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Aggregation Operators for
Linguistic Weighted Information

Francisco Herrera and Enrique Herrera-Viedma

Abstract—The aim of this paper is to model the processes of the
aggregation of weighted information in a linguistic framework.
Three aggregation operators of weighted linguistic information
are presented: linguistic weighted disjunction (LWD) operator,
linguistic weighted conjunction (LWC) operator, and linguistic
weighted averaging (LWA) operator. A study of their axiomatics
is presented to demonstrate their rational aggregation.

Index Terms—Aggregation operators, fuzzy linguistic quanti-
fier, linguistic modeling.

I. INTRODUCTION

SOME situations present precise and rigorous quantitative
aspects as well as fuzzy and unrigorous qualitative aspects.

Therefore, phenomena must be defined using quantitative con-
cepts as well as qualitative concepts. Dealing with quantitative
concepts is easy, and it may be done by means of the numerical
variables. The problem is how to deal with qualitative con-
cepts. The use of fuzzy set theory, proposed and developed
by Zadeh [34], has given very good results modeling the
qualitative aspects [35]. Fuzzy set theory provides a flexible
framework, where it is possible to satisfactorily solve many
of the obstacles of lack of precision. It is an approximate
technique in its nature, which represents the qualitative aspects
in qualitative terms (linguistic terms) by means oflinguistic
variables, that is, variables whose values are not numbers but
words or sentences in a natural or artificial language. The use
of words or sentences rather than numbers is, in general, a less
specific, more flexible, direct, realistic, and adequate form to
express the qualitative aspects and is very widespread, as may
be seen in [1], [4], [6], [13], [22]–[24], [31], [33].

On the other hand, we can find situations where the infor-
mation handled is not equally important, i.e., the framework
is heterogeneous. For example, when a group of medical
experts expresses its opinions on the possible illness that a
patient presents, on the one hand, its diagnostics must not
be considered with equal relevance, given that, there will be
medical experts with more experience or with more study years
than others, and therefore, all the opinions shall not be equally
reliable; but, on the other hand, a final and global diagnostic
must be made using the initial and individual diagnostics.
This heterogeneous framework has been considered by various
authors in opinions aggregation operators [2], [10], [20], [32];
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consensus models in group decision making [14], [16]; fuzzy
pattern matching [9]; and knowledge systems [21].

One way of modeling the first aspect is by assigning a
weight to each medical expert. The weights are quantitative
or qualitative values, which may be interpreted in at least two
different ways [9], [10].

1) Each medical expert is viewed as a subgroup and the
weight reflects the relative size of this subgroup.

2) The weight may reflect the relevance of the medical
expert in the group. This level of relevance may act as
a constraint on the opinions that a medical expert may
express.

One way of dealing with the second aspect, in general, is to use
adequate operators for combining information, usually called
information aggregation operators, before reaching a final
decision or action. Issues of weighted aggregation operators
have been studied in a quantitative setting in [2], [8], [9],
[20], [21], [25], [27], and [32], and in a qualitative setting in
[3] and [31]–[33].

In short, we can find situations where the information
handled is imprecise by nature and is not equally impor-
tant, and where some appropriate aggregation operators of
weighted information are required. According to this idea,
in this paper, we will present three aggregation operators
for linguistic1weighted information (linguistic variables for
expressing experts’ opinions and linguistic weights on the
experts)

1) Linguistic Weighted Disjunction (LWD);
2) Linguistic Weighted Conjunction (LWC); and
3) Linguistic Weighted Averaging (LWA).

They are defined usingthe LOWA operator[12], [15], the
weighted minimum and maximum operators[8], two fami-
lies of connectives [11], and the concept offuzzy majority
represented by afuzzy linguistic quantifier[36]. In order to
demonstrate the good performance of these operators, we
shall study some postulated axiomatics and properties of an
intuitively acceptable weighted aggregation operator.

