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Since the end of seventies, Fuzzy Logic Cortroll ers (FLCs) have enjoyed a good place in intelligent and automatic control systems,
mainly though their good practical results. In this paper, we describe the basis of fuzzy control and we cautioudy study practical
software implementations of FLCs that can be easily incorporated into real systems. We study the implementation of a practice
Mono-operator FLC and compare two methods, the Exact and Approximate ones, for an advanced Multi-operator FLC that allows us
to choose from several fuzzy operatorsin arder to select the one best adapted to a specific goplication.
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1. Introduction

Fuzzy logic based systems are suitable for engineering
because their inpus and outputs are real-valued
variables, mapped with a non-linea function. Fuzzy
logic based systems, when used in contral, recave the
name of Fuzzy Logic Controllers (FLCs).”*® FLCs
achieve an dternative for those applications where
clasgcal contral strategies do not achieve good results.
In many cases these systems have two characteristics:
the nead for human operator experience and a strong
non lineaity, where it is not posshle to obtain a
mathematicad model.

Usually, FLCs are not used in those problems where
another classcd control drategy, a dired digital or
computed response ae gplicable. FLCs are suitable to
use where there is alot of information that is difficult
to handle, a low predsion environment and vague
information. The summary conclusion about FLC
preferred application areas are:

* nonlineaity systems,

e systems with no predictable disturbance or low
acaurate sensors, and

» sysemswhereit isnecessary to incorporate human
experience

FLCs had to wait for the low cost of microprocessor
technology and modern software development to gve
them promotion in the industria processes and
consumer products world. At the present time, there ae
alot of real-world applications of FLCs like intelligent
suspension systems, mohile robot navigation, wind
energy converter control, air conditioning controll ers,
video and photograph camera autofocus and imaging
stabilizer, anti-sway control for cranes, and a lot of
industrial automation appli cations.™

This paper deals on how to implement FLCs in
practice covering the zone that exists between the
theoretical studies about different fuzzy operators and
the works that describe the results in particular
applications. Usually, neither of them explain the way
used to implement FLC. We will cover methods for big
computers with high level languages interpreters and
compilers as wel as for small microcontrollers
commonly used in industry, showing the typical
different options employed in practice This work is
aimed at people who dready know some programming
language and want to construct FLCs.

We begin in Sedion 2 condensing the FLC
principles and making recommendations about its
design. In Sedion 3, the design questions will be
shown, presenting several sdleded characterigtic fuzzy
operators and some citeria for choasing them. Sedion

*Thisresearch has been supported by CICYT TIC96-0778and TIC96-1393C06-04



4 presents the framework for implementing FLCs.
Then, in Sedion 5 and 6 we will discuss ®ftware
implementations, data structures, agorithms and so o,
for a spedfic practicd FLC and two software
implementations of controll ers with a large number of
fuzzy operators available. The wmmparative study of
these two methods will be performed in Sedion 7.
Finally, Sedion 8 presents the wncluding remarks.
Besides, we add three Appendixes, the first one
dedicated to the graphicd representation of the seleded
fuzzy implicaion operators, and the other describing
the applicaions used for the comparative study and
results.

2. Fuzzy Logic Controllers

The world of automatic control has taken advantage of
the flow in digital and computer technology in two
main ways. sequence controllers and analog device
controll ers. Sequence @ntroll ers are implemented with
a little theory, initialy based on relays and pneumatic
logic. Customarily, analog devices were antrolled by
anaog controllers produced using mathematics as the
main tod.

Expert Contral is a field of Artificial Intelligence
that has become a reseach topic in the domain of
process control, with its purpose being to avoid the
drawbacks mentioned in the introduction with resped
to classcal control strategies. Fuzzy Logic Contral is
one of the topics within Expert Control.

FLCs, asinitiated by Mamdani and Asslian®®%, are
now considered as one of the most important
applications of Fuzzy Set Theory proposed by Zadeh®
in 1965 Thistheory is based on the notion of fuzzy sets
as a generalization of the ordinary set characterized by
a membership function p that takes values in the
interval [0,1] representing degrees of membership to
the set. FLCs typically define a non-linear mapping
from the system's date spaceto the control space Thus,
it is posshleto consider the results of an FLC asanon-
linea control surface refleding the process of the
operator’s prior knowledge.

Figure 1 shows the generic structure of an FLC. An
FLC is a kind o Fuzzy Rule Based System which is
composed of a KnomMedge Base that comprises the
information used by the expert operator in the form of
linguistic control rules, a Fuzification Interface, that
transforms the crisp values of the input variables into
fuzzy sets that will be used in the fuzzy inference
process an Inference System that uses the fuzzy values
from the Fuzzification Interface and the information
from the Knowledge Base and performs the reasoning
process and the Defuzification Interface, which takes
the fuzzy action from the inference process and
trandates it into crisp values for the wntrol variables.

The Knowledge Base is comprised hy two
components. the Data Base and the Rule Base. The
Data Base ntains the definitions of the linguistic
labels, that is, the membership functions for the fuzzy
sets. The Rule Base is a colledion of fuzzy control
rules representing the epert knowledge from the
controll ed system.

The rules of the Knowledge Base are nditional
statementsof the type

IF antecadent THEN consequent

conneded by the also connedive that it is modeled by
an operator G.

There ae different types of rules regarding the
expresson of the cnsequent:

« Mamdani rules'®®, where the consequent is a
linguistic variable as the ones in the antecalent:

IF % is Ay and...and X, is A, THEN y is B

where the x; are the input or sate variablesand y; is
the output or control variable. Ay andB arelinguistic
labels aswciated with fuzzy concepts, that is,
linguistic terms related to the input and autput
variables respedively. In this paper, we will
consider a Rule Base mngtituted by Mamdani type
fuzzy control rules.
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Fig. 1. Generic structure of an FLC.
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e TSK rules?®, where the mnsequent of the rule is a
linea function of theinpus:

IF x; is A; and...and x, is A, THEN
y: p0+ ple+---+ ann

or, more genedly, any function of the input
parameters.

IF X, is A; and...and x, is A, THEN
y = f (X, Xn)

The Fuzification Interface establishes an application
between each predse value of the input variable and a
fuzzy set defined in the universe of the arresponding
variable. Then, the Fuzzification Interface works as
follows:

A=F(x) (2.1)

where X, isapredse value defined in U, A' isa fuzzy set
defined on the same universe U and F is a fuzzfier
operator.

There aetwo posshiliti es for seleding F:

1. Sngeton Fuzification: A' is built like asingleton
fuzzy set with support x,, that is, with the following
membership function:

o, if X=X

A= %) otherwise 22)

2. NonSngleton Fuzification or Approximate
Fuzification. In this case, when X = xo, F (%) = 1,
and the membership o the rest of the values for U
deaease whil e moving away from xo.

The firgt way is the one most used and we will use it

always in this paper.

The Inference System or Fuzz Inference Engine is
based on the application of the Generdized Modus
Ponens (GMP), an extension of the dassca Modus
Ponens, proposed by Zadeh™ as foll ows:

If XisAthenYisB
XisA
YisB

The fuzzy conditional statement If X isAthenYisB (X
and Y being linguitic variables, and A and B being fuzzy
sets) represents a fuzzy relation between A and B,
definedinU x V, (U=U;x U, % ... x U, and V being the
universes of the input variables Xy, ..., X, and the output Y,
respedively). The fuzzy relation is expressed by a fuzzy
set R whose membership function ur (X ,y) isgiven by:

(xOU,y OV: pr (xy) = 1 (Ha (), 4 (¥), (2.3)

with pa (X) and s (y) being the membership functions of
the fuzzy sets A and B, respedively, and | a fuzzy
operator moddling the fuzzy relation.

The membership function of the fuzzy set B’ in the
consequent, oltained from the GMP, is deduced by
projedion on V by means of the Compositional Rule of
Inference (CRI) (introduced by Zadeh®®) given by the
foll owing expresson:

e (¥) = SUBu { T (a (), (WA (X), s ()} (2.4)

where U (X) = T(Ha1 (%), Han (X)), pa () = T(Ha (X),--.,
Uan (X)), with Tand T' being t-norms and | an implication
operator.

When Singleton Fuzzfication is considered, the
fuzzy set A’ isasingleton, that is, py (X) = 1if X = X,,
and uy (X) = 0if x Z X%, Thus, the CRI is reduced to the
foll owing expresson:

M () = | (Ua (%), Hs(Y)) (2.5)

Hence it is found that it diredly depends on the fuzzy
impli cation operator seleded. In the spedfic literature, it
is proposed a huge amount of operators that can be used
as implication operators in the fuzzy control inference
process Many studies that add information in order to
sded this operator have been
pUb|| Shaj.3'4'6'7'8”9'12'15'17'21'23'27

As has been commented, the alculation of L (Xo)
consists of the application of a conjunctive operator on

Hai (%):
Ha (%0) = T (Uar (X) , -, Han (X)) (2.6)

The result of the appli caion of the T connedive operator
is commonly caled matching, and represents the
matches between the values presented in the inputs and
the fuzzy sets of the rule atecalent. We will note it by
h.

