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Since the end of seventies, Fuzzy Logic Controll ers (FLCs) have enjoyed a good place in intell igent and automatic control systems,
mainly though their good practical results. In this paper, we describe the basis of fuzzy control and we cautiously study practical
software implementations of FLCs that can be easily incorporated into real systems. We study the implementation of a practice
Mono-operator FLC and compare two methods, the Exact and Approximate ones, for an advanced Multi-operator FLC that allows us
to choose from several fuzzy operators in order to select the one best adapted to a specific application.
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1. Introduction

Fuzzy logic based systems are suitable for engineering
because their inputs and outputs are real-valued
variables, mapped with a non-linear function. Fuzzy
logic based systems, when used in control, receive the
name of Fuzzy Logic Controllers (FLCs).19,20 FLCs
achieve an alternative for those applications where
classical control strategies do not achieve good results.
In many cases these systems have two characteristics:
the need for human operator experience, and a strong
non linearity, where it is not possible to obtain a
mathematical model.

Usually, FLCs are not used in those problems where
another classical control strategy, a direct digital or
computed response are applicable. FLCs are suitable to
use where there is a lot of information that is diff icult
to handle, a low precision environment and vague
information. The summary conclusion about FLC
preferred application areas are:

• non linearity systems,
• systems with no predictable disturbance, or low

accurate sensors, and
• systems where it is necessary to incorporate human

experience.

FLCs had to wait for the low cost of microprocessor
technology and modern software development to give
them promotion in the industrial processes and
consumer products world. At the present time, there are
a lot of real-world applications of FLCs li ke intelligent
suspension systems, mobile robot navigation, wind
energy converter control, air conditioning controllers,
video and photograph camera autofocus and imaging
stabil izer, anti-sway control for cranes, and a lot of
industrial automation applications.14

This paper deals on how to implement FLCs in
practice, covering the zone that exists between the
theoretical studies about different fuzzy operators and
the works that describe the results in particular
applications. Usually, neither of them explain the way
used to implement FLC. We will cover methods for big
computers with high level languages interpreters and
compilers as well as for small microcontrollers
commonly used in  industry, showing the typical
different options employed in practice. This work is
aimed at people who already know some programming
language and want to construct FLCs.

We begin in Section 2 condensing the FLC
principles and making recommendations about its
design. In Section 3, the design questions wil l be
shown, presenting several selected characteristic fuzzy
operators and some criteria for choosing them. Section
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4 presents the framework for implementing FLCs.
Then, in Section 5 and 6 we will discuss software
implementations, data structures, algorithms and so on,
for a specific practical FLC and two software
implementations of controllers with a large number of
fuzzy operators available. The comparative study of
these two methods will be performed in Section 7.
Finally, Section 8 presents the concluding remarks.
Besides, we add three Appendixes, the first one
dedicated to the graphical representation of the selected
fuzzy implication operators, and the other describing
the applications used for the comparative study and
results.

2. Fuzzy Logic Controllers

The world of automatic control has taken advantage of
the flow in digital and computer technology in two
main ways: sequence controllers and analog device
controllers. Sequence controllers are implemented with
a li ttle theory, initiall y based on relays and pneumatic
logic. Customarily, analog devices were controlled by
analog controllers produced using mathematics as the
main tool.

Expert Control is a field of Artificial Intelligence
that has become a research topic in the domain of
process control, with its purpose being to avoid the
drawbacks mentioned in the introduction with respect
to classical control strategies. Fuzzy Logic Control is
one of the topics within Expert Control.

FLCs, as initiated by Mamdani and Assilian19,20, are
now considered as one of the most important
applications of Fuzzy Set Theory proposed by Zadeh32

in 1965. This theory is based on the notion of fuzzy sets
as a generalization of the ordinary set characterized by
a membership function µ that takes values in the
interval [0,1] representing degrees of membership to
the set. FLCs typicall y define a non-linear mapping
from the system's state space to the control space. Thus,
it is possible to consider the results of an FLC as a non-
linear control surface reflecting the process of the
operator’s prior knowledge.

Figure 1 shows the generic structure of an FLC. An
FLC is a kind of Fuzzy Rule Based System which is
composed of a Knowledge Base that comprises the
information used by the expert operator in the form of
linguistic control rules, a Fuzzification Interface, that
transforms the crisp values of the input variables into
fuzzy sets that wil l be used in the fuzzy inference
process, an Inference System that uses the fuzzy values
from the Fuzzification Interface and the information
from the Knowledge Base and performs the reasoning
process, and the Defuzzification Interface, which takes
the fuzzy action from the inference process and
translates it into crisp values for the control variables.

The Knowledge Base is comprised by two
components: the Data Base and the Rule Base. The
Data Base contains the definitions of the linguistic
labels, that is, the membership functions for the fuzzy
sets. The Rule Base is a collection of fuzzy control
rules representing the expert knowledge from the
controlled system.

The rules of the Knowledge Base are conditional
statements of  the type

IF  antecedent  THEN  consequent

connected by the also connective that it is modeled by
an operator G.

There are different types of rules regarding the
expression of the consequent:

• Mamdani rules19,20, where the consequent is a
linguistic variable as the ones in the antecedent:

IF  x1  is  A1  and ... and  xn  is  An  THEN   y  is  B

where the xi are the input or state variables and yi is
the output or control variable. Ai and B are linguistic
labels associated with fuzzy concepts, that is,
linguistic terms related to the input and output
variables respectively. In this paper, we will
consider a Rule Base constituted by Mamdani type
fuzzy control rules.

Fig. 1. Generic structure of an FLC.
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• TSK rules25, where the consequent of the rule is a
linear function of the inputs:

IF  x1  is  A1  and ... and  xn  is  An  THEN
y =  p0 + p1X1 +...+ pnXn

   or, more generall y, any function of the input
parameters:

IF  x1  is  A1  and ... and  xn  is  An  THEN
 y  =  f (X1,...,Xn)

The Fuzzification Interface establi shes an application
between each precise value of the input variable and a
fuzzy set defined in the universe of the corresponding
variable. Then, the Fuzzification Interface works as
follows:

A' = F ( x0 ) (2.1)

where x0  is a precise value defined in U, A' is a fuzzy set
defined on the same universe U and F is a fuzzifier
operator.

There are two possibiliti es for selecting F:

1. Singleton Fuzzification: A' is built like a singleton
fuzzy set with support x0, that is, with the following
membership function:

A’ (x) = 


 =

otherwise0,

xxif1, 0

(2.2)

2. Non-Singleton Fuzzification or Approximate
Fuzzifi cation. In this case, when x = x0, F ( x0 ) = 1,
and the membership of the rest of the values for U
decrease while moving away from x0.

The first way is the one most used and we will use it
always in this paper.

The Inference System or Fuzzy Inference Engine is
based on the application of the Generalized Modus
Ponens (GMP), an extension of the classical Modus
Ponens, proposed by Zadeh33 as follows:

If X is A then Y is B

X is A’

Y is B’

The fuzzy conditional statement If X is A then Y is B (X
and Y being linguistic variables, and A and B being fuzzy
sets) represents a fuzzy relation between A and B,
defined in U × V, (U = U1 × U2 × ... × Un and V being the
universes of the input variables X1,...,Xn and the output Y,
respectively). The fuzzy relation is expressed by a fuzzy
set R whose membership function µR (x ,y) is given by:

∀x ∈ U, y ∈ V: µR (x,y) = I ( µA (x) , µB (y)), (2.3)

with µA (x) and µB (y) being the membership functions of
the fuzzy sets A and B, respectively, and I a fuzzy
operator modeling the fuzzy relation.

The membership function of the fuzzy set B’  in the
consequent, obtained from the GMP, is deduced by
projection on V by means of the Compositional Rule of
Inference (CRI) (introduced by Zadeh33) given by the
following expression:

µB’ (y) = Supx∈U { T’ (µA’ (x), I(µA (x), µB (y))) }     (2.4)

where µA’(x) = T(µA’1 (x),..., µA’n (x)), µA (x) = T(µA1 (x),...,
µAn (x)), with T and T’  being t-norms and I an implication
operator.

When Singleton Fuzzification is considered, the
fuzzy set A’ is a singleton, that is,  µA’ (x) = 1 if x = xo,
and µA’ (x) = 0 if x ≠ xo.  Thus, the CRI is reduced to the
following expression:

µB’ (y) = I (µA (x0), µB (y)) (2.5)

Hence, it is found that it directly depends on the fuzzy
implication operator selected. In the specific literature, it
is proposed a huge amount of operators that can be used
as implication operators in the fuzzy control inference
process. Many studies that add information in order to
select this operator have been
published.3,4,6,7,8,,9,12,15,17,21,23,27

As has been commented, the calculation of µA (x0)
consists of the application of a conjunctive operator on
µAi (xi):

µA (x0) = T (µA1 (x1) , ... , µAn (xn)) (2.6)

The result of the application of the T connective operator
is commonly called matching, and represents the
matches between the values presented in the inputs and
the fuzzy sets of the rule antecedent. We wil l note it by
h.

