363 79 3.6715 2.8745 2.0005 1.5199
1.0 0.5 F(-) 102 4.7940 3.6363 79 3.6715 2.8745 2.1323 1.5180
1.5 0.1 E(.) 128 4.1043 3.5518 76 2.5293 1.9513 1.4829 0.9607
1.5 0.1 F(.) 128 4.1043 3.5518 76 2.5293 1.9513 1.4629 0.9518
1.5 0.25 E(-) 128 4.1043 3.5518 80 2.6445 2.1978 1.4588 1.1293
1.5 0.25 F(.) 128 4.1043 3.5518 80 2.6445 2.1978 1.4716 1.2680
1.5 0.5 E(.) 128 4.1043 3.5518 86 2.8155 2.3975 1.6923 1.2228
1.5 0.5 F(-) 128 4.1043 3.5518 86 2.8155 2.3975 1.8189 1.3936

49 2.0481 2.2559 A1 0.4530 0.4543

400 O. Cord6n and F. Herrera

Table 3. Fuzzy Model ing of F 2 Using Design Methods D1, D2, and D3

Parameters Generation Simplification Tuning

E r FT # R SEtr a SEts t # R SEtr a SEts t SEtr a SEts t

1.0 0.1 E(-) 281 0.5563 0.6390 195 0.4758 0.5195 0.3692 0.4091
1.0 0.1 F(-) 281 0.5563 0.6390 195 0.4758 0.5195 0.3766 0.4236
1.0 0.25 E(.) 281 0.5563 0.6390 198 0.4882 0.5411 0.3824 0.4234
1.0 0.25 F(.) 281 0.5563 0.6390 198 0.4882 0.5411 0.3991 0.4500
1.0 0.5 E(.) 281 0.5563 0.6390 214 0.4967 0.5539 0.3732 0.4152
1.0 0.5 F(.) 281 0.5563 0.6390 214 0.4967 0.5539 0.4123 0.4574
1.5 0.1 E(-) 373 0.5805 0.6721 249 0.4699 0.4997 0.3676 0.3795
1.5 0.1 F(-) 373 0.5805 0.6721 249 0.4699 0.4997 0.3723 0.3877
1.5 0.25 E(.) 373 0.5805 0.6721 243 0.4841 0.5189 0.3780 0.3932
1.5 0.25 F(.) 373 0.5805 0.6721 243 0.4841 0.5189 0.3918 0.4093
1.5 0.5 E(-) 373 0.5805 0.6721 263 0.4827 0.5184 0.3708 0.3828
1.5 0.5 F(.) 373 0.5805 0.6721 263 0.4827 0.5184 0.4019 0.4264

D1 49 1.7783 2.0490 D2 0.8141 0.9641

row shows the results cor responding to both design processes based on the
W M KB genera t ion me thod (the " G e n e r a t i o n " columns are re la ted to the
single W M method, D1, and the " T u n i n g " co lumn to the two-stage GFS,
D2 or A1).

Analyzing these results, the good behavior p resen ted by the proposed
GFS may be observed. All the FLCs designed using it are much more
accurate than the ones based on the W M RB genera t ion me thod in the

Table 4. Fuzzy Model ing of F 2 Us ing Design Methods A1 and A2

Parameters Generation Simplification Tuning

E "1 Ell # R SEtr a SEts t # R SEtr a SEts t SEtr a SEts t

1.0 0.1 E(') 279 0.2903 0.3017 193 0.2031 0.2141 0.1878 0.1997
1.0 0.1 F(.) 279 0.2903 0.3017 193 0.2031 0.2141 0.1868 0.2050
1.0 0.25 E(') 279 0.2903 0.3017 202 0.2242 0.2374 0.2046 0.2127
1.0 0.25 F(.) 279 0.2903 0.3017 202 0.2242 0.2374 0.2045 0.2203
1.0 0.5 E(') 279 0.2903 0.3017 223 0.2361 0.2573 0.2167 0.2340
1.0 0.5 F(.) 279 0.2903 0.3017 223 0.2361 0.2573 0.2180 0.2392
1.5 0.1 E(-) 368 0.2870 0.3421 245 0.1810 0.2142 0.1674 0.1988
1.5 0.1 F(') 368 0.2870 0.3421 245 0.1810 0.2142 0.1680 0.2025
1.5 0.25 E(') 368 0.2870 0.3421 240 0.1961 0.2495 0.1820 0.2268
1.5 0.25 F(-) 368 0.2870 0.3421 240 0.1961 0.2495 0.1823 0.2293
1.5 0.5 E(') 368 0.2870 0.3421 267 0.2133 0.2623 0.1988 0.2459
1.5 0.5 F(') 368 0.2870 0.3421 267 0.2133 0.2623 0.1997 0.2434

