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Abstract 

The purpose of this paper is to present a genetic learning process for learning fuzzy control roles from examples. It is 
developed in three stages: the first one is a fuzzy rule genetic generating process based on a rule learning iterative approach, 
the second one combines two kinds of rules, experts rules if there are and the previously generated fuzzy control rules, 
removing the redundant fuzzy rules, and the third one is a tuning process for adjusting the membership functions of the 
fuzzy rules. The three components of the leaming process are developed formulating suitable genetic algorithms. @ 1998 
Elsevier Science B.V. All rights reserved 
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1. Introduction 

Fuzzy-rule-based systems have been shown to be 
an important tool for modelling complex systems, in 
which due to the complexity or the imprecision, clas- 
sical tools are unsuccessful. Fuzzy logic controllers 
(FLCs) are now considered as one of the most impor- 
tant applications of  the fuzzy-rule-based systems. The 
experience of skilled operators and the knowledge of 
control engineers are expressed qualitatively by a set 
of fuzzy control rules. 

The construction of fuzzy rules has been mainly 
based on the operator's control experience or actions. 
However, converting the experts' know-how into if-  
then rules is difficult and often results are incomplete, 
unnecessary and include conflicting knowledge, since 
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operators and control engineers are not capable of 
specific details or cannot express all their knowl- 
edge including intuition and inspiration. Then, an 
alternative appears which consists of  applying auto- 
matic techniques to obtain the fuzzy control rules. 
These techniques are focused on the use of sampled 
input-output data to help in the development of  these 
rules. 

Different approaches have been proposed to facil- 
itate and automate the design of fuzzy control rules. 
In the last few years many different approaches have 
been presented taking the genetic algorithms (GAs) 
as a base of the leaming process. 

GAs have demonstrated to be a powerful tool for 
automating the definition of the fuzzy control rule 
knowledge base (KB), since adaptive control, learn- 
ing, and self-organization may be considered in a lot 
of cases as optimization or search processes. Their 
advantages have extended the use of GAs in the 

0165-0114/98/$19.00 (~) 1998 Elsevier Science B.V. All rights reserved 
Plh S0165-0114(97)00043-2 



144 F Herrera et al./Fuzz), Sets and Systems 100 (1998) 143-158 

development of a wide range of approaches for de- 
signing FLCs over the last few years. 

In particular, the application to the design, learning 
and tuning of KBs has produced quite promising re- 
sults. These approaches can receive the general name 
of geneticJuzzy systems (GFSs) [6], a short descrip- 
tion of them is included in Section 2. 

The purpose of this paper is to present a fuzzy rule 
learning process based on the use of GAs under the 
following hypotheses: 
• It may be linguistic information from the human 

controller's experience. But, linguistic rules alone 
are usually not enough for designing a successful 
control system, or might not be available. 

• There is numerical information, from sampled in- 
put-output (state-control) pairs that are recorded 
experimentally. 

• The combination of these two kinds of informa- 
tion may be sufficient for the successful design of 
a fuzzy control rule base. 

• We include the possibility of not having any lin- 
guistic information, and having a complete numer- 
ical information. 
According to the aforementioned hypotheses we 

wish to develop a learning process for fuzzy systems 
based on GAs, a GFS, with the following aims: 
• to develop a process for generating fuzzy-control 

rules using numerical data pairs; and 
• to develop a general approach that combines both 

kinds of information, expert rules and fuzzy-control 
rules obtained by the generating process, in a com- 
mon framework, using both simultaneously and co- 
operatively to solve the control design problem. 
In order to achieve these aims, we propose 

a methodology based on the design of the following 
three stages: 
(a) A genetic generating process for obtaining de- 

sirable fuzzy rules capable of including the com- 
plete knowledge from the set of examples, based 
on an iterative rule learning approach. 

(b) A genetic process for combining rules and sim- 
plifying them, thereby avoiding the possible over- 
learning and removing the redundant fuzzy rules. 

(c) A genetic tuning process for adjusting the mem- 
bership functions of the fuzzy rules. 

To do so, this paper is organized as follows. 
Section 2 introduces, in short, the GAs and the GFSs; 
Section 3 presents an overall description of the GFS 

together with the fuzzy rule structure and some re- 
quirements on the KB; Section 4 shows the genetic 
generating process; Section 5 presents the combining- 
simplifying process; and Section 6 deals with the 
genetic tuning process. Then, and for sake of illus- 
trating the learning process, Section 7 is devoted to 
develop some examples. Finally, some concluding 
remarks are made. 

2. Preliminaries: genetic algorithms and genetic 
fuzzy systems 

In the following, we present a short description of 
the GAs and GFSs. 

2.1. Genetic algorithms 

GAs are search algorithms that use operations found 
in natural genetics to guide the trek through a search 
space. GAs use a direct analogy of natural behaviour. 
They work with a population of chromosomes, each 
one representing a possible solution to a given prob- 
lem. Each chromosome has assigned a fitness score 
according to how good a solution to the problem it is. 
GAs are theoretically and empirically proven to pro- 
vide robust search in complex spaces, giving a valid 
approach to problems requiring efficient and effective 
searching [ 1 1 ]. 

Any GA starts with a population of randomly 
generated solutions, chromosomes, and advances to- 
ward better solutions by applying genetic operators, 
modeled on the genetic processes occurring in na- 
ture. In these algorithms we maintain a population of 
solutions for a given problem; this population under- 
goes evolution in a form of natural selection. In each 
generation, relatively good solutions reproduce to 
give offspring that replace the relatively bad solutions 
which die. An evaluation or fitness function plays the 
role of the environment to distinguish between good 
and bad solutions. The process of going from the 
current population to the next population constitutes 
one generation in the execution of a GA. 

Although there are many possible variants of a sim- 
ple GA, the fundamental underlying mechanism oper- 
ates on a population of chromosomes and consists of 
three operations: 
(1) evaluation of individual fitness, 
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(2) formation of a gene pool (intermediate popula- 
tion) and 

(3) recombination and mutation. 
The next procedure shows the structure of a simple 

GA. 