The Inference System produces the same amount of
output fuzzy sets as the number of rules collected in the
Knowledge Base. These groups of fuzzy sets must be
transformed into crisp values for the control variables.
This is the goal of the Defuzzification Interface. We
denote by Bi’  the fuzzy set obtained as output when
performing inference on rule Ri , and by y0 the global
output of the FLC for an input x0.

There are two types of defuzzification methods1,7,31

according to  the way in which the individual fuzzy sets
Bi ’ are aggregated in order to put into effect the function
of the connective also, G:

• Mode A : Aggregation First, Defuzzification  After:
The Defuzzification Interface performs the
aggregation of the individual fuzzy sets inferred, Bi',
to obtain the final output fuzzy set B'.

µB’ (y) = G { µB’1 (y) , µB’2 (y) , ... , µB’n (y) }  (2.7)
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Usually, the aggregation operator modeling the
connective also (G) is the minimum or the
maximum. After that, the fuzzy set B’ is defuzzified
using any strategy D, like Middle of Maxima, or the
Center of Gravity mostly.

µ0 = D (µB’ (y)) (2.8)

• Mode B : Defuzzification First, Aggregation After: It
avoids the computation of the final fuzzy set B’  by
considering the contribution of each rule output
individually, obtaining the final control action by
taking a calculation (an average, a weighted sum or
a selection of one of them) of a concrete crisp
characteristic value associated to each of them.

Historicall y, mode A was firstly proposed and used in
the initial approximations to fuzzy control.19,20 On the
other hand, mode B is the one most used today on top in
real-time systems which need the quickest response and
in many other kinds of systems due to its simplicity.

3. Design of Fuzzy Logic Controllers

In this section, we are going to discuss the two FLC
design tasks, the derivation of the Knowledge Base and
the selection of the operators and methods that the
controller will use to perform the fuzzy inference
process.

3.1. Obtaining the Knowledge Base

The Knowledge Base is the only component of the FLC
that directly depends on the specific application. The
accuracy of the controller is very related to it. There are
four modes of derivation for the fuzzy control rules that
are not mutually exclusive2,16:

1. Expert Experience and Control Engineering
Knowledge. It is the most widely used and it is
effective when the human operator is able to
linguisticall y express the control rules he uses to
control the system. These rules are normally of
Mamdani type.

2. Modeling of the Operator´s Control Actions. The
control action is formed making a model of the
operator actions without interviewing him.

3. One based on the Fuzzy Model of a Process. It is
based on developing a fuzzy model of the system
and constructing the fuzzy rules of the Knowledge
Base from it. This approach is similar to that
traditionally used in Control Theory. Hence,
structure and parameter identification are needed.24

4. One based on Learning and Self-Organization. This
method is based on the ability for creating and
modifying the fuzzy control rules in order to
improve the controller performance by means of
automatic methods.

3.2. Selecting the Fuzzy Operators

The engineer must consider some factors that have a
significant influence on the FLC:

• The choice of the connective operator for the
antecedents (T).

• The choice of the fuzzy implication operator (I).
• The choice of the mathematical definition of the

composition of fuzzy relations existing in the CRI.
• The choice of the connective also that connects the

rules in the Knowledge Base (G).
• The choice of the defuzzification operator mode and

the defuzzification method (D).

The connective operator for the antecedents has a low
influence7 in the FLC accuracy. It is a t-norm when the
antecedents are connected with the connective and, and a
t-conorm when the connective or is used.

As regards, the fuzzy implication and defuzzification
operators, different decisions strongly influence the
accuracy of the FLC. In the specific literature, there are a
lot of possible choices for the implication operator as
well as for the defuzzification method. We are going to
show a classification of them into families with
representative examples, and we will shed some light on
how to choose the implication operators and
defuzzification methods to obtain good controllers in the
sense of the best behaviour.

3.2.1. Fuzzy Implication Operators

A classification of the fuzzy implication operators is
proposed by Dujet and Vincent11 considering the
extension that they perform with respect to boolean
logic:

• Those extending the boolean implication. Within this
group, fuzzy implication functions are found.26 They
satisfy the following truth table:

a \ b 0 1
0 1 1
1 0 1

• Those extending the boolean conjunction. Force
Implications11 and T-norms when used as implication
operators12 are included in this group satisfying the
truth table:

a \ b 0 1
0 0 0
1 0 1

There are many implication operators that do not belong
to any of these two families. In the following, we are
going  to show some examples of implication
operators7,8,12,22 belonging to these three groups.
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Appendix A shows the graphical representation of the
membership functions of the inferred fuzzy sets for the
implication operators presented.

3.2.1.1. Boolean Implication Extension Operators

Fuzzy implication functions26 are the most well known
implication operators that extend the boolean
implication.

A continuous function I: [ 0,1] ×[ 0,1] → [ 0,1]  is a
fuzzy implication function iff ∀ x, x', y, y', z ∈ [ 0,1]
verifies the following properties:26

1.- If x ≤ x' then I (x,y) ≥ I (x',y)
2.- If y ≤ y' then I (x,y) ≤ I (x,y')
3.- Falsehood Principle: I (0,x) = 1
4.- Neutralit y Principle: I (1,x) = x
5.- Interchange Principle: I (x,I(y,z))=I (y,I(x,z))

They are classified into different famili es:26,27

• Strong Implications (S-implications):
Corresponding to the definition of implication in
classical Boolean Logic : A → B = ¬A ∨ B. They
present the form: I (x,y) = S (N(a),b), with S being a
t-conorm and N a negation function.

• Residual Implications  (R-implications): Obtained
by residuation  of a t-norm T, as follows I (x,y) = Sup
{ c : c ∈ [0,1] / T (c,x) ≤ y }.

The implication functions selected for use in this paper
are the ones which showed the best behaviour from the
preceding families in our previous contributions:6,7

S-Implications :
Dubois-Prade :







otherwise      1,

1=x if      y,

0=y if  x,-1

 = y)(x, I 1 (3.1)

R-Implications :
Goguen :



 ≤

otherwise   y,

xy if      1,
 = y)(x, I 2 (3.2)

S and R-Implications :
Lukasiewicz :

I3 (x,y) = Min (1, 1-x+y) (3.3)

Other Extensions of the boolean implication:
There are some implication operators that extend the
boolean implication but do not verify the properties of
the implication functions. We have selected the
following one according to its good behaviour in our
previous studies:7,8





otherwise   y,

y=x if      1,
 = y)(x, I 4 (3.4)

3.2.1.2. Boolean Conjunction Extension Operators

(a) T-norms:
A function T: [0,1] ×[ 0,1] → [ 0,1]  is a t-norm ∀ x, y, z ∈
[ 0,1]  if it verifies the following properties:12,22

1.- Existence of unit element 1: T (1,x) = x
2.- Monotonicity: If x ≤ y then T (x,z) ≤ T (y,z)
3.- Commutativity : T (x,y) = T (y,x)
4.- Associativity: T (x,T(y,z)) = T(T (x,y),z)
5.- T (0,x) = 0

The most typical t-norms used in FLCs are:

Logical Product (Minimum) :

I5 (x,y) = Min (x, y) (3.5)

Algebraic Product :

I6 (x,y) = x·y (3.6)

(b) Force-Implication Operators:
Force implication operators were introduced for
“combining the aim to model human reasoning in a more
natural way with the need to achieve an implication” .11

There are two different groups of force implications
depending on the way in which they are built:

(b.1) Force implications based on indistinguishability
operators:
They are formed with this expression:

I (x,y) = T (x , E (x,y)) (3.7)

where T is a t-norm, and E is an indistinguishabilit y
operator,

E = T’ (I’ (x ,y), I’ (y,x)) (3.8)

with T’ being a t-norm, and I’ an implication function.
There are three different kinds of indistinguishability

operators depending on the t-norm used to define them:26

• Similarity Relations: T’ (x,y) = Min (x,y).
• Probabili stic Relations: T’ (x,y) = x·y.
• Likeness Relations: T’ (x,y) = Max (0, x+y-1).