In order to do so, the paper is structured as follows.
Section II shows the considered linguistic framework and the
LOWA operator. Section III presents the linguistic weighted
aggregation operators and some of their properties. Section IV
contains an example of the application of these operators in
decision making for nonhomogeneous groups. Finally, some
conclusions are discussed.

1The word “linguistic” is related to the concept of “linguistic variables” in
a formal way, and it does not imply some connections to linguistics.
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Fig. 1. Hierarchy of labels.

II. PRELIMINARIES

Here, before defining our aggregation operators, we shall
present the work hypothesis. We will specify a concrete
linguistic model to represent the information and the LOWA
operator to aggregate linguistic information.

A. Linguistic Approach

Usually, in a quantitative setting, the information is ex-
pressed by means of numerical values. However, when we
work in a qualitative setting, that is, with vague or imprecise
knowledge, the information cannot be estimated with an exact
numerical value. In that case, a more realistic approach may
be to use linguistic assessments instead of numerical values
[35], that is, to suppose that the variables which participate
in the problem are assessed by means of linguistic terms [5],
[6], [12], [13], [22], [31], [35]. This approach is appropriate
for a lot of problems, since it allows a representation of the
information in a more direct and adequate form if we are
unable to express it with precision.

A linguistic variable differs from a numerical one in that its
values are not numbers, but words or sentences in a natural
or artificial language. Since words, in general, are less precise
than numbers, the concept of a linguistic variable serves the
purpose of providing a means of approximated characterization
of phenomena, which are too complex, or too ill-defined, to
be amenable to their description in conventional quantitative
terms.

Definition [35]: A linguistic variable is characterized by a
quintuple . is the name of the variable;

(or simply ) denotes the term set of , i.e., the set
of names of linguistic values of , with each value being a
fuzzy variable denoted generically by and ranging across
a universe of discourse which is associated with the base
variable . is a syntactic rule (which usually takes the form

of a grammar) for generating the names of values of, and
is a semantic rule for associating its meaning with each

, which is a fuzzy subset of .
Usually, depending on the problem domain, an appropriate

linguistic term set is chosen and used to describe the vague
or imprecise knowledge. The elements in the term set will
determine the granularity of the uncertainty, that is the level
of distinction among different countings of uncertainty. In [1]
the use of term sets with an odd cardinal was studied; the mid
term represents an assess of “approximately 0.5”; the rest of
the terms are placed symmetrically around it, and the limit of
granularity 11 or no more than 13.

For instance, Fig. 1 shows a hierarchical structure of lin-
guistic values or labels. Clearly, level 1 provides a granularity
containing three labels, level 2 a granularity with nine labels,
and of course, different granularity levels could be presented.
In fact, in Fig. 1, level 4 presents the finest granularity in a
decision process—the numerical values.

On the other hand, the semantic of the elements in the term
set is given by fuzzy numbers defined in the [0, 1] interval,
which are described by membership functions. Because the
linguistic assessments are just approximate ones given by the
individuals, we can consider that linear trapezoidal member-
ship functions are good enough to capture the vagueness of
those linguistic assessments, since it may be impossible or
unnecessary to obtain more accurate values. This represen-
tation is achieved by the four-tuple . The first
two parameters indicate the interval in which the membership
value is 1; the third and fourth parameters indicate the left and
right width. Formally speaking, it seems difficult to accept that
all individuals should agree on the same membership function
associated to linguistic terms, and therefore, there are not any
universality distribution concepts.

It is well known and accepted that the tuning of membership
functions is a crucial issue in control processes with linguistic
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rules. In our context, we consider an environment where
individuals can discriminate perfectly the same term set under
a similar conception, taking into account that the concept
of a linguistic variable serves the purpose of providing a
means of approximated characterization of imprecise prefer-
ence information. Moreover, in our development, we do not
use the membership functions for aggregating the labels; we
define aggregation operators for linguistic labels by direct
computation on labels.