Procedure Genetic Algorithm 
begin (1) 

t = 0 ;  
initialize P(t); 
evaluate P( t ); 
While (Not termination-condition) do 
begin (2) 

t = t + l ;  
select P(t) from P(t - 1 ); 
recombine P(t ); 
evaluate P(t); 

end (2) 
end (1) 

A fitness function must be devised for each problem 
to be solved. Given a particular chromosome, a so- 
lution, the fitness function returns a single numerical 
fitness, which is supposed to be proportional to the 
utility or adaptation of the individual which that chro- 
mosome represents. 

There are a number of ways of making this selec- 
tion. We might view the population as mapping onto 
a roulette wheel, where each chromosome is repre- 
sented by a space that proportionally corresponds to 
its fitness. By repeatedly spinning the roulette wheel, 
chromosomes are chosen using "stochastic sampling 
with replacement" to fill the intermediate population. 
The selection procedure proposed in [ 1], and called 
stochastic universal sampling is one of the most effi- 
cient, where the number of offspring of any structure 
is bound by the floor and ceiling of the expected num- 
ber of offspring. 

After selection has been carried out the construction 
of the intermediate population is complete, then the 
genetic operators, crossover and mutation, can occur. 

A crossover operator combines the features of 
two parent structures to form two similar offspring. 
It is applied with a probability of performance, the 
crossover probability, Pc. A mutation operator arbi- 
trarily alters one or more components of a selected 
structure so as to increase the structural variability of 
the population. Each position of each solution vector 

in the population undergoes a random change accord- 
ing to a probability defined by a mutation rate, the 
mutation probability, Pm. 

It is generally accepted that a GA to solve a problem 
must take into account the following five components: 
1. A genetic representation of solutions to the 

problem, 
2. a way to create an initial population of solutions, 
3. an evaluation fimction which gives the fitness of 

each chromosome, 
4. genetic operators that alter the genetic composi- 

tion of offspring during reproduction, and 
5. values for the parameters that the GA uses 

(population size, probabilities of applying 
genetic operators, etc. ). 

The basic principles of GAs were first laid down 
rigorously by Holland [ 17], and are well described in 
many books such as [11, 23]. 

2.2. Genetic Juzzy systems 

The GAs' properties make them suitable to use in 
order to design and optimize fuzzy systems. The au- 
tomatic definition of the KB may be considered in 
many cases as optimization or search processes. The 
application to the learning and/or tuning of KB has 
provided fairly promising results. 

As mentioned in the introduction, GAs are applied 
to modify/learning the data base (DB) and/or the rule 
base (RB), and it is possible to distinguish three differ- 
ent groups of GFSs depending on the KB components 
(DB and RB) included in the genetic learning process. 

Genetic definition of the DB. The tuning of the 
fuzzy rule membership functions is an important task 
in the design of fuzzy systems. The tuning method 
using GAs fits the membership functions of the fuzzy 
rules dealing with their parameters according to a fit- 
ness function. Different approaches are presented 
in [3, 14, 19, 27]. 

Genetic derivation of the RB. All the methods 
belonging to this family suppose the existence of 
a collection of fuzzy set membership functions giving 
meaning to the labels, a DB, and learning a rule base. 
Some approaches are presented in [12, 13, 20, 28, 24]. 

Genetic learning of the KB. There are many 
approaches for the genetic learning processes of 
a complete KB, fuzzy rules and membership func- 
tions. We find approaches presenting variable 
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chromosome length, others coding a fixed number 
of rules and their membership functions, etc. Some 
approaches are presented in [4, 5, 21,25, 29]. 

For a more detailed description see [6], for an ex- 
tensive bibliography see [7] (Section 3.13), and some 
approaches may be found in [16]. 

The genetic learning processes belonging to the lat- 
ter two classes can do the learning simultaneously or 
in various stages. 

Classically, two alternative approaches in which 
GAs have been applied to learning processes have 
been mainly used, the Michigan [18] and the 
Pittsburgh [26] approaches. In the first one, the chro- 
mosomes correspond to classifier rules which are 
evolved as a whole, whereas in the Pittsburgh ap- 
proach, each chromosome encodes a complete set of 
classifiers. 

A third way is presented as an alternative to these 
models, an iterative rule learning approach, where 
each chromosome represents only one rule. In the lat- 
ter model, as in the Michigan one, each chromosome 
in the population represents a single rule, but contrary 
to the Michigan one, only the best individual is con- 
sidered as the solution, discarding the remaining chro- 
mosomes in the population. This model, used in [30] 
the first time, attempts to reduce the search space for 
the possible solutions. 

In the following we present the GFS proposal in 
various stages based on the iterative rule learning 
approach. 

3. On the genetic fuzzy system proposal 

We propose a GFS methodology based on three 
stages. The first stage is a genetic generation process 
for obtaining desirable fuzzy rules capable of includ- 
ing the complete knowledge from the set of examples. 
The second one is a genetic simplifying process for 
combining rules and eliminating redundant rules, se- 
lecting the most cooperative set of rules. The third one 
is a genetic tuning process for adjusting the member- 
ship functions of the fuzzy rules. In the following we 
describe them in short. 
(a) Genetic generating process. It is based on an 

iterative rule learning approach and consists of 
a fuzzy rule generating method together with an 
iterative covering method of the set of examples. 

- The fuzzy rule generating method is developed 
by means of a real coding GA (RCGA) that 
codes a single fuzzy rule in each chromosome. 
The GA finds the best rule in every run over 
the set of examples according to the features 
included in its fitness function. 

- The covering method is developed as an itera- 
tive process. It allows a set of fuzzy rules to be 
obtained covering the set of examples. In each 
iteration, it runs the generating method choos- 
ing the best chromosome (rule), considers the 
relative covering value this rule provokes over 
the example set and removes the examples with 
a covering value greater than a value t: provided 
by the controller designer. 