We are going to show the three implication operators that
presented the best behaviour of the force implication
based on the indistinguishabilit y family in a previous
work.8 They have been obtained by means of the EGödel

indistinguishability operator26 and three t-norms:  logical,
algebraic and bounded products. Their expressions are:

I7 (x,y) = Min (x,EGödel (x,y)) (3.9)
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where


 =

otherwise yxMin

yif x 
 (x,y) = EGödel

),,(

,1

I8 (x,y) = x ⋅ EGödel (x,y) (3.10)

I9 (x,y) = Max (x + EGödel (x,y) - 1, 0) (3.11)

(b.2) Force implications based on distances:
This second group follows the expression:

I (x,y) = T (x , 1 - d (x ,y)) (3.12)

where T is a t-norm, and d is a distance.
We will consider a force implication operator, which

showed good behaviour in previous work8, based on the
t-norm bounded product, for which the expression is:

I10 (x,y) = Max (x - |x-y|, 0) (3.13)

3.2.2. Defuzzification Methods

In the following, we introduce the Importance Degrees
and Characteristic Values, used for defining
defuzzification methods.
 Importance Degrees of a rule Ri  :

7

• Area of a fuzzy set B’ :

∫=
V

B duus )('µ (3.14)

• Matching of a rule Ri,:

hi = T(µA1(x1), ... µAn(xn)) (3.15)

with A1,...An being fuzzy sets in the antecedent of
the rule, and x1,...xn  the values of the input
variables.

• Height of a fuzzy set B’ :

(x) ¬Supy= B'

Vx∈
(3.16)

Characteristic Values:7

• Maximum Value of  a fuzzy set B’ :

G =  x ∈ V  µB’
 (x) = y (3.17)

Sometimes, if there is more than one value that
verifies the condition, the maximum value can
be selected as the first one, the last one, or the
middle of them, with the latter usually being
chosen.10

• Center of Gravity of  a fuzzy set B’ :

∫
∫

V
B'

V
B'

i

(y) dy¬
(y) dyy•¬

 = W
i

i

(3.18)

As we mentioned in Section 2, the Defuzzification
Interface may operate in two ways1,7,31:

(a) Mode A: Aggregation first, and defuzzification after.
First, the Defuzzification Interface performs the
aggregation to accomplish the also operator, of the
individual fuzzy sets inferred, Bi ', to obtain the final
output fuzzy set B'. The aggregation operator modeling
that connective also ordinaril y is the minimum or the
maximum. To perform the defuzzification of the fuzzy
final set B’ , any of the following  strategies may be used:
• Middle of Maxima (usually called MOM):

2

yy
 = y

21
0

+
(3.19)

when y1 = Min {z/ µB’ (z) = Max  µB’ (y)} and y2 =
Max {z/ µB’ (z) = Max µB’ (y)}

• Center of Gravity, for which the expression was
shown before.

Combining the two possibili ties expressed for the also
connective and these two defuzzifiers we obtain four
methods:

• D1 : Middle of Maxima of the fuzzy set B’ , result of
the aggregation of the individual fuzzy sets B’ i with
also connective Minimum.

• D2 : Center of Gravity of the fuzzy set B’ , result of
the aggregation of the individual fuzzy sets B’ i with
also connective Minimum.

• D3 : Middle of Maxima of the fuzzy set B’ , result of
the aggregation of the individual fuzzy sets B’ i with
also connective Maximum.

• D4 : Center of Gravity of the fuzzy set B’ , result of
the aggregation of the individual fuzzy sets B’ i with
also connective Maximum.

(b) Mode B: Defuzzification first, and aggregation after:
This mode avoids the sometimes complex computation
of the final fuzzy set B’  by considering the contribution
of each rule output individually, obtaining the final
control action by taking a calculation (an average, a
weighted sum or a selection of one of them) of a concrete
crisp characteristic value associated to each of them.

There is a large group of defuzzification methods in
Mode B in the specific literature. We have selected four
of them which showed the best behaviour in previous
works. They can be classified in different famili es
depending on the kind of calculation performed:

• Sums weighted by importance degrees.7,13,28 For
example:

• D5:  Maximum Value weighted by the matching:

∑
∑ ⋅

i

i

i

ii

0
h 

Gh 

=y (3.20)
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• Based on the fuzzy set with the greatest importance
value.

• D6:  Maximum Value of the fuzzy set with the
greatest matching:7

B’
k
 = { B’

i
  h

i
 = Max (h

t
), ∀ t ∈ {1,...,m} }

y
0
 = G

k (3.21)
• Others:

• D7 : Middle of the Maximum Values:

m

G 

=y i

i

0

∑
(3.22)

where m represents the non empty fuzzy sets
obtained from the inference process.

• D8 : Center of Sums:10,13

∑ ∫

∑ ⋅∫

i V
B'i

i
B'i

V

(y) dy¬
(y) dy¬y

 = y0 (3.23)

3.2.3. Fuzzy Operators: Robust Implication Operators

As we said, the connective operator for the antecedents
has a low influence,7 in the behaviour of the resulting
FLC. The most important choice corresponds to the
operators in the Inference System and the
Defuzzification Interface. Particular combinations of
implication operators and defuzzification methods may
offer excellent as well as bad results.

We found three basic properties for a robust
implication operator.8 We used the word robust in the
sense of good average behaviour with different
applications and different defuzzification methods. These
three basic properties are:

(a) I(h,0)=0, ∀ h∈[ 0,1]
(b) I(h,1)>0, ∀ h∈(0,1) and I(1,1)=1
(c) I(0,y)=0,∀ y∈[ 0,1]   (3.24)

If we use a fuzzy implication operator that verifies these
three properties, we can select any defuzzification
method with warranted good behaviour. The implication
operators selected in this paper that verify the three
properties are I5, I6, I7, I8, I9 and I10.

4. Framework for Implementing Fuzzy Logic
 Controllers

In this section, we are going to show some FLC
classifications based on the host hardware used, software
implementation method and number of fuzzy operators
implemented for the same task.

4.1. Design Methods

There are two main ways to design an FLC for a specific
application according to the host hardware:

(a) Using concrete electronic devices for fuzzy control
applications of one of these two types:

• Fuzzy coprocessors. They are specific electronics
devices to perform fuzzy inference operations being
subordinated to generic purpose microprocessors or
microcontrollers, e.g., VY86C570 from Togai
InfraLogic, Inc.

• Microcontrollers that have special instructions and
registers to carry out fuzzy inference, e.g., Motorola
68HC12 device.

(b) Using generic purpose microprocessors or
microcontrollers that implement the FLC via
software. We find the following options:

• On the market there are programs called fuzzy shells
which take the information about the Knowledge
Base and the fuzzy operators selected by the user
from the overall data used, and automatically
generate code for several microprocessors or
microcontrollers.

• Taking improvement from libraries speciall y
designed for programming applications with FLCs.

• FLC Based on a Table, where the fuzzy inference is
not performed in real-time. A table with the pairs of
input and output variables presented by an FLC is
built . Then, the hardware generic controller only
performs an interpolation between the values of the
table. This solution is  carried out when the fuzzy
inference process is too slow in the control computer
and the application needs the quickest response. The
scheme of the FLC that fill s the table may be
accomplished with any of the two previous methods
mentioned.

• Making all the code of user’s own. In this paper, we
are going to help the software implementation of the
FLCs for use with generic devices. This option will
mainly produce FLCs with lower speed response
than the ones based on a specific hardware. Despite
that, this way is more flexible from the FLC
designer point of view, obtaining better adapted
controllers in a general scientific point of view, and
to study the behaviour of the different design options
of the controller. This way is the preferable one,
because it lets you test many options by changing
only code instead of any kind of electronic devices.

4.2. Software Implementation Methods

• Exact Method: It works by first calculating the
parametrical representation of the fuzzy sets inferred
for every implication operator that we want to use.
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The result of this study must be archived on a data
structure. The main drawback of this method is that
it needs the prior calculation of the  parametric
expressions of the fuzzy sets before implementing
the FLC.

• Approximate Method: Due to the cited
disadvantages, people use to avoid performing these
previous calculations discretizing the universe of the
consequent in a predefined number of points. This
method will be slower than the exact one from a
computational point of view, and it wil l use more
memory. The precision wil l be in line with the
granularity in the discretization and the lower the
efficiency and speed response is, the higher this
discretization level is. On a other hand, its
advantages are that there is no need to calculate the
parametrical representation of the output and his
abilit y to deal with implication operators that
describe fuzzy sets with curved zones. These ones
could be directly incorporated into this approximate
method while the exact method needs additional
complexities because it has no way of knowing
whether the line that connects two points is a curve
or not.

4.3 Types of Fuzzy Logic Controllers

We may distinguish two kinds of FLCs according to the
number of fuzzy operators implemented for the same
task:

• Mono-operator FLCs: Controllers with a fuzzy
operator per task. This is the conventional FLC used
for specific applications (e.g., embedded
controllers). Their data structures are exclusively
adapted for the fuzzy operators used. The algorithms
are the simplest and sometimes different
components of the FLC are condensed in the same
code.

• Multi-operator FLCs: Controllers that have some
available user selectable fuzzy operators for the
same task in the implementation. Data structures
must be generic. Different component codes are
clearly distinguished. These FLCs let us compare the
behaviour of different FLCs built with different
fuzzy operators. A flexible Multi-operator FLC
could be used to generate several tables of input /
output pairs to implement embedded FLCs based on
a table.

