
E L S E V I E R Fuzzy Sets and Systems 100 (1998) 143-158

 ZZY
sets and systems

A learning process for fuzzy control rules using
genetic algorithms1

F. Hen'era*, M. Lozano, J.L. Verdegay
Department o] Computer Science and Artificial Intelligence, E. 12S. de Ingenieria InJbrmftica, University of Granada,

18071 Granada, Spain

Received March 1995; revised January 1997

Abstract

The purpose of this paper is to present a genetic learning process for learning fuzzy control roles from examples. It is
developed in three stages: the first one is a fuzzy rule genetic generating process based on a rule learning iterative approach,
the second one combines two kinds of rules, experts rules if there are and the previously generated fuzzy control rules,
removing the redundant fuzzy rules, and the third one is a tuning process for adjusting the membership functions of the
fuzzy rules. The three components of the leaming process are developed formulating suitable genetic algorithms. @ 1998
Elsevier Science B.V. All rights reserved

Keywords: Fuzzy logic control systems; Learning; Genetic algorithms

1. Introduction

Fuzzy-rule-based systems have been shown to be
an important tool for modelling complex systems, in
which due to the complexity or the imprecision, clas-
sical tools are unsuccessful. Fuzzy logic controllers
(FLCs) are now considered as one of the most impor-
tant applications of the fuzzy-rule-based systems. The
experience of skilled operators and the knowledge of
control engineers are expressed qualitatively by a set
of fuzzy control rules.

The construction of fuzzy rules has been mainly
based on the operator's control experience or actions.
However, converting the experts' know-how into if-
then rules is difficult and often results are incomplete,
unnecessary and include conflicting knowledge, since

Corresponding author. E-maih herrera@decsai.ugr.es.
l This research has been supported by DGICYT PB92-0933.

operators and control engineers are not capable of
specific details or cannot express all their knowl-
edge including intuition and inspiration. Then, an
alternative appears which consists of applying auto-
matic techniques to obtain the fuzzy control rules.
These techniques are focused on the use of sampled
input-output data to help in the development of these
rules.

Different approaches have been proposed to facil-
itate and automate the design of fuzzy control rules.
In the last few years many different approaches have
been presented taking the genetic algorithms (GAs)
as a base of the leaming process.

GAs have demonstrated to be a powerful tool for
automating the definition of the fuzzy control rule
knowledge base (KB), since adaptive control, learn-
ing, and self-organization may be considered in a lot
of cases as optimization or search processes. Their
advantages have extended the use of GAs in the

0165-0114/98/$19.00 (~) 1998 Elsevier Science B.V. All rights reserved
Plh S0165-0114(97)00043-2

144 F Herrera et al./Fuzz), Sets and Systems 100 (1998) 143-158

development of a wide range of approaches for de-
signing FLCs over the last few years.

In particular, the application to the design, learning
and tuning of KBs has produced quite promising re-
sults. These approaches can receive the general name
of geneticJuzzy systems (GFSs) [6], a short descrip-
tion of them is included in Section 2.

The purpose of this paper is to present a fuzzy rule
learning process based on the use of GAs under the
following hypotheses:
• It may be linguistic information from the human

controller's experience. But, linguistic rules alone
are usually not enough for designing a successful
control system, or might not be available.

• There is numerical information, from sampled in-
put-output (state-control) pairs that are recorded
experimentally.

• The combination of these two kinds of informa-
tion may be sufficient for the successful design of
a fuzzy control rule base.

• We include the possibility of not having any lin-
guistic information, and having a complete numer-
ical information.
According to the aforementioned hypotheses we

wish to develop a learning process for fuzzy systems
based on GAs, a GFS, with the following aims:
• to develop a process for generating fuzzy-control

rules using numerical data pairs; and
• to develop a general approach that combines both

kinds of information, expert rules and fuzzy-control
rules obtained by the generating process, in a com-
mon framework, using both simultaneously and co-
operatively to solve the control design problem.
In order to achieve these aims, we propose

a methodology based on the design of the following
three stages:
(a) A genetic generating process for obtaining de-

sirable fuzzy rules capable of including the com-
plete knowledge from the set of examples, based
on an iterative rule learning approach.

(b) A genetic process for combining rules and sim-
plifying them, thereby avoiding the possible over-
learning and removing the redundant fuzzy rules.

(c) A genetic tuning process for adjusting the mem-
bership functions of the fuzzy rules.

To do so, this paper is organized as follows.
Section 2 introduces, in short, the GAs and the GFSs;
Section 3 presents an overall description of the GFS

together with the fuzzy rule structure and some re-
quirements on the KB; Section 4 shows the genetic
generating process; Section 5 presents the combining-
simplifying process; and Section 6 deals with the
genetic tuning process. Then, and for sake of illus-
trating the learning process, Section 7 is devoted to
develop some examples. Finally, some concluding
remarks are made.

2. Preliminaries: genetic algorithms and genetic
fuzzy systems

In the following, we present a short description of
the GAs and GFSs.

2.1. Genetic algorithms

GAs are search algorithms that use operations found
in natural genetics to guide the trek through a search
space. GAs use a direct analogy of natural behaviour.
They work with a population of chromosomes, each
one representing a possible solution to a given prob-
lem. Each chromosome has assigned a fitness score
according to how good a solution to the problem it is.
GAs are theoretically and empirically proven to pro-
vide robust search in complex spaces, giving a valid
approach to problems requiring efficient and effective
searching [1 1].

Any GA starts with a population of randomly
generated solutions, chromosomes, and advances to-
ward better solutions by applying genetic operators,
modeled on the genetic processes occurring in na-
ture. In these algorithms we maintain a population of
solutions for a given problem; this population under-
goes evolution in a form of natural selection. In each
generation, relatively good solutions reproduce to
give offspring that replace the relatively bad solutions
which die. An evaluation or fitness function plays the
role of the environment to distinguish between good
and bad solutions. The process of going from the
current population to the next population constitutes
one generation in the execution of a GA.

Although there are many possible variants of a sim-
ple GA, the fundamental underlying mechanism oper-
ates on a population of chromosomes and consists of
three operations:
(1) evaluation of individual fitness,

F Herrera et al./Fuzzy Sets and Systems 100 (1998) 143 158 145

(2) formation of a gene pool (intermediate popula-
tion) and

(3) recombination and mutation.
The next procedure shows the structure of a simple

GA.