In this iterative model, the GA provides a par- 
tial solution to the problem of learning. This 
learning way is to allow "niches" and "species" 
formation. Species formation seems particularly 
appealing for concept learning, considering the 
process as the learning of multimodal concepts. 
This approach attempts to reduce the search space 
for the possible solutions. 

(b) Genetic simplification process. Since two simi- 
lar rules or one rule similar to another given by 
an expert process may be obtained in the genera- 
tion, it is necessary to combine and simplify the 
complete RB obtained from the previous process 
for deriving the final RB. It is based on a binary- 
coded GA and a measure of the FLC performance 
in the control of the system being identified. It 
will save the overlearning that the previous com- 
ponent may cause selecting the most cooperative 
set of fuzzy rules. 

(c) Genetic tuning process. The tuning method using 
GAs fits the membership functions of the fuzzy 
rules dealing with the parameters of the member- 
ship functions, minimizing a square error function 
defined by means of an input-output data set for 
evaluation. It is based on an RCGA and it will 
give the final KB as output by tuning the mem- 
bership functions for each fuzzy control rule. 

Afterwards we introduce the fuzzy rule structure 
used in our GFS, and some previous requirements 
on the KB to be taken into consideration for devel- 
oping the process. They are to verify the complete- 
ness property and to have a high covering examples 
value. 
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3.1. Fuzzy ruh's structure 

Let us suppose we know an incomplete set of  rules 
given by the experts, R e, and a set of training examples 
of the system consisting of the values that the vari- 
ables take during an experiment in which the system 
is controlled by a human. 

Expert rules. For extracting the knowledge from 
the experts, we suppose that the domains of the vari- 
ables can be determined either by consulting the ex- 
perts or by exploring the range of variables contained 
in the database. 

We assume that each universe, U, contains a num- 
ber of referential sets having their linguistic mean- 
ing, which form a finite set of fuzzy sets on U. 
For instance, if X is a variable on U for tempera- 
ture, then one may define A I as "low temperature", 
Ai (1 < i <  r)  as "medium temperature" and Ar as 
"high temperature", etc. These referential fuzzy 
sets are characterized by their membership function 
Ai(u): U---+ [0, 1], i =  1 , . . . , r .  To ensure the perfor- 
mance of the fuzzy model and provide a uniform basis 
for further study it is essential that all the referential 
sets should be normal convex, and should satisfy the 
following completeness condition: 

Vu E U 3j, 1 <~ j <~ r, such that Aj(u)>~6 

and 6 is a fixed threshold, this being the completeness 
degree of the universes. 

Learning rules. Let us suppose we know a set of 
p training examples Ep = {el , . . . ,  %} of the system 
consisting of the values that the variables take during 
an experiment in which the system is controlled by 
an expert: "in the time t = k, the value of the variable 
vectors X and Y are ex k and ey k, respectively" 

We shall focus on Mamdani's model for MISO sys- 
tems, where the knowledge base of  a fuzzy controller 
consists of  a collection of fuzzy rules (with the log- 
ical connective ALSO between the rules) describing 
the control actions in the form 

Ri: IF x I is Ail and ... and xn is Ain THEN y is B, 

where xl,... ,Xn and y are the process state vari- 
ables and the control variable, respectively; and 
Ail . . . .  ,Ain, B are fuzzy sets in the universes of dis- 
course UI , . . . ,  Un, V. 

These fuzzy sets are characterized by their mem- 
bership functions 

Aij(B): ~ ( V )  ~ [0, 1], j =  1 . . . . .  n. 

In our study we consider every fuzzy set associated 
with a normalized triangular membership or a nor- 
malized trapezoidal membership function. A compu- 
tational way to characterize them is either by using 
a parametric representation achieved by means of 
the 3-tuple (aij, bij, cij), (ai, bi, ci), j =  1, . . . ,n or by 
means of the 4-tuple (aij, bij, cij, dij), (ai, bi, ci, di), 
j =  1,. . . ,n.  

The classical Mamdani model is a linguistic model 
based on collections of I F - T H E N  rules with fuzzy 
quantities associated with linguistic labels, and the 
fuzzy model is essentially a qualitative expression of 
the system. A KB in which the fuzzy sets giving mean- 
ing (semantic) to the linguistic labels are uniformly 
defined for all rules included in the RB constitutes 
a descriptive approach since the linguistic labels rep- 
resent a real-world semantic. 

It can be considered a KB for which fuzzy rules 
either present different meaning for the same linguis- 
tic terms or the fuzzy quantities have not any associ- 
ated linguistic label. In this case, the KB and the FLC 
using it, present a different philosophy, the approach 
is approximative. In the second approach we say that 
the rules present free semantic. 

We will centre on the second approach and consider 
rules with a free semantic for the generating process, 
without any linguistic syntax associated to the rules. 
Each rule defines a typical feature of  the system be- 
haviour according to some requirements and is inde- 
pendent from a fuzzy partition, that is, no restrictions 
are imposed on the membership function locations and 
shapes. 

3.2. Completeness property and covering value 

If we wish to generate a set of rules describ- 
ing the behaviour of a system, then it is neces- 
sary to establish a condition over the set of  rules, 
R. This is the requirement of covering all possi- 
ble situation-action pairs, ekc  Ep, the completeness 
property. This may be formalized for a constant 
z E [0, 1 ], it requires the non-zero union of fuzzy sets 
Ai(.), Bi(.), i=  1,..., T, T =  IRI, and is formulated 
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by the following expressions: 

CR(ek)= U Ri(ek)~z ,  k = l  . . . . .  p, 
i - I . . . / "  

Ri(ek ) = * (Ai(ex k), Bi(ey k )), 

Ai(ex k ) = * (Ail (ex~) . . . . .  Ain(ex~ )), 

where • is a t-norm, and Ri(ek) is a compatibility 
degree between the rule Ri and the example ek. This 
property is required in the simplifying process. It 
eliminates redundant and unnecessaries rules under 
the condition o f  maintaining a minimal completeness 
degree on the training set. 