B. Characterization of the Linguistic Label Set

Accordingly, to establish what kind of label set to use ought
to be the first priority. Then, let
be a finite and totally ordered term set on [0,1] in the usual
sense [1], [4]. Any label, , represents a possible value for a
linguistic variable, that is, a vague property or constraint on
[0,1]. We consider a term set,, as in [1] with its semantic
given by linear trapezoidal membership functions. Moreover,
it must have the following characteristics:

1) the set is ordered: if ;
2) there is the negation operator: Neg such that

;
3) maximization operator: Max if ;
4) minimization operator: Min if .

For example, this is the case of the following term set of
the level 2 of the Fig. 1:

Perfect

Very High

High

Medium

Low

Very Low

None

C. The LOWA Operator

Assuming the proposed linguistic approach, two main ap-
proaches can be found in order to aggregate linguistic values:
the first acts by direct computation on labels [5], and the
second uses the associated membership functions [1], [22],
[35].

Most available techniques belong to the latter. However,
the final results of those methods are fuzzy sets which do
not correspond to any label in the original term set. If one
finally wants to have a label, then a “linguistic approximation”
is needed [1], [22], [23], [35]. The process of linguistic
approximation consists of finding a label whose meaning is
the same or the closest (according to some metric) to the
meaning of an unlabeled membership function generated by
some computational model.

In this context, to manipulate the linguistic information, we
shall work with operators for combining the linguistic values
(nonweighted and weighted) by direct computation on labels.
Specifically, in this section we shall present the nonweighted
operator of combination of the linguistic values based on direct
computation, the LOWA operator [12], [15], which will be

used latter in the definition of the three weighted operators
of combination of linguistic values by direct computation that
we propose here.

The linguistic ordered weighted averaging(LOWA) opera-
tor, defined in [12] and [15], is based on theordered weighted
averaging(OWA) operator defined by Yager [28], and on the
convex combination of linguistic labelsdefined by Delgadoet
al. [5].

Definition 1: Let be a set of labels to
be aggregated, then the LOWA operator,is defined as

where is a weighting vector, such that,

1) and,
2)

and is a
vector associated to such that,

where,

with being a permutation over the set of labels is
the convex combination operator of labels and if
then it is defined as

such that

round

where “round” is the usual round operation, and

If and with then the convex
combination is defined

In [15], we demonstrated that the LOWA operator presents
some evidence of rational aggregation, because, on the one
hand, it verifies the following properties:

• the LOWA operator isincreasing monotonouswith re-
spect to the argument values;

• the LOWA operator iscommutative; and
• the LOWA operator is an“orand” operator.

And on the other hand, it verifies these axioms:unrestricted
domain, unanimity or idempotence, positive association of
social and individual values, independence of irrelevant alter-
natives, citizen sovereignty, and neutrality.

Here, we present an extension of the LOWA operator, an
inverse LOWA operator,that will be used in the definition of
some weighted operators.
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Fig. 2. Proportional fuzzy linguistic quantifiers.

Definition 2: An I-LOWA (Inverse-Linguistic Ordered
Weighted Averaging) operator, is a type of LOWA
operator, in which

where,

If then it is defined as

such that

round

If the definition of the LOWA operator is compared to the
definition of the I-LOWA operator, it is possible to observe
that in the first one the large values are more estimated
than low values, unlike in the second one. Therefore, from
this viewpoint, the LOWA operator presents characteristics
belonging to the maximum aggregation operator, and the
I-LOWA operator presents characteristics belonging to the
minimum aggregation operator. This peculiarity will be used
later in the definition of one of our weighted aggregation
operators.

Clearly, an I-LOWA operator also verifies the previously
mentioned properties and axioms of the LOWA operator.

1) The LOWA Operator Guided by Fuzzy Majority:How
to calculate the weighting vector of the LOWA operator is
a basic question. Yager proposed in [28] and [30] two ways
to do so. The first approach is to use some kind of learning
mechanism using sample data; the second approach is to try to
give some semantics or meaning to the weights. We consider
the latter approach, because our idea is to show the concept of
fuzzy majorityby means of the weighting vector in the LOWA
operator aggregations.