Procedure Genetic Algorithm
begin (1)

t = 0 ;
initialize P(t);
evaluate P(t);
While (Not termination-condition) do
begin (2)

t = t + l ;
select P(t) from P(t - 1);
recombine P(t);
evaluate P(t);

end (2)
end (1)

A fitness function must be devised for each problem
to be solved. Given a particular chromosome, a so-
lution, the fitness function returns a single numerical
fitness, which is supposed to be proportional to the
utility or adaptation of the individual which that chro-
mosome represents.

There are a number of ways of making this selec-
tion. We might view the population as mapping onto
a roulette wheel, where each chromosome is repre-
sented by a space that proportionally corresponds to
its fitness. By repeatedly spinning the roulette wheel,
chromosomes are chosen using "stochastic sampling
with replacement" to fill the intermediate population.
The selection procedure proposed in [1], and called
stochastic universal sampling is one of the most effi-
cient, where the number of offspring of any structure
is bound by the floor and ceiling of the expected num-
ber of offspring.

After selection has been carried out the construction
of the intermediate population is complete, then the
genetic operators, crossover and mutation, can occur.

A crossover operator combines the features of
two parent structures to form two similar offspring.
It is applied with a probability of performance, the
crossover probability, Pc. A mutation operator arbi-
trarily alters one or more components of a selected
structure so as to increase the structural variability of
the population. Each position of each solution vector

in the population undergoes a random change accord-
ing to a probability defined by a mutation rate, the
mutation probability, Pm.

It is generally accepted that a GA to solve a problem
must take into account the following five components:
1. A genetic representation of solutions to the

problem,
2. a way to create an initial population of solutions,
3. an evaluation fimction which gives the fitness of

each chromosome,
4. genetic operators that alter the genetic composi-

tion of offspring during reproduction, and
5. values for the parameters that the GA uses

(population size, probabilities of applying
genetic operators, etc.).

The basic principles of GAs were first laid down
rigorously by Holland [17], and are well described in
many books such as [11, 23].

2.2. Genetic Juzzy systems

The GAs' properties make them suitable to use in
order to design and optimize fuzzy systems. The au-
tomatic definition of the KB may be considered in
many cases as optimization or search processes. The
application to the learning and/or tuning of KB has
provided fairly promising results.

As mentioned in the introduction, GAs are applied
to modify/learning the data base (DB) and/or the rule
base (RB), and it is possible to distinguish three differ-
ent groups of GFSs depending on the KB components
(DB and RB) included in the genetic learning process.

Genetic definition of the DB. The tuning of the
fuzzy rule membership functions is an important task
in the design of fuzzy systems. The tuning method
using GAs fits the membership functions of the fuzzy
rules dealing with their parameters according to a fit-
ness function. Different approaches are presented
in [3, 14, 19, 27].

Genetic derivation of the RB. All the methods
belonging to this family suppose the existence of
a collection of fuzzy set membership functions giving
meaning to the labels, a DB, and learning a rule base.
Some approaches are presented in [12, 13, 20, 28, 24].

Genetic learning of the KB. There are many
approaches for the genetic learning processes of
a complete KB, fuzzy rules and membership func-
tions. We find approaches presenting variable

146 F Herrera et al./ Fuzzy Sets and Systems 100 (1998) 143 158

chromosome length, others coding a fixed number
of rules and their membership functions, etc. Some
approaches are presented in [4, 5, 21,25, 29].

For a more detailed description see [6], for an ex-
tensive bibliography see [7] (Section 3.13), and some
approaches may be found in [16].

The genetic learning processes belonging to the lat-
ter two classes can do the learning simultaneously or
in various stages.

Classically, two alternative approaches in which
GAs have been applied to learning processes have
been mainly used, the Michigan [18] and the
Pittsburgh [26] approaches. In the first one, the chro-
mosomes correspond to classifier rules which are
evolved as a whole, whereas in the Pittsburgh ap-
proach, each chromosome encodes a complete set of
classifiers.

A third way is presented as an alternative to these
models, an iterative rule learning approach, where
each chromosome represents only one rule. In the lat-
ter model, as in the Michigan one, each chromosome
in the population represents a single rule, but contrary
to the Michigan one, only the best individual is con-
sidered as the solution, discarding the remaining chro-
mosomes in the population. This model, used in [30]
the first time, attempts to reduce the search space for
the possible solutions.

In the following we present the GFS proposal in
various stages based on the iterative rule learning
approach.

3. On the genetic fuzzy system proposal

We propose a GFS methodology based on three
stages. The first stage is a genetic generation process
for obtaining desirable fuzzy rules capable of includ-
ing the complete knowledge from the set of examples.
The second one is a genetic simplifying process for
combining rules and eliminating redundant rules, se-
lecting the most cooperative set of rules. The third one
is a genetic tuning process for adjusting the member-
ship functions of the fuzzy rules. In the following we
describe them in short.
(a) Genetic generating process. It is based on an

iterative rule learning approach and consists of
a fuzzy rule generating method together with an
iterative covering method of the set of examples.

- The fuzzy rule generating method is developed
by means of a real coding GA (RCGA) that
codes a single fuzzy rule in each chromosome.
The GA finds the best rule in every run over
the set of examples according to the features
included in its fitness function.

- The covering method is developed as an itera-
tive process. It allows a set of fuzzy rules to be
obtained covering the set of examples. In each
iteration, it runs the generating method choos-
ing the best chromosome (rule), considers the
relative covering value this rule provokes over
the example set and removes the examples with
a covering value greater than a value t: provided
by the controller designer.

In this iterative model, the GA provides a par-
tial solution to the problem of learning. This
learning way is to allow "niches" and "species"
formation. Species formation seems particularly
appealing for concept learning, considering the
process as the learning of multimodal concepts.
This approach attempts to reduce the search space
for the possible solutions.

(b) Genetic simplification process. Since two simi-
lar rules or one rule similar to another given by
an expert process may be obtained in the genera-
tion, it is necessary to combine and simplify the
complete RB obtained from the previous process
for deriving the final RB. It is based on a binary-
coded GA and a measure of the FLC performance
in the control of the system being identified. It
will save the overlearning that the previous com-
ponent may cause selecting the most cooperative
set of fuzzy rules.

(c) Genetic tuning process. The tuning method using
GAs fits the membership functions of the fuzzy
rules dealing with the parameters of the member-
ship functions, minimizing a square error function
defined by means of an input-output data set for
evaluation. It is based on an RCGA and it will
give the final KB as output by tuning the mem-
bership functions for each fuzzy control rule.