Given a set of  rules R, we define the covering value 
of  an example ek with a base of  rules R as 

T 

CVR(ek ) = Z Ri(ek ), 
i 1 

and we require the following condition in the genetic 
generating process: 

CVR(elc)>/F,, k = 1 . . . .  , p. 

4.1.1. Representation 
In the RCGA population, a candidate solution C~, 

r ~- 1 . . . . .  M, represents a fuzzy rule 

IF xl is A r l  . . .  and x,, is A~n THEN Yl is B 

where the real values a~j, b,.j, c,v , d,7, a,., b~, c~, dr char- 
acterize the membership functions o f  A,:/, j = 1 . . . . .  n 
and B~, respectively. 

Thus, C,. codes the vector values 

( a~ I, br 1, c,. i, d~l . . . .  , a,.,,, brn, c,,, d,.,, a,., b~, c~, dr ). 

This happens when we use trapezoidal membership 
functions. Three parameters per variable would be 
used with triangular membership functions. 

We propose approaching this problem with real- 
coded genes [15] together with special genetic 
operators developed for them. Then a rule would be 
a chromosome vector coded as a vector of  floating 
point numbers. 

Finally, we represent a population of  M chromo- 
somes (rules) by C, and it is set up as follows: 

c=(c~ . . . . .  c M ) .  

The aforementioned covering method is based on 
this idea. We remove an example when it has a cov- 
ering value higher than or equal to ~:. 

4. Genetic generating process 

We focus this section on the description of  the fuzzy 
rule genetic generating process consisting of  a gener- 
ating method for desirable fuzzy rules together with 
an iterative covering method of  the set of  examples. 

4.1. Generating method 

The generating method of  fuzzy rules is developed 
by means of  an RCGA, where a chromosome repre- 
sents a fuzzy rule. The RCGA finds the best rule in 
every run over the set of  examples, according to dif- 
ferent features including in the fitness function. 

In order to describe the RCGA we present the 
fundamental underlying mechanisms of  a GA: rep- 
resentation, formation of  an initial gene pool, fitness 
function, genetic operators and running parameters. 

4.1.2. Formation of  an initial gene pool 
We denote the domain of  every input variable X i 

as a close real interval 4 = [aj, bj]. Similarly, the do- 
main of  the output variable Y is the real interval 
V = [c, d]. 

The initial gene pool is created partially from 
E~ C Ep (t chromosomes) and the remaining (M - t 
chromosomes) initiated randomly, as follows: 
• Let t =  min{lEp],M/2}; then we select t exam- 

ples from Ep at random, and for each one we 
determine the chromosome (rule) belonging to 
the initial gene pool as follows. Suppose the ex- 
ample e k ¢Et  and the component ex~ E [aj, bi ], 
Aex~= min{ex~-a i ,  bj-exjk} ,  let ~(ex~) be a 

random value in the range [0, Aex~], then we form 
the membership function using the 4-tuple 

The procedure is the same for the remaining com- 
ponents of  e~. 
The remaining M -  t chromosomes of  the initial 
population are chosen at random, each gene in its 
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respective interval, 

Cr~-(Crl . . . . .  Crl), 

l = 4(n + 1 ), with requirements C4s+l ~ C4s+2 
C4s+3 ~ e4s+4, s = 0 . . . . .  n for trapezoidal member- 
ship functions, and in a similar way for triangular 
membership functions. 

4.1.3. Evaluation of individual fitness 
We define the fitness function according to five fea- 

tures with the objective of  selecting fuzzy rules cov- 
ering a lot of  examples (two first criteria), with a few 
negative examples, small or fixed membership func- 
tion width and finally with high symmetrical member- 
ship functions. Their formulations are described in the 
following: 

(a) High-frequency value: The frequency of a 
fuzzy rule, Ri, through the set of examples, Ep, is 
defined as [9]: 

q% ( l~ n - 
P 

with Ri(ek ) being the compatibility degree. 
(b) High average covering degree over positive 

examples: The set of positive examples to R i with 
compatibility degree greater than or equal to ~o is de- 
fined as 

E+(Ri)  = {ek E Ep/Ri(ek ) >~ ~ }  

with n + R, = JE+(Ri)] being the number of positive 
examples, and 

GR, = Z Ri(ek )/n+, 
eI, EE+(Ri ) 

the average covering degree on E+(Ri). 
(c) Small negative examples set: The set of the 

negative examples to Ri is defined as 

E-(Ri)  = {ek E Ep/Ri(ek ) = 0 and Ai(ex k) > O} 

with n~, = [E (Ri)[ being the number of negative 
examples. 

An example is considered negative for a rule when 
it matches better with some other rule that has the 
same antecedent but a different consequent. 

The penalty function on the negative examples set 
will be 

1 

g,(R? ) = 1 

n~, - 5 + exp(1 ) 

if n~ ~< 5, 

otherwise, 

where we permit up to 5 negative examples per rule 
without any penalty. 

In every case, we consider the negative examples 
over the complete set of training data. 

(d) Small membership function width: The rule 
variable width (RW) and rule modal variable width 
(RMW) of a fuzzy rule Ri are defined as 

x -'"+l W V R q / D ~ .  
RWi = £-~j=l 

n + l  

and 

X-'"+ l WVMRij / WVRq 
RMW,. = ~/=l  

n + l  

where 

WVRij = dij - aq, WRMRu = cq - b(i 

being (aq, bij, c(j, ~#), j -- 1,. . . ,  n + 1 (n input vari- 
ables plus the output variable), the 4-tuple associated 
to every membership function, and DWj is the domain 
interval width per variable. 

