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Abstract

In this contribution, we will analyse the importance of the fuzzy partition granularity

for the linguistic variables in the design of fuzzy rule-based systems (FRBSs). In order to

put this into e�ect, we will study the FRBS behaviour considering uniform fuzzy par-

titions with the same number of labels for all the linguistic variables, and considering

uniform fuzzy partitions with any number of labels for each linguistic variable. We will

present a method based on Simulated Annealing (SA) in order to obtain a good uniform

fuzzy partition granularity that improves the FRBS behaviour. It is an e�cient gran-

ularity search method for ®nding a good number of labels per variable. Ó 2000 Elsevier

Science Inc. All rights reserved.
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1. Introduction

Fuzzy rule-based systems (FRBSs) represent one of the most important
areas for the application of fuzzy set theory. These systems constitute an ex-
tension of classical rule-based systems, because they deal with fuzzy rules in-
stead of classical logic rules. They have been successfully applied to a wide
range of problems presenting uncertainty and vagueness in di�erent ways
[2,15,24].

An FRBS presents two main components: (1) the inference system, which
implements the fuzzy inference process needed to obtain an output from the
FRBS when an input is speci®ed, and (2) the knowledge base (KB), which
represents the knowledge about the problem being solved. The KB is composed
by the rule base (RB) containing the collection of fuzzy rules, and by the data
base (DB) containing the membership functions of the fuzzy partitions asso-
ciated to the linguistic variables.

Two main tasks need to be performed to design an FRBS for a speci®c
problem: to select the fuzzy operators involved in the inference system, i.e., to
de®ne the way in which the fuzzy inference process will be performed, and to
derive an appropriate KB about the problem under solving. The accuracy of
the FRBS in the solving of this problem will depend directly on both com-
ponents.

Focusing on the second design task, many approaches have been presented
to automatically learn the RB from numerical information (input±output data
pairs representing the system behaviour) when there is no knowledge provided
by an human expert. However, there is not a similar e�ort for deriving the DB,
although its design is a critical task since most of the RB learning methods
assume the existence of a previously de®ned DB, and thus it will signi®cantly
condition the behaviour of the ®nal FRBS.

A very common way to proceed involves considering uniform fuzzy parti-
tions with the same number of terms for all the linguistic variables of the
problem, that is, the same granularity. The aim of this article is to analyse the
in¯uence of the granularity of the fuzzy partitions in the FRBS performance.
To be precise, we will deal with this problem from a double perspective:
· We will try to give an answer to the question: is it a good operation mode to

consider uniform fuzzy partitions with the same number of labels for all the lin-
guistic variables?

· We will also develop an e�cient method for obtaining good uniform fuzzy
partitions ®nding a good granularity per linguistic variable.
To do so, we will work with di�erent RB automatic learning methods and

we will compare their behaviour when considering DBs with a di�erent number
of linguistic terms for each linguistic variable. The membership functions
considered will always be triangular-shaped, symmetrical and uniformly dis-
tributed, thus making the granularity of the fuzzy partitions the unique
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parameter of the DB having in¯uence on the learning method and, conse-
quently, on the ®nal FRBS behaviour. Moreover, we propose simulated an-
nealing (SA) as the method to search for a good uniform fuzzy partition
granularity, i.e., a granularity that produces an FRBS with good accuracy, and
in some cases, the one with the best behaviour.

This paper is organized as follows. In Section 2, we present the role of the
DB in the FRBS design process. In Section 3, we analyse the in¯uence of the
uniform fuzzy partition granularity on the FRBS behaviour taking three real-
world applications as a base. First, we study the FRBS behaviour considering
the same number of labels in each linguistic variable (Section 3.1), and later,
considering any number of labels in each linguistic variable (Section 3.2). Fi-
nally, the conclusions of the study are presented. In Section 4, we present a SA
method for obtaining a uniform fuzzy partition granularity with good be-
haviour and validate it on the said problems. In Section 5, some concluding
remarks are provided. A short description of the RB learning methods used in
the paper is given in Appendix A, while the characteristics of the problems
considered as benchmarks can be found in Appendix B. Finally, the SA pro-
cedure is brie¯y described in Appendix C.