The Inference System produces the same anount of
output fuzzy sets as the number of rules colleded in the
Knowledge Base. These groups of fuzzy sets must be
transformed into crisp values for the control variables.
This is the goal of the Defuzification Interface. We
denote by B/’ the fuzzy st ohtained as output when
performing inference on rule R , and by y, the global
output of the FLC for an input X,.

There ae two types of defuzzification methods™"**
acoording to the way in which the individud fuzzy sets
B’ are aggregated in order to put into effect the function
of the connedive also, G:

* Mode A: Aggregation First, Defuzzfication After:
The Defuzzification Interface performs the
aggregation of the individual fuzzy setsinferred, B,
to oltain the final output fuzzy set B'.

e V)= G{ g (¥), g2 (y) s -  Hen (V) } (27)



Usually, the aggregation operator modeling the
connedive also (G) is the minimum or the
maximum. After that, the fuzzy set B’ is defuzzified
using any strategy D, like Middle of Maxima, or the
Center of Gravity mostly.

Ho =D (ug (¥)) (2.8)

e ModeB : Defuzification First, Aggregation After: It
avoids the computation of the final fuzzy set B’ by
considering the ntribution of each rule output
individually, oktaining the final control action by
taking a clculation (an average, a weighted sum or
a sdedion of one of them) of a concrete aisp
characteristic value asciated to each of them.

Historically, mode A was firgtly proposed and wsed in
the initial approximations to fuzzy control.***° On the
other hand, mode B is the one most used today on top in
red-time systems which need the quickest response and
in many other kinds of systems due to its simplicity.

3. Design of Fuzzy Logic Controllers

In this sdion, we ae going to dscuss the two FLC
design tasks, the derivation of the Knowledge Base and
the sdedion of the operators and methods that the
controller will use to perform the fuzzy inference
process

3.1. Obtaining the Knowledge Base

The Knowledge Base is the only component of the FLC
that diredly depends on the spedfic application. The
accuracy of the wntroller is very rdated to it. There ae
four modes of derivation for the fuzzy contral rules that
are not mutually exclusive®*®:

1. Expert Experience and Control Engineeing
Knowedge. It is the most widely used and it is
effedive when the human operator is able to
linguisticdly express the ntrol rules he uses to
control the system. These rules are normally of
Mamdani type.

2. Modding o the Operator’s Control Actions. The
control action is formed making a model of the
operator actions without interviewing him.

3. One based on the Fuzzy Model of a Process It is
based on developing a fuzzy model of the system
and constructing the fuzzy rules of the Knowledge
Base from it. This approach is smilar to that
traditionaly used in Control Theory. Hence
structure and parameter identification are needed.?*

4. One based on Learning and Sf-Organization. This
method is based on the ability for creating and
modifying the fuzzy control rules in order to
improve the antroller performance by means of
automatic methods.

3.2. Sdecting the Fuzzy Operators

The enginee must consider some factors that have a
significant influence on the FLC:

e The doice of the mnnedive operator for the
antecalents (T).

e The dhoiceof the fuzzy implication operator (1).

e The doice of the mathematicd definition of the
compasition of fuzzy relations existing in the CRI.

» The doice of the mnnedive also that conneds the
rulesin the Knowledge Base (G).

» The toiceof the defuzzification operator mode and
the defuzzfication method (D).

The @nnedive operator for the aitecalents has a low
influence’ in the FLC accuracy. It is a t-norm when the
antecalents are mnneded with the mnnedive and, and a
t-conorm when the mnnedive or isused.

As regards, the fuzzy implication and defuzzfication
operators, different dedsions grongly influence the
accauracy of the FLC. In the spedfic literature, there ae a
lot of possible dhoices for the implication operator as
wdl as for the defuzzfication method. We ae going to
show a clasdfication of them into families with
representative examples, and we will shed some light on
how to choose the implication operators and
defuzzfication methods to oltain good controllersin the
sense of the best behaviour.

3.2.1. Fuzz Implication Operators

A clasdfication of the fuzzy implication operators is
proposed by Dujet and Vincent'! considering the
extension that they perform with resped to boolean
logic:

e Those exending the bodean implication. Within this
group, fuzzy implication functions are found.?® They
satisfy the foll owing truth table;

al\b 0 1
0 1 1
1 0 1

e Those exending the bodean conjunction. Force
Implications™ and T-norms when used as impli cation
operators' are included in this group satisfying the
truth table;

al\b 0 1
0 0 0
1 0 1

There ae many implication operators that do not belong
to any of these two families. In the following, we ae
going to show some eamples of implication

operators"®?  pelonging to these three groups.



Appendix A shows the graphicd representation of the
membership functions of the inferred fuzzy sets for the
impli cation operators presented.

3.2.1.1. Boolean Implication Extension Operators

Fuzzy implication functions?® are the most well known
implication operators that extend the boolean
impli cation.

A continuous function I: [0,1] {0,1] - [0,1] is a
fuzzy implication function iff [J x, X, vy, Yy, z [J[0,1]
verifies the foll owing properties:®

L-Ifx<xthenl (xy) =1 (X.y)

2-1fy<sythenl (xy) =1 (xY)

3.- Falsehoad Principle: | (0,x) = 1

4.- Neutrality Principle: | (1,X) = X

5.- Interchange Principle: | (x,1(y,2)=1 (v,1(x,2)

They are dassfied into different famili es:?%%’

e Strong Implications (S-implications):
Corresponding to the definition of implicaion in
classcal Bodean Logic: A - B = =-A [OB. They
present the form: 1 (x,y) = S (N(a),b), with Sbeing a
t-conorm and N a negation function.

e Residual Implications (R-implications): Obtained
by residuation of at-norm T, asfollows | (x,y) = Sup
{c:cO01/T(cx) <y}

The implication functions sleded for use in this paper
are the ones which showed the best behaviour from the
precaling families in our previous contributions:®’

S Implications:

Dubois-Prade :
- x,if y=0
L(x,y)=Fy, if x=1 (3.1)
Bl, otherwise
R-Implications::
Goguen :
o, if y<x
l2(x,y)=0 (3.2)

[, otherwise

Sand R-Implications:
Lukasiewicz :

I3 (X,y) = Min (1, 1-x+y) (3.3

Other Extensions of the boolean implication:

There ae some implication operators that extend the
bodean implication but do not verify the properties of
the implication functions. We have sdeded the
following one according to its good behaviour in ow
previous gudies:”®

o, if x=
ls(X,y)= 0 Y (3.4)
[y, otherwise

3.2.1.2. Boolean Conjunction Extension Operators

(@) T-norms:
A function T: [0,1] §0,1] - [0,1] isat-norm [JX,Y, z [J
[0,1] if it verifies the following properties:**?

1.- Existenceof unit lement 1: T (1,X) = X
2.- Monotonicity: If x<ythen T (X,2) < T (y,2)
3.- Commutativity : T (x,y) = T (y,X)

4.- Asociativity: T (x,T(y,2) = T(T (X,y),2
5-T(OX)=0

The most typical t-normsused in FLCs are
Logical Product (Minimum) :

Is (X,y) =Min (X, y) (3.5
Algebraic Product :

le (X,y) = Xy (3.6)

(b) Force-Implication Operators:

Force implication operators were introduced for

“combining the aim to model human reasoning in a more

natural way with the need to achieve an implicaion”.**
There ae two different groups of force implications

depending an the way in which they are built:

(b.1) Force implications based on indistinguishahlity
operators:
They are formed with this expresson:

I (xy) =T, EXY) 3.7

where T is a t-norm, and E is an indiginguishability
operator,

E=T (" (x.y), 1" (y.X) (3.8)

with T’ being at-norm, and |’ an impli cation function.
There ae threedifferent kinds of indistinguishability
operators depending on the t-norm used to define them:?®

e Smilarity Reations: T' (x,y) = Min (X,y).
» Proballi gic Relations: T' (X,y) = X+.
e LikenessRdations. T' (x,y) = Max (0, x+y-1).

We are going to show the threeimpli cation operators that
presented the best behaviour of the force implication
based on the indistinguishahility family in a previous
work.® They have been obtained by means of the Egsua
indi stingui shability operator® and threet-norms: logical,
algebraic and bounded products. Their expressons are:

I7 (X,y) = Min (X,Egsaa (X.Y)) (3.9)



ifx=y

D-l
where Eceee (X,Y) = [ . .
e () E[\/Iln(x, y), otherwise

Ig (X,y) = X [Egede (X,Y) (3.10)

lg (X,y) = Max (X + Egeaa (Xy) - 1, 0) (311
(b.2) Force implications based on digances:
This second group foll ows the expresson:
Lxy)=T(x,1-d(x.y) (312

where T isat-norm, and disadigance

We will consider a force implication operator, which
showed good behaviour in previous work®, based on the
t-norm bounded product, for which the expressonis:

l10 (x,y) = Max (x - [x-y], 0) 313

3.2.2. Defuzification Methods

In the following, we introduce the Importance Degrees
and Characteristic Values, used for defining
defuzzification methods.