Afterwards we introduce the fuzzy rule structure
used in our GFS, and some previous requirements
on the KB to be taken into consideration for devel-
oping the process. They are to verify the complete-
ness property and to have a high covering examples
value.

F. Herrera et al./ Fuzzy Sets and Systems 100 (1998) 143-158 147

3.1. Fuzzy ruh's structure

Let us suppose we know an incomplete set of rules
given by the experts, R e, and a set of training examples
of the system consisting of the values that the vari-
ables take during an experiment in which the system
is controlled by a human.

Expert rules. For extracting the knowledge from
the experts, we suppose that the domains of the vari-
ables can be determined either by consulting the ex-
perts or by exploring the range of variables contained
in the database.

We assume that each universe, U, contains a num-
ber of referential sets having their linguistic mean-
ing, which form a finite set of fuzzy sets on U.
For instance, if X is a variable on U for tempera-
ture, then one may define A I as "low temperature",
Ai (1 < i < r) as "medium temperature" and Ar as
"high temperature", etc. These referential fuzzy
sets are characterized by their membership function
Ai(u): U---+ [0, 1], i = 1 , . . . , r . To ensure the perfor-
mance of the fuzzy model and provide a uniform basis
for further study it is essential that all the referential
sets should be normal convex, and should satisfy the
following completeness condition:

Vu E U 3j, 1 <~ j <~ r, such that Aj(u)>~6

and 6 is a fixed threshold, this being the completeness
degree of the universes.

Learning rules. Let us suppose we know a set of
p training examples Ep = {el , . . . , %} of the system
consisting of the values that the variables take during
an experiment in which the system is controlled by
an expert: "in the time t = k, the value of the variable
vectors X and Y are ex k and ey k, respectively"

We shall focus on Mamdani's model for MISO sys-
tems, where the knowledge base of a fuzzy controller
consists of a collection of fuzzy rules (with the log-
ical connective ALSO between the rules) describing
the control actions in the form

Ri: IF x I is Ail and ... and xn is Ain THEN y is B,

where xl,... ,Xn and y are the process state vari-
ables and the control variable, respectively; and
Ail ,Ain, B are fuzzy sets in the universes of dis-
course UI , . . . , Un, V.

These fuzzy sets are characterized by their mem-
bership functions

Aij(B): ~ (V) ~ [0, 1], j = 1 n.

In our study we consider every fuzzy set associated
with a normalized triangular membership or a nor-
malized trapezoidal membership function. A compu-
tational way to characterize them is either by using
a parametric representation achieved by means of
the 3-tuple (aij, bij, cij), (ai, bi, ci), j = 1, . . . ,n or by
means of the 4-tuple (aij, bij, cij, dij), (ai, bi, ci, di),
j = 1,. . . ,n.

The classical Mamdani model is a linguistic model
based on collections of I F - T H E N rules with fuzzy
quantities associated with linguistic labels, and the
fuzzy model is essentially a qualitative expression of
the system. A KB in which the fuzzy sets giving mean-
ing (semantic) to the linguistic labels are uniformly
defined for all rules included in the RB constitutes
a descriptive approach since the linguistic labels rep-
resent a real-world semantic.

It can be considered a KB for which fuzzy rules
either present different meaning for the same linguis-
tic terms or the fuzzy quantities have not any associ-
ated linguistic label. In this case, the KB and the FLC
using it, present a different philosophy, the approach
is approximative. In the second approach we say that
the rules present free semantic.

We will centre on the second approach and consider
rules with a free semantic for the generating process,
without any linguistic syntax associated to the rules.
Each rule defines a typical feature of the system be-
haviour according to some requirements and is inde-
pendent from a fuzzy partition, that is, no restrictions
are imposed on the membership function locations and
shapes.

3.2. Completeness property and covering value

If we wish to generate a set of rules describ-
ing the behaviour of a system, then it is neces-
sary to establish a condition over the set of rules,
R. This is the requirement of covering all possi-
ble situation-action pairs, ekc Ep, the completeness
property. This may be formalized for a constant
z E [0, 1], it requires the non-zero union of fuzzy sets
Ai(.), Bi(.), i= 1,..., T, T = IRI, and is formulated

148 F Herrera et al./Fuzzy Sets and Systems tO0 (1998) 143 158

by the following expressions:

CR(ek)= U Ri(ek)~z , k = l p,
i - I . . . / "

Ri(ek) = * (Ai(ex k), Bi(ey k)),

Ai(ex k) = * (Ail (ex~) Ain(ex~)),

where • is a t-norm, and Ri(ek) is a compatibility
degree between the rule Ri and the example ek. This
property is required in the simplifying process. It
eliminates redundant and unnecessaries rules under
the condition o f maintaining a minimal completeness
degree on the training set.

Given a set of rules R, we define the covering value
of an example ek with a base of rules R as

T

CVR(ek) = Z Ri(ek),
i 1

and we require the following condition in the genetic
generating process:

CVR(elc)>/F,, k = 1 , p.

4.1.1. Representation
In the RCGA population, a candidate solution C~,

r ~- 1 M, represents a fuzzy rule

IF xl is A r l . . . and x,, is A~n THEN Yl is B

where the real values a~j, b,.j, c,v , d,7, a,., b~, c~, dr char-
acterize the membership functions o f A,:/, j = 1 n
and B~, respectively.

Thus, C,. codes the vector values

(a~ I, br 1, c,. i, d~l , a,.,,, brn, c,,, d,.,, a,., b~, c~, dr).

This happens when we use trapezoidal membership
functions. Three parameters per variable would be
used with triangular membership functions.

We propose approaching this problem with real-
coded genes [15] together with special genetic
operators developed for them. Then a rule would be
a chromosome vector coded as a vector of floating
point numbers.

Finally, we represent a population of M chromo-
somes (rules) by C, and it is set up as follows:

c=(c~ c M) .

The aforementioned covering method is based on
this idea. We remove an example when it has a cov-
ering value higher than or equal to ~:.

4. Genetic generating process

We focus this section on the description of the fuzzy
rule genetic generating process consisting of a gener-
ating method for desirable fuzzy rules together with
an iterative covering method of the set of examples.

4.1. Generating method

The generating method of fuzzy rules is developed
by means of an RCGA, where a chromosome repre-
sents a fuzzy rule. The RCGA finds the best rule in
every run over the set of examples, according to dif-
ferent features including in the fitness function.