Traditionally, the majority is defined as a threshold number
of individuals. Fuzzy majority is a soft majority concept which
is manipulated via a fuzzy logic based calculus of linguistically
quantified propositions. In [17], Kacprzyk specified fuzzy

majority rule by means of alinguistic quantifier to derive
various solutions concepts for group decision making problems
in a numerical setting. Here, we shall work in a similar
way, but in the field of quantifier-guided aggregations. Before
showing how do so, we will introduce the concept of fuzzy
linguistic quantifier.

2) Fuzzy Linguistic Quantifier:Human discourse is very
rich and diverse in its quantifiers, e.g.,about 5, almost all,
a few, many, most, as many as possible, nearly half, at least
half. Zadeh, using Fuzzy logic, introduced the concept of
linguistic quantifierto represent the large number of possible
quantifiers [36]. Zadeh suggested that the semantic of a
linguistic quantifier can be captured by using fuzzy subsets
for its representation. He distinguished between two types
of linguistic quantifiers:absoluteand proportional. Absolute
quantifiers are used to represent amounts that are absolute in
nature such asabout 2or more than 5. These absolute linguistic
quantifiers are closely related to the concept of the counting
or number of elements. Proportional quantifiers are used to
represent amounts that are relative in nature such as such as
most, at least half.A proportional quantifier can be represented
by a fuzzy subset in the unit interval, [0,1], such that for any

indicates the degree to which the proportion
is compatible with the meaning of the quantifier it represents.

A proportional quantifier, , satisfies

and such that

A nondecreasing quantifier satisfies

if then

The membership function of a nondecreasing proportional
quantifier can be represented as

if
if

if

with .
Some examples of proportional quantifiers are shown in

Fig. 2, where the parameters, are (0.3, 0.8), (0, 0.5),
and (0.5, 1), respectively.

In [28] and [30], Yager suggested an interesting way to
compute the weights of the OWA aggregation operator using
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Fig. 3. Fuzzy linguistic quantifier “All.”

Fig. 4. Fuzzy linguistic quantifiers “At leastm.”

linguistic quantifiers, which, in the case of a nondecreasing
proportional quantifier , is given by the expression

When a fuzzy linguistic quantifier is used to compute the
weights of LOWA operator it is symbolized by . There-
fore, when a fuzzy linguistic quantifier is used to compute
the weights of the I-LOWA operator , it is symbolized by

.
Clearly, depending on the fuzzy linguistic quantifier that is

chosen to calculate the weights, it is possible to observe the
following properties:

1) if the fuzzy linguistic quantifier is“All” , as is shown in
Fig. 3, whose membership function is

if
otherwise

then MIN and
MAX ;

2) if the fuzzy linguistic quantifier is“At least m”
, as is shown in Fig. 4, whose membership function is

if

if

then MAX and
MIN

Where “MAX” stands for maximum operatorand “MIN”
stands forminimum operator.

III. A GGREGATION OPERATORS FOR

LINGUISTIC WEIGHTED INFORMATION

In this section, the following three aggregation operators for
linguistic weighted information based on the direct computa-
tion on labels are presented:

1) Linguistic Weighted Disjunction(LWD);
2) Linguistic Weighted Conjunction(LWC); and
3) Linguistic Weighted Averaging(LWA).

Following Cholewa’s studies [2] and Montero’s aggregation
model [20], if we want to aggregate weighted information we
have to define two aggregations as follows:

• the aggregation of importance degrees (weights) of infor-
mation; and

• the aggregation of weighted information (information
combined with weights).

The first aspect consists of obtaining a collective importance
degree from individual importance degrees that characterizes
the final result of aggregation operator. In the three operators,
as the importance degrees are linguistic values, this is solved
using the LOWA operator guided by the concept of fuzzy
majority.