Importance Degrees of aruleR :’

e AreaofafuzzysetB':

s= Lua- (u)du (3.19

e Matching of aruleR,:

h = T(Uar(X0), - Han(Xn)) (3.19

with Ay,...A, being fuzzy sets in the antecadent of
the rule, and X;,..X, the values of the inpu
variables.

e Height of afuzzy set B':

y= SElVJpﬂ 8(X) (3.16)

Characteristic Values:’
e MaximumValue of afuzzy setB':

G= x0OVOu, )=y (3.17)

Sometimes, if there is more than one value that
verifies the @mndition, the maximum value can
be sdleded as the first one, the last one, or the
middle of them, with the latter usualy being
chosen. X’

e Center of Gravity of afuzzy set B':

W = M (3.18)
ey |

As we mentioned in Sedion 2, the Defuzzfication
Interface may operatein two ways™"=":

(8) Mode A: Aggregation first, and defuzification after.
Firg, the Defuzzification Interface performs the
aggregation to accomplish the also operator, of the
individual fuzzy sets inferred, B, to oltain the final
output fuzzy set B'. The aggregation operator modeling
that connedive also ordinarily is the minimum or the
maximum. To perform the defuzzification of the fuzzy
fina set B', any of the following strategies may be used:
« Midde of Maxima (usualy called MOM):
yo= % (3.19)
wheny; = Min{Z g (2 = Max ug (Y)} and y, =
Max{Z/ pg (2) = Max g ()}
o Center of Gravity, for which the epresson was
shown before.

Combining the two posshilities expressd for the also
connedive ad these two defuzzfiers we obtain four
methods:

e D;: Midde of Maxima of the fuzzy set B', result of
the aggregation of the individual fuzzy sets B'; with
also connedive Minimum.

e D, : Center of Gravity of the fuzzy set B’, result of
the aggregation of the individual fuzzy sets B'; with
also connedive Minimum.

o D3: Midde of Maxima of the fuzzy set B', result of
the aggregation of the individual fuzzy sets B'; with
also connedive Maxi mum.

e D, : Center of Gravity of the fuzzy set B’, result of
the aggregation of the individual fuzzy sets B'; with
also connedive Maxi mum.

(b) Mode B: Defuzification first, and aggregation after:
This mode avoids the sometimes complex computation
of the final fuzzy set B' by considering the @ntribution
of each rule output individualy, obtaining the fina
control action by taking a cculation (an average, a
weighted sum or a seledion of one of them) of a concrete
crisp characterigtic value asciated to each of them.
There is a large group of defuzzfication methods in
Mode B in the spedfic literature. We have sdleded four
of them which showed the best behaviour in previous
works. They can be dassfied in dfferent families
depending on the kind of calculation performed:

« Sums weighted by importance degrees."*** For
example:

e Ds: Maximum Vaue weighted by the matching:
2 hi |Iji
—_ [}
> h

Yo (3.20



e Based on the fuzz set with the greatest importance
value.

* De: Maximum Value of the fuzzy set with the
greaest matching:’

B = { B, Oh=Max(h), Ot 0{L,..,m}}

Yo = G, (3.21)
e Others:

e D;: Middle of the Maximum Values:

e

m

Yo = (322
where m represents the non empty fuzzy sets
obtained from the inference process

 Dg: Center of Sums:1013

Y[ YW ely) dy
Yoz —— (3.23)
> f, nely) dy

3.2.3. Fuzz Operators: Robust Implication Operators

As we said, the mnnedive operator for the antecalents
has a low influence’ in the behaviour of the resulting
FLC. The most important choice @rresponds to the
operators in  the Inference System and the
Defuzzification Interface Particular combinations of
implication operators and defuzzfication methods may
offer excdlent aswell asbad results.

We found three basic properties for a robust
implication operator.® We used the word robust in the
sense of good average behaviour with different
applications and diff erent defuzzification methods. These
threebasic properties are:

(@ 1(h,0)=0, 7 h(0,1]
(b) 1(h,1)>0, [7h{0,1) and 1(1,1)=1
(©) 1(0,y)=0,7y[70,1] (3.24)

If we use a fuzzy implication operator that verifies these
three properties, we @n sded any defuzzfication
method with warranted good behaviour. The implication
operators sdleded in this paper that verify the three
propertiesare s, lg, 17, lg, lg and I 4.

4. Framework for Implementing Fuzzy L ogic
Controllers

In this ®dion, we ae going to show some FLC
clasgfications based on the host hardware used, software
implementation method and number of fuzzy operators
implemented for the same task.

4.1. Design Methods

There ae two main ways to design an FLC for a spedfic
application according to the host hardware:

(@ Using concrete dedronic devices for fuzzy control
applications of one of these two types:

e Fuzzy coprocessors. They are spedfic dedronics
devices to perform fuzzy inference operations being
subordinated to generic purpose microprocessors or
microcontrollers, eg., VY86C570 from Togai
Infralogic, Inc.

e Microcontrollers that have speda instructions and
registersto cary out fuzzy inference e.g., Motorola
68HC12 ckvice

(b) Usng generic  purpose  MICroprocessors — or
microcontrollers that implement the FLC via
software. We find the foll owing options:

e Onthe market there ae programs call ed fuzz shells
which take the information about the Knowledge
Base and the fuzzy operators sleded by the user
from the overal data used, and automatically
generate code for severa microprocessors or
microcontroll ers.

e Taking improvement from libraries gedaly
designed for programming appli cations with FLCs.

e FLC Based on aTahle, where the fuzzy inferenceis
not performed in real-time. A table with the pairs of
input and output variables presented by an FLC is
built. Then, the hardware generic controller only
performs an interpolation between the values of the
table. This solution is caried out when the fuzzy
inference processistoo dow in the cntrol computer
and the application nedals the quickest response. The
scheme of the FLC that fills the table may be
accomplished with any of the two previous methods
mentioned.

e Making al the code of user’s own. In this paper, we
are going to help the software implementation of the
FLCs for use with generic devices. This option will
mainly produce FLCs with lower speed response
than the ones based on a spedfic hardware. Despite
that, this way is more flexible from the FLC
designer point of view, ohtaining better adapted
contrallers in a general scientific point of view, and
to study the behaviour of the different design options
of the controller. This way is the preferable one,
because it lets you test many options by changing
only code instead o any kind of eledronic devices.

4.2. Software Implementation Methods

e Exact Method: It works by first calculating the
parametricad representation of the fuzzy sets inferred
for every implication operator that we want to use.



The result of this gudy must be achived on a data
structure. The main drawback of this method is that
it neads the prior cdculation of the parametric
expressons of the fuzzy sets before implementing
the FLC.

e Approximate Method: Due to the dted
disadvantages, people use to avoid performing these
previous cal cul ations discretizing the universe of the
consequent in a predefined number of points. This
method will be dower than the exact one from a
computational point of view, and it will use more
memory. The predsion will be in line with the
granularity in the discretization and the lower the
efficiency and speed response is, the higher this
discretization level is. On a other hand, its
advantages are that there is no neel to calculate the
parametricd representation of the output and his
ability to deal with implicaion operators that
describe fuzzy sets with curved zones. These ones
could be diredly incorporated into this approximate
method while the exact method neels additional
complexities because it has no way of knowing
whether the line that conneds two points is a airve
or not.

4.3 Types of Fuzz/ Logic Controllers

We may distinguish two kinds of FLCs according to the
number of fuzzy operators implemented for the same
task:

e Monooperator FLCs. Contrallers with a fuzzy
operator per task. Thisisthe mnventional FLC used
for spedfic applications (eg., embedded
controllers). Their data structures are exclusively
adapted for the fuzzy operators used. The algorithms
ae the dgmplet and sometimes different
components of the FLC are cmndensed in the same
code.

e Multi-operator FLCs: Controllers that have some
available user sdledable fuzzy operators for the
same task in the implementation. Data structures
must be generic. Different component codes are
clearly distinguished. These FLCs let us compare the
behaviour of different FLCs built with dfferent
fuzzy operators. A flexible Multi-operator FLC
could be used to generate several tables of input /
output pairsto implement embedded FLCs based on
atable

At this point, it is important to mention that Mono-
operator and Multi-operator FLCs could be implemented
using Exact or Approximate Methods. But normally,
during the design, if we ae using a single operator for
the Inference System and a single operator for the
Defuzzfication Interface (Mono-operator FLC), we will
study the resulting expressons in order to condense and
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smplify the daa sructures and agorithms.
Simplifications must be wired in the program code. This
is coherent with the philosophy of practica and
embedded FLCsin which the @ntrol computer isasmall
system where resources must be cutiously optimised.
By other hand, Multi-operators need well separate data
structures and algorithms in other to assmble different
inference operators and defuzzification methods.