2. The role of the data base in the design of FRBSs

The composition of the KB of an FRBS directly depends on the problem
being solved. The best situation is when there is a human expert able to express
his/her knowledge in the form of fuzzy rules, thus providing the de®nitions for
the DB (the relevant input and output linguistic variables for the system, the
term sets for all of them and the membership functions of the fuzzy sets de-
®ning their meaning) and for the RB (the fuzzy rules themselves). Unfortu-
nately, this situation is not very common: usually the expert is not able to
provide all this information or there is no expert information about the
problem under solving.

In the last few years, many approaches have been proposed to solve this
problem. These approaches try to automatically learn the RB from numerical
information (input±output data pairs representing the system behaviour), using
di�erent techniques such as ad hoc data-driven algorithms [2,4,18,31], least
square methods [2], gradient descent algorithms [22], hybrid methods between
the latter two ones [20], clustering algorithms [32], neural networks [29] and
genetic algorithms (GAs) [7].

As we have mentioned, there is not a similar e�ort for deriving the DB.
However, the DB has a signi®cant in¯uence on the FRBS performance. In fact,
studies such as the ones developed in [3,33] show, for the case of Fuzzy PI
controllers, that the system performance is much more sensitive to the choice of
the semantics in the DB than to the composition of the RB. Considering a
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previously de®ned RB, the performance of the Fuzzy controller is sensitive to
four aspects: scaling factors, peak values, width values and rules. For this
reason, some approaches try to improve the preliminary DB de®nition con-
sidered once the RB has been derived. To do so, a tuning process considering
the whole KB obtained (the preliminary DB and the derived RB) is used a
posteriori to adjust the membership function parameters to improve the FRBS
behaviour (for some examples of these kinds of methods, based on neural
networks and GAs, refer to [3,6,16,20]). Nevertheless, the tuning process only
adjusts the shapes of the membership functions and not the number of lin-
guistic terms in each fuzzy partition, which remains ®xed from the beginning of
the design process. Other more sophisticated approaches to learn the di�erent
DB components can be found in [11,12,14,19,26,30].

Usually, the most very common way to proceed for learning the RB con-
siders, as starting point, a DB composed of uniform fuzzy partitions with the
same number of terms (usually an odd number between three and seven) for all
the linguistic variables existing in the problem. Triangular or trapezoidal-
shaped membership functions are usually considered due to their simplicity.

At ®rst sight, the selection of the granularity level in the input and output
variable fuzzy partitions does not seem to be a DB design task as important as
the choice of the membership function shapes for the linguistic terms. How-
ever, the granularity selection plays an important role in many characteristics
of the FRBS, such as the accuracy in fuzzy modeling or the smoothness in
fuzzy control. Moreover, the granularity of the input variables speci®es the
maximum number of fuzzy rules that may compose the RB, thus having a
strong in¯uence on aspects such as the complexity of the rule learning, the
interpretability of the FRBS obtained or its accuracy.

3. Study of the in¯uence of the uniform fuzzy partition granularity on the FRBS
behaviour

Typically, the DB is de®ned by choosing an equal number of linguistic terms
for all the variables and by considering uniform fuzzy partitions in the variable
universe of discourse for these labels. This choice is not guided by any speci®c
characteristic of the problem, nor by any general rule.

In this section, we analyse the use of three learning methods to explore the
problem of granularity selection. 1 First, we constrain all the variables to have
the same number of labels. Later, each variable is allowed to have any number

1 See Appendix A for a description of them: Wang and Mendel [31], Cord�on and Herrera [10]

and Descriptive±Mogul [6] learning methods.
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of labels. In both cases, we used the interval {3±9} as possible values for the
number of linguistic terms.

To compare the behaviour of the di�erent FRBSs obtained, we consider
three real-world applications: Low voltage line length problem, Optimal elec-
trical network problem and Rice taste evaluation problem. The description of the
benchmark problems can be found in Appendix B. The set of data pairs of
every benchmark considered has been divided into two subsets, denoted
training set and test set. The former is used by the learning methods to derive
the RB composition, while the latter is used to evaluate the prediction ability of
the generated fuzzy models.