The aggregation of weighted information involves the trans-
formation of the weighted information under the importance
degrees. The transformation form depends upon the type of
aggregation of weighted information being performed [32]. In
[26] and [27], Yager discussed the effect of the importance
degrees in the types of aggregation “MAX” and “MIN” and
suggested a class of functions for importance transformation
in both types of aggregation. For MIN type aggregation he
suggested a family of -conorms acting on the weighted
information and the negation of the weights, which presents the
nonincreasing monotonic property in the weights. For MAX
type aggregation, he suggested a family of-norms acting
on weighted information and the weight, which presents the
nondecreasing monotonic property in the weights. In [32],
Yager proposed a general specification of the requirements that
any importance transformation functionmust satisfy for any
type of the aggregation operator. The functionmust have
the following properties:

1) if then ;
2) is monotone in ;
3) ID; and
4) ;

with expressing the satisfaction with regards to
a criterion the weight associated to the criterion,
and “ID” an identity element, which is such that if we add it
to our aggregations it does not change the aggregated value.
Condition one means that the function is monotonically
nondecreasing in the second argument, that is, if the satis-
faction with regards to the criteria is increased the overall
satisfaction should not decrease. The second condition may
be viewed as a requirement that the effect of the importance
be consistent. It does not specify whetheris monotonically
nonincreasing or nondecreasing in the first argument, but must
be one of these. It should be noted that conditions three and
four actually determine the type of monotonicity obtained from
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two. If ID, the is monotonically nondecreasing in
, while if ID, then it is monotonically nonincreasing. The

third condition is a manifestation of the imperative that zero
importance items do not affect the aggregation process. The
final condition is essentially a boundary condition which states
that the assumption of all importances equal to one effectively
is like not including importances at all [32].

Considering the aforementioned ideas and assuming a lin-
guistic framework, that is a label set,, to express the
information and a label set, , to express the weights, we
propose using the following aggregations of weighted informa-
tion for the three aggregation operators, with their respective
aggregation operators and transformation functions.

• Linguistic weighted disjunction

a) aggregation operator: MAX linguistic aggregation;
b) transformation function: MIN .

• Linguistic weighted conjunction

a) aggregation operator: MIN linguistic aggregation;
b) Transformation function: MAX Neg .

• Linguistic weighted averaging

a) aggregation operator: LOWA or I - LOWA;
b) Transformation function: or

-
The first two aggregations are based oncanonical generaliza-
tions of weighted disjunction and conjunction of fuzzy goals,
defined by Dubois and Prade in a possibility theory setting [7],
[8]. The latter is based on the combination of the LOWA and I-
LOWA operator with severallinguistic conjunction functions

and severallinguistic implication functions ,
respectively. Therefore, the LWA operator is a type of fuzzy
majority guided weighted aggregation operator.

In the next subsections, we present each aggregation oper-
ator of linguistic weighted information in detail. In order to
complete the presentation, in the final subsection we provide
some evidence of the rationality of their aggregation, checking
some of the axioms that they verify. We shall demonstrate that
all the operators proposed combine appropriately the weighted
information in such a way that the final aggregation is the
“best” representation of the overall individual information.

A. Linguistic Weighted Disjunction and Conjunction

Let be a set of weighted opinions
expressed by a set of experts, , to evaluate
an alternative, , where shows the opinion of expert ,
assessed linguistically on the label set, , and the
relevance degree of expert, assessed linguistically on the
label set .

Definition 1: The aggregation of the set of weighted indi-
vidual opinions, according to the
Linguistic Weighted Disjunction (LWD) operator is defined as

where the opinion of the group, is obtained as

MAX MIN

and the importance degree of the opinion of the group,,
is obtained as

Definition 2: The aggregation of the set of weighted in-
dividual opinions, according to the
Linguistic Weighted Conjunction (LWC) operator is defined
as

where the opinion of the group, is obtained as

MIN MAX Neg

and the importance degree of the opinion of the group,
is obtained as

Remark: It is clear that both definitions always require the
condition .