5. Software | mplementation of Fuzzy L ogic
Controllers: Data Structures

The coice of the data structures is not a unique solution
and sometimes depends on the compiler or interpreter
used. In this paper, we are going to describe the more
usual data structures to implement generic FLCs. In the
following, we shall discuss the Knowledge Base and
Inference System data structures.

5.1. Knowledge Base Data Structures

As sid in previous ®dions, the Knowledge Base data
structure must involve the @nceptual information
clasdfied into Data Base and Rule Base. Generally,
except for spedfic applications (adaptive FLCs that
modify their behaviour norms depending on the results
obtained by the @ntrol action previousy administered),
the Knowledge Base is a dstatic data structure with a
predefined size and fixed contents. The Knowledge Base
data structure and its corresponding information must be
spedfied before the FLC begins to work. The
information about the fuzzy sets asociated to the
linguistic terms employed in the fuzzy rules compounds
the Data Base. In order to smplify the alculations,
linea piecavise membership functions are wnsidered
and every fuzzy set is usualy described hy threeor four
points Xo,X1,X0,X3 (Figure 2), that is, depending on the
membership function shape triangular or trapezoidal
fuzzy sets.

1r--------

Xp X X5 Xz
Fig. 2. Trapezoidal Fuzzy Set.

The values of these threeor four definition points in the
fuzzy set correspond to the place that it has in the
universe of the arresponding variable. Figure 3 shows
an example of a variable universe split into five
trapezoidal fuzzy sets.



V8 § M L VL

0
Fig. 3. Fuzzy partition with fuzzy sets VS (very small),
S(small), M (medium), L (large) and VL (very large).

Therefore, each fuzzy set from each one in the variable

fuzzy partitions must be described and stored in this way,

so forming the Data Base. The Rule Base information
stored is a set of rules where each one refers to the
corresponding fuzzy setsin the Data Base.

We are going to propose two possble data sructures
to store the Knowledge Base that wil | be used depending
on the capabilities of the amding language used:

(a) For an advanced compil er, an optimal data structure
may consist of an array of remrds, where ech
record could be arulein the Rule Base having some
fields, the variables of the rule (antecalents and
conseguents), which would be of numeric or pointer
type. These numbers or pointers will be the
reference to another array of fuzzy sets, i.e, an
array of reaords which again hasthreeor four fields
asociated depending on the form of the fuzzy sets,
whether triangular or trapezoidal as mentioned.
This second group of fields would be of areal or a
floating numerical type. Figure 4 shows this data
structure in the case of rules with two antecedents,
a, and a, , and asingle mnsequent c.

RULE BASE: Array of Rules

(b)

Sometimes it may be useful to consider a variable
number of rules or fuzzy sets for severa
Knowledge Bases. In those ases, static arays can
be replaced by lists on dynamic memory.

When we use microcontrollers, it is usua to have a
simplelanguage ommpiler (e.g., any ANSI C subset)
or a language interpreter (e.g., Intel MCS BASIC-
52) that only allows us to use plain data structures
and not to manage recrds. Thus, it is not posshle
to use the previoudy introduced data structure. In
these @ses, the data structure shown in Figure 5
may be considered. It only uses arrays of red or
integer numbers.

The structure is based on considering as many
arrays as antecalents, consequents, and definitions
points used in the fuzzy sets. Figure 5 shows an
example for trapezoidal fuzzy sets.

The Data Base is gored on the arrays of real
numbers X0, X1, X2 and X3. Each cdl in these
arays has the information reated to a
corresponding definition point. In Figure 5, they are
marked with the legend &, fs, X standing for the
information of the antecadent i (i takes values from
1to 2if we have rules with two antecalents), fuzzy
set j (j takes values from 1 to the totad number of
different fuzzy sets defined for the antecadents and
consequents), and obvioudly to the definition point
k of the fuzzy set. The dimension of these araysis
the total number of definition points which is easy
to compute as the product between the number or
rules and the sum of antecedents and consequents.

\

DATA BASE: Array of Fuzzy Sets

Fig. 4. A possble data structure for the Knowledge Base.
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The Rule Base is gored on the three arays A1,
A2 and C. The dimension of these arays is the
number of rulesin the Rule Base. Therules alude
to fuzzy sets that are stored on the Data Base
(represented by means of arrows in Figure 5).
Thus, the integer number stored on each cdl of
these arays points to a fuzzy set on the arays
used to store the Data Base, X0, X1, X2 and X3.

For example: We have a Rule Base with seven
rules with two antecalents and a singe
conseguent. The antecalent fuzzy partition has 10
and 3 fuzzy sets, respedively, whilst the
consequent fuzzy partition has 5 fuzzy sets. The
Data Base presents trapezoida fuzzy sets (four
definition points). Then, the aray dedaration for
the Intel MCS BASIC-52 code will be:

100 REM Rule Base with 7 rules.

110 DIM A1(7)120 DIM A2(7)130 DIM C(7)

140 REM Data Base with 10+3+5=18 fuzzy sets.130
DIM X0(18)140 DIM X1(18)150 DIM X2(18)

160 DIM X3(18)

The result is a very easy to use structure, e.g., if
we neal the sewmnd definition point of the
consequent on rule i, we will use x1(c(i))

This data structure can also be esily mapped
for asembler coding in the amount of addressed
memory on the microcontroll er based system.

5.2. Inference ProcessData Structures
The inference processneeds two data structures:

(@ A Matching Vector: It isalist of red numbers that
will temporarily store the matching for each rule of
the Knowledge Base. Usually, it isimplemented as a
static aray because the number of cdls is usually
small and previously known. For example, the array
dedaration for the Intel MCS BASIC-52 code will
be:

170 DIM H(7)

when we ae using seven rules in the Knowledge
Base.

a, | a | a a, C

X0| fs, | f5,| s, fs, fs,,
Xl X X Xy Xg

T T T

a, | a | g a, C

X1| fs, | 15, s, fs, fs,,
X | x| % X, X,

T T T

a, | a,| a, a, c
X2 fs, | 15, fs, fs, {5,
Xal %3] % X; X5

T T T

a, | a,| a, a, C
X3| 15, | 15, 15, fs, fs,
Xy | X3] X5 X3 X

>
|
E
||

|
|
| |

Fig. 5. Another data structure for a Knowledge Base.

12



(b) Consequent Vectors : They store the final result of
the inference process. These vedors are taken as
input by the Defuzzfication Interface The data
structure depends on the kind o software
implementation of FLC:

e When they are implemented with the Exact
Method: Some lists of description points will be
used. Each list will contain the inferred fuzzy
set proceeding from a rule. The points has two
coordinates, that is, two real numbers. The
length of the lists is variable. They must be
all ocated on dynamicd memory.

e When they ae implemented with the
Approximate Method: N lists or arrays of points
will be used (being N the number of rules in the
Knowledge Base). The length is fixed and equal
to the number of points of the discretization.

In Mono-operator FLCs, when a Mode B
defuzzification method is employed, Inference
System and defuzzfication method may be
condensed in a single algorithm, then Consequent
Vedors are not neaded. We shall ded with this in
foll owing sedions.

6. Software Implementation of
Contrallers: Algorithms

Fuzzy Logic

This subsection shows the algorithms for performing the
different components of an FLC: Fuzzification Interface
Inference System and Defuzzification Interface, pointing
out the Mono-operator and Multi-operator FLCs
differences when they are required.

6.1. Fuzzfication Interface

The most widely used and simplest way to perform the
Fuzzification Interface in fuzzy control is by applying
the singleton fuzzfier, as we said in the precaling
sedion. The singleton fuzzification does not need any
operation because the aisp values of the inpu variables
are the only ones in which the fuzzy sets take value 1,
with it being 0 otherwise. That is, the values of the input
variables diredly represent the singleton fuzzy sets
centered an them in the implementation.

M, if X=X

A= %) otherwise D

6.2. Inference System

The matching cdculation is caried out by going through
each rule in the Knowledge Base and calculating the
intersedion point h; between the singleton fuzzy set A’
(obtained from the input x;) and the fuzzy set of the rule.
If the rules have more than one atecalent, the
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corresponding intersedions of the other fuzzy sets must
be computed with their respedive singleton fuzzy sets,
aso oltaining as many h; values as antecadents.