49 1.7783 2.0490 A1 1.0188 1.2032

Learning FLC KBs from Examples 401

Tab le 5. Fuzzy M o d e l i n g of F 3 Us ing Des ign M e t h o d s D1, D2, and D3

Parameters Generation Simplification Tuning

• r FT # R SEtr a SEts t # R SEtr a SEts t SEtr a SEts t

1.0 0.1 E(.) 106 0.1818 0.1037 67 0.0381 0.0467 0.0185 0.0210
1.0 0.1 F(.) 106 0.1818 0.1037 67 0.0381 0.0467 0.0194 0.0219
1.0 0.25 E(-) 106 0.1818 0.1037 67 0.0559 0.0446 0.0292 0.0191
1.0 0.25 F(-) 106 0.1818 0.1037 67 0.0559 0.0446 0.0291 0.0180
1.0 0.5 E(.) 106 0.1818 0.1037 81 0.1347 0.0687 0.0604 0.0246
1.0 0.5 F(.) 106 0.1818 0.1037 81 0.1347 0.0687 0.0715 0.0338
1.5 0.1 E(.) 156 0.2207 0.1043 97 0.0370 0.0348 0.0185 0.0181
1.5 0.1 F(.) 156 0.2207 0.1043 97 0.0370 0.0348 0.0182 0.0208
1.5 0.25 E(-) 156 0.2207 0.1043 98 0.0549 0.0382 0.0273 0.0167
1.5 0.25 F(.) 156 0.2207 0.1043 98 0.0549 0.0382 0.0325 0.0192
1.5 0.5 E(') 156 0.2207 0.1043 110 0.1269 0.0631 0.0599 0.0315
1.5 0.5 F(.) 156 0.2207 0.1043 110 0.1269 0.0631 0.0728 0.0457

D1 49 0.1943 0.0444 D2 0.0602 0.0286

fuzzy m o d e l i n g o f the t h ree funct ions . T h e two process var ian ts m a k e it
s t ronge r because they a l low it to tackle many d i f fe ren t k inds o f con t ro l
surfaces; s m o o t h ones, l ike those g e n e r a t e d by m e a n s of the funct ions F,
and F 3, a re bes t m o d e l e d by using descr ip t ive KBs, whils t the a p p r o x i m a t e
a p p r o a c h seems to work b e t t e r with complex surfaces "with s t rong changes,
such as the one g e n e r a t e d f rom F 2.

Tab le 6. Fuzzy M o d e l i n g of F 3 Us ing Des ign M e t h o d s A1 and A 2

Parameters Generation Simplification Tuning

e T FT # R SEtr a SEts t # R SEtr a SEts t SEtr a SEts t

1.0 0.1 E(') 101 0.2255 0.1608 65 0.1457 0.1129 0.0863 0.0766
1.0 0.1 F (') 101 0.2255 0.1608 65 0.1457 0.1129 0.0965 0.0930
1.0 0.25 E(-) 101 0.2255 0.1608 65 0.1507 0.3056 0.0929 0.3171
1.0 0.25 F (') 101 0.2255 0.1608 65 0.1507 0.3056 0.0986 0.1778
1.0 0.5 E(') 101 0.2255 0.1608 70 0.1777 0.3622 0.1153 0.3918
1.0 0.5 F(-) 101 0.2255 0.1608 70 0.1777 0.3622 0.1230 0.3275
1.5 0.1 E(-) 132 0.1912 0.1057 87 0.1043 0.0902 0.0795 0.0597
1.5 0.1 F (') 132 0.1912 0.1057 87 0.1043 0.0902 0.0695 0.0648
1.5 0.25 E(-) 132 0.1912 0.1057 93 0.1053 0.2930 0.0714 0.0531
1.5 0.25 F (') 132 0.1912 0.1057 93 0.1053 0.2930 0.0721 0.0522
1.5 0.5 E(-) 132 0.1912 0.1057 90 0.1113 0.3274 0.0786 0.0537
1.5 0.5 F (') 132 0.1912 0.1057 90 0.1113 0.3274 0.0774 0.0664