We define the membership width rate, MWR, of 
the rule Ri as a function of the two parameters above, 
defined by the following expression: 

M W R (  Ri ) = ,q~ ( R W, ) g2( RMWi ) 

where the functions gi represent the required relation- 
ships with respect to the width. 

If we wish a small width then we may consider the 
function 

gi(x)  = e r ~". 

If we prefer a constant relationship between the 
domain width and the variable width or between the 
two variable intervals width then we can consider 
the function 

g,(x) = e I~-~xl 

with a being the constant relationship. 
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(e) High symmetrical membershipjunctions: The 
rate of  symmetry is defined in order to achieve sym- 
metry for the fuzzy numbers, and to prevent the bad 
covering of  extreme points. It is defined as follows: 

1 

RS(Ri) di 

where 

( ) d i =  Max {d/} ,  w i t h d / = M a x  d/t., dil 
/=1...+1 all2 d/j 

and 

d/i = b(i - aij, d/2 = d(/ - cij. 

Clearly, RS ~< 1, and if the rule has a symmetry se- 
mantic, then RS = 1. 

An evaluation Junction to the rule R~, and therefore, 
a fitness function to the associated chromosome Ci can 
be defined as follows: 

F( Ri ) = 7JE,, (Ri) GR,.qn (R~-) MWR(R~ ) RS(R~ ). 

with the objective o f  maximizing the fitness function. 
We have selected the product operator for combining 
the criteria because it is strictly increasing in the vari- 
ables and can provide us a good equilibrium among 
the criteria, if a criterion value is low, then the fitness 
function is low. 

4.1.4. Genetic operators 
During the reproduction phase of  the genetic 

algorithm we use two classical genetic operators, 
mutation and crossover. We use the non-uniform 
mutation proposed by Michalewicz [23], and the 
max-min-arithmetical crossover used in [ 14], and the 
selection procedure is the stochastic universal sam- 
pling [1]. A short description o f  them is given below. 

Non-uniJorm mutation: I f  C~. = (cl . . . . .  ck . . . . .  CH ) 
is a chromosome and the element ck was selected 
for this mutation (the domain of  ck is [ckt, c~r]), the 
result is a vector C~ +1 = ( c l  . . . . .  C;,. . . ,cH),  with 
k c  1 , . . . ,H ,  and 

, ~c~+A( t , c~ , . - -ck )  i f a  O, 

c k = ~ c k - - A ( t ,  ck ckt) i f a = l ,  

where a is a random number that can have a value o f  
zero or one, and, the function A(t, y )  returns a value 

in the range [0, y] such that the probability o f  A(t, y )  
being close to 0 increases as t increases: 

A(t ,  y )  = y( 1 - ? r-~,r)j' ), 

where r is a random number in the interval [0, 1], T 
is the maximum number of  generations and b is a 
parameter chosen by the user, which determines the 
degree o f  dependency with the number of  iterations. 
This property causes this operator to make a uniform 
search in the initial space when t is small, and very 
locally at later stages. 

Max min-arithmetical crossover: If  C~ = (ct . . . . .  
ck, • cH) and C~.=(clr,. .  ' ' . . . . .  c k . . . . .  c H) are to be 
crossed, we generate the following four offspring: 

C[ +1 =aC~v 4- (1 -a)C[, ,  

C~ +' =aC/,  4- (1 - a)C(,., 

C t+l with t+l min{ck, ' 3 C3k Ck }' 

C'+J with tel max{ck,c~.}, 4 C4 k z 

and we select the two best offspring chromosomes. 
This operator can use a parameter a which is either 

a constant, or a variable whose value depends on the 
age of  the population. The resulting descendants are 
the two best of  the four aforesaid offspring. 

Selection procedure: The selection procedure is the 
stochastic universal sampling, the number o f  offspring 
of  any structure is limited by the floor and ceiling o f  
the expected number of  offspring [1], together with 
the elitist selection. 

4.1.5. Parameters 
We carry out our experiments using the following 

parameters: 
• Population size: 61. 
• Probability of  crossover: Pc = 0.6, 

Max-Min-arithmetical crossover, a = 0.35. 
• Probability of  mutation: 

- Probability of  chromosome update: Pm= 0.6. 
Probability of  gene mutation: em(gene)=Pro~ 
chromosome length. 

4.2. Covering method 

The covering method is developed as an iterative 
process. It allows to be obtained as a set o f  fuzzy 
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rules covering the set of examples. In each iteration, it 
runs the generating method, it chooses the best chro- 
mosome (rule), assigns the relative covering value to 
every example, and removes the examples with a cov- 
ering value greater than e. 

We denote by R e the set of fuzzy-control rules ob- 
tained from an expert. Using the aforesaid generating 
method, the covering method is developed as follows: 
1. Initialization: 

• To introduce co and E. 
• To assign CV[k] ~-- CVRo(ek), k = 1 . . . .  ,p .  
• If  CV[k] >~ e then to remove ek from Ep, k = 

1 . . . . .  p. 
2. Over the set of examples Ep, to apply the generating 

method. 
3. To select the best chromosome Cr with Rr the as- 

sociated fuzzy rule. 
4. To introduce Rr in the set of rules Rg, which is 

initially empty. 
5. For every ek E Ep do 

procedure together with an elitist selection scheme, 
and the recombination is put into effect by using the 
classical binary multipoint crossover (performed at 
two points) and uniform mutation operators. 

The coding scheme generates fixed-length chromo- 
somes. Considering the m rules contained in R counted 
from 1 to m, an m-bit string C = ( c l  . . . . .  Cm) repre- 
sents a subset of candidate rules to form the RB finally 
obtained as this stage output, B s, such that 

If  ci = l then R i C B s else R i ~ B s 

The initial population is generated by introducing a 
chromosome representing the complete previously ob- 
tained rule set R g, that is, with all c~ = 1. The remain- 
ing chromosomes are selected at random. 