At this point, it is important to mention that Mono-
operator and Multi-operator FLCs could be implemented
using Exact or Approximate Methods. But normally,
during the design, if we are using a single operator for
the Inference System and a single operator  for the
Defuzzification Interface (Mono-operator FLC), we will
study the resulting expressions in order to condense and

simplify the data structures and algorithms.
Simplifications must be wired in the program code. This
is coherent with the philosophy of practical and
embedded FLCs in which the control computer is a small
system where resources must be cautiously optimised.
By other hand, Multi-operators need well separate data
structures and algorithms in other to assemble different
inference operators and defuzzification methods.

5. Software Implementation of Fuzzy Logic
 Controllers: Data Structures

The choice of the data structures is not a unique solution
and sometimes depends on the compiler or interpreter
used. In this paper, we are going to describe the more
usual data structures to implement generic FLCs. In the
following, we shall discuss the Knowledge Base and
Inference System data structures.

5.1. Knowledge Base Data Structures

As said in previous sections, the Knowledge Base data
structure must involve the conceptual information
classified into Data Base and Rule Base. Generally,
except for specific applications (adaptive FLCs that
modify their behaviour norms depending on the results
obtained by the control action previously administered),
the Knowledge Base is a static data structure with a
predefined size and fixed contents. The Knowledge Base
data structure and its corresponding information must be
specified before the FLC begins to work. The
information about the fuzzy sets associated to the
linguistic terms employed in the fuzzy rules compounds
the Data Base. In order to simpli fy the calculations,
linear piecewise membership functions are considered
and every fuzzy set is usually described by three or four
points x0,x1,x2,x3 (Figure 2), that is, depending on the
membership function shape: triangular or trapezoidal
fuzzy sets.

Fig. 2. Trapezoidal Fuzzy Set.

The values of these three or four definition points in the
fuzzy set correspond to the place that it has in the
universe of the corresponding variable. Figure 3 shows
an example of a variable universe split into five
trapezoidal fuzzy sets.
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Fig. 3. Fuzzy partition with fuzzy sets VS (very small),
S (small ), M (medium), L (large) and VL (very large).

Therefore, each fuzzy set from each one in the variable
fuzzy partitions must be described and stored in this way,
so forming the Data Base. The Rule Base information
stored is a set of rules where each one refers to the
corresponding fuzzy sets in the Data Base.

We are going to propose two possible data structures
to store the Knowledge Base that wil l be used depending
on the capabilities of the coding language used:

(a) For an advanced compiler, an optimal data structure
may consist of an array of records, where each
record could be a rule in the Rule Base having some
fields, the variables of the rule (antecedents and
consequents), which would be of numeric or pointer
type. These numbers or pointers wil l be the
reference to another array of fuzzy sets, i.e., an
array of records which again has three or four fields
associated depending on the form of the fuzzy sets,
whether triangular or trapezoidal as mentioned.
This second group of fields would be of a real or a
floating numerical type. Figure 4 shows this data
structure in the case of rules with two antecedents,
a1 and a2 , and a single consequent c.

Sometimes it may be useful to consider a variable
number of rules or fuzzy sets for several
Knowledge Bases. In those cases, static arrays can
be replaced by li sts on dynamic memory.

(b) When we use microcontrollers, it is usual to have a
simple language compiler (e.g., any ANSI C subset)
or a language interpreter (e.g., Intel MCS BASIC-
52) that only allows us to use plain data structures
and not to manage records. Thus, it is not possible
to use the previously introduced data structure. In
these cases, the data structure shown in Figure 5
may be considered. It only uses arrays of real or
integer numbers.
The structure is based on considering as many
arrays as antecedents, consequents, and definitions
points used in the fuzzy sets. Figure 5 shows an
example for trapezoidal fuzzy sets.

The Data Base is stored on the arrays of real
numbers X0, X1, X2 and X3. Each cell in these
arrays has the information related to a
corresponding definition point. In Figure 5, they are
marked with the legend ai, fsj, xk standing for the
information of the antecedent i (i takes values from
1 to 2 if we have rules with two antecedents), fuzzy
set j (j takes values from 1 to the total number of
different fuzzy sets defined for the antecedents and
consequents), and obviously to the definition point
k of the fuzzy set. The dimension of these arrays is
the total number of definition points which is easy
to compute as the product between the number or
rules and the sum of antecedents and consequents.

Fig. 4. A possible data structure for the Knowledge Base.
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The Rule Base is stored on the three arrays A1,
A2 and C. The dimension of these arrays is the
number of rules in the Rule Base. The rules allude
to fuzzy sets that are stored on the Data Base
(represented by means of arrows in Figure 5).
Thus, the integer number stored on each cell of
these arrays points to a fuzzy set on the arrays
used to store the Data Base, X0, X1, X2 and X3.

For example: We have a Rule Base with seven
rules with two antecedents and a single
consequent. The antecedent fuzzy partition has 10
and 3 fuzzy sets, respectively, whilst the
consequent fuzzy partition has 5 fuzzy sets. The
Data Base presents trapezoidal fuzzy sets (four
definition points). Then, the array declaration for
the Intel  MCS BASIC-52 code will be:

100  REM Rule Base with 7 rules.
110  DIM A1(7)120  DIM A2(7)130  DIM C(7)
140  REM Data Base with 10+3+5=18 fuzzy sets.130
DIM X0(18)140  DIM X1(18)150  DIM X2(18)
160  DIM X3(18)

The result is a very easy to use structure, e.g., if
we need the second definition point of the
consequent on rule i, we will use X1(C(i))

This data structure can also be easil y mapped
for assembler coding in the amount of addressed
memory on the microcontroller based system.

5.2. Inference Process Data Structures

The inference process needs two data structures:

(a) A Matching Vector: It is a li st of real numbers that
will t emporaril y store the matching for each rule of
the Knowledge Base. Usually, it is implemented as a
static array because the number of cell s is usually
small and previously known. For example, the array
declaration for the Intel  MCS BASIC-52 code will
be:

170  DIM H(7)

when we are using seven rules in the Knowledge
Base.

Fig. 5. Another data structure for a Knowledge Base.
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(b) Consequent Vectors : They store the final result of
the inference process. These vectors are taken as
input by the Defuzzification Interface. The data
structure depends on the kind of software
implementation of FLC:

• When they are implemented with the Exact
Method: Some li sts of description points will be
used. Each li st wil l contain the inferred fuzzy
set proceeding from a rule. The points has two
coordinates, that is, two real numbers. The
length of the lists is variable. They must be
allocated on dynamical memory.

• When they are implemented with the
Approximate Method: N lists or arrays of points
will be used (being N the number of rules in the
Knowledge Base). The length is fixed and equal
to the number of points of the discretization.

In Mono-operator FLCs, when a Mode B
defuzzification method is employed, Inference
System and  defuzzification method may be
condensed in a single algorithm, then Consequent
Vectors are not needed. We shall deal with this in
following sections.

6. Software Implementation of Fuzzy Logic
Controllers: Algor ithms

This subsection shows the algorithms for performing the
different components of an FLC: Fuzzification Interface,
Inference System and Defuzzification Interface, pointing
out the Mono-operator and Multi-operator FLCs
differences when they are  required.

6.1. Fuzzification Interface

The most widely used and simplest way to perform the
Fuzzification Interface in fuzzy control is by applying
the singleton fuzzifier, as we said in the preceding
section. The singleton fuzzification does not need any
operation because the crisp values of the input variables
are the only ones in which the fuzzy sets take value 1,
with it being 0 otherwise. That is, the values of the input
variables directly represent the singleton fuzzy sets
centered on them in the implementation.

A’ (x) = 


 =

otherwise0,

xxif1, 0

(6.1)

6.2. Inference System

The matching calculation is carried out by going through
each rule in the Knowledge Base and calculating the
intersection point hi between the singleton fuzzy set A’
(obtained from the input xj) and the fuzzy set of the rule.
If the rules have more than one antecedent, the

corresponding intersections of the other fuzzy sets must
be computed with their respective singleton fuzzy sets,
also obtaining as many hi j values as antecedents.

Fig. 6. Computing the matching, hi.

The different zones existing in the fuzzy set should be
observed in order to compute the matching values. For
example, in Figure 6, five possible zones must be
considered. Here are these zones and the expressions of
the height of the corresponding input value:

(i) ej’ < x0  : hi j =0

(ii ) x0 < ej < x1 : hi j = 
01

0j

xx

xe

−
−

(ii i) x1 < ej < x2 : hi j =1

(iv) x2 < ej < x3 : hi j = 
32

3j

xx

xe

−
−

(v) x3 < ej’ :  hi j = 0     (6.2)

where ej is the current value for the input variable xj.
After that, the connective operator must be applied in

order to obtain the ith matching value hi, with i=1 to N,
with N being the number of rules in the Knowledge Base.
If the connective operator of the rules is a conjunction
AND, then the function applied wil l be a t-norm (e.g., the
minimum). But, if the connective operator is a
disjunction OR, then the function applied will be a t-
conorm (e.g., the maximum).  Figure 7 graphicall y
shows the application of the minimum t-norm resulting hi

= Min (hi1,hi2).