Xg ¢ x X, X
Fig. 6. Computing the matching, h;.
The different zones existing in the fuzzy set should be
observed in order to compute the matching values. For
example, in Figure 6, five posshle zones must be

considered. Here ae these zones and the expressons of
the height of the crresponding input value:

() & <x:h=0

(i) x<g<x:hz= 22
X1— X0

(i) x<g<x:hj=1

(V) X<g<xs: hj= a-x
X2 — X3

(V) x<¢g:h=0 (6.2

where g isthe airrent value for theinput variable x.

After that, the mnnedive operator must be applied in
order to oltain the ith matching value h,, with i=1 to N,
with N being the number of rules in the Knowledge Base.
If the connedive operator of the rules is a @njunction
AND, then the function applied will be at-norm (e.g., the
minimum). But, if the @nnedive operator is a
digunction OR, then the function applied will be a t-
conorm (eg., the maximum). Figure 7 gaphicdly
shows the application of the minimum t-norm resulting h,
= Min (hig,hip).

Fig. 7. The minimum as conjunction connective AND.

We showed’ that the choice of the t-norm that implement
the @nnedive operator conjunction does not
significantly affect the accuracy for the response of the
FLC. The h; values must be stored in an array or list of
red numberswith size N (the Matching Vedor).

For example, here is the Intel MCS BASIC-52 code
to compute the Matching Vedor H. We use the Data
Base and Inference System Structure shown in the
precaling subsedions, seven rules, two antecalents and
trapezoidal fuzzy sets. The wnnedive operator AND is
applied with the minimum t-norm:



260 FORi=1TO7

270 REM Antecedent 1

280 IF el<X0(AL(i)) THEN 290EL SE 300

290 min=0

300 IFel>XO0(A1(i)) AND el<X1(A1(i)) THEN 310EL SE 320
310 min=(el-X0(AL(i)))/(XL(AL(i))-X0O(AL()))

320 IFel>X1(A1(i)) AND el<X2(A1(i)) THEN 330EL SE 340
330 min=1

340 |IFel>X2(A1(i)) AND el<X3(A1(i)) THEN 350EL SE 360
350 min=(el-X3(A1(i)))/(X2(AL(i))-X3(AL(i)))

360 IFel<X3(Al(i)) THEN 370ELSE 380

370 min=0

380 H(i)=min

390 REM Antecedent 2

400 IF e2<X0(A2(i)) THEN 410ELSE 420

410 min=0

420 IF e2>X0(A2(i)) AND e2<X1(A2(i)) THEN 430EL SE 440
430 min=(e2-X0(A2(i)))/(XL(A2(i))-X0(A2(i)))

440 IF e2>X1(A2(i)) AND e2<X2(A2(i)) THEN 450EL SE 460
450 min=1

460 IF e2>X2(A2(i)) AND e2<X3(A2(i)) THEN 470EL SE 480
470  min=(e2-X3(A2(i)))/(X2(A2(i))-X3(A2(i)))

480 |IF e2<X3(A2(i)) THEN 490EL SE 500

490 min=0

500 IF min<H(i) THEN H(i)=min

510 NEXT i

Now, we ohtain the inferred fuzzy set from each rule
using the mnsequent and the matching o each rule. The
seleded fuzzy implication operator produces an output
fuzzy set with a spedfic shape that is defined by a
parametricd expresson. This expresson is graphically
represented in Appendix A for the implication operators
presented in the precaling sedion. Usualy, the new
fuzzy sets ohtained from each rule must be stored to
perform the defuzzification. In sngular situations, it is
not necessary to store them because the Defuzzfication
Interface can act at the same time, aswe shall seelater.

The inferred fuzzy sets could be described with a
variable number of six or eight pointsin the sasme way as
the fuzzy sets for the antecalents and consequents are
described in the Knowledge Base, adding an additional
value to each one of them for the height in this case.
Thus, the data structure for these fuzzy sets will be an
array or list of points (the Consequent Vedor). For
example, if we use the minimum t-norm as an
implication operator, the inferred fuzzy sets will be like
the one presented in Figure 8. This graph is the result of
applying the minimum implicaion operator expresson
(I1(x,y)=Min(x,y)) over the matching h and the mnsequent
fuzzy set of therule.

1 ———————— T T T -
P

X Xy X, X, Xs X5

Fig. 8. Minimum implication operator.
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In the case of the minimum implication operator and
many other ones, the height information agrees with the
matching ane. The points X, and x; are the same asin the
consequent. The other two, X, and xs, can be @l culated
as the intersedion of the line that passes through x, and
x; and the line that passes through x, and x3 with the
horizontal one at height h, respedively. Then, the
expressons are;

Xs=Xo+ (Xo—Xo) [y

X5 = X3 —(Xz—X2) [y (6.3)

These epressons could be diredly incorporated to the
source @de for the FLC with their corresponding height,
h. In the same way, any other implication operator could
be used by obtaining the definition points and
implementing the  e&pressons describing  its
computation.

In those @ses that rules have more than one
consequent variable, as many different problems as
existing consequents will be mnsidered.

Now, we are going to make some mments as
regards the kind of software implementation of the FLC:

e Exact Method: The graphical representation of the
inferred fuzzy sets is required. Then, we obtain the
definition points of the inferred fuzzy set. These
points will be stored in the data structure for the
Inference System mentioned in the previous
subsedions, that is, alist of points for each inferred
fuzzy set proceeding from the rules. For example, if
we lodk at Figure 8, the definition points that will be
stored are;

(X% =%,0)
(X' =X4,h)
(%' =x%s,h)
(X3' = X3,0) (64)

where x, and x5 have to be computed with the
expresson previously shown, and X, and x; are the
definition points for the cmnsequent of the rule.
Thus, the advantage of this method from the point
of view of the Inference System is the minimum
wasting o memory, and the inference process
efficiency. The disadvantage is the requirement of a
previous gudy of the inference operator to
determine the graphicd representation and oint
expressons. If we want to add a lot of implicaion
operators, the design processwill be very hard and
error sensitive.

e« Approximate Method: The universe of the
consequent is divided into a fixed number of points,
establishing a discretization*®. The mathematical
expresson of the implication operator will be
diredly incorporated into the @de. Thus, the
inferred fuzzy set will be the result computed with



the implication operator expresson uwsing the
discretization points and the matching as inputs. A
potential discretization for the Goguen implication
operator is $own in Figure 9. The expresson of the
Goguen implication operator, as $1own in previous
sedions, is

i, ifysx
loguen(X,¥) = [J y

6.5
[y, otherwise 69

then, the discrete function f that approximatesit is:
fi = IGoguen (h ’ |) (66)

with i taking a finite number of equidistant values
between 0 and the high extent of the variable

dominion.
I S ! \
I I .
A, 4|
[ |
o Les YT
3 0% XK 5 X X

Fig. 9. An approximation to the

Goguen implication gperator.
The advantage of this method from the point of
view of the Inference System is that it does not
need a huge prior study of the implicaion
operators. But the disadvantages are the low
efficiency, the fact that the accuracy depends on the
granularity of the discretization that is inversdy
proportional to the spead, and the large amount of
wasted memory, as we mentioned in the data
structure description.

6.3. Defuzaficacion I nterface

The implementation of the Defuzzification Interface
strongly depends on the Defuzzfication Mode seleded.

Mode A:

As we mentioned, firgly, the Defuzzfication Interface
performs the ajgregation of the individual fuzzy sets
inferred, B/, to accomplish the also operator, with the
aim of obtaining the final output fuzzy set B'. The
aggregation operators modding the wmnnedive also are
usually the minimum or the maximum.

Figures 10 and 11 gaphicdly show the behaviour of
the also connedive operators maximum and minimum
respedively when applied to two inferred fuzzy sets.
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Fig. 10. Aggregation with maximum.

Fig. 11. Aggregation with minimum.

In this case, the Exact Method involves a significant
degree of complexity. The aggregation operators
maximum and minimum must act with fuzzy sets
described by redilinea segments. The data structure to
manage the inferred fuzzy setsis alist of points. A new
list must be aeaed in the aggregation procedure. The
typical way is to huild a function that aggregates fuzzy
sets two by two, that is, obtaining a new list of points
representing the aggregated fuzzy sets from the two
precaling ones. By exeauting this function as many
times as individual fuzzy sets have been inferred less
one, the final aggregated fuzzy set will be obtained. The
aggregation adgorithm will cdculate the reative
positions of the integrating segments and study their
relative position computing the crosspoints if they exist,
and adding them to the output list. Sometimes it is
interesting to design a simplification function to study
and diminate the unnecessary points added to the list.
This will improve the performance of the said
aggregation function.

The aggegation of the inferred fuzzy sets in the
Approximate Method when working in Mode A is easy
to implement with an algorithm which goes through all
the points of the discretization of the inferred fuzzy sets
computing the maximum or minimum of them, for the
two said aggregation operators. The same operation
mode may be used with any other operator modeling the
also connedive. Figures 11 and 12 graphically show the
maximum and minimum aggregation.