The mean square error of the FRBS over the training and test sets (MSEtra

and MSEtst) is used as a comparison measure for the di�erent FRBSs obtained

1

2jEj
X
el2E

�eyl ÿ S�exl��2

with E being the example set (training or test), S�exl� being the output value
obtained from the FRBS when the input variable values are exl �
�exl

1; . . . ; exl
n�, and eyl being the known desired value.

3.1. FRBSs with the same number of labels for each variable

In this part of the study, the three learning methods were run with the same
number of labels for all the variables. Each method was run seven times for
each benchmark. The results, the MSEtra, the MSEtst and the number of rules
(#R), are shown in Tables 1±3 (where the best MSEtst value found in each
method appears in bold type).

The analysis of these results leads us to the following conclusions:
· Di�erent learning methods generate the best FRBS design using a di�erent

value for the fuzzy partition granularity.
· The di�erence in the FRBS accuracy is signi®cant enough to validate the im-

portance of granularity selection as an important task that must be ade-
quately analysed during the RB learning process.
The MSEtst obtained in Tables 1±3 are also showed in Fig. 1. In this graphic,

it can be seen that the general behaviour of the three learning methods is
similar for each problem, but the best results are obtained using a di�erent
number of linguistic terms.

On the other hand, it is interesting to observe that an excessively high
number of labels can cause an over-®tting problem. Particularly, considering
the WM and D-Mogul methods in the low voltage line length problem
(Table 1), the FRBSs with best MSEtra use nine labels, while the value of the
MSEtst in both cases is signi®cantly worse than the one obtained by the FRBSs
with six labels (best MSEtst). The over-®tting problem is apparent when we
increase the number of labels per variable in the rice taste evaluation problem
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Table 2

Results for the optimal electrical network problem

WM CH D-Mogul

MSE #R MSE #R MSE #R

3 MSEtra 197312.81 28 419500.09 64 106260.83 17

Lab. MSEtst 174399.79 325602.87 99481.82

4 MSEtra 121435.94 49 139026.67 139 81527.64 36

Lab. MSEtst 84012.14 126107.35 74217.22

5 MSEtra 71294.41 66 127106.94 268 57071.82 53

Lab. MSEtst 80933.96 148750.57 59060.91

6 MSEtra 47972.61 92 87471.60 402 34605.73 84

Lab. MSEtst 50987.58 94282.78 44286.36

7 MSEtra 57352.08 104 72563.13 554 42223.66 125

Lab. MSEtst 49075.74 79111.33 49247.49

8 MSEtra 36906.85 130 42735.82 543 26690.70 197

Lab. MSEtst 43330.26 53596.96 32783.08

9 MSEtra 32337.47 130 50068.17 904 26850.45 200

Lab. MSEtst 33504.99 55617.92 33752.10

Table 1

Results for the low voltage line length problem

WM CH D-Mogul

MSE #R MSE #R MSE #R

3 MSEtra 594276.31 7 322227.62 9 186172.75 12

Lab. MSEtst 626566.81 293986.96 162589.45

4 MSEtra 301732.00 10 292714.53 14 200628.48 16

Lab. MSEtst 270747.46 270349.84 180553.01

5 MSEtra 298446.03 13 329726.25 20 166484.81 20

Lab. MSEtst 282058.15 306325.78 170550.12

6 MSEtra 239563.01 18 317516.65 27 161810.56 31

Lab. MSEtst 194842.84 311065.81 157403.32

7 MSEtra 222622.70 24 267923.96 32 167621.18 35

Lab. MSEtst 240018.25 249523.87 207597.64

8 MSEtra 241716.73 28 199421.39 42 149415.43 61

Lab. MSEtst 216651.60 180000.48 168025.17

9 MSEtra 197613.43 29 201272.89 47 148068.64 72

Lab. MSEtst 283645.56 224805.70 205396.95
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(Table 3). The reason is the small set of available data pairs. It is known that
for a more complex model structure, a larger training data set must be used to
obtain a well-performing model. In our case, it is easier to learn the behaviour
of the examples contained in the training set by increasing the number of la-
bels. However, the generalization capability is lost in the FRBS obtained.
Hence, higher granularity levels cause smaller MSEtra and larger MSEtst.