In order to describe the RCGA we present the
fundamental underlying mechanisms of a GA: rep-
resentation, formation of an initial gene pool, fitness
function, genetic operators and running parameters.

4.1.2. Formation of an initial gene pool
We denote the domain of every input variable X i

as a close real interval 4 = [aj, bj]. Similarly, the do-
main of the output variable Y is the real interval
V = [c, d].

The initial gene pool is created partially from
E~ C Ep (t chromosomes) and the remaining (M - t
chromosomes) initiated randomly, as follows:
• Let t = min{lEp],M/2}; then we select t exam-

ples from Ep at random, and for each one we
determine the chromosome (rule) belonging to
the initial gene pool as follows. Suppose the ex-
ample e k ¢Et and the component ex~ E [aj, bi],
Aex~= min{ex~-a i , bj-exjk} , let ~(ex~) be a

random value in the range [0, Aex~], then we form
the membership function using the 4-tuple

The procedure is the same for the remaining com-
ponents of e~.
The remaining M - t chromosomes of the initial
population are chosen at random, each gene in its

F Herrera et al./Fuzz)' Sets and Systems 100 (1998) 143-158 149

respective interval,

Cr~-(Crl Crl),

l = 4(n + 1), with requirements C4s+l ~ C4s+2
C4s+3 ~ e4s+4, s = 0 n for trapezoidal member-
ship functions, and in a similar way for triangular
membership functions.

4.1.3. Evaluation of individual fitness
We define the fitness function according to five fea-

tures with the objective of selecting fuzzy rules cov-
ering a lot of examples (two first criteria), with a few
negative examples, small or fixed membership func-
tion width and finally with high symmetrical member-
ship functions. Their formulations are described in the
following:

(a) High-frequency value: The frequency of a
fuzzy rule, Ri, through the set of examples, Ep, is
defined as [9]:

q% (l~ n -
P

with Ri(ek) being the compatibility degree.
(b) High average covering degree over positive

examples: The set of positive examples to R i with
compatibility degree greater than or equal to ~o is de-
fined as

E+(Ri) = {ek E Ep/Ri(ek) >~ ~ }

with n + R, = JE+(Ri)] being the number of positive
examples, and

GR, = Z Ri(ek)/n+,
eI, EE+(Ri)

the average covering degree on E+(Ri).
(c) Small negative examples set: The set of the

negative examples to Ri is defined as

E-(Ri) = {ek E Ep/Ri(ek) = 0 and Ai(ex k) > O}

with n~, = [E (Ri)[being the number of negative
examples.

An example is considered negative for a rule when
it matches better with some other rule that has the
same antecedent but a different consequent.

The penalty function on the negative examples set
will be

1

g,(R?) = 1

n~, - 5 + exp(1)

if n~ ~< 5,

otherwise,

where we permit up to 5 negative examples per rule
without any penalty.

In every case, we consider the negative examples
over the complete set of training data.

(d) Small membership function width: The rule
variable width (RW) and rule modal variable width
(RMW) of a fuzzy rule Ri are defined as

x -'"+l W V R q / D ~ .
RWi = £-~j=l

n + l

and

X-'"+ l WVMRij / WVRq
RMW,. = ~/=l

n + l

where

WVRij = dij - aq, WRMRu = cq - b(i

being (aq, bij, c(j, ~#), j -- 1,. . . , n + 1 (n input vari-
ables plus the output variable), the 4-tuple associated
to every membership function, and DWj is the domain
interval width per variable.

We define the membership width rate, MWR, of
the rule Ri as a function of the two parameters above,
defined by the following expression:

M W R (Ri) = ,q~ (R W,) g2(RMWi)

where the functions gi represent the required relation-
ships with respect to the width.

If we wish a small width then we may consider the
function

gi(x) = e r ~".

If we prefer a constant relationship between the
domain width and the variable width or between the
two variable intervals width then we can consider
the function

g,(x) = e I~-~xl

with a being the constant relationship.

150 F Herrera et al./Fuzzy Sets and Systems 100 (1998) 143 158

(e) High symmetrical membershipjunctions: The
rate of symmetry is defined in order to achieve sym-
metry for the fuzzy numbers, and to prevent the bad
covering of extreme points. It is defined as follows:

1

RS(Ri) di

where

() d i = Max {d/} , w i t h d / = M a x d/t., dil
/=1...+1 all2 d/j

and

d/i = b(i - aij, d/2 = d(/ - cij.

Clearly, RS ~< 1, and if the rule has a symmetry se-
mantic, then RS = 1.

An evaluation Junction to the rule R~, and therefore,
a fitness function to the associated chromosome Ci can
be defined as follows:

F(Ri) = 7JE,, (Ri) GR,.qn (R~-) MWR(R~) RS(R~).

with the objective o f maximizing the fitness function.
We have selected the product operator for combining
the criteria because it is strictly increasing in the vari-
ables and can provide us a good equilibrium among
the criteria, if a criterion value is low, then the fitness
function is low.

4.1.4. Genetic operators
During the reproduction phase of the genetic

algorithm we use two classical genetic operators,
mutation and crossover. We use the non-uniform
mutation proposed by Michalewicz [23], and the
max-min-arithmetical crossover used in [14], and the
selection procedure is the stochastic universal sam-
pling [1]. A short description o f them is given below.

Non-uniJorm mutation: I f C~. = (cl ck CH)
is a chromosome and the element ck was selected
for this mutation (the domain of ck is [ckt, c~r]), the
result is a vector C~ +1 = (c l C;,. . . ,cH), with
k c 1 , . . . ,H , and

, ~c~+A(t , c~ , . - -ck) i f a O,

c k = ~ c k - - A (t , ck ckt) i f a = l ,

where a is a random number that can have a value o f
zero or one, and, the function A(t, y) returns a value

in the range [0, y] such that the probability o f A(t, y)
being close to 0 increases as t increases:

A(t , y) = y(1 - ? r-~,r)j'),

where r is a random number in the interval [0, 1], T
is the maximum number of generations and b is a
parameter chosen by the user, which determines the
degree o f dependency with the number of iterations.
This property causes this operator to make a uniform
search in the initial space when t is small, and very
locally at later stages.

Max min-arithmetical crossover: If C~ = (ct
ck, • cH) and C~.=(clr,. . ' ' c k c H) are to be
crossed, we generate the following four offspring:

C[+1 =aC~v 4- (1 -a)C[, ,

C~ +' =aC/, 4- (1 - a)C(,.,

C t+l with t+l min{ck, ' 3 C3k Ck }'

C'+J with tel max{ck,c~.}, 4 C4 k z

and we select the two best offspring chromosomes.
This operator can use a parameter a which is either

a constant, or a variable whose value depends on the
age of the population. The resulting descendants are
the two best of the four aforesaid offspring.