In the definition of the LWD operator, the transformation
function is the “MIN” function, that is, one of the-norms
proposed by Yager in [26] and [27] for the “MAX” type
aggregation operator, but defined linguistically, and satisfies
the properties proposed for any [32]. Something similar
happens in the definition of the LWC operator. In both
operators it should be possible to choose any other function
of the families proposed by Yager in [26] and [27], but
always defined linguistically. In any case, both operators try
to reduce the effect of elements with low importance. To do
so, in the first operator, the elements with low importance are
transformed into small values and in the second one into large
values.

Since expresses the degree of importance of the opinion
of expert in the overall opinion, then

• when , the opinion of has a direct influence on
the acceptance (rejection) of alternative;

• when the opinion of has no influence on the
acceptance (rejection) of alternative.

As the LOWA operator, , is an “orand” operator, the
importance degree of opinion of the group,, verifies the
following expression:

MIN MAX

B. Linguistic Weighted Averaging

Before defining the linguistic weighted aggregation (LWA)
operator, and assuming , consider the following two
families of connectives:

1) Linguistic conjunction functions
The linguistic conjunction functions that we shall

use are the following-norms, which are monotonically
nondecreasing in the weights and satisfy the properties
required for any transformation function,, [11]:

a) the classical MIN operator:

MIN
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b) the nilpotent MIN operator:

MIN if Neg
otherwise;

c) the weakest conjunction:

MIN if MAX
otherwise.

2) Linguistic implication functions
The linguistic implication functions that we shall use

are monotonically nonincreasing in the weights and
satisfy the properties required for any transformation
function [11]:

a) Kleene–Dienes’s implication function:

MAX Neg

b) Gödel’s implication function:

if
otherwise;

c) Fodor’s implication function:

if
MAX Neg otherwise.

Definition 3: The aggregation of the set of weighted in-
dividual opinions, according to the
Linguistic Weighted Averaging (LWA) operator is defined as

where the importance degree of the group opinion,, is
obtained as

and, the opinion of the group, is obtained as

where if
and if .

It should be observed that according to the class of trans-
formation functions proposed by Yager in [26] and [27] for
MIN type aggregation, when the aggregation operator,, is the
I-LOWA operator, and given that is an aggregation op-
erator with characteristics of a MIN type aggregation operator
(as was seen in the presentation of the LOWA operator), then
we have decided to use the linguistic implications functions,

, as the transformation function type. Something similar
happens when is the LOWA operator .

Lemma 1: The linguistic weighted disjunction operator,
LWD, is a particular weighted aggregation operator of the
LWA operator type.

Proof: Suppose that we have a group of experts. If
a linguistic nondecreasing relative quantifier, “At least

”, is chosen, as is shown in Fig. 3, the LOWA operator,
, as an aggregation operator, and the following linguistic

conjunction function as a transformation function,

MIN

then since the weighting vector is

MIN MIN

MAX MIN

is verified, and therefore,

Lemma 2: The linguistic weighted conjunction operator,
LWC, is a particular weighted aggregation operator of the
LWA operator type.

Proof: Assuming the above linguistic quantifier, if it is
chosen the I-LOWA operator, as aggregation operator,
and the following linguistic implication operator as transfor-
mation function,

MAX Neg

then as the weighting vector is

it is verified

MAX Neg MAX Neg

MIN MAX Neg

and therefore,

C. Axiomatic of the Aggregation Operators
for Linguistic Weighted Information

Previous works on the aggregation of fuzzy weighted opin-
ions, developed in a numerical setting, are those by Cholewa,
Montero and Dubois and Koning. Cholewa [2] offers a col-
lection of axioms that weighted aggregations should follow,
and proposes the weighted arithmetic mean as a typical ag-
gregation operator that satisfies these axioms, Montero [20]
characterizes the fuzzy majority rule and studies the existence
of absolutely decisive groups, and Dubois and Koning [10]
analyze briefly the different axiomatic approaches existing for
weighted aggregation.