In view of these conclusions, we suggest to run the learning method as many
times as possible values for the number of labels considered, maintaining this
value equal for all the variables. By following this approach, we were able to
®nd the FRBS with best accuracy with seven runs (3±9 labels). The cost of this
process is relatively low, although it should be considered that some kinds of
methods have a run time that grows exponentially with the number of labels.

3.2. FRBSs with any number of labels for each variable

Next, we will analyse the behaviour of the FRBSs obtained when consid-
ering di�erent number of labels for each individual variable. The study has been
performed only with the ad hoc data-driven methods (WM and CH), because
we want to ®nd the best granularity (according to the MSEtra or MSEtst) using
deterministic methods. Carrying out this study with non-deterministic methods
that can give a di�erent FRBS de®nition for di�erent runs (such as D-Mogul) is
more complicated. This would require a large number of runs (using di�erent

Table 3

Results for the rice taste evaluation problem

WM CH D-Mogul

MSE #R MSE #R MSE #R

3 MSEtra 0.003372 20 0.003772 180 0.002429 8

Lab. MSEtst 0.002801 0.006090 0.003229

4 MSEtra 0.002618 27 0.001934 357 0.002609 21

Lab. MSEtst 0.002663 0.001731 0.002064

5 MSEtra 0.001796 44 0.001121 482 0.001160 40

Lab. MSEtst 0.010306 0.001624 0.011107

6 MSEtra 0.001741 56 0.000998 680 0.001248 59

Lab. MSEtst 0.012189 0.000917 0.018189

7 MSEtra 0.000801 59 0.000757 846 0.000803 63

Lab. MSEtst 0.017895 0.001454 0.018371

8 MSEtra 0.000773 68 0.000607 1085 0.000588 91

Lab. MSEtst 0.029282 0.010365 0.029843

9 MSEtra 0.000524 70 0.000338 1272 0.000353 115

Lab. MSEtst 0.034039 0.020294 0.045417
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seed values) followed by a statistical analysis of the results. Moreover, non-
deterministic methods require a lot of run time in most cases. In our case,
considering the said interval (3±9 labels), it would need 7n runs, n being the
number of problem variables and 7 the number of possible values of labels.

The best results obtained in the said study are shown in Table 4.
We can see that the fuzzy partition granularity that shows the best results

(both MSEtst and MSEtra) is di�erent in the two methods for all the bench-
marks. The reason is that each method uses the information contained in the
DB in a di�erent way during the learning process.

At this point, it seems interesting to use the best fuzzy partition granularity
for one learning method in the other learning methods, in order to check if
these granularity levels produce FRBSs with good performance or, at least,
with better behaviour than the best one obtained when considering the same
number of labels for all the variables. For this comparison, we will use the
fuzzy partition granularity that produces the FRBS with the best MSEtst.

Fig. 1. Comparative of the MSEtst obtained changing the number of labels.
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The results are shown in Tables 5±7 where the ®rst column (``Best Granu-
larity . . .'') contains the results of the FRBS with best MSEtst obtained for the
method considering the same number of labels for every variable. The re-
maining two columns (``With best . . .'') show the parameters associated to the
FRBS obtained using the best granularity found in the WM and the CH
method, respectively. The latter two columns comprise two subcolumns: the
MSEtst obtained using the associated number of labels and the percentage
improvement of this measure with respect to the MSEtst obtained in the ®rst
column.

Table 5

Results with the best MSEtst (low length voltage line problem)

Best granularity

(same #L)

With best WM

granularity (9 6 9)

With best CH

granularity (7 6 7)