Selection procedure: The selection procedure is the
stochastic universal sampling, the number o f offspring
of any structure is limited by the floor and ceiling o f
the expected number of offspring [1], together with
the elitist selection.

4.1.5. Parameters
We carry out our experiments using the following

parameters:
• Population size: 61.
• Probability of crossover: Pc = 0.6,

Max-Min-arithmetical crossover, a = 0.35.
• Probability of mutation:

- Probability of chromosome update: Pm= 0.6.
Probability of gene mutation: em(gene)=Pro~
chromosome length.

4.2. Covering method

The covering method is developed as an iterative
process. It allows to be obtained as a set o f fuzzy

F. Herrera et aL /Fuzz)' Sets and Systems 100 (1998) 143 158 151

rules covering the set of examples. In each iteration, it
runs the generating method, it chooses the best chro-
mosome (rule), assigns the relative covering value to
every example, and removes the examples with a cov-
ering value greater than e.

We denote by R e the set of fuzzy-control rules ob-
tained from an expert. Using the aforesaid generating
method, the covering method is developed as follows:
1. Initialization:

• To introduce co and E.
• To assign CV[k] ~-- CVRo(ek), k = 1 ,p .
• If CV[k] >~ e then to remove ek from Ep, k =

1 p.
2. Over the set of examples Ep, to apply the generating

method.
3. To select the best chromosome Cr with Rr the as-

sociated fuzzy rule.
4. To introduce Rr in the set of rules Rg, which is

initially empty.
5. For every ek E Ep do

procedure together with an elitist selection scheme,
and the recombination is put into effect by using the
classical binary multipoint crossover (performed at
two points) and uniform mutation operators.

The coding scheme generates fixed-length chromo-
somes. Considering the m rules contained in R counted
from 1 to m, an m-bit string C = (c l Cm) repre-
sents a subset of candidate rules to form the RB finally
obtained as this stage output, B s, such that

If ci = l then R i C B s else R i ~ B s

The initial population is generated by introducing a
chromosome representing the complete previously ob-
tained rule set R g, that is, with all c~ = 1. The remain-
ing chromosomes are selected at random.

As regards to the fitness function, E(.) it is based on
an application-specific measure, the medium square
error (MSE) over a training data set, ETDS, which is
represented by the following expression:

CV[k] ~-- CV[k] + R,.(ek):

If CV[k] >>- e. then remove it from Ep.

6. If Ep = 0 then Stop else return to Step 2.

5. C o m b i n i n g - s i m p l i f y i n g rules process

Due to the iterative nature of the genetic genera-
tion process, an overleaming phenomenon may ap-
pear. This occurs when some examples are covered at
a higher degree than the desired one and it makes the
obtained RB perform worse. Since two similar rules
or one rule similar to another given by an expert may
be obtained in the generating process, it is necessary
to combine and simplify the complete RB obtained
from the previous process for deriving the final RB,
thereby allowing the system to be controlled.

The set of rules obtained from experts' knowledge,
denoted as R e , together with the rules obtained with the
generating process, denoted as R g, are joined together
in order to form the set of candidate rules R:

R = R e U R g, JR[= m.

This process is based on a binary-coded GA, in
which the selection of the individuals is developed us-
ing the aforementioned stochastic universal sampling

1 Z (ey l - -S (ex l))2 '
E (G) - 2[ETDsl ~,eETDs

where S (e S) is the output value obtained from the
FLC using the RB coded in ~ , R(~) , when the state
variables values are ex t, and e y is the known desired
value.

Anyway, there is a need to keep the control rule
completeness property considered in the previous
stage. An FLC must always be able to infer a proper
control action for every process state. We will ensure
this condition by forcing every example contained in
the training set to be covered by the encoded RB at a
degree greater than or equal to z,

,j-i,.. T

Vet EETDs and Rj ER(Cj) ,

where z is the minimal training set completeness
degree accepted in the simplification process.

Therefore, we define a training set completeness
degree of R(Cj) over the set of examples ETDS as

TSCD(R(G),ETDs)= ~ CR~c~(e~).
elCETDs

152 F Herrera et aL/Fuzz)" Sets and Systems 100 (1998) 143 158

The final fitness function penalizing the lack of the
completeness property is

F(C)
I E (C /)

=] I V ' (evl~ 2

if TSCD(R(Cj) , ETDS) / ~ r ,

otherwise.

6. Tuning process

In [14] it was presented in-depth the genetic tuning
process used in this stage. The method relies on hav-
ing a set of training data, ETDS, against which the con-
troller is tuned, and acts by means of an RCGA. The
tuning method using GAs fits the membership func-
tions of the fuzzy rules dealing with the parameters of
the membership functions, minimizing a square error
function defined by means of an input-output data set
for evaluation.

A fuzzy rule set is represented as a chromosome,
and we try to obtain the chromosome with the best
adaptation. A rule Ri is represented by a piece of chro-
mosome Cri ,

Cri = (ail, bil, Cil, d i l , . . . , ai,,, bin, ci,,, din, ai, bi, ci, di),

therefore a base of t rules, R, is represented by the
chromosome Cr,

Cr = Cr l Cr2 • . . Crt .

The initial gene pool is created from the initial fuzzy
rule set to be tuned. The initial rule set is a chromo-
some, which is denoted as G . We define for every
gene Ch of Cl, h = 1 ... (n + m) × 4 an interval of per-
formance, 1 r [Ch' G] ' which will be the interval of adjust-
ment for this variable, Ch • [c~, c~].

I f (t rood4) = 1 then ct is the left value of the sup-
port of a fuzzy number. The fuzzy number is defined
by four parameters (ct, ct+l, c~+2, ct+3) and the inter-
vals of performance are the following (see Fig. 1):

1 r c, • [% c,]

I c,+,-c, .,+1-.,] - - g - - , < +

Ct+ 1 • [C/+I, C"I;I]

[.,+:2c.3 = Ct+l ~ , C t + l -If- - -

c,+2 • [c{+:. G:]
Ct+2 -- Ct+ 1 Ct+3 - - Ct+ 2]

= ct+2 2 'Q+2 + 2 J
/ ,r

Ct+3 • [Ct+ 3, Ct+3]

Ct+3 Ct+2 Ct+3 -- CI+2 1
= ctt3 2 ,ct+3 + 2

Therefore, we create a population of chromosomes
with C1 as the initial base of fuzzy control rules, and
the remaining chromosomes initiated at random, with
each gene being in its respective interval of perfor-
mance.