49 0.1943 0.0444 A1 0.0562 0.0210

402 O. Cord6n and F. Herrera

Two drawbacks may be associated to the proposed process, the KBs
generated always present more fuzzy control rules than the WM-based
methods, and the approximate fuzzy model makes the KB lose its readabil-
ity:

• A larger number of fuzzy rules does not constitute a drawback when
working with real problems in which the main requirement is the
accuracy of the control and not the speed of the controller response.
Furthermore, large numbers of fuzzy control rules can always be
compiled for increased run-time performance [5]. The proposed learn-
ing process allows the GFS designer to obtain the desired value in the
relationship between accuracy and number of rules in the KB by
controlling the value of the parameter E in the evolutionary learning
process. The higher the value of this parameter is, the more rules the
generated KB presents, but more accurate is the FLC in the great
majority of the cases. In the same way, the lower it is, the fewer rules
are obtained, but usually less accurate the FLC is.

• The loss of KB readability may be justified by the benefit obtained by
the improved FLC accuracy, which is a main concern in many real
control problems.

To illustrate the behavior of the proposed process, some graphical
representations of the fuzzy modeling obtained on the selected functions
are shown in figures 8 and 9. Each figure is drawn using the designed FLCs

!l

21 11 1.
0.

°0.
. (

-1 0

Figure 8. Graphical representations of the fuzzy modeling obtained for F 1 (at the
top), F 2 (lower left), and F 3 (lower right).

Learning FLC KBs from Examples 403

°:;I

1 ~ S O'&

- 0.$ 1 - ~ . 1

Figure 9. Graphical representations of the fuzzy modeling obtained for F e using
methods D1 (top left), D2 (top right), D3 (lower left), and A2 (lower right).

best approaching each one of the functions. These FLCs have been
selected making use of an index weighting the final value obtained by the
controller in the SE measure over both data sets by the number of data
they contain in the following way:

M =
IEtral " SEtr a + IEtstl • SEts t

]Etral + lEts ,]

Figure 8 shows the obtained fuzzy modeling for the functions F1, F2,
and F 3 by means of the FLCs presenting lower values in this measure. The
first and third plots correspond to the runs of the design method D3, the
descriptive GFS proposed, using the parameter values • = 1.5 and r = 0.1,
while the second one corresponds to A2, our approximate GFS, using the
same parameter values.

Figure 9 presents the remaining fuzzy modelings obtained for the second
function with the purpose of highlighting the difference between the
descriptive and approximate approaches when dealing with a complex
function. In view of these representations and the ones shown in Figure 8,
we can conclude that the approximative approach works better for this
kind of functions, though presenting a similar number of fuzzy control

404 O. Cord6n and F. Herrera

rules in the KB (249 in the KB derived using method D3, and 245 in the
one obtained from A2).

10. CONCLUDING REMARKS

A GFS has been presented for designing FLCs by learning the KB from
examples, combining an iterative and ES-based generation and two GA-
based simplification and tuning processes. Its application to the generation
of KBs presenting descriptive and approximate behavior for different kinds
of problems has been considered. Its performance in the fuzzy modeling of
three three-dimensional control surfaces has been shown and compared
with other methods based on the WM process. The proposed GFS has
obtained good results.

It has been observed that each one of the KB approaches has performed
better in a given kind of problem. While the smooth control surfaces, like
the ones generated by means of F~ and F 3, are better modeled by using
descriptive KBs, the approximate approach works better when applied to
complex and rough surfaces with strong changes, such as the one gener-
ated from F 2. This fact makes the proposed process more robust, because
it is able to work with control surfaces of different natures by means of its
two variants.

References

1. Biick, T., and Schwefel, H.-P., Evolution strategies I: Variants and their
computational implementation, in Genetic Algorithms in Engineering and Com-
puter Science (J. Periaux, G. Winter, M. Galfin, P. Cuesta, Eds.), Wiley,
111-126, 1995.

2. Beasly, D., Bull, D. R., and Martin, R. R., A sequential niche technique for
multimodal function optimization, Evolutionary Comput. 1(2), 101-125 (1993).

3. Bolata, F., and Now6, A., From fuzzy linguistic specifications to fuzzy con-
trollers using evolution strategies, Proceedings of the Fourth IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE'95), Yokohama, Japan, 1089-1094,
1995.