#L MSEtst MSEtst % Improvement MSEtst % Improvement

WM 6 194842.8 146355.0 24.8% 154428.4 20.7%

CH 8 180000.4 269079.1 )33.1% 152412.4 15.3%

D-Mogul 6 157403.3 173169.1 )9.1% 167534.3 )6.0%

Table 4

Best results with any number of labels

WM CH

Low voltage line length problem Best result in

MSEtra

Granularity 6 9 9 8 8 6

MSEtra 186904.3 192498.2

MSEtst 264896.5 167731.5

Best result in

MSEtst

Granularity 9 6 9 7 6 7

MSEtra 202370.9 210983.0

MSEtst 146355.0 152412.4

Optimal electrical network problem Best result in

MSEtst

Granularity 5 7 7 7 9 5 6 9 9 7

MSEtra 24867.7 27698.0

MSEtst 26964.1 26134.3

Best result in

MSEtst

Granularity 3 4 9 8 8 3 6 9 8 7

MSEtra 26440.3 27776.1

MSEtst 24310.9 25914.4

Rice taste evaluation problem Best result in

MSEtra

Granularity 9 9 9 8 7 9 9 9 9 9 7 9

MSEtra 0.00042 0.00032

MSEtst 0.03771 0.01084

Best result in

MSEtst

Granularity 3 4 8 7 4 5 3 5 7 6 3 5

MSEtra 0.00159 0.00148

MSEtst 0.00058 0.00058
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As it can be observed, the use of the granularity that produces the best
MSEtst for a speci®c learning method does not always cause good behaviour in
another one. In some cases there is a high performance improvement with
respect to the best MSEtst found considering the same number of labels for all
the variables. In a few cases, the improvement is very small, and in other cases
the accuracy decreases.

Now, we present a similar study, but considering the fuzzy partition gran-
ularity that produces the FRBS with the best MSEtra (Tables 8±10). The results
obtained using the best MSEtra are very similar to the ones obtained using the
best MSEtst and the same conclusions can be drawn. The use of the best fuzzy
partition granularity in MSEtra for a learning method in another learning
method does not always produce good behaviour in the latter one.

Table 8

Results with the best MSEtra (low voltage line length problem)

Best granularity

(same #L)

With best WM

granularity (6 9 9)

With best CH

granularity (8 8 6)

#L MSEtra MSEtra % Improvement MSEtra % Improvement

WM 9 197613.4 186904.3 5.4% 216140.7 )9.3%

CH 8 199421.3 195989.7 1.7% 192498.2 3.4%

D-Mogul 9 148068.6 147889.9 0.1% 155151.3 )4.7%

Table 6

Results with the best MSEtst (optimal electrical network problem)

Best granularity

(same #L)

With best WM

granularity (3 4 9 8 8)

With best CH

granularity (3 6 9 8 7)

#L MSEtst MSEtst % Improvement MSEtst % Improvement

WM 9 33504.9 26440.3 21.0% 32413.3 3.2%

CH 8 53596.9 46097.5 13.9% 25914.4 51.6%

D-Mogul 8 32783.0 16482.2 49.7% 24690.0 24.6%

Table 7

Results with the best MSEtst (rice taste evaluation problem)

Best granularity

(same #L)

With best WM

granularity (3 4 8 7 4 5)

With best CH

granularity (3 5 7 6 3 5)

#L MSEtst MSEtst % Improvement MSEtst % Improvement

WM 4 0.00266 0.00058 78.1% 0.01002 )276.6%

CH 6 0.00091 0.00150 )64.8% 0.00058 36.2%

D-Mogul 4 0.00206 0.00239 )16.0% 0.01040 )404.8%
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In view of these results, we can assert the following conclusion:
The granularity of an FRBS with good accuracy obtained with a speci®c
learning method will not necessarily produce a FRBS with good behaviour
if it is used with another learning method. The granularity of a speci®c prob-
lem depends not only on the problem itself but also on the learning method
considered.
On the other hand, as shown in Table 4, the accuracy di�erence (both

MSEtst and MSEtra) among the FRBSs obtained with di�erent granularity
levels justify the need for a granularity search to ®nd the FRBS with best
performance, or at least, with an appropriate one. Furthermore, this goal must
be achieved in a reasonable amount of time. As we previously stated, it is
di�cult to run the learning method with all possible granularity levels, espe-
cially with non-deterministic methods. To solve this problem, an e�cient
granularity search method based on SA will be presented in the next section.

4. A SA based method to obtain a good uniform fuzzy partition granularity

Given an RB learning method and a speci®c problem, our goal is to ®nd the
optimal granularity level for each problem variable maintaining uniform fuzzy
partitions. Therefore, each candidate solution is a concrete granularity level
(the number of labels for each variable), and the cost function (Cost��) is based
on the MSEtra of the FRBS obtained with the RB learning method using that
granularity.