By using a training input-output data set, ETDS, we
define the fitness function of a chromosome as the
square medium error of its associated rule set. It is
represented by the following expression:

1
E(C) = 21Ems~l ~ (e¢ - S(ex k))2.

e~ ~ ETDS

The genetic operators and parameters are the same
as in the generating process.

7. Experiments

To test the GFS proposal we have carried out exper-
iments simulating the inverted pendulum problem and
two n-dimensional functions used for deriving three-
dimensional surfaces.

We use the first one for checking the use of expert
rules in the GFS, and the second one for comparing
the GFS with other learning approaches.

Z 1. I n v e r t e d p e n d u l u m prob lem

An inverted pendulum is a simple example for con-
trol engineers, and the behaviour of the GFS proposal
can be shown:

Z 1.1. The mode l
On the assumption of 101 <{ 1 (radian) the non-

linear differential equation that leads to the behaviour
of the pendulum can be simplified down to

_ (L d20 L - F + mg sin 0 -
m 3 dt 2 2 dt J '

where kdO/d t is an approximation of the friction force.

F Herrera et al./Fuzzy Sets and Systems 100 (1998) 143-158 153

]
1

Ct

i

r

C t Ct Ct+l
1

Ct+l

r

Ct+l

C 1
t+2

\

C t+2

i

i
i
i
b

Ct+2 Ct+3

C 1
t+3

I
r

Ct+3

Fig. 1. Intervals of performance.

, a n g l ~ ~

1

m

Fig. 2. Inverted pendulum.

Fig. 2 shows the system.
The state variables are 0, the angle, o9, the angu-

lar speed, and the control variable, f, the force. For
every (00,o90) we try to find the force that we must
apply to the gravity centre of the pendulum for a con-
stant amount time to move the pendulum to the verti-
cal position.

A pendulum weighing 5 kg and 5 m long has been
considered in a real simulation, applying the force to
the gravity centre, for a constant time of 10 ms. With
these parameters the universes of discourse of the vail-

ables are the following:

0 E [-0.5240, 0.5240] rad,

o9 E [-0.8580, 0.8580] rad/s,

f E [-2980.0, 2980.0] N.

Experimentally, we obtained two training data sets
in the intervals [-0.277, 0.277], [-0.458,0.458] and
[1592.273, 1592.273] for 0, o9 and f , respectively. The
first set with 213 input-output data is a training data set
denoted as ETDs and it is used in the learning processes
components. The second with 125 input-output data
set is a test data set denoted as ECD and it is used
for evaluation, using the measure of medium square
method on it.

As regards to the FLC reasoning method employed,
we have selected the minimum t-norm playing the role
of the implication and conjunctive operators, and the
centre o f 9rarity weighted by the matehin9 strategy
acting as the defuzzification operator [8].

7.1.2. Expert rules
We consider the well-known linguistic rules that

can be found in [32], where instead of the speed of the
cart pole considered, we consider force as an output
variable.

The linguistic term set is

{Negative Large (NL), Negative Medium (NM),

154 £ Herrera et al./Fuzzy Sets and Systems 100 (1998) 143--158

Negative Small (NS), Zero (ZR),

Positive Small (PS), Positive Medium (PM),

Positive Large (PL)}

and the three expert rules considered are:

Rule #3: IF 0 is PS AND w is NS THEN f is ZR,

Rule #6: IF 0 is NS AND w is PS THEN f is ZR,

Rule #7: IF 0 is ZR AND w is ZR THEN f is ZR.

For managing these rules we consider the discourse
universes partition presented in [22] in which the
fuzzy numbers have normalized trapezoidal member-
ship functions. We also consider triangular member-
ship functions with the same support and the centre
point of the modal interval as a modal value.

7.1.3. Experiments
The experiments were carried out with 1000 itera-

tions for the generating and simplifying methods, and
2000 iterations for the tuning method.

We apply the process using the following frame-
work:
1. For considering triangular membership functions

(TMF1) or trapezoidal membership functions
(TMF2).

2. Expert knowledge
1.a Without expert knowledge (WEK)
1.b Existence of expert knowledge

We assume that an expert can give us informa-
tion about the process. We shall consider two
cases:
- Expert knowledge 1 (EK1)

The expert gives us the rule that represents
the equilibrium point.

Rule #7: IF 0 is ZR AND w is ZR

THEN f is ZR.

- Expert knowledge 2 (EK2)
The expert gives us the rules where it is not
necessary to apply force.

Table 1
Associated parameters

Trapezoidal memb. func. Triangular memb. func.

1.0 0.1 0.1 1.0 0.1 0.1
1.5 0.3 0.3 1.5 0.3 0.3
1.5 0.5 0.5 1.5 0,5 0.5
2.5 0.7 0.5 2.5 0.7 0.5

Rule#7: IF 0 is ZR AND w is ZR

THEN f is ZR,

3. Fitness functions in the generating process
For the generating process we use the fitness func-

tions for obtaining the smallest width:

gl(x) = e I x and ,q2(X) = e 1-x.

We have carried out the experiments with the asso-
ciated parameters (covering value, compatibility de-
gree and completeness degree) as given in Table 1.

Tables 2 -4 show the results for one configuration
of TMF2 and two configurations for TMF1 on the test
data set.

The medium square error of the first column is based
on the set of generated rules together with the expert
knowledge rules of the associated framework if there
are, either WKE or EK1 or EK2.

Analyzing the results, we can observe the following:
As regards to the use of triangular or trapezoidal
membership functions, it seems better to use tri-
angular membership functions instead of trapezoidal
ones.
As regards to the use of expert information, the be-
haviour of the learnt KB without expert knowledge
is better than the KB that combines expert knowl-
edge with learnt rules in the second case, in which it
shows the best results of the experiments, and they
present an intermediate behaviour in the other two
cases. These results show a good performance of the
proposed approach for learning good rules according
to the available examples.

Rule#3: IF 0 is PS AND w is NS

THEN f is ZR,

Rule#6: IF 0 is NS AND w is PS

THEN f is ZR,

7.2. Three-dimensional surJhces

For analyzing the accuracy of the method proposed,
we have selected two functions for using them to de-
rive two three-dimensional surfaces.