As regards to the fitness function, E(.) it is based on 
an application-specific measure, the medium square 
error (MSE) over a training data set, ETDS, which is 
represented by the following expression: 

CV[k] ~-- CV[k] + R,.(ek): 

If  CV[k] >>- e. then remove it from Ep. 

6. If  Ep = 0 then Stop else return to Step 2. 

5. C o m b i n i n g - s i m p l i f y i n g  rules process 

Due to the iterative nature of the genetic genera- 
tion process, an overleaming phenomenon may ap- 
pear. This occurs when some examples are covered at 
a higher degree than the desired one and it makes the 
obtained RB perform worse. Since two similar rules 
or one rule similar to another given by an expert may 
be obtained in the generating process, it is necessary 
to combine and simplify the complete RB obtained 
from the previous process for deriving the final RB, 
thereby allowing the system to be controlled. 

The set of rules obtained from experts' knowledge, 
denoted as R e , together with the rules obtained with the 
generating process, denoted as R g, are joined together 
in order to form the set of  candidate rules R: 

R = R e U R g, JR[ = m. 

This process is based on a binary-coded GA, in 
which the selection of the individuals is developed us- 
ing the aforementioned stochastic universal sampling 

1 Z (ey l - -S (ex l ) )2 '  
E ( G ) -  2[ETDsl ~,eETDs 

where S ( e S )  is the output value obtained from the 
FLC using the RB coded in ~ ,  R(~) ,  when the state 
variables values are ex t, and e y  is the known desired 
value. 

Anyway, there is a need to keep the control rule 
completeness property considered in the previous 
stage. An FLC must always be able to infer a proper 
control action for every process state. We will ensure 
this condition by forcing every example contained in 
the training set to be covered by the encoded RB at a 
degree greater than or equal to z, 

,j-i,.. T 

Vet EETDs and Rj ER(Cj) ,  

where z is the minimal training set completeness 
degree accepted in the simplification process. 

Therefore, we define a training set completeness 
degree of R(Cj) over the set of examples ETDS as 

TSCD(R(G),ETDs)= ~ CR~c~(e~). 
elCETDs 
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The final fitness function penalizing the lack of the 
completeness property is 

F(C) 
I E ( C / )  

= ] I V '  (evl~ 2 

if TSCD(R(Cj ) ,  ETDS ) / ~  r ,  

otherwise. 

6. Tuning process 

In [14] it was presented in-depth the genetic tuning 
process used in this stage. The method relies on hav- 
ing a set of training data, ETDS, against which the con- 
troller is tuned, and acts by means of an RCGA. The 
tuning method using GAs fits the membership func- 
tions of the fuzzy rules dealing with the parameters of 
the membership functions, minimizing a square error 
function defined by means of an input-output data set 
for evaluation. 

A fuzzy rule set is represented as a chromosome, 
and we try to obtain the chromosome with the best 
adaptation. A rule Ri is represented by a piece of chro- 
mosome Cri , 

Cri = (ail, bil, Cil, d i l , . . . ,  ai,,, bin, ci,,, din, ai, bi, ci, di ), 

therefore a base of  t rules, R, is represented by the 
chromosome Cr, 

Cr  = Cr l  Cr2 • . .  Crt .  

The initial gene pool is created from the initial fuzzy 
rule set to be tuned. The initial rule set is a chromo- 
some, which is denoted as G .  We define for every 
gene Ch of Cl, h = 1 ... (n + m) × 4 an interval of per- 
formance, 1 r [Ch' G] '  which will be the interval of adjust- 
ment for this variable, Ch • [c~, c~]. 

I f ( t  rood4) = 1 then ct is the left value of the sup- 
port of a fuzzy number. The fuzzy number is defined 
by four parameters (ct, ct+l, c~+2, ct+3) and the inter- 
vals of performance are the following (see Fig. 1): 

1 r c, • [% c, ] 

I c,+,-c, .,+1-.,] - - g - - , <  + 

Ct+ 1 • [C/+I,  C"I;I ] 

[ .,+:2c.3 = Ct+l ~ , C t + l  -If- - -  

c,+2 • [c{+:. G:] 
Ct+2 -- Ct+ 1 Ct+3 - -  Ct+ 2 ] 

= ct+2 2 'Q+2 + 2 J 
/ ,r 

Ct+3 • [Ct+ 3, Ct+3] 

Ct+3 Ct+2 Ct+3 -- CI+2 1 
= ctt3 2 ,ct+3 + 2 

Therefore, we create a population of chromosomes 
with C1 as the initial base of  fuzzy control rules, and 
the remaining chromosomes initiated at random, with 
each gene being in its respective interval of perfor- 
mance. 

By using a training input-output data set, ETDS, we 
define the fitness function of a chromosome as the 
square medium error of its associated rule set. It is 
represented by the following expression: 

1 
E(C) = 21Ems~l ~ (e¢  - S(ex k ))2. 

e~ ~ ETDS 

The genetic operators and parameters are the same 
as in the generating process. 

7. Experiments 

To test the GFS proposal we have carried out exper- 
iments simulating the inverted pendulum problem and 
two n-dimensional functions used for deriving three- 
dimensional surfaces. 

We use the first one for checking the use of expert 
rules in the GFS, and the second one for comparing 
the GFS with other learning approaches. 

Z 1. I n v e r t e d p e n d u l u m  prob lem 

An inverted pendulum is a simple example for con- 
trol engineers, and the behaviour of the GFS proposal 
can be shown: 

Z 1.1. The mode l  
On the assumption of 101 <{ 1 (radian) the non- 

linear differential equation that leads to the behaviour 
of the pendulum can be simplified down to 

_ ( L d20 L - F  + mg sin 0 - 
m 3 dt 2 2 dt J ' 

where kdO/d t  is an approximation of the friction force. 



F Herrera et al./Fuzzy Sets and Systems 100 (1998) 143-158 153 

] 
1 

Ct 

i 

r 

C t Ct Ct+l 
1 

Ct+l 

r 

Ct+l 

C 1 
t+2 

\ 

C t+2 

i 

i 
i 
i 
b 

Ct+2 Ct+3 

C 1 
t+3 

I 
r 

Ct+3 

Fig. 1. Intervals of performance. 