Table 9

Results with the best MSEtra (optimal electrical network problem)

Best granularity

(same #L)

With best WM

granularity (5 7 7 7 9)

With best CH

granularity (5 6 9 9 7)

#L MSEtra MSEtra % Improvement MSEtra % Improvement

WM 9 32337.4 24867.7 23.0% 38910.2 )20.3%

CH 8 42735.8 40308.6 5.6% 27698.0 35.1%

D-Mogul 8 26690.7 26805.5 )0.4% 24114.9 9.6%

Table 10

Results with the best MSEtra (rice taste evaluation problem)

Best granularity

(same #L)

With best WM

granularity (9 9 9 8 7 9)

With best CH

granularity (9 9 9 9 7 9)

#L MSEtra MSEtra % Improvement MSEtra % Improvement

WM 9 0.00052 0.00042 19.2% 0.00046 11.5%

CH 9 0.00033 0.00041 )24.2% 0.00032 3.0%

D-Mogul 9 0.00035 0.00029 17.1% 0.00038 )8.5%
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This is an NP-problem, where considering seven possible values per variable
({3±9}) and N variables, the search space is composed of 7N solutions.
Therefore, we decided to tackle the problem by means of a heuristic search
technique. Di�erent possible choices are GAs [21], SA [1], Tabu search (TS)
[13], among others. Since our goal is not only to obtain a good solution but
also to obtain it quickly, we will consider a local search technique such as SA
or TS, thus forgetting GAs for the sake of e�ciency, even keeping in mind that
they could be able to obtain very accurate solutions (GAs have been success-
fully applied to many problems in the FRBS design ®eld [5,7,17,25,27]). In this
paper, we will consider the SA procedure described in Appendix C.

The parameters of the SA procedure considered are shown in Table 11, with
L being the number of possible values for the labels (seven in our case), with N
being the number of variables of the problem considered, and with T0, Ti, Ti�1

being, respectively, the initial temperature, and the temperature in successive
iterations. Finally, l and / are the parameters that in¯uence the calculus of the
initial temperature as described in Appendix C.

The number of iterations is calculated depending on the maximum number
of solutions that can be generated and the number of solutions (state transi-
tions) in each iteration. In our proposed SA procedure, there is a relaxation of
the number of state transitions for each iteration. As described in Table 11, the
number of accepted solutions is limited to N 2. We impose this constraint be-
cause, when the temperature is high at the beginning of the algorithm, a large
number of accepted solutions could cause the procedure to move away from
the optimal solution. To address this situation we must limit the number of
accepted solutions per iteration. Other experiments were made changing the
number of state transitions in each cooling (N 4), and considering other pa-
rameters in the initial temperature calculus (l 2 �0:1; 0:3� and / 2 �0:1; 0:3�).
However, the results are similar, and sometimes worse, with a higher run-time.

Table 11

Parameters of our SA procedure

Parameter Value

Initial temperature T0 � l
ÿ ln�/� Cost�S0�

l � 0:1; / � 0:1 if N > 3

l � 0:3; / � 0:3 if N 6 3

Decrement function of the temperature (cooling scheme) Ti�1 � a � Ti

a � 0:9

Maximum Number of state transitions in each iteration N 3

Maximum number of acceptance solutions in each iteration N 2

Maximum number of solutions that can be generated by the

algorithm

LN

Maximum number of iterations allowed without improvement N
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We considered three stopping criteria to reduce the run time of the proce-
dure. They are shown in Table 12. It is interesting to note that in all the ex-
periments performed, the procedure was always terminated by the ®rst or
second stopping criteria.

The implementation of our SA procedure incorporates a taboo record of
explored solutions, along with their cost, in order to eliminate the possibility of
redundant executions of the RB learning method, with the consequent saving
of run time. We considered two possibilities for the initial solution: an infor-
mation-based one, which considers the granularity with the same number of
labels per variable producing the best MSEtra for the problem, and a random
initial solution.