As was mentioned earlier, in [2] a complete set of axioms in
the fuzzy set setting for heterogeneous groups is given. Some
of these axioms areindependence of alternatives, commutativ-
ity, etc. Obviously a particular weighted aggregation operator
does not have to satisfy all the axioms together, it must
satisfy those that its special application circumstances require.
Bellows, we are going to postulate an axiomatic approach with
ten axioms, and we shall check which axioms our weighted
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aggregation operators verify. Specifically, Axioms I–VI are
obtained directly from those proposed by Cholewa in [2],
but defined in linguistic setting, and others are proposed by
ourselves.

As has been shown in the subsection above, if we choose
the linguistic quantifier, “At least ”, and an appropriate
transformation function, the LWA operator is a generalization
of the LWD and LWC operators. Therefore, here, we shall
only study the axiomatic of the LWA operator, and in those
cases where the axiom not be verified, then, we shall study
what happens with the LWD and LWC operators.

Assume the following framework:
Let be a finite non-empty set of

alternatives to be evaluated.
Let be a group of the experts

to analyze
Let be a label set to voice experts’

opinions and their respective importance degrees.
Axiom I: Independence of alternatives The collec-

tive opinion for only depends on the individual
opinions for This means that lin-
guistic functions and exist for the aggregation of linguistic
weighted opinions

and for the aggregation of the powers of aggregated opinions

such that

It is basically technical, and is satisfied by the definition of the
LWA operator, with the LOWA operator being the function
and the composition of the I-LOWA operator with a linguistic
implication operator or the composition of the LOWA
operator with a linguistic conjunction function the
function .

Axiom II: Commutativity.Having fixed an alternative,
then

where is a permutation over the set of weighted opinions.
Clearly it is satisfied, because the I-LOWA operator as well
as the LOWA operator use “ordered” weighted average of the
arguments.

Axiom III: Associativity.Having fixed an alternative
then

This axiom is not verified by the LWA operator, because
neither the I-LOWA operator nor the LOWA operator satisfy
the associativity property as was demonstrated in [15]. So,
it is not verified by the LWD and LWC operators because
the aggregated weights are obtained by means of the LOWA
operator.

Axiom IV: Quasi-equivalence and increasingness of power.
If everyone agrees on an opinion, “”, about an alternative,

and thus, then if

the collective opinion, must satisfy the following
conditions:

1) (quasi-equivalence); and
2) MAX (increasingness of power).

This axiom is not verified for any of its conditions.

• The LWA operator is not quasi-equivalent. For example,
suppose a set of nine labels. Then, if we want to aggregate
the linguistic weighted opinions of two
experts, having fixed the linguistic quantifier, “At
least 2”, then the two weights are
Thus,

Case 1: If and
MAX Neg then

MAX Neg MAX Neg

Case 2: and MIN

MIN MIN

Since this example of the LWA operator is the case in
which it works as the LWD and LWC operators then these
do not verify this property either.

• The LWA operator does not verify the increasingness of
power. Clearly it is a consequence of the property of
the LOWA operator of being an “orand” operator, and
therefore

MIN MAX

Axiom V: Positive sensitivity in its strongest form.A
weighted collective opinion is increased if and only if any
weighted individual opinion is increased. This means that if

is the weighted collective opinion obtained for as

and is the weighted collective opinion obtained for
as

with then

if and only if such that

Clearly this axiom is not verified by the LWA operator.
Example: suppose a label set with eight elements. Let

be two weighted opinions to be aggregated.
Considering the linguistic quantifier, , “At least 2”, then
the two weights are and then,
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Case 1: if and MAX Neg then

and

Case 2: if and MIN then

If the first expert changes his opinion by then
Case 1:
Case 2:

and therefore, although the opinion of an expert has been
increased, however, the collective opinion has not been in-
creased, independently of the aggregation operator of the
weighted opinions considered in the LWA operator. The LWD
and LWC operators do not verify this axiom as also happens
in the axiom above.