4. Bonarini, A., ELF: Learning incomplete fuzzy rule sets for an autonomous
robot, Proceedings of the First European Congress on Fuzzy and Intelligent
Technologies (EUFIT'93), Aachen, Germany, 69-75, Sept. 1993.

5. Bonissone, P. P., A compiler for fuzzy logic controllers, Proceedings of the
International Fuzzy Engineering Symposium (IFES'91), 706-717, Nov. 1991.

Learning FLC KBs from Examples 405

6. Cooper, M. G., and Vidal, J. J., Genetic design of fuzzy logic controllers,
Proceedings of the Second International Conference on Fuzzy Theory and Technol-
ogy (FTT'93), Durham, 1993.

7. Carse, B., Fogarty, T. C., and Munro, A., Evolving fuzzy rule based controllers
using genetic algorithms, Fuzzy Sets and Systems 80, 273-293, 1996.

8. Cord6n, O., and Herrera, F., A general study on genetic fuzzy systems, in
Genetic Algorithms in Engineering and Computer Science (J. Periaux, G. Winter,
M. Galen, P. Cuesta, Eds.), Wiley, 33-57, 1995.

9. Cord6n, O., and Herrera, F., A hybrid genetic algorithm-evolution strategy
process for learning fuzzy logic controller knowledge bases, in Fuzzy Logic and
Soft Computing (F. Herrera, and J. L. Verdegay, Eds.), Pbysica-Verlag, 251-278,
1996.

10. Cord6n, O., Herrera, F., and Lozano, M., A three-stage method for designing
genetic fuzzy systems by learning from examples, in Proceedings of the 4th
International Conference on Parallel Problem Soh'ing from Nature (PPSN IV) (H.
M. Voight, W. Ebeling, E. Rechemberg, H. P. Schwefel, Eds.), Lecture Notes
in Comput. Sci. 1141, Berlin, 720-729, 1996.

11. Cord6n, O., and Herrera, F., Generating and selecting fuzzy control rules using
evolution strategies and genetic algorithms, Proceedings of the Information
Processing and Management of Uncertainly in Knowledge-Based Systems
(IPMU'96), Granada, Spain, 733-738, 1996.

12. Cord6n, O., Herrera, F., and Peregr~n, A., Applicability of the fuzzy operators
in the design of fuzzy logic controllers, Fuzzy Sets and Systems, 86, 15-41, 1997.

13. Cord6n, O., Herrera, F., and Lozano, M., A classified review on the combina-
tion fuzzy logic-genetic algorithms bibliography: 1989-1995, in Genetic Algo-
rithms and Fuzzy Logic Systems. Soft Computing Perspectives (E. Sanchez, T.
Shibata, L. Zadeh, Eds.), World Scientific, 1997.

14. Cord6n, O., and Herrera, F., Identification of linguistic fuzzy models by means
of genetic algorithms, in Fuzzy Identification: A User's Handbook (D. Dri-
ankov, H. Hellendoorn, R. Pabu, Eds.), Springer Verlag, 1997.

15. Deb, K., and Goldberg, D. E., An investigation of niche and species formation
in genetic function optimization, Proceedings of the Second International Confer-
ence on Genetic Algorithms, Lawrence Erlbaum, Hillsdale, N.J., 42-50, 1989.

16. Driankov, D., Hellendoorn, H., and Reinfrank, M., An Introduction to Fuzzy
Control, Springer-Verlag, 1993.

17. Fogel, L. J., Owens, A. J., and Walsh, M. J., Artificial Intelligence through
Simulated Evolution, Wiley, New York, 1966.

18. Fogel, D. B., System Identification Through Simulated Evolution. A Machine
Learning Approach, Ginn Press, USA, 1991.

19. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, New York, 1989.

406 O. Cord6n and F. Herrera

20. Herrera, F., Lozano, M., and Verdegay, J. L., Tuning fuzzy controllers by
genetic algorithms, Intemat. J. Approx. Reason. 12, 1995, 299-315.

21. Herrera, F., Lozano, M., and Verdegay, J. L., A learning process for fuzzy
control rules using genetic algorithms, Fuzzy Sets and Systems, to appear.

22. Herrera, F., Lozano, M., and Verdegay, J. L., Generating fuzzy rules from
examples using genetic algorithms, in Fuzzy Logic and Soft Computing (B.
Bouchon-Meunier, R. R. Yager, and L. A. Zadeh, Eds.), World Scientific,
11-20, 1995.