, a n g l ~ . . . . ~  

1 

m 

Fig. 2. Inverted pendulum. 

Fig. 2 shows the system. 
The state variables are 0, the angle, o9, the angu- 

lar speed, and the control variable, f,  the force. For 
every (00,o90) we try to find the force that we must 
apply to the gravity centre of the pendulum for a con- 
stant amount time to move the pendulum to the verti- 
cal position. 

A pendulum weighing 5 kg and 5 m long has been 
considered in a real simulation, applying the force to 
the gravity centre, for a constant time of 10 ms. With 
these parameters the universes of discourse of the vail- 

ables are the following: 

0 E [-0.5240, 0.5240] rad, 

o9 E [-0.8580, 0.8580] rad/s, 

f E [-2980.0, 2980.0] N. 

Experimentally, we obtained two training data sets 
in the intervals [-0.277, 0.277], [-0.458,0.458] and 
[1592.273, 1592.273] for 0, o9 and f ,  respectively. The 
first set with 213 input-output data is a training data set 
denoted as ETDs and it is used in the learning processes 
components. The second with 125 input-output data 
set is a test data set denoted as ECD and it is used 
for evaluation, using the measure of medium square 
method on it. 

As regards to the FLC reasoning method employed, 
we have selected the minimum t-norm playing the role 
of the implication and conjunctive operators, and the 
centre o f  9rarity weighted by the matehin9 strategy 
acting as the defuzzification operator [8]. 

7.1.2. Expert rules 
We consider the well-known linguistic rules that 

can be found in [32], where instead of the speed of the 
cart pole considered, we consider force as an output 
variable. 

The linguistic term set is 

{Negative Large (NL), Negative Medium (NM), 
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Negative Small (NS), Zero (ZR), 

Positive Small (PS), Positive Medium (PM), 

Positive Large (PL)} 

and the three expert rules considered are: 

Rule #3: IF 0 is PS AND w is NS THEN f is ZR, 

Rule #6: IF 0 is NS AND w is PS THEN f is ZR, 

Rule #7: IF 0 is ZR AND w is ZR THEN f is ZR. 

For managing these rules we consider the discourse 
universes partition presented in [22] in which the 
fuzzy numbers have normalized trapezoidal member- 
ship functions. We also consider triangular member- 
ship functions with the same support and the centre 
point of the modal interval as a modal value. 

7.1.3. Experiments 
The experiments were carried out with 1000 itera- 

tions for the generating and simplifying methods, and 
2000 iterations for the tuning method. 

We apply the process using the following frame- 
work: 
1. For considering triangular membership functions 

(TMF1) or trapezoidal membership functions 
(TMF2). 

2. Expert knowledge 
1.a Without expert knowledge (WEK) 
1.b Existence of expert knowledge 

We assume that an expert can give us informa- 
tion about the process. We shall consider two 
cases: 
- Expert knowledge 1 (EK1) 

The expert gives us the rule that represents 
the equilibrium point. 

Rule #7: IF 0 is ZR AND w is ZR 

THEN f is ZR. 

- Expert knowledge 2 (EK2) 
The expert gives us the rules where it is not 
necessary to apply force. 

Table 1 
Associated parameters 

Trapezoidal memb. func. Triangular memb. func. 

1.0 0.1 0.1 1.0 0.1 0.1 
1.5 0.3 0.3 1.5 0.3 0.3 
1.5 0.5 0.5 1.5 0,5 0.5 
2.5 0.7 0.5 2.5 0.7 0.5 

Rule#7: IF 0 is ZR AND w is ZR 

THEN f is ZR, 

3. Fitness functions in the generating process 
For the generating process we use the fitness func- 

tions for obtaining the smallest width: 

gl(x) = e I x and ,q2(X) = e 1-x. 

We have carried out the experiments with the asso- 
ciated parameters (covering value, compatibility de- 
gree and completeness degree) as given in Table 1. 

Tables 2 -4  show the results for one configuration 
of TMF2 and two configurations for TMF1 on the test 
data set. 

The medium square error of the first column is based 
on the set of generated rules together with the expert 
knowledge rules of the associated framework if there 
are, either WKE or EK1 or EK2. 

Analyzing the results, we can observe the following: 
As regards to the use of triangular or trapezoidal 
membership functions, it seems better to use tri- 
angular membership functions instead of trapezoidal 
ones. 
As regards to the use of  expert information, the be- 
haviour of the learnt KB without expert knowledge 
is better than the KB that combines expert knowl- 
edge with learnt rules in the second case, in which it 
shows the best results of the experiments, and they 
present an intermediate behaviour in the other two 
cases. These results show a good performance of the 
proposed approach for learning good rules according 
to the available examples. 

Rule#3: IF 0 is PS AND w is NS 

THEN f is ZR, 

Rule#6: IF 0 is NS AND w is PS 

THEN f is ZR, 

7.2. Three-dimensional surJhces 

For analyzing the accuracy of the method proposed, 
we have selected two functions for using them to de- 
rive two three-dimensional surfaces. 



F. Herrera et a t /Fuzzy  Sets and Systems 100 (1998) 143-158 

Table 2 
Triangular membership functions: c = 1.5, o9 = 0.5, ~ = 0.5 

155 

Generating process Simplification process 

MSE IRI TSCD(., .) MSE Iel TSCD(., .) 

Tuning process 

MSE TSCD(., . ) 

TMF1-WEK 64863.83 18 0.5348 41735.33 I 1 0.5348 

TMFI -EKI  51818.03 16 0.5724 19989.27 9 0.5146 

TMFI-EK2 52576.84 18 0.6036 25861.34 11 0.5955 

40.35 0.1854 

46.12 0.2337 

35.50 0.3155 

Table 3 
Trapezoidal membership functions: s = 2.5, eJ = 0.7, ~ = 0.5 

Generating process Simplification process 

MSE IRI TSCD(., .) MSE IRI TSCD(., .) 