/ \

Fig. 11. Approximate aggregation with maximum.




In the Approximate Method the Midde of Maxima
is computed going through the discretization and
recrding the maximum height points. If the
maximum height point is not unique, then it must
be computed as the average of the lower and upper
ones as well.

/Al |

Fig. 12. Approximate aggregation with minimum.

After that, to make the defuzzfication of the fina fuzzy
set B', it could be used:

or the Center of Gravity, which exact expressoniis.

w = JYre 69)
ey

e TheMiddle of Maxima (usually called MOM):

_nty
s (6.7)
wherey, = Min{Z g (2 = Max g (y)} andy, =
Max {7 pg (2) = Max g (y)}

Yo

VAN
N o ¥

Fig. 13. D3: MOM with
also connedive maximum.

Figure 13 gaphicdly shows the previoudy called
D; defuzzfication method: Middle of Maxima of
the fuzzy set B’, result of the aggregation of the
individual fuzzy sets B’; with also connedive
maximum.

In the Exact Method, the Middle of Maxima
point is easily computed considering the different
posshiliti es:

e The maximum value point is unique: this point
will be an extent of a segment and can be
found by comparing the edtents of the
segments that compose the ajgregated fuzzy
et

* The maximum vaue is a @untable set of
points. in a smilar way, this st of points will
be the extents of segments. The final result is
computed as the average of the lower and
upper values (Figure 13).

e The maximum value is an uncountable set of
points. that is, an horizontal segment has the
maximum value. In this case, if there ae no
other single paints, the extents to compute the
middle point are the lower and upper values.
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Figure 14 gaphicdly shows the previoudly called D,
defuzzfication method: Center of Gravity of the
fuzzy st B’, result of the aygregation of the
individual fuzzy sets B’; with also connedive
minimum

W

Fig. 14. D2: Center of Gravity
with also connective minimum.

Usually, the resulting shape is not as simple as in
Figure 14. In the Exact Method, complex figures
must be decomposed into more simpler geometric
pieces between every two points. The numerator on
the expresson of the Center of Gravity is computed
as the sum of the different computations devel oped
on these simple geometric pieces. The denominator is
calculated in a similar way and finally the division is
computed. These ae the expressons for the piecesin
the two posshle ases:

Case 1:
. 1)
(KV
(n,yi)///
) o)
.00 (x0) (e )
Fig. 15. Case 1.



Numerator (LuEuA(u)du):

I X OF (X) = CDXZ;)(l + 27X (6.9)
with a bemg Y y1 ,and cbeing %
Denominator (areasL a(u)du):

I::f(x) =c(x, - X,) +aGX2;—X1 (6.10)
Case 2:
Do) [z, 5
{.0) (.
Fig. 16. Case 2.
Numerator (LuEuA(u)du):
I::fo (x) =y? a)% 6.11)
Denominator (areasL a(u)du):
I:: F(X)=y? X, - X,) (6.12)

In the Approximate Method, the Center of Gravity
will be essily computed because the integrals are
calculated assumsin dscrete @ses likethis:

ZNyJ Clte (V1)

W= ZNHB ()

with N being the number of points of the
discretization.

M ode B:

As we mentioned, this mode avoids the sometimes
complex computation of the fina fuzzy st B’ hy
considering the ntribution of each rule output
individually, oktaining the final control action by taking
a cdculation (an average, a weighted sum or a sdedion
of one of them) of a concrete crisp characteristic value
associated to each of them.

(6.13)
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The defuzzfication methods in Mode B compute the
fina value using the foll owing measures:

Importance Degrees:

e Areadf the inferred fuzzy set: It is computed as a
sum of the aeas of simple geometric figures. Area
expressons have aready been shown in the Exact
Method. The Approximate Method accomplish the
sum of the product of the function value in every
point and the length of the discretization interval.

e Matching, previously computed.

e« Heght of the inferred fuzzy set, computed in a
similar way to that described for the Midde of
Maxima for the Exact Method. In the Approximate
Method, the maximum value in the Y axis found
going through the complete discretization.

Characteristic Values:

 Maximum Vadue of the inferred fuzzy set: it is the
projedion of the maximum height point on the X
axis.

e Center of Gravity of the inferred fuzzy set:
Computed in the same way as described in
Defuzzification Mode A.

On the other hand, Mono-operator FLCs may also be
implemented using the Exact or Approximate Methods.
Then, al the previous descriptions are equally valid.
However, Mono-operator FLCs are rarely implemented
using the Exact or the Approximate Methods mainly due
to the following two reasons. they are designed for a
spedfic application and they run in embedded
computers. These issies alow us to compact the
algorithms reducing the required resources and force us
to use cmputationaly efficient algorithms, so it is
possble to comprise the Inference System and the
Defuzzfication Interface in a very short algorithm. It is
desirable to defuzzify each fuzzy set inferred before
inferring the foll owing one, because this allows us not to
storethat fuzzy set, we only store areal value. After that,
we do the simple caculation proposed hy the method to
obtain the final value with N precaling values.

Neverthdess it is not posshle to compact the
algorithms in a Mono-operator FLC when working in
Mode A. Therefore, practical Mono-operator FLCs for
embedded applicaions must be implemented using
Defuzzification Mode B. Moreover, when FLCs built in
this way present the best behaviour in many cases. In
Sedion 3.2.3, we showed the @nditions for the fuzzy
implication operators to oltain the best FLC acaurac/®
without usng complex operators with dfficult
implementations.

As we have said, Mode B defuzzfication methods
are easy to implement. The different options for the
Defuzzfication Interface shown in the precaling



sedions were based on operations related to the
calculation of the Value of Importance and Characteristic
Values. When the membership function of the inferred
fuzzy set is known, this advantage must be used to
diredly incorporate the simplified mathematical
expressons to compute the crisp autput. Defuzzification
Mode B espedally benefits from this: it computes an
easy calculation on known forms. For example, the
Maximum Vaue of a symmetric trapezoida fuzzy set
will besmply (X;+X)/2.

Thus, following with the example of how to
implement an FLC in Intel MCS BASIC-52 language: et
us go on to seethe mmpact form of the Inference System
and defuzzfication method, if the former uses the
minimum implication operator and the later is based on
the Maximum Vaue weighted by the matching, the
implementation will be:

Yo=— (6.14)

The BASIC-52 codeis:

520 suml1=0

530 sum2=0

540 FORi=1TO7

550 suml=suml+(H(i)* (X1(C(i))+X2(C(i)))/2)
560 sum2=sum2+H(i)

570 NEXTi

580 y=suml/sum2

with y being the crisp autput.

7. Comparative Study of Approximate and Exact
Methods

We are going to compare the behaviour of the two
methods presented for implementing Multi-operator
FLCs, in order to determine the loss of predsion
achieved by the sometimes used quick method to
construct them.

Three applicaions have been considered to anayze
the behaviour of the fuzzy implication operators seleced
in the two implementation methods for the Multi-
operator FLC: the fuzzy modeling of the simplest
functional relation Y=X, and o a threedimensiona
surface, andthe well known problem of the @ntrol of the
inverted pendulum. A description of the three
applicationsisto be found in Appendix B.

The Medium Square Error (SE) has been calculated
as an FLC performance measure:”®

1 .
=% (v, -Shilx) )
Se sfii]) = 2 2 N

(7.1)
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where §[i,j] denotes the FLC for which the Inference
System uses the implication operator |;, and for which
the Defuzzification Interface is based on the
defuzzificacion method, D;. This measure enploys a set
of system evaluation data formed by N arrays of
numerical data Z=( X, Yk ), k=1,...,N, with x, being the
values of the state variables, and y, the rresponding
values of the associated control variables.

The mnjunctive operator used for the experiments
was always the minimum tnorm.

In order to see the dependence on the discretization

granularity in the universe of the mnsequent variable
when working with the Approximate Method, we have
used two partitionswith 25 and 1@ points.
Tables 1 to 3 in Appendix C show the SE vaues
obtained in the Y=X application (see Appendix B) with
the Exact Method, and the Approximate Method with 25
and 10 point in the discretization interval, respedively.
Tables 4 to 6 presents the @rresponding ones for athree
dimensional surface (seeAppendix B), and Tables 7t0 9
theresultsfor theinverted pendulum (seeAppendix B).

Some implication operators (4, lg, and lg) present
problems (marked with “ * ” on the Tables 1 to 12) when
making inference due to the discontinuities that appea in
the inferred membership functions. In those @ses, we
only used Defuzzification Mode B, which defuzzifies the
one-element to that single dement exactly. We do not
aggregate fuzzy sets of thiskind.

Tables 10, 11 and 12show a summary of the results
inTables1t0 9.