23. Herrera, F., and Verdegay, J. L. (Eds.), Genetic Algorithms and Soft Computing,
Physica-Verlag, 1996.

24. Hoffman, F., and Pfister, G., A new learning method for the design of
hierarchical fuzzy controllers using messy genetic algorithms, Proceedings of the
Sixth International Fuzzy Systems Association World Congress (IFSA'95), Sao
Paulo, Brazil, 249-252, July 1995.

25. Holland, J. H., Adaptation in natural and artificial systems, Univ. of Michigan
Press, Ann Arbor, 1975; MIT Press, London, 1992.

26. Karr, C. L., Genetic algorithms for fuzzy controllers, AI Expert, 26-33, 1991.

27. Karr, C. L., Applying genetics to fuzzy logic, AI Expert, 38-43, 1991.

28. Kinzel, J., Klawonn, F., and Kruse, R., Modifications of genetic algorithms for
designing and optimizing fuzzy controllers, Proceedings of the First IEEE
Conference on Evolutionary Computation (EC-IEEE'94), Orlando, 28-33, June
1994.

29. Krishnakumar, K., and Satyadas, A., Evolving multiple fuzzy models and its
application to an aircraft control problem, in Genetic Algorithm in Engineering
and Computer Science (J. Periaux, G. Winter, M. Galen, P. Cuesta, Eds.),
Wiley, 305-320, 1995.

30. Kropp, K., and Baitinger, U. G., Optimization of fuzzy logic controller infer-
ence rules using a genetic algorithm, Proceedings of the First European Congress
on Fuzzy and Intelligent Technologies (EUFIT'93), Aachen, Germany,
1090-1096, Sept. 1993.

31. Lee, C. C., Fuzzy logic in control systems: fuzzy logic controller--parts I, II,
IEEE Trans. Systems Man Cybernet. 20, 404-435, 1990.

32. Lee, M. A., and Takagi, H., Embedding apriori knowledge into an integrated
fuzzy system design method based on genetic algorithms, Proceedings of the
Fifth International Fuzzy Systems Association World Congress (IFSA'93), Seoul,
1293-1296, July 1993.

33. Leitch, D., and Probert, P., Context depending coding in genetic algorithms for
the design of fuzzy systems, Proceedings of the IEEE /Nagoya UniL,ersity WWW
on Fuzzy Logic and Neural Networks~Genetic Algorithms, Nagoya, 1994.

Learning FLC KBs from Examples 407

34. Magdalena, L., and Velasco, J. R., Fuzzy rules-based controllers that learn by
evolving its knowledge base, in Fuzzy Logic and Soft Computing (F. Herrera
and J. L. Verdegay, Eds.), Physica-Verlag, 172-201, 1996.

35. Mamdani, E. H., and Assilian, S., An experiment in linguistic synthesis with a
fuzzy logic controller, Internat. J. Man-Machine Stud. 7, 1-13, 1975.

36. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, 1992.

37. Ng, K. C., and Li, Y., Design of sophisticated fuzzy logic controllers using
genetic algorithms, Proceedings of the Third IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE'94), Orlando, 1708-1712, June 1994.

38. Satyadas, A., and Krishnakumar, K., Evolutionary learning techniques for fuzzy
controller synthesis, Proceedings of the First Industry~University Symposium on
High Speed Civil Transport Vehicles, N.C., Dec. 1994.

39. Satyadas, A., and Krishnakumar, K., EFM-based controllers for space station
attitude control: Application and analysis, in Fuzzy Logic and Soft Computing
(F. Herrera and J. L. Verdegay, Eds.), Physica-Verlag, 152-171, 1996.

40. Schwefel, H.-P., Evolution and Optimum Seeking, Sixth-Generation Comput.
Technol. Ser., Wiley, 1995.

41. Surmann, H., Kanstein, A., and Goser, K., Self-organizing and genetic algo-
rithms for an automatic design of fuzzy control and decision systems, Proceed-
ings of the First European Congress on Fuzzy and Intelligent Technologies
(EUFIT'93), Aachen, Germany, 1097-1104, Sept. 1993.

42. Thrift, P., Fuzzy logic synthesis with genetic algorithms, Proceedings of the
Fourth International Conference on Genetic Algorithms (ICGA'91), San Diego,
509-513, July 1991.

43. Wang, L. X., and Mendel, J. M., Generating fuzzy rules by learning from
examples, IEEE Trans. Systems Man Cybernet. 22, 1414-1427, 1992.