Tuning process 

MSE TSCD(., . ) 

TMF2-WEK 97016.59 19 0.7516 67147.80 l 1 0.5598 

TMF2-EK1 92768.33 20 0.7940 51985.66 12 0.5242 

TMF2-EK2 86286.27 20 0.7940 35826.89 9 0.5242 

153.29 0.4440 

241.81 0.2643 

32.17 0.2951 

Table 4 
Triangular membership functions: ~ = 2.5, e9 = 0.7, r = 0.5 

Generating process Simplification process 

MSE IRI TSCD(., .) MSE 

Tuning process 

IRI TSCD(., . ) MSE TSCD(., .) 

TMF1-WEK 64859.17 25 0.6335 31635.72 12 0.5352 

TMF1-EKI 60566.21 25 0.5734 13090.77 9 0.4992 
TMF1-EK2 62227.62 26 0.6284 13619.46 10 0.4942 

23.7l 0.1541 

67.06 0.280t 

40.04 0.3264 

7.2.1. The models 
The functions and the variable universes of  dis- 

course considered are shown below. The spherical 
model, F1, is an unimodal function while the general- 
ized Rastrigin Junction, F2, is a strongly multimodal 
one, as may be observed in their graphical represen- 
tations (Fig. 3): 

F,(x,,x2) = x~ + x  2, 

XI,X2 C [ - - 5 , 5 ] ,  Fl  (Xl,X2 ) E [0,  5 0 ] ,  

F 2 ( X l , X 2 )  = x  2 q - x ~  - c o s ( 1 8 x 1 ) - c o s ( 1 8 x 2 ) ,  

xl,x2 E [ - 1 ,  1], F2(xl,x2) ¢ [2,3.5231]. 

For each one of  the functions, a training data set 
uniformly distributed in the three-dimensional defini- 
tion space has been obtained experimentally. In this 

way, two sets with 1681 values have been generated 
by taking 41 values for each one of  the two state vari- 
ables considered to be uniformly distributed in their 
respective intervals. 

Two other data sets have been generated for their 
use as test sets for evaluating the performance of  
the learning method, avoiding any possible bias re- 
lated to the data in the training set. The size of  
these data sets is a percentage of  the corresponding 
training set one, a 10% to be precise. The data are 
obtained by generating, at random, the state variable 
values into the concrete universes of  discourse for 
each one of  them, and computing the associated out- 
put variable value. Hence, two test sets formed by 168 
data are used to measure the accuracy of  the FLCs 
designed by computing the medium square error for 
them. 
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Fig. 3. Graphical representation of Fi and F2. 

Table 5 
Triangular membership functions: c 1.5, ~o = 0.05, t = 0.25 

Generating process Simplification process 

MSE IR[ MSE IRI 

Tuning process 

MSE 

GLP-FI 6.146344 88 3.986195 64 
WM+Tuning-F l 4.6518 49 
GLP-F2 0.424792 167 0.300555 119 
WM+Tuning-F2 2.0940 49 

0.768021 
0.9507 
0.270455 
1.2180 

7.2.2. Experiments 

In order to compare the proposed method we have 
compared it with a two-stage method: obtaining a 
complete KB by deriving the RB by means of  the 
Wang and Mendel ' s  ( W M )  method [31], and defining 
the DB by means of  the genetic tuning process. 

The initial DB used in the WM process is con- 
stituted by three primary fuzzy partitions (two cor- 
responding to the state variables and one associated 
to the control one) formed by seven linguistic terms 

with triangular-shaped fuzzy sets giving meaning to 
them (as shown in Fig. 4), and the adequate scaling 
factors to translate the generic universe of  discourse 
into the one associated with each problem variable. 

Regarding our GFS we also use triangular member-  
ship functions. The following parameter values, cor- 
responding to the first two stages, are used: ~ = 1.5, 
co = 0.05 and t = 0.25. 

Finally, as regards to the FLC reasoning method 
employed,  we again have selected the minimum t- 

norm playing the role o f  the implication and conjunc- 
tive operators, and the centre o f  gravity weighted by 
the matching strategy acting as the defuzzification op- 
erator [8]. 

NB NM NS ZR PS PM PB 

m M 

Fig. 4. Graphical representation of the fuzzy partition. 

The results obtained are shown in Table 5, each one 
of  them associated to both of  the functions considered 
and to the test sets. 

Analyzing these results, we can observe the good 
behaviour presented by the proposed method; in both 
functions it presents the best results. More concretely 
for the second one, the strongly multimodal one, the 
difference is higher between the two learning algo- 

rithms. 
A drawback may be associated to the proposed 

process, the KB loses its readability. We overcome the 
lack of  flexibility due to the rigid partitioning of  the 
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input and output spaces [2] and the loss of  KB read- 
abil i ty may  be justified by  the benefit  obtained by the 
improved FLC accuracy, which is a ma in  concern in 
m a n y  real control problems. 

8. Conclusions 

We have focused this paper on the development  of  
a GFS for learning fuzzy-control  rules from examples,  
where it is possible to combine  expert knowledge rep- 
resented as l inguistic control rules and fuzzy control 

rules generated from numerical  examples.  

An advantage of  this GFS proposal is that in the 
first stage, the fuzzy rule generat ing process based on 
an iterative rule learning approach, it considerably re- 
duces the space of  search because it looks for only one 
fuzzy rule in each sequence of  iterations, and stages 

second and third provide tools that can improve the 
RB and DB, respectively. The first stage establishes a 

competi t ion among  the fuzzy rules whilst  the aim of  
the second and third stage is to find the best possible 
cooperat ion among  the rules for obta in ing a good KB. 

Future works will be directed to the development  
o f  this GFS methodology.  
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