Fig. 7. The minimum as conjunction connective AND.

We showed7 that the choice of the t-norm that implement
the connective operator conjunction does not
significantly affect the accuracy for the response of the
FLC. The hi values must be stored in an array or list of
real numbers with size N (the Matching Vector).

For example, here is the Intel MCS BASIC-52 code
to compute the Matching Vector H. We use the Data
Base and Inference System Structure shown in the
preceding subsections, seven rules, two antecedents and
trapezoidal fuzzy sets. The connective operator AND is
applied with the minimum t-norm:
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260  FOR i=1 TO 7
270    REM Antecedent 1
280    IF e1<X0(A1(i)) THEN 290 ELSE 300
290      min=0
300    IF e1>X0(A1(i)) AND e1<X1(A1(i)) THEN 310 ELSE 320
310      min=(e1-X0(A1(i)))/(X1(A1(i))-X0(A1(i)))
320    IF e1>X1(A1(i)) AND e1<X2(A1(i)) THEN 330 ELSE 340
330      min=1
340    IF e1>X2(A1(i)) AND e1<X3(A1(i)) THEN 350 ELSE 360
350      min=(e1-X3(A1(i)))/(X2(A1(i))-X3(A1(i)))
360    IF e1<X3(A1(i)) THEN 370 ELSE 380
370      min=0
380    H(i)=min
390    REM Antecedent 2
400    IF e2<X0(A2(i)) THEN 410 ELSE 420
410      min=0
420    IF e2>X0(A2(i)) AND e2<X1(A2(i)) THEN 430 ELSE 440
430      min=(e2-X0(A2(i)))/(X1(A2(i))-X0(A2(i)))
440    IF e2>X1(A2(i)) AND e2<X2(A2(i)) THEN 450 ELSE 460
450      min=1
460    IF e2>X2(A2(i)) AND e2<X3(A2(i)) THEN 470 ELSE 480
470      min=(e2-X3(A2(i)))/(X2(A2(i))-X3(A2(i)))
480    IF e2<X3(A2(i)) THEN 490 ELSE 500
490      min=0
500    IF min<H(i) THEN H(i)=min
510  NEXT i

Now, we obtain the inferred fuzzy set from each rule
using the consequent and the matching of each rule. The
selected fuzzy implication operator produces an output
fuzzy set with a specific shape that is defined by a
parametrical expression. This expression is graphically
represented in Appendix A for the implication operators
presented in the preceding section. Usually, the new
fuzzy sets obtained from each rule must be stored to
perform the defuzzification. In singular situations, it is
not necessary to store them because the Defuzzification
Interface can act at the same time, as we shall see later.

The inferred fuzzy sets could be described with a
variable number of six or eight points in the same way as
the fuzzy sets for the antecedents and consequents are
described in the Knowledge Base, adding an additional
value to each one of them for the height in this case.
Thus, the data structure for these fuzzy sets will be an
array or list of points (the Consequent Vector). For
example, if we use the minimum t-norm as an
implication operator, the inferred fuzzy sets will be li ke
the one presented in Figure 8. This graph is the result of
applying the minimum implication operator expression
(I(x,y)=Min(x,y)) over the matching h and the consequent
fuzzy set of the rule.

Fig. 8. Minimum implication operator.

In the case of the minimum implication operator and
many other ones, the height information agrees with the
matching one. The points x0 and x3 are the same as in the
consequent. The other two, x4 and x5, can be calculated
as the intersection of the line that passes through x0 and
x1 and the line that passes through x2 and x3 with the
horizontal one at height h, respectively. Then, the
expressions are:

x4 = x0 + ( x1 – x0 ) ⋅ hi

x5 = x3 – ( x3 – x2 ) ⋅ hi (6.3)

These expressions could be directly incorporated to the
source code for the FLC with their corresponding height,
h. In the same way, any other implication operator could
be used by obtaining the definition points and
implementing the expressions describing its
computation.

In those cases that rules have more than one
consequent variable, as many different problems as
existing consequents will be considered.

Now, we are going to make some comments as
regards the kind of software implementation of the FLC:

• Exact Method: The graphical representation of the
inferred fuzzy sets is required. Then, we obtain the
definition points of the inferred fuzzy set. These
points wil l be stored in the data structure for the
Inference System mentioned in the previous
subsections, that is, a list of points for each inferred
fuzzy set proceeding from the rules. For example, if
we look at Figure 8, the definition points that will be
stored are:

( x0’ = x0 , 0 )
( x1’ = x4 , h )
( x2’ = x5 , h )
( x3’ = x3 , 0 ) (6.4)

where x4 and x5 have to be computed with the
expression previously shown, and x0 and x3 are the
definition points for the consequent of the rule.
Thus, the advantage of this method from the point
of view of the Inference System is the minimum
wasting of memory, and the inference process
efficiency. The disadvantage is the requirement of a
previous study of the inference operator to
determine the graphical representation and point
expressions. If we want to add a lot of implication
operators, the design process will be very hard and
error sensitive.

• Approximate Method: The universe of the
consequent is divided into a fixed number of points,
establi shing a discretization4,5. The mathematical
expression of the implication operator will be
directly incorporated into the code. Thus, the
inferred fuzzy set will be the result computed with
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the implication operator expression using the
discretization points and the matching as inputs. A
potential discretization for the Goguen implication
operator is shown in Figure 9. The expression of the
Goguen implication operator, as shown in previous
sections, is:



 ≤

otherwise   y,

xy if      1,
 = y)(x, IGoguen (6.5)

then, the discrete function f that approximates it is:

fi  = IGoguen (h , i) (6.6)

with i taking a finite number of equidistant values
between 0 and the high extent of the variable
dominion.

Fig. 9. An approximation to the
Goguen implication operator.

The advantage of this method from the point of
view of the Inference System is that it does not
need a huge prior study of the implication
operators. But the disadvantages are the low
efficiency, the fact that the accuracy depends on the
granularity of the discretization that is inversely
proportional to the speed, and the large amount of
wasted memory, as we mentioned in the data
structure description.

6.3. Defuzzificación Interface

The implementation of the Defuzzification Interface
strongly depends on the Defuzzification Mode selected.

Mode A:

As we mentioned, firstly, the Defuzzification Interface
performs the aggregation of the individual fuzzy sets
inferred, Bi ', to accomplish the also operator, with the
aim of obtaining the final output fuzzy set B'. The
aggregation operators modeling the connective also are
usually the minimum or the maximum.

Figures 10 and 11 graphicall y show the behaviour of
the also connective operators maximum and minimum
respectively when applied to two inferred fuzzy sets.

Fig. 10. Aggregation with maximum.

Fig. 11. Aggregation with minimum.

In this case, the Exact Method involves a significant
degree of complexity. The aggregation operators
maximum and minimum must act with fuzzy sets
described by rectil inear segments. The data structure to
manage the inferred fuzzy sets is a li st of points. A new
list must be created in the aggregation procedure. The
typical way is to build a function that aggregates fuzzy
sets two by two, that is, obtaining a new li st of points
representing the aggregated fuzzy sets from the two
preceding ones. By executing this function as many
times as individual fuzzy sets have been inferred less
one, the final aggregated fuzzy set will be obtained. The
aggregation algorithm will calculate the relative
positions of the integrating segments and study their
relative position computing the cross points if they exist,
and adding them to the output list. Sometimes it is
interesting to design a simplification function to study
and eliminate the unnecessary points added to the li st.
This will im prove the performance of the said
aggregation function.

The aggregation of the inferred fuzzy sets in the
Approximate Method when working in Mode A is easy
to implement with an algorithm which goes through all
the points of the discretization of the inferred fuzzy sets
computing the maximum or minimum of them, for the
two said aggregation operators. The same operation
mode may be used with any other operator modeling the
also connective. Figures 11 and 12 graphically show the
maximum and minimum aggregation.

Fig. 11. Approximate aggregation with maximum.
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Fig. 12. Approximate aggregation with minimum.

After that, to make the defuzzification of the final fuzzy
set B’ , it could be used:

• The Middle of Maxima (usually called MOM):

2

yy
 = y

21
0

+
   (6.7)

where y1 = Min {z/ µB’ (z) = Max  µB’ (y)} and y2 =
Max {z/ µB’ (z) = Max µB’ (y)}

Fig. 13. D3: MOM with
also connective maximum.

Figure 13 graphicall y shows the previously called
D3 defuzzification method: Middle of  Maxima of
the fuzzy set B’ , result of the aggregation of the
individual fuzzy sets B’ i with also connective
maximum.