Four runs of the SA procedure have been made with di�erent seeds for each
RB learning method in the three problems considered. The solutions obtained
by the SA are compared with the initial solution and the best solution found in
Section 3.2 (see Table 4), the latter one denoted by Sb. Each table of results
(Tables 16±23) has the following columns:
· The initial granularity (denoted by S0).
· The granularity found by the SA procedure (denoted by Sf ).
· The improvement percentage between the solution found and the initial

solution (regarding to the MSEtra).
· The worsening percentage between the solution found and the best granular-

ity for this method (again regarding to the MSEtra). This ®eld does not ap-
pear in the D-Mogul method tables, due to the complexity of the best
solution search, as previously said in Section 3.2.

· The number of solutions generated.
· The number of solutions evaluated (learning method runs).

The latter two ®elds allow us to know about the SA run time. The D-Mogul
method table for the rice taste evaluation problem does not appear due to its

Table 12

Stopping criteria of our SA procedure

Number Stopping criteria

1 The maximum number of iterations allowed without global improvement is reached

2 No solution was accepted in the last iteration

3 The maximum number of solutions have been generated

Table 13

Notation considered for the low voltage line length problem variables

Symbol Meaning

x1 Number of inhabitants of the town

x2 Distance from the centre of the town to the three furthest clients

y Total length of low voltage line installed
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huge run time. In every table, the four ®rst lines correspond to the experiments
of the ®rst type of initialization, that which considers the same number of la-
bels in each variable for the initial solution, and the next four lines are asso-
ciated to the experiments considering a random initial solution.

According to the results of the SA procedure, we can state that our proposal
appropriately satis®es the initial objective: ``to ®nd a good granularity level for
a determinated problem and RB learning method in a reasonable time''. The
results are of signi®cative importance in problems with high number of vari-
ables, where the number of possible granularity levels is high and the possibility
of an exhaustive search is almost impossible. In the majority of the experiments
developed for the optimal electrical network problem and the rice taste evalu-
ation problem (5 and 6 variables, respectively), the optimal granularity was
found with a low cost with respect to the size of the search space.

5. Concluding remarks

Our goal was to show the importance of the fuzzy partition granularity in
the FRBS accuracy and to propose an e�cient granularity search method. As a
result, FRBSs with better performance can be designed without making any
change to the RB learning method used, while maintaining uniform fuzzy
partitions.

With regard to the in¯uence of fuzzy partition granularity on the FRBSs
behaviour, we can state that there is not an ``absolute'' granularity level that

Table 15

Notation considered for the rice taste evaluation problem variables

Symbol Meaning

x1 Flavor

x2 Appearance

x3 Taste

x4 Stickiness

x5 Toughness

y Global valorationp

Table 14

Notation considered for the optimal electrical problem variables

Symbol Meaning

x1 Sum of the lengths of all streets in the town

x2 Total area of the town

x3 Area occupied by buildings

x4 Energy supply to the town

y Maintenance costs of medium voltage line
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generates the FRBS with best behaviour (both MSEtra and MSEtest) for all the
learning methods. An appropriate DB depends not only on the problem, but
also on the RB learning method considered. On the other hand, we have
proved that the improvement obtained using a good fuzzy partition granularity
is considerable. Therefore, we can assert that:

The choice of the fuzzy partition granularity is an important task for the
FRBS design, that should be considered since the beginning of the design
process.

With respect to the granularity search method proposed, our SA procedure
®nds a good granularity level (in some cases the best) at a very low cost if
compared with an exhaustive search. It is interesting to note that the best re-
sults were obtained in problems with a large number of variables, i.e., those
presenting a greater search space. On the other hand, the parameters used in
the SA procedure only depend on the number of variables of the problem
considered.

The next step should be oriented to relax the form of the membership
functions and to consider not only a di�erent number of labels but also non-
uniform fuzzy partitions. Our future work will be focused on this objective.

Appendix A. Learning methods

A.1. Wang and Mendel learning method (WM)

The ad hoc data covering RB generation process proposed by Wang and
Mendel [31] have been widely known because of simplicity and good perfor-
mance. The generation of the RB is put into e�ect by means of the following
steps:
1. Consider a fuzzy partition of the input variable spaces: It may be obtained

from the expert information (if it is available) or by a normalization process.
If the latter is the case, perform a fuzzy partition of the input variable spaces
dividing each universe of discourse into a number of equal or unequal par-
titions, select a kind of membership function and assign one fuzzy set to each
subspace.