F. Herrera et a t /Fuzzy Sets and Systems 100 (1998) 143-158

Table 2
Triangular membership functions: c = 1.5, o9 = 0.5, ~ = 0.5

155

Generating process Simplification process

MSE IRI TSCD(., .) MSE Iel TSCD(., .)

Tuning process

MSE TSCD(., .)

TMF1-WEK 64863.83 18 0.5348 41735.33 I 1 0.5348

TMFI -EKI 51818.03 16 0.5724 19989.27 9 0.5146

TMFI-EK2 52576.84 18 0.6036 25861.34 11 0.5955

40.35 0.1854

46.12 0.2337

35.50 0.3155

Table 3
Trapezoidal membership functions: s = 2.5, eJ = 0.7, ~ = 0.5

Generating process Simplification process

MSE IRI TSCD(., .) MSE IRI TSCD(., .)

Tuning process

MSE TSCD(., .)

TMF2-WEK 97016.59 19 0.7516 67147.80 l 1 0.5598

TMF2-EK1 92768.33 20 0.7940 51985.66 12 0.5242

TMF2-EK2 86286.27 20 0.7940 35826.89 9 0.5242

153.29 0.4440

241.81 0.2643

32.17 0.2951

Table 4
Triangular membership functions: ~ = 2.5, e9 = 0.7, r = 0.5

Generating process Simplification process

MSE IRI TSCD(., .) MSE

Tuning process

IRI TSCD(., .) MSE TSCD(., .)

TMF1-WEK 64859.17 25 0.6335 31635.72 12 0.5352

TMF1-EKI 60566.21 25 0.5734 13090.77 9 0.4992
TMF1-EK2 62227.62 26 0.6284 13619.46 10 0.4942

23.7l 0.1541

67.06 0.280t

40.04 0.3264

7.2.1. The models
The functions and the variable universes of dis-

course considered are shown below. The spherical
model, F1, is an unimodal function while the general-
ized Rastrigin Junction, F2, is a strongly multimodal
one, as may be observed in their graphical represen-
tations (Fig. 3):

F,(x,,x2) = x~ + x 2,

XI,X2 C [- - 5 , 5] , Fl (Xl,X2) E [0, 5 0] ,

F 2 (X l , X 2) = x 2 q - x ~ - c o s (1 8 x 1) - c o s (1 8 x 2) ,

xl,x2 E [- 1 , 1], F2(xl,x2) ¢ [2,3.5231].

For each one of the functions, a training data set
uniformly distributed in the three-dimensional defini-
tion space has been obtained experimentally. In this

way, two sets with 1681 values have been generated
by taking 41 values for each one of the two state vari-
ables considered to be uniformly distributed in their
respective intervals.

Two other data sets have been generated for their
use as test sets for evaluating the performance of
the learning method, avoiding any possible bias re-
lated to the data in the training set. The size of
these data sets is a percentage of the corresponding
training set one, a 10% to be precise. The data are
obtained by generating, at random, the state variable
values into the concrete universes of discourse for
each one of them, and computing the associated out-
put variable value. Hence, two test sets formed by 168
data are used to measure the accuracy of the FLCs
designed by computing the medium square error for
them.

156 E Herrera et aL/Fuzz), Sets and Systems 100 (1998) 143 158

-

!/ '~ / 0 . 5
-I ~ ~ 0 5 ~ / / ~ 0 C o~-~.~_ 3 _ ~ - 0 s

Fig. 3. Graphical representation of Fi and F2.

Table 5
Triangular membership functions: c 1.5, ~o = 0.05, t = 0.25

Generating process Simplification process

MSE IR[MSE IRI

Tuning process

MSE

GLP-FI 6.146344 88 3.986195 64
WM+Tuning-F l 4.6518 49
GLP-F2 0.424792 167 0.300555 119
WM+Tuning-F2 2.0940 49

0.768021
0.9507
0.270455
1.2180

7.2.2. Experiments

In order to compare the proposed method we have
compared it with a two-stage method: obtaining a
complete KB by deriving the RB by means of the
Wang and Mendel ' s (W M) method [31], and defining
the DB by means of the genetic tuning process.

The initial DB used in the WM process is con-
stituted by three primary fuzzy partitions (two cor-
responding to the state variables and one associated
to the control one) formed by seven linguistic terms

with triangular-shaped fuzzy sets giving meaning to
them (as shown in Fig. 4), and the adequate scaling
factors to translate the generic universe of discourse
into the one associated with each problem variable.

Regarding our GFS we also use triangular member-
ship functions. The following parameter values, cor-
responding to the first two stages, are used: ~ = 1.5,
co = 0.05 and t = 0.25.

Finally, as regards to the FLC reasoning method
employed, we again have selected the minimum t-

norm playing the role o f the implication and conjunc-
tive operators, and the centre o f gravity weighted by
the matching strategy acting as the defuzzification op-
erator [8].

NB NM NS ZR PS PM PB

m M

Fig. 4. Graphical representation of the fuzzy partition.

The results obtained are shown in Table 5, each one
of them associated to both of the functions considered
and to the test sets.

Analyzing these results, we can observe the good
behaviour presented by the proposed method; in both
functions it presents the best results. More concretely
for the second one, the strongly multimodal one, the
difference is higher between the two learning algo-

rithms.
A drawback may be associated to the proposed

process, the KB loses its readability. We overcome the
lack of flexibility due to the rigid partitioning of the

F Herrera et al./Fuzzy Sets and Systems 100 (1998) 143-158 157

input and output spaces [2] and the loss of KB read-
abil i ty may be justified by the benefit obtained by the
improved FLC accuracy, which is a ma in concern in
m a n y real control problems.

8. Conclusions

We have focused this paper on the development of
a GFS for learning fuzzy-control rules from examples,
where it is possible to combine expert knowledge rep-
resented as l inguistic control rules and fuzzy control

rules generated from numerical examples.

An advantage of this GFS proposal is that in the
first stage, the fuzzy rule generat ing process based on
an iterative rule learning approach, it considerably re-
duces the space of search because it looks for only one
fuzzy rule in each sequence of iterations, and stages

second and third provide tools that can improve the
RB and DB, respectively. The first stage establishes a

competi t ion among the fuzzy rules whilst the aim of
the second and third stage is to find the best possible
cooperat ion among the rules for obta in ing a good KB.

Future works will be directed to the development
o f this GFS methodology.