Next, we present some omments as regards these
tables:

As regards the two implementation methods:
Characterigtic Values:

e SE vaues are, in genea, very similar in bah
methods. Good combinations of operators usually
show the same good behaviour in bah
implementations. Therefore, the choice of
implementation presents less importance than the
operator seledion.

e The Exact Method aways $ows the predse results
of the fuzzy operators. This is the reason for the
lower error generaly presented when using it.
However, a small number of combinations of fuzzy
operators  $iow lower erors when they are
implemented with the Approximate Method. This
fact could be apparently contradictory, but there is
no contradiction because the smoathing effed
performed by the Approximate Method on the
membership function of the inferred fuzzy sets is
advantageous in a few cases. This improvement in
the acauracy for these @mbinations of fuzzy
operators does not correspond to a true goad
behaviour for them.



Table 10. SE abdract of the Y=X application.

Exact Method Approximate Approximate
Method N=25 Method N=100
|2 IlO |2 IlO |2 IlO
D, 0.0962 0.06604 0.2019 29883 01079 20120
Ds 0.0498 00498 Q0623 02970 Q0921 02788
Table11. SE abgract of the three dimensonal surface application.
Exact Method Approximate Approximate
Method N=25 Method N=100
Il IlO Il IlO Il IlO
D, 0.3494 35258 03621 42172 03504 Q3613
D, 47566 03481 47566 09301 47543 (07621
Table 12. SE abdtract of the Inverted Pendulum appli cation.
Exact Method Approximate Approximate
Method N=25 Method N=100
2 s 2 s 2 s

D, 68263 200044 113153 237639 69193 227012

Ds 64257 64257

97206

97206 64257 64257

e Some combinations of fuzzy operators show highly
significant differences when they are implemented
with the Exact or the Approximate Method, e.g., |g
and | 3. The source of this disparity may be found hy
studying the membership functions for the inferred
fuzzy sets of both implication operators (shown in
Appendix A) in combination with the concrete
defuzzfiers used. These two gperators present more
than one maximum value point or one continuous
maximum value point. For example |, has two
separate maximum value points. This stuation
introduces a significant error in the Approximate
Method, when it defuzzifies with a maximum value
defuzzifier because the dgorithm only finds one
maximum value point. The other maximum value is
not considered to be at the same height because the
approximation makes one of them bigger than the
other one. As we mentioned in the precaling
sedions with resped to the implementation of
defuzzifiers, when more than one maximum value
point appeas, the result is computed as the average
for them. That is, the Exact Method places the result
of the defuzzfication in the centre of the inferred
fuzzy set whil &t the Approximate Method places it at
one of the etents too far away from the other
solution. This fact is highly significant in the @ase of
l10, espedally when the matching values are lesser
than Y.

As regards the behaviour of the fuzzy operators:

« As we showed in precaling works™®, T-norms are
very robust implication operators regardless of the
implementation method, that is, they show good
average behaviour in different applicaions and in
combination with dfferent defuzzfication methods.
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In the same way, Implicaion Functions are not
robust implication operators for fuzzy control.

8. Concluding Remarks

In this work we have studied the usual ways to
implement practical FLCs.

When we design a spedfic FLC, we must use good
fuzzy operators, and we must sded an easy way to
implement them. Sedion 3.2.3 shows the three basic
properties to have a robust implication operator, i.e., an
operator presenting good average behaviour with
different applicaions and in combination with different
defuzzification methods.

Besides, if we nead a quick FLC, efficient
considerations must be added. All these requirements are
complete if we use the minimum or the dgebraic product
t-norms as the implication operator in combination with
the maximum value weghted by the matching
defuzzfier. An example cwde of Mono-operator design
for a spedfic embedded practical FLC with the Intel
MCS-52 microcontroller has been shown. It was
developed in Intd BASIC-52 and, therefore, it is only
remommended for teaching purposes or for applications
that do not need the fastest answer.

As regards the Multi-operator FLC implementation
methods, we have shown that the results are false in
different ways in the Approximate Method. In the best
cases, it introduces impredsion or produces a low
artificia rdiability, but in the worst cases, it produces
significant variations. To study the pernicious effeds of
the Approximate Method, the first step is to oltain the
geometrical study of the inferred fuzzy sets, losing the
primary advantage of this method with resped to the
Exact Method.
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Appendix A: Graphical representation of the membership functions of the inferred fuzzy sets for the Implication

Operators presented

=
|
|
|
[

4 X X5 X,
Fig. 18. I, (Goguen)

N XX X X X
Fig. 19. I3 (Lukasewicz)

1 -— -

X Xa% Xz X5 X5

Fig. 21. Is (Logical Product)

Fig. 22. I¢ (Algebraic Product)

22

Xy X4 X5 X X, X, X X3

Xy X5 Xy X X, X, X X3

Fig. 26. 19 when h< %

Xq X, X X, X5 X3

Fig. 28. ;o when h< ¥



Appendix B: Applications Description

Three applications have been sdeded to analyze the
behaviour of the Multi-operator FLC implementation
methods. the fuzzy modding o the smplest functional
relation Y=X and o athreedimensional surface and the
widely studied probem of controlling the Inverted
Penduum.

The sdledion of the first application is based on the
studies developed by Cao and Kandel* which state that
the independence between the appli caion considered and
the acauracy oktained by the FLC is a very important
fact in the comparison of the influence of the fuzzy
operators used to design it. Hence in order to avoid the
lack of generdlity in a fuzzy modd, we are going to work
with the simplest functional reation Y=X, making a
fuzzy model of it in theinterval [0,10].

In this case, the five linguistic labels {VS, S, M, L,
VL} are used to make a fuzzy partition of the domain of
the variables X and Y, where:

VSisvery small,
Sissmall,

M is medium,

L islarge,

VL isvery large.

The rresponding membership functions presented by
Cao and Kandel,* are shown in Figure 29:

1 VS S M L VL

T T 1T 1T T 1T T T°"1
1 2 345 6 7 8 9 10
Fig. 29. Fuzzy partition consdered
For the modeling of function Y=X

and the Knowledge Base presents the following five
control rules:

If X isVSthenY isVS,
If XisSthenY isS,
If XisMthenY isM,
If XisLthenY isL
If XisVLthenY isVL

In this application, the set of evaluation data used to
compute the acauracy of the implication operators is
composed of 41 data pairs with a frequency of 0.25 in
theinterval [0,10].

The threedimensional surface F; is shown in Figure
30, along with its mathematicd expresson.

23

X, + X, * X,
X, =20 X *X, + X,
x,,x, 0[04],F, (x,,x,)0[0,10]

F, (X,,X,)=10e (A.B.1)

Fig. 30. Graphical representation of function F;

The domains of the input and output variables of F, are
fuzzy partitioned by using seven linguistic labels, called
{NB, NM, NS, ZR, PS PM, PB} where

NB is negative,
NM is negative medium,
NSis negative small,
ZR is zero,
PSis positive small,
PM is positive medium,
PB is positive big.
Figure 31 shows the assciated membership functions:

EZ W& K ! L WL EL

0.5

0

Fig. 31. Fuzzy partition considered
for the modeling of function F;.

For the eperiments deveoped with function F;, a
Mamdani-type Knowledge Base (KB) of 49 rules has
been generated from a training data set by means of the
Wang and Mende generation process® The KB
generated is shown in Figure 32. The processconsidered
is characterized by performing the rule generation
following an indwctive aiterion reating to the wvering
of the data. Therefore, the KB obtained by this method is
not dependent on the mncrete Inference System used to
make inference which isamajor requirement in order to
adequately compare the behaviour of the implication
operators. The training data set, consisting o 674
examples, has been ohtained by generating the input
variable values uniformly distributed in the variable



domains and by computing the associated output value
using the expresson of the function. Subsequently, a test
data set, formed by 67 peces of data, and oltained by
generating the date variable values at random and
computing the associated output variable value, will be
used to measure the accuracy of the implicaion
operators.

Table 13: RuleBasefor Fy

X2
ES VS S M L VL EL
ES ES ES ES ES ES ES ES
VS EL M S VS VS ES ES
S EL L M S VS VS ES
X1 M EL VL L M S VS ES
L EL VL VL L M S ES
VL EL EL VL VL L M ES

EL EL EL EL EL EL EL ES

The inverted pendulum system® is shown in Figure 32.
On the assumption that |©] < 30°, the behaviour of the
pendulum is achieved from the foll owing equation:
mﬁw:I—(—F +mgsin® —kw)
3 2
with m being the massof the penduum, 2 1 its length and
ke being an approximation of the friction strength.

The system state variables are the penddum angle,
©, and the change of angle, w, whereas the ntrol
variable is the force F to apply over its gravity center.
The universes of discourse for these variables are the
following:

(A.B.2)

w [0[-0.8645,0.8645] rad/s
© 0[-0.5283,0.5283 rad
F 0[-3003.8,3003.8] Nw

In order to cary out our study, we have worked with a
simulation model of the system using the parameters m
=5kgand21=5m.

mg \

Fig. 30: Inverted pendulum.