2. Generate a preliminary linguistic rule set: This set will be formed by the rule
best covering each example (input±output data pair) contained in the input±
output data set. The structure of these rules is obtained by taking a speci®c
example, i.e., an n� 1-dimensional real array (n input and 1 output values),
and setting each one of the variables to the linguistic label best covering
every array component.

O. Cord�on et al. / Internat. J. Approx. Reason. 25 (2000) 187±215 209



3. Give an importance degree to each rule: Let Rl � IF x1 is A1 and . . . and xn is
An THEN y is B be the linguistic rule generated from the example
el � �xl

1; . . . ; xl
n; y

l�. The importance degree associated to it will be obtained
as follows:

G�Rl� � lA1
�xl

1� � � � lAn
�xl

n� � lb�yl�:
4. Obtain a ®nal RB from the preliminary fuzzy rule set: The rule with the high-

est importance degree is chosen for each combination of antecedents.

A.2. Cord�on and Herrera learning method (CH)

This method, proposed in [10], is an adaptation of the Ishibuchi's simpli®ed
TSK fuzzy rule generation method [18] that makes the process able to deal with
rules with fuzzy consequent. It considers the n-dimensional table representation
for the RB to generate and have two steps:
1. Fill in the table: The subset of the input±output data pairs belonging to the

fuzzy input subspace associated to every cell of this table is considered.
2. Choice of the rule consequent: The consequent associated to the rule will be

the output variable label that maximizes some covering criterion over the
training set. No rules are generated in those cells where no data are located.
Three possibilities for the covering criterion are presented next:
· Maximum covering over the example set.
· Maximum covering of the example best covered.
· Average of the previous covering degrees.

In this paper, we have used the third one.

A.3. Descriptive-MOGUL learning method (D-Mogul)

The descriptive-MOGUL learning method [6] is based on the MOGUL
paradigm presented in [9]. It allows us to automatically generate a complete
KB when a training set is available. It consists of the following three steps:
1. An iterative RB generation process of desirable fuzzy rules able to include the

complete knowledge of the example set.
2. A genetic simpli®cation process, which ®nds the ®nal RB able to approximate

the input±output behaviour of the real system. It is based on eliminating
some unnecessary rules from the rule set obtained in the previous stage,
avoiding thus the possible over-®tting, by selecting the subset of rules best
cooperating.

3. A genetic tuning process of the DB used that adjusts the membership func-
tions in order to improve as far as possible the accuracy of the ®nal KB.
In order to compare all the RBs obtained by considering uniform fuzzy

partitions, the third step of this method has not been used in the experiments
developed in this paper.
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Appendix B. Problems used as benchmarks in this paper

B.1. Low voltage line length installed in a rural town

The ®rst of the problems considered is that of ®nding a model that relates
the total length of low voltage line installed in a rural town [8] with some
characteristics of its (see Table 13). This model will be used to estimate the total
length of line being maintained by an electrical company. We were provided
with a sample of 495 towns in which the length of line was actually measured
and the company used the model to extrapolate this length over more than
10,000 towns with these properties. We will limit ourselves to the estimation of
the length of line in a town, given the inputs mentioned before. The training set
contains 396 elements and the test set contains 99 elements.

B.2. Optimal electrical network for a town

The second problem has a di�erent nature, since we will not deal with real
data but with estimations of minimum maintenance costs which are based on a
model of the optimal electrical network for a town [8]. These values are
somewhat lower than the real ones, but companies are interested in an esti-
mation of the minimum costs. Obviously, real maintenance costs are exactly
accounted and hence a model that relates these costs to any characteristic of
real towns would not be of great practical signi®cance.

We were provided with data concerning four di�erent characteristics of the
towns and their minimum maintenance costs (see Table 14) in a sample of 1059
simulated towns. In this case, our objective was to relate the last variable
(maintenance costs) with the other four ones. The training set contains 847
elements and the test set contains 212 elements.

B.3. Rice taste evaluation problem

The third problem deals with a subjective quali®cation of rice taste [18,23]. It
is usually put into e�ect by means of the so-called sensory test. In this test, a
group of experts, usually composed of 24 persons, evaluate the rice according
to a set of characteristics associated to it (see Table 15). A sample with 105
evaluations of