In the Exact Method, the Middle of Maxima
point is easil y computed considering the different
possibiliti es:

• The maximum value point is unique: this point
will be an extent of a segment and can be
found by comparing the extents of the
segments that compose the aggregated fuzzy
set.

• The maximum value is a countable set of
points: in a similar way, this set of points will
be the extents of segments. The final result is
computed as the average of the lower and
upper values (Figure 13).

• The maximum value is an uncountable set of
points: that is, an horizontal segment has the
maximum value. In this case, if there are no
other single points, the extents to compute the
middle point are the lower and upper values.

In the Approximate Method the Middle of Maxima
is computed going through the discretization and
recording the maximum height points. If the
maximum height point is not unique, then it must
be computed as the average of the lower and upper
ones as well .

• or the Center of Gravity, which exact expression is:

∫
∫

V
B'

V
B'

i

(y) dy¬
(y) dyy•¬

 = W
i

i

(6.8)

Figure 14 graphicall y shows the previously called D2

defuzzification method: Center of Gravity of the
fuzzy set B’ , result of the aggregation of the
individual fuzzy sets B’ i with also connective
minimum

Fig. 14. D2: Center of Gravity
with also connective minimum.

Usually, the resulting shape is not as simple as in
Figure 14. In the Exact Method, complex figures
must be decomposed into more simpler geometric
pieces between every two points. The numerator on
the expression of the Center of Gravity is computed
as the sum of the different computations developed
on these simple geometric pieces. The denominator is
calculated in a similar way and finally the division is
computed. These are the expressions for the pieces in
the two possible cases:

Case 1:

Fig. 15. Case 1.
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Case 2:

Fig. 16. Case 2.
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In the Approximate Method, the Center of Gravity
will be easil y computed because the integrals are
calculated as sums in discrete cases li ke this:
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with N being the number of points of the
discretization.

Mode B:

As we mentioned, this mode avoids the sometimes
complex computation of the final fuzzy set B’  by
considering the contribution of each rule output
individually, obtaining the final control action by taking
a calculation (an average, a weighted sum or a selection
of one of them) of a concrete crisp characteristic value
associated to each of them.

The defuzzification methods in Mode B compute the
final value using the following measures:

Importance Degrees:

• Area of the inferred fuzzy set: It is computed as a
sum of the areas of simple geometric figures. Area
expressions have already been shown in the Exact
Method. The Approximate Method accomplish the
sum of the product of the function value in every
point and the length of the discretization interval.

• Matching, previously computed.
• Height of the inferred fuzzy set, computed in a

similar way to that described for the Middle of
Maxima for the Exact Method. In the Approximate
Method, the maximum value in the Y axis found
going through the complete discretization.

Characteristic Values:

• Maximum Value of the inferred fuzzy set: it is the
projection of the maximum height point on the X
axis.

• Center of Gravity of the inferred fuzzy set:
Computed in the same way as described in
Defuzzification Mode A.

On the other hand, Mono-operator FLCs may also be
implemented using the Exact or Approximate Methods.
Then, all the previous descriptions are equally valid.
However, Mono-operator FLCs are rarely implemented
using the Exact or the Approximate Methods mainly due
to the following two reasons: they are designed for a
specific application and they run in embedded
computers. These issues allow us to compact the
algorithms reducing the required resources and force us
to use computationally efficient algorithms, so it is
possible to comprise the Inference System and the
Defuzzification Interface in a very short algorithm. It is
desirable to defuzzify each fuzzy set inferred before
inferring the following one, because this allows us not to
store that fuzzy set, we only store a real value. After that,
we do the simple calculation proposed by the method to
obtain the final value with N preceding values.

Nevertheless, it is not possible to compact the
algorithms in a Mono-operator FLC when working in
Mode A. Therefore, practical Mono-operator FLCs for
embedded applications must be implemented using
Defuzzification Mode B. Moreover, when FLCs buil t in
this way present the best behaviour in many cases. In
Section 3.2.3, we showed the conditions for the fuzzy
implication operators to obtain the best FLC accuracy8

without using complex operators with diff icult
implementations.

As we have said, Mode B defuzzification methods
are easy to implement. The different options for the
Defuzzification Interface shown in the preceding
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sections were based on operations related to the
calculation of the Value of Importance and Characteristic
Values. When the membership function of the inferred
fuzzy set is known, this advantage must be used to
directly incorporate the simplified mathematical
expressions to compute the crisp output. Defuzzification
Mode B especiall y benefits from this: it computes an
easy calculation on known forms. For example, the
Maximum Value of a symmetric trapezoidal fuzzy set
will be simply (x1+x2)/2.

Thus, following with the example of how to
implement an FLC in Intel MCS BASIC-52 language: let
us go on to see the compact form of the Inference System
and defuzzification method, if the former uses the
minimum implication operator and the later is based on
the Maximum Value weighted by the matching, the
implementation wil l be:

∑
∑ 
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xx
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=y (6.14)

The BASIC-52 code is:

520   sum1=0
530   sum2=0
540   FOR i=1 TO 7
550    sum1=sum1+(H(i)*(X1(C(i))+X2(C(i)))/2)
560    sum2=sum2+H(i)
570   NEXT i
580   y=sum1/sum2

with y being the crisp output.

7. Comparative Study of Approximate and Exact
Methods

We are going to compare the behaviour of the two
methods presented for implementing Multi-operator
FLCs, in order to determine the loss of precision
achieved by the sometimes used quick method to
construct them.

Three applications have been considered to analyze
the behaviour of the fuzzy implication operators selected
in the two implementation methods for the Multi-
operator FLC: the fuzzy modeling of the simplest
functional relation Y=X, and of a three-dimensional
surface, and the well known problem of the control of the
inverted pendulum. A description of the three
applications is to be found in Appendix B.

The Medium Square Error (SE) has been calculated
as an FLC performance measure:7,8

[ ]
[ ]

N

) )(x ji,  S- y (   
2

1
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N

1=k

2

kk∑
(7.1)

where S[i,j] denotes the FLC for which the Inference
System uses the implication operator Ii, and for which
the Defuzzification Interface is based on the
defuzzificacion method, Dj. This measure employs a set
of system evaluation data formed by N arrays of
numerical data Zk=( xk, yk ), k=1,...,N, with xk being the
values of the state variables, and yk the corresponding
values of the associated control variables.

The conjunctive operator used for the experiments
was always the minimum t-norm.

In order to see the dependence on the discretization
granularity in the universe of the consequent variable
when working with the Approximate Method, we have
used two partitions with 25 and 100 points.
Tables 1 to 3 in Appendix C show the SE values
obtained in the Y=X application (see Appendix B) with
the Exact Method, and the Approximate Method with 25
and 100 point in the discretization interval, respectively.
Tables 4 to 6 presents the corresponding ones for a three
dimensional surface (see Appendix B), and Tables 7 to 9
the results for the inverted pendulum (see Appendix B).

Some implication operators (I4, I8, and I9) present
problems (marked with “ * ” on the Tables 1 to 12) when
making inference due to the discontinuities that appear in
the inferred membership functions. In those cases, we
only used Defuzzification Mode B, which defuzzifies the
one-element to that single element exactly. We do not
aggregate fuzzy sets of this kind.

Tables 10, 11 and 12 show a summary of the results
in Tables 1 to 9.

Next, we present some comments as regards these
tables:

As regards the two implementation methods:

Characteristic Values:

• SE values are, in general, very similar in both
methods. Good combinations of operators usually
show the same good behaviour in both
implementations. Therefore, the choice of
implementation presents less importance than the
operator selection.

• The Exact Method always shows the precise results
of the fuzzy operators. This is the reason for the
lower error generall y presented when using it.
However, a small number of combinations of fuzzy
operators  show lower errors when they are
implemented with the Approximate Method. This
fact could be apparently contradictory, but there is
no contradiction because the smoothing effect
performed by the Approximate Method on the
membership function of the inferred fuzzy sets is
advantageous in a few cases. This improvement in
the accuracy for these combinations of fuzzy
operators does not correspond to a true good
behaviour for them.
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Table 10. SE abstract of the Y=X application.

Exact Method Approximate
Method N=25

Approximate
Method N=100

I2 I10 I2 I10 I2 I10

D2 0.0962 0.06604 0.2019 2.9883 0.1079 2.0120
D5 0.0498 0.0498 0.0623 0.2970 0.0921 0.2788

Table 11. SE abstract of the three dimensional surface application.

Exact Method Approximate
Method N=25

Approximate
Method N=100

I1 I10 I1 I10 I1 I10

D1 0.3494 3.5258 0.3621 4.2172 0.3504 0.3613
D7 4.7566 0.3481 4.7566 0.9301 4.7543 0.7621

Table 12. SE abstract of the Inverted Pendulum application.