References

[1] J.E. Baker, Reducing bias and inefficiency in the selection
algorithm, in: J.J. Grefenstette (Ed.), Proc. 2nd lnternat. Conf.
on Genetic Algorithms, Lawrence Erlbaum, Hillsdale, N J,
1987, pp. 14 21.

[2] A, Bastian, How to handle the flexibility of linguistic
variables with applications, lnternat. J. Uncertainty Fuzziness
Knowledge-Based Systems 2 (1994) 463-484.

[3] F. Bolata, A. Nowr, From fuzzy linguistic specifications to
fuzzy controllers using evolution strategies, Proc. 4th IEEE
Intemat. Conf. on Fuzzy Systems, Yokohama, 1995, pp.
1089-1094.

[4] B. Carse, T.C. Fogarty, A. Munro, Evolving fuzzy rule based
controllers using genetic algorithms, Fuzzy Sets and Systems
80 (1996) 273-293.

[5] M. Cooper, J.J. Vidal, Genetic design of fuzzy controllers:
the cart and jointed pole problem. Proc. 3rd IEEE Internat.
Conf. on Fuzzy Systems, Orlando, 1994, pp. 1332-1337.

[6] O. Cord6n, F. Herrera, A general study on genetic fuzzy
systems, in: J. Periaux, G. Winter, M. Galan, P. Cuesta (Eds.),
Genetic Algorithms in Engineering and Computer Science,
Wiley, New York, 1995, pp. 33-57.

[7] O, Cord6n, F. Herrera, M. Lozano, A classified review on
the combination fuzzy logic-genetic algorithms bibliography,
Tech. Report #DECSAI-95129, Dept. of Computer Science
and A.I., University of Granada, 1995, Available at the URL
address: http://deesai.ugr.esFherrera/fl-ga.html.

[8] O. Cord6n, F. Herrera, A. Peregrin, Applicability of the fuzzy
operators in the design of fuzzy logic controllers, Fuzzy Sets
and Systems, to appear.

[9] M. Delgado, A. Gonzfilez, A frequency model in a fuzzy
environment, lntemat. J. Approx. Reasoning 11 (1994)
159-174.

[10] D. Driankov, H. Hellendoom, M. Reinfrank, An Introduction
to Fuzzy Control, Springer, Berlin, 1993.

[11] D.E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, Reading, MA, 1989.

[12] A. Gonzfilez, R. Prrez, Structural learning of fuzzy rules from
noisy examples, Proc. FUZZ-IEEE/IFES'95, Yokohama,
Vol. III, 1995, pp. 1323-1330.

[13] A. Gonz~ilez, R. Prrez, A learning system of fuzzy
control rules, in: F. Herrera, J.L. Verdegay (Eds.), Genetic
Algorithms and Soft Computing, Physica-Verlag, Wurzburg,
1996, pp. 202-225.

[14] F, Herrera, M. Lozano, J i . Verdegay, Tuning fuzzy
logic controllers by genetic algorithms, lnternat. J. Approx.
Reasoning 12 (1995) 299 315.

[15] F. Herrera, M. Lozano, J.L. Verdegay, Tackling real-coded
genetic algorithms: operators and tools for the behaviour
analysis, Artificial Intelligence Rev., to appear.

[16] F. Hen'era, J.L. Verdegay, (Eds.), Genetic Algorithms and
Soft Computing, Physica-Verlag, Wurzburg, 1996.

[17] J.H. Holland, Adaptation in Natural and Artificial Systems,
Ann Arbor, 1975 (MIT Press, New York, 1992).

[18] J.H. Holland, J.S. Reitman, Cognitive systems based on
adaptive algorithms, in: D.A. Waterman, F. Hayes-Roth
(Eds.), Pattern-Directed Inference Systems, Academic Press,
New York, 1978.

[19] C. Karr, Genetic algorithms for fuzzy controllers, Artificial
Intelligence Expert 6 (1991) 26-33.

[20] C. Karr, Applying Genetic Algorithms to Fuzzy Logic,
Artificial Intelligence Expert 6 (1991) 38-43.

[21] M.A. Lee, H. Takagi, Embedding a priori knowledge into
an integrated fuzzy system design method based on genetic
algorithms, Proc. 5th lnternat. Fuzzy Systems Association
World Congress, Seoul, 1993, pp. 1293-1296.

[22] C.-M. Liaw, J.-B. Wang, Design and implementation of a
fuzzy controller for a high performance induction motor drive,
IEEE Trans. Systems Man Cybernet. 21 (1991) 921-929.

[23] Z. Michalewicz, Genetic Algorithms+Data Structures=
Evolution Programs, Springer, Berlin, 1992.

[24] D.T. Pham, D. Karoboga, Optimum design of fuzzy logic
controllers using genetic algorithms, J. Systems Eng. 1 (1991)
114-118.

[25] A. Satyadas, K. Krishanakumar, GA-optimized fuzzy
controller for spacecraft attitude control, Proc. 3rd IEEE
lnternat. Conf. on Fuzzy Systems, Orlando, 1994, pp.
1979 1984.

[26] S.F. Smith, A learning system based on genetic adaptive
algorithms, Ph.D. Thesis, University of Pittsburgh, 1980.

158 E Herrera et al./Fuzzy Sets and Systems 100 (1998) 143-158

[27] H. Surmann, A. Kanstein, K. Goser, Self-organizing and
genetic algorithms for an automatic design of fuzzy control
and decision systems, Proc. 1st European Congress on Fuzzy
and Intelligent Technologies, Aachen, 1993, pp. 1097 1104.

[28] P. Thrift, Fuzzy logic synthesis with genetic algorithms, Proc.
4th Internat. Conf. on Genetic Algorithms, San Diego, 1991,
pp. 509-513.

[29] J.R. Velasco, L. Magdalena, Genetic learning applied to
fuzzy rules and fuzzy knowledge bases, Proc. 6th lnternat.
Fuzzy Systems Association World Congress, Sao Paulo, 1995,
pp. 257-260.

[30] G. Venturini, SIA: A supervised inductive algorithm with
genetic search for learning attribute based concepts, Proc.
European Conf. on Machine Learning, Vienna, 1993,
pp. 280-296.

[31] L.X. Wang, J.M. Mendel, Generating fuzzy rules by learning
from examples~ IEEE Trans. Systems Man Cybemet. 22
(1992) 1414 1427.

[32] T. Yamakawa, Stabilization of an inverted pendulum by a
high-speed fuzzy logic controller hardware system, Fuzzy
Sets and Systems 32 (1991) 161 180.