Axiom VI: Neutrality of complement.If is the
complement of weighted opinion such that

Neg then, having fixed an alternative,

This axiom is not verified by the LWA operator. Example:
consider a label set with eight elements. Let
be the weighted opinions to be aggregated and its complement
weighted opinions, then having fixed the
linguistic quantifier, “At least 2”, then the two weights
are and then

Case 1: if and
MAX Neg then

Case 2: And if and
MIN then

Thus, the LWD and LWC operators do not verify this axiom
either.

Axiom VII: Positive sensitivity in its weaker form.If an
expert increases his weighted opinion forthen the collective
weighted opinion for cannot decrease. This means that if

and are such that, then if

and

then

Obviously, this axiom is satisfied, it is a consequence of the
monotonic property of the LOWA and I-LOWA operators.

Axiom VIII: Neutrality with respect to alternatives.If we
have two alternatives, and and the weighted opinions

known about both are and such that,
then

Clearly this axiom is satisfied too.
Axiom IX: Unrestricted domain.Having fixed any alterna-

tive, for any set of weighted individual opinions,
there is a weighted collective opin-

ion, which may be constructed, i.e.,

such that

It is satisfied in accordance with the LWA operator definition.
Axiom X: The operator is an “orand” operator.This

is a property of the LWA operator presented here in the form of
an axiom. This property is postulated in the following sense:
having fixed an alternative, for any set of weighted
individual opinions, if is
such that

then

1) MIN
MAX ; and

2) MIN MAX .

This property is a consequence of the property of the LOWA
and I-LOWA operators of being “orand” operators.

In conclusion, the LWD operator, the LWC operator, and
the LWA operator verify the following axioms:independence
of alternatives, commutativity, positive sensitivity in its weaker
form, neutrality with respect to alternatives, unrestricted do-
main, andbeing an “orand” operator. The fulfillment of those
axioms provides evidence of rational aggregation of these
operators in particular frameworks. In the following sections
we shall show an application of the use of these aggregation
operators for linguistic weighted information in the choice
processes for alternatives in heterogeneous groups.

IV. EXAMPLE OF APPLICATION

Assuming the set of seven labels presented in Section II,
that is,

suppose an investment company, which wants to invest a sum
of money in the best option. There is a panel with four possible
options where to invest the money:

car company;
food company;
computer company; and
arms company.



HERRERA AND HERRERA-VIEDMA: LINGUISTIC WEIGHTED INFORMATION 655

The investment company has a group of four consultancy
departments:

risk analysis department;
growth analysis department;
social-political impact analysis department; and
environmental impact analysis department.

In each department there is one expert with different impor-
tance degrees for the expert of the department

The assessments of the option set by the experts from each
department are the following is the assessment assigned
to the option by the expert from department

1) For
2) For
3) For
4) For

Thus, using the linguistic weighted conjunction (LWD)
operator the issues are the following.

1) The collective assessments on alternatives are the fol-
lowing for collective assessment of the alternative

MAX MIN

MAX MIN MIN MIN

MIN

MAX MIN

MAX MIN MIN MIN

MIN

MAX MIN

MAX MIN MIN MIN

MIN

MAX MIN

MAX MIN MIN MIN

MIN

2) The collective importance degree,, meaning the cred-
ibility degree of the solution, with the linguistic quanti-
fier, , “As many as possible” with the par (0.5, 1) and

is

Clearly alternative is the best assessed one.

V. CONCLUSIONS

In this paper, various aggregation operators for the linguistic
weighted information are presented. These operators are very
useful for modeling those processes in which there are various
information sources and the information is linguistic in nature
and is not equally relevant. Their aggregation has been checked
examining some of the axioms that an acceptable weighted
aggregation operator must verify.
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