Exact Method Approximate
Method N=25

Approximate
Method N=100

I2 I5 I2 I5 I2 I5

D1 6826.3 20004.4 11315.3 23763.9 6919.3 22701.2
D5 6425.7 6425.7 9720.6 9720.6 6425.7 6425.7

• Some combinations of fuzzy operators show highly
significant differences when they are implemented
with the Exact or the Approximate Method, e.g., I9

and I10. The source of this disparity may be found by
studying the membership functions for the inferred
fuzzy sets of both implication operators (shown in
Appendix A) in combination with the concrete
defuzzifiers used. These two operators present more
than one maximum value point or one continuous
maximum value point. For example I10 has two
separate maximum value points. This situation
introduces a significant error in the Approximate
Method, when it defuzzifies with a maximum value
defuzzifier because the algorithm only finds one
maximum value point. The other maximum value is
not considered to be at the same height because the
approximation makes one of them bigger than the
other one. As we mentioned in the preceding
sections with respect to the implementation of
defuzzifiers, when more than one maximum value
point appears, the result is computed as the average
for them. That is, the Exact Method places the result
of the defuzzification in the centre of the inferred
fuzzy set whilst the Approximate Method places it at
one of the extents, too far away from the other
solution. This fact is highly significant in the case of
I10, especiall y when the matching values are lesser
than ½.

As regards the behaviour of the fuzzy operators:

• As we showed in preceding works7,8, T-norms are
very robust implication operators regardless of the
implementation method, that is, they show good
average behaviour in different applications and in
combination with different defuzzification methods.

In the same way, Implication Functions are not
robust implication operators for fuzzy control.

8. Concluding Remarks

In this work we have studied the usual ways to
implement practical FLCs.

When we design a specific FLC, we must use good
fuzzy operators, and we must select an easy way to
implement them. Section 3.2.3 shows the three basic
properties to have a robust implication operator, i.e., an
operator presenting good average behaviour with
different  applications and in combination with different
defuzzification methods.

Besides, if we need a quick FLC, efficient
considerations must be added. All these requirements are
complete if we use the minimum or the algebraic product
t-norms as the implication operator in combination with
the maximum value weighted by the matching
defuzzifier. An example code of Mono-operator design
for a specific embedded practical FLC with the Intel
MCS-52 microcontroller has been shown. It was
developed in Intel BASIC-52 and, therefore, it is only
recommended for teaching purposes or for applications
that do not need the fastest answer.

As regards the Multi -operator FLC implementation
methods, we have shown that the results are false in
different ways in the Approximate Method. In the best
cases, it introduces imprecision or produces a low
artificial reliabilit y, but in the worst cases, it produces
significant variations. To study the pernicious effects of
the Approximate Method, the first step is to obtain the
geometrical study of the inferred fuzzy sets, losing the
primary advantage of this method with respect to the
Exact Method.
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Appendix A: Graphical representation of the membership functions of the infer red fuzzy sets for the Implication
Operators presented

Fig. 17. I1 (Dubois-Prade)

Fig. 18. I2 (Goguen)

Fig. 19. I3 (Lukasiewicz)

Fig. 20. I4

Fig. 21. I5 (Logical Product)

Fig. 22. I6 (Algebraic Product)

Fig. 23. I7

Fig. 24. I8

Fig. 25. I9  when h ≥ ½

 Fig. 26. I9  when h ≤ ½

Fig. 27. I10 when h ≥ ½

Fig. 28. I10 when h ≤ ½
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Appendix B: Applications Description

Three applications have been selected to analyze the
behaviour of the Multi-operator FLC implementation
methods: the fuzzy modeling of the simplest functional
relation Y=X and of a three-dimensional surface, and the
widely studied problem of controlling the Inverted
Pendulum.

The selection of the first application is based on the
studies developed by Cao and Kandel4 which  state that
the independence between the application considered and
the accuracy obtained by  the FLC  is a very important
fact in the comparison of the influence of the fuzzy
operators used to design it. Hence, in order to avoid the
lack of generalit y in a fuzzy model, we are going to work
with the simplest functional relation Y=X, making a
fuzzy model of it in the interval [0,10].

In this case, the five linguistic labels { VS, S, M, L,
VL} are used to make a fuzzy partition of the domain of
the variables X and Y, where:

VS is very small,
S is small, 
M is medium,
L is large, 
VL is very large.

The corresponding membership functions presented by
Cao and Kandel,4 are shown in Figure 29:

0

2

S M L VLVS

3 7 96 8 105

1

1 4
Fig. 29.  Fuzzy partition considered
For the modeling of function Y=X

and the Knowledge Base presents the following five
control rules:

If X is VS then Y is VS,
If X is S then Y is S,
If X is M then Y is M,
If X is L then Y is L
If X is VL then Y is VL

In this application, the set of evaluation data used to
compute the accuracy of the implication operators is
composed of 41 data pairs with a frequency of 0.25 in
the interval [0,10].

The three-dimensional surface F1 is shown in Figure
30, along with its mathematical expression.
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Fig. 30. Graphical representation of function F1

The domains of the input and output variables of F1 are
fuzzy partitioned by using seven linguistic labels, called
{ NB, NM, NS, ZR, PS, PM, PB} where:

NB is negative,   
NM is negative medium,
NS is negative small,
ZR is zero,
PS is positi ve small,
PM is positive medium,
PB is positi ve big.

Figure 31 shows the associated membership functions:

Fig. 31. Fuzzy partition considered
for the modeling of function F1.

For the experiments developed with function F1, a
Mamdani-type Knowledge Base (KB) of 49 rules has
been generated from a training data set by means of the
Wang and Mendel generation process.30 The KB
generated is shown in Figure 32. The process considered
is characterized by performing the rule generation
following an inductive criterion relating to the covering
of the data. Therefore, the KB obtained by this method is
not dependent on the concrete Inference System used to
make inference, which is a major requirement in order to
adequately compare the behaviour of the implication
operators. The training data set, consisting of 674
examples, has been obtained by generating the input
variable values uniformly distributed in the variable
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domains and by computing the associated output value
using the expression of the function. Subsequently, a test
data set, formed by 67 pieces of data, and obtained by
generating the state variable values at random and
computing the associated output variable value, wil l be
used to measure the accuracy of the implication
operators.

Table 13: Rule Base for F1

x2

ES VS S M L VL EL
ES ES ES ES ES ES ES ES
VS EL M S VS VS ES ES
S EL L M S VS VS ES

x1 M EL VL L M S VS ES
L EL VL VL L M S ES

VL EL EL VL VL L M ES
EL EL EL EL EL EL EL ES

The inverted pendulum system29 is shown in Figure 32.
On the assumption that |Θ| ≤ 30°, the behaviour of the
pendulum is achieved from the following equation:

)k sin mgF(
2

l

3

l
m

2

ωΘω −+−=   (A.B.2)

with m being the mass of the pendulum, 2 l its length and
kω being an approximation of the friction strength.

The system state variables are the pendulum angle,
Θ, and the change of angle, ω, whereas the control
variable is the force F to apply over its gravity center.
The universes of discourse for these variables are the
following:

ω ∈ [-0.8645,0.8645] rad/s
Θ ∈ [-0.5283,0.5283] rad
F  ∈ [-3003.8,3003.8] Nw

In order to carry out our study, we have worked with a
simulation model of the system using  the parameters m
= 5 kg and 2 l = 5 m.

mg

Θ

l

l

Fig. 30: Inverted pendulum.

The linguistic variables are partitioned by using the
seven linguistic labels contained in the following set:18,29

{ NB, NM, NS, ZR, PS, PM, PL }

where N is negative, P is positi ve, B is big, M is
medium, S is small and ZR is zero.

The membership functions corresponding to each
element in the linguistic set have been obtained
following the methodology proposed by Liaw and
Wang.18 The trapezoidal-shaped membership functions
shown in Figure 33 are used by scaling the interval [-6,6]
to the one corresponding to the specific variable.

-4 -2 0

ZR PS PM PBNB NM NS

-5 -3 -1-6 3 52 4 61

1 f

x

Fig. 33. The domain partition
in the inverted pendulum problem

The Knowledge Base used to control the system is
constituted by the seven linguistic control rules shown in
Table 1429. The set of evaluation data used to compute
the SE has 200 data arrays  in the form (value of Θ, value
of ω, value of F) belonging to the intervals Θ ∈ [-
0.2569,0.2569] rad, ω ∈ [-0.4244,0.4244] rad/s and F ∈
[-1474.05, 1474.05] Nw in the inverted pendulum
problem.