The linguistic variables are partitioned by using the
seven linguistic |abels contained in the foll owing set:'#*

{ NB, NM, NS, ZR, PS PM, PL }
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where N is negative, P is positive, B is hig, M is
medium, Sissmall and ZR is zero.

The membership functions corresponding to each
element in the lingugic st have been oltained
following the methodology proposed by Liaw and
Wang.*® The trapezoidal-shaped membership functions
shown in Figure 33 are used by scaling the interval [-6,6]
to the one @rresponding to the spedfic variable.

NB NM NS ZR PS PM PB
1)f

3-2-1 012 3 456
Fig. 33. The domain partition

in the inverted pendulum problem

The Knowledge Base used to control the system is
congtituted by the seven linguistic control rules shown in
Table 14%°. The set of evaluation data used to compute
the SE has 200 data arays in the form (value of ©, value
of w, value of F) belonging to the intervals © O [-
0.258,0.2569] rad, w O [-0.4244,0.4244] rad/s and F O
[-1474.05, 1474.05] Nw in the inverted pendulum
problem.

Table 14: Control rule map of F
e
NB NM NS ZR PS ™M

NB
NM
NS

NS
NM
ZR

ZR

ZR

PS PS




Appendix C: Application Results

Table 1. Exact Method for the X=Y appli cation.

1y

2

I3

l4

ls

ls

7

IlO

D, 01372 Q0000 Q0000 * 01616 12561 01616 * * 0.6585
D, 12859 00962 16443 * 01860 09241 (01860 * * 0.6604
D; 43750 43750 43750 * 01612 08689 01612 * * 0.8197
D, 43750 43750 43750 * 03768 08844 (03768 * * 0.9278
Ds 02220 00498 00498 00498 00498 (00207 00498 Q0498 00207 Q0498
Ds 02622 02062 02062 02062 02062 02896 02062 Q02062 02896 02062
D, 22874 20684 20684 20684 02141 01636 02141 02141 01636 02141
Dg 38089 34280 39436 14868 Q3030 02318 03030 02530 01155 02085
Table 2. Approximate Method with 25 points for the X=Y appli cation.

l1 I I3 4 Is le I7 g lo l10
D; 01995 00191 Q0639 * 02068 06497 02068 * * 0.3134
D, 13792 02019 16510 * 15532 38708 15532 * * 2.9883
D; 43738 43738 43738 * 02057 Q03815 02057 * * 0.4582
D, 43738 43738 43738 * 03448 02200 (03448 * * 0.3103
Ds 02868 00623 00623 Q0670 Q0623 Q0316 Q00623 Q01019 06811 (02970
Ds 03936 03207 03207 03910 Q03207 Q3807 03207 Q3497 05856 05179
D, 23035 20432 20085 19196 02392 01793 02392 Q03122 13613 (08358
Dg 38044 34061 39292 27448 02873 (02106 02873 01891 10861 02242

Table 3. Approximate Method with 100 mintsfor the X=Y application.

l1 I I3 4 Is le I7 F lo l10
D; 02054 00231 Q0877 * 01933 06834 01933 * * 0.3223
D, 13884 01079 17058 * 10897 11857 10897 * * 2.0120
D; 43738 43738 43738 * 03227 04015 03227 * * 0.6272
D, 43738 43738 43738 * 04004 Q02787 04004 * * 0.3360
Ds 02907 00921 00921 Q0619 Q00921 Q0619 Q0921 Q0921 Q7085 (02788
Ds 05875 05176 05176 05955 05176 05955 05176 05176 (07820 (07369
D, 22578 20410 20046 18770 02506 Q01993 02506 Q02506 13786 Q7277
Dg 37940 34105 39311 27063 03256 02575 03256 02186 11086 02483

Table4. Exact Method for the three dimensional surface gplication.

l1 I I3 4 Is le I7 F lo l10
D; 03494 19217 02943 * 19529 20073 19529 * * 3.5258
D, 31681 19340 35946 * 19551 19630 19551 * * 3.5251
D; 54630 54630 54630 * 03987 04569 (03987 * * 0.3987
D, 54630 54630 54630 * 02608 02020 02608 * * 0.1996
Ds 01338 00661 Q0661 Q0661 Q0661 Q0445 00661 Q0661 00445 (00661
Ds 03875 03987 03987 03987 03987 04569 03987 Q03987 04569 (03987
D; 47566 47267 47267 47267 03481 (03363 03481 03481 03363 (03481
Dg 54067 53057 54200 50598 01872 01454 01872 01580 01138 01770
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Table5. Approximate Method with 25 points for the three dimensional surface gplication.

l

I, I3 Iy Is

ls

7

lg

IlO

D; 03621 19176 Q3172 * 19500 19772 19500 * * 4.2172
D, 31239 19341 35336 * 52868 54630 52868 * * 5.4630
D; 54630 54630 54630 * 04263 04569 04263 * * 0.5919
D, 54630 54630 54630 * 01935 01388 01935 * * 0.1853
Ds 01338 00581 Q0579 Q0445 Q00579 Q0445 Q00579 Q0579 14925 02420
Ds 03875 04263 04263 04569 04263 04569 04263 04263 04263 05919
D; 47566 47344 47165 46791 Q3377 Q3363 03377 Q3377 31969 (09301
Dg 54059 53132 54185 52561 01381 Q0971 01381 01148 03990 (01656
Table 6. Approximate Method with 100 mintsfor the threedimensional surface application.

l1 I I3 4 Is le I7 F lo l10
D; 03504 19198 02978 * 19520 20016 19520 * * 3.6713
D, 31679 19333 35748 * 30742 43197 30742 * * 4.9558
D; 54630 54630 54630 * 04025 04612 04025 * * 0.5357
D, 54630 54630 54630 * 02448 01847 02448 * * 0.1961
Ds 01286 00641 00638 00468 00638 Q0468 00638 Q0638 15210 02199
Ds 03860 04025 04025 04612 04025 04612 04025 04025 04025 05357
D; 47543 47424 47245 46828 03450 (03389 03450 03450 32231 (07621
Dg 54069 53115 54195 52546 01757 01321 Q1757 01352 03927 01749

Table 7. Exact Method for theinverted pendulum application.

l1 I I3 4 Is le I7 F lo l10
D, 86656 68263 68263 * 200044 854851 200044 * * 6413.2
D, 295032 128516 366495 * 200044 715389 200044 * * 6434.5
D; 18302.0 18302..0 18302.0 * 202891 705929 202891 * * 20289.1
D, 18302.0 18302..0 18302.0 * 6580.7 577057 65807 * * 8244.4
Ds 64257 64257 64257 64257 64257 64257 64257 64257 64257 64257
Ds 202891 202891 202891 202891 202891 202891 202891 202891 202891 202891
D; 1352%9.6 13529.6 13529.6 1352%9.6 200044 200044 200044 200044 200044 200044
Dg 16949.6 1693D.0 1718%F.0 13758.5 69087 64257 69087 65180 69166 79638

Table 8. Approximate Method with 25 points for theinverted pendulum appli cation.

l1 I I3 4 Is le I7 F lo l10
D; 145499 113153 111723 * 237639 579081 237639 * * 94536.9
D, 317242 145614 376662 * 3367%.1 570785 3367@®.1 * * 64479.5
D; 18302.0 18302..0 18302.0 * 242053 281215 242053 * * 64306.9
D, 18302.0 18302..0 18302.0 * 65485 64817 65485 * * 85324
Ds 124796 97206 97206 12479%6 97206 124796 97206 97206 374487 260342
Ds 281215 242053 242053 281215 242053 281215 242053 242053 242053 643069
D; 1357@&.4 13537.5 13558.9 13563.7 243905 276018 243905 219233 1568M.3 592053
Dg 1700(6.3 1698%8.1 17238.8 161325 68267 64257 68267 75456 143068 82177

Table 9. Approximate Method with 100 mintsfor theinverted pendulum application.

l1 I I3 4 Is le I7 F lo l10
D, 89766 69193 70636 * 227012 599020 227012 * * 105134
D, 297273 129105 368201 * 938569 13623.1 938569 * * 3289%.4
D; 18302.0 18302..0 18302.0 * 202891 202891 202891 * * 428209
D, 18302.0 18302..0 18302.0 * 65804 64965 65804 * * 8244.4
Ds 65638 64257 64257 64257 64257 64257 64257 64257 377739 220644
Ds 204410 202891 202891 202891 202891 202891 202891 202891 202891 428209
D, 13551B.2 13529.6 1355@.2 1355(@.2 225108 225108 225108 225108 16334.3 680165
Dg 1696M.5 16947%.7 171938.0 1604%.0 69081 64256 69081 75075 143065 79635
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