Table 14: Control rule map of F

Θ
NB NM NS ZR PS PM PB

NB
NM
NS NS ZR

ω ZR NM ZR PM
PS ZR PS
PM
PB
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Appendix C: Application Results

Table 1. Exact Method for the X=Y application.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

D1 0.1372 0.0000 0.0000 * 0.1616 1.2561 0.1616 * * 0.6585
D2 1.2859 0.0962 1.6443 * 0.1860 0.9241 0.1860 * * 0.6604
D3 4.3750 4.3750 4.3750 * 0.1612 0.8689 0.1612 * * 0.8197
D4 4.3750 4.3750 4.3750 * 0.3768 0.8844 0.3768 * * 0.9278
D5 0.2220 0.0498 0.0498 0.0498 0.0498 0.0207 0.0498 0.0498 0.0207 0.0498
D6 0.2622 0.2062 0.2062 0.2062 0.2062 0.2896 0.2062 0.2062 0.2896 0.2062
D7 2.2874 2.0684 2.0684 2.0684 0.2141 0.1636 0.2141 0.2141 0.1636 0.2141
D8 3.8089 3.4280 3.9436 1.4868 0.3030 0.2318 0.3030 0.2530 0.1155 0.2085

Table 2. Approximate Method with 25 points for the X=Y application.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

D1 0.1995 0.0191 0.0639 * 0.2068 0.6497 0.2068 * * 0.3134
D2 1.3792 0.2019 1.6510 * 1.5532 3.8708 1.5532 * * 2.9883
D3 4.3738 4.3738 4.3738 * 0.2057 0.3815 0.2057 * * 0.4582
D4 4.3738 4.3738 4.3738 * 0.3448 0.2200 0.3448 * * 0.3103
D5 0.2868 0.0623 0.0623 0.0670 0.0623 0.0316 0.0623 0.1019 0.6811 0.2970
D6 0.3936 0.3207 0.3207 0.3910 0.3207 0.3807 0.3207 0.3497 0.5856 0.5179
D7 2.3035 2.0432 2.0085 1.9196 0.2392 0.1793 0.2392 0.3122 1.3613 0.8358
D8 3.8044 3.4061 3.9292 2.7448 0.2873 0.2106 0.2873 0.1891 1.0861 0.2242

Table 3. Approximate Method with 100 points for the X=Y application.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

D1 0.2054 0.0231 0.0877 * 0.1933 0.6834 0.1933 * * 0.3223
D2 1.3884 0.1079 1.7058 * 1.0897 1.1857 1.0897 * * 2.0120
D3 4.3738 4.3738 4.3738 * 0.3227 0.4015 0.3227 * * 0.6272
D4 4.3738 4.3738 4.3738 * 0.4004 0.2787 0.4004 * * 0.3360
D5 0.2907 0.0921 0.0921 0.0619 0.0921 0.0619 0.0921 0.0921 0.7085 0.2788
D6 0.5875 0.5176 0.5176 0.5955 0.5176 0.5955 0.5176 0.5176 0.7820 0.7369
D7 2.2578 2.0410 2.0046 1.8770 0.2506 0.1993 0.2506 0.2506 1.3786 0.7277
D8 3.7940 3.4105 3.9311 2.7063 0.3256 0.2575 0.3256 0.2186 1.1086 0.2483

Table 4. Exact Method for the three dimensional surface application.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

D1 0.3494 1.9217 0.2943 * 1.9529 2.0073 1.9529 * * 3.5258
D2 3.1681 1.9340 3.5946 * 1.9551 1.9630 1.9551 * * 3.5251
D3 5.4630 5.4630 5.4630 * 0.3987 0.4569 0.3987 * * 0.3987
D4 5.4630 5.4630 5.4630 * 0.2608 0.2020 0.2608 * * 0.1996
D5 0.1338 0.0661 0.0661 0.0661 0.0661 0.0445 0.0661 0.0661 0.0445 0.0661
D6 0.3875 0.3987 0.3987 0.3987 0.3987 0.4569 0.3987 0.3987 0.4569 0.3987
D7 4.7566 4.7267 4.7267 4.7267 0.3481 0.3363 0.3481 0.3481 0.3363 0.3481
D8 5.4067 5.3057 5.4200 5.0598 0.1872 0.1454 0.1872 0.1580 0.1138 0.1770
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Table 5. Approximate Method with 25 points for the three dimensional surface application.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

D1 0.3621 1.9176 0.3172 * 1.9500 1.9772 1.9500 * * 4.2172
D2 3.1239 1.9341 3.5336 * 5.2868 5.4630 5.2868 * * 5.4630
D3 5.4630 5.4630 5.4630 * 0.4263 0.4569 0.4263 * * 0.5919
D4 5.4630 5.4630 5.4630 * 0.1935 0.1388 0.1935 * * 0.1853
D5 0.1338 0.0581 0.0579 0.0445 0.0579 0.0445 0.0579 0.0579 1.4925 0.2420
D6 0.3875 0.4263 0.4263 0.4569 0.4263 0.4569 0.4263 0.4263 0.4263 0.5919
D7 4.7566 4.7344 4.7165 4.6791 0.3377 0.3363 0.3377 0.3377 3.1969 0.9301
D8 5.4059 5.3132 5.4185 5.2561 0.1381 0.0971 0.1381 0.1148 0.3990 0.1656

Table 6. Approximate Method with 100 points for the three dimensional surface application.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

D1 0.3504 1.9198 0.2978 * 1.9520 2.0016 1.9520 * * 3.6713
D2 3.1679 1.9333 3.5748 * 3.0742 4.3197 3.0742 * * 4.9558
D3 5.4630 5.4630 5.4630 * 0.4025 0.4612 0.4025 * * 0.5357
D4 5.4630 5.4630 5.4630 * 0.2448 0.1847 0.2448 * * 0.1961
D5 0.1286 0.0641 0.0638 0.0468 0.0638 0.0468 0.0638 0.0638 1.5210 0.2199
D6 0.3860 0.4025 0.4025 0.4612 0.4025 0.4612 0.4025 0.4025 0.4025 0.5357
D7 4.7543 4.7424 4.7245 4.6828 0.3450 0.3389 0.3450 0.3450 3.2231 0.7621
D8 5.4069 5.3115 5.4195 5.2546 0.1757 0.1321 0.1757 0.1352 0.3927 0.1749

Table 7. Exact Method for the inverted pendulum application.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

D1 8665.6 6826.3 6826.3 * 20004.4 85485.1 20004.4 * * 6413.2
D2 29503.2 12851.6 36649.5 * 20004.4 71538.9 20004.4 * * 6434.5
D3 183021.0 183021.0 183021.0 * 20289.1 70592.9 20289.1 * * 20289.1
D4 183021.0 183021.0 183021.0 * 6580.7 57705.7 6580.7 * * 8244.4
D5 6425.7 6425.7 6425.7 6425.7 6425.7 6425.7 6425.7 6425.7 6425.7 6425.7
D6 20289.1 20289.1 20289.1 20289.1 20289.1 20289.1 20289.1 20289.1 20289.1 20289.1
D7 135297.6 135297.6 135297.6 135297.6 20004.4 20004.4 20004.4 20004.4 20004.4 20004.4
D8 169490.6 169310.0 171837.0 137589.5 6908.7 6425.7 6908.7 6518.0 6916.6 7963.8

Table 8. Approximate Method with 25 points for the inverted pendulum appli cation.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

D1 14549.9 11315.3 11172.3 * 23763.9 57908.1 23763.9 * * 94536.9
D2 31724.2 14561.4 37666.2 * 336706.1 570763.5 336706.1 * * 644750.5
D3 183021.0 183021.0 183021.0 * 24205.3 28121.5 24205.3 * * 64306.9
D4 183021.0 183021.0 183021.0 * 6548.5 6481.7 6548.5 * * 8532.4
D5 12479.6 9720.6 9720.6 12479.6 9720.6 12479.6 9720.6 9720.6 37448.7 26034.2
D6 28121.5 24205.3 24205.3 28121.5 24205.3 28121.5 24205.3 24205.3 24205.3 64306.9
D7 135764.4 135377.5 135578.9 135639.7 24390.5 27601.8 24390.5 21923.3 156800.3 59205.3
D8 170005.3 169898.1 172329.8 161332.5 6826.7 6425.7 6826.7 7545.6 14306.8 8217.7

Table 9. Approximate Method with 100 points for the inverted pendulum application.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

D1 8976.6 6919.3 7063.6 * 22701.2 59902.0 22701.2 * * 105137.4
D2 29727.3 12910.5 36820.1 * 93856.9 136253.1 93856.9 * * 328995.4
D3 183021.0 183021.0 183021.0 * 20289.1 20289.1 20289.1 * * 42820.9
D4 183021.0 183021.0 183021.0 * 6580.4 6496.5 6580.4 * * 8244.4
D5 6563.8 6425.7 6425.7 6425.7 6425.7 6425.7 6425.7 6425.7 37773.9 22064.4
D6 20441.0 20289.1 20289.1 20289.1 20289.1 20289.1 20289.1 20289.1 20289.1 42820.9
D7 135513.2 135297.6 135502.2 135502.2 22510.8 22510.8 22510.8 22510.8 163340.3 68016.5
D8 169614.5 169427.7 171938.0 160459.0 6908.1 6425.6 6908.1 7507.5 14306.5 7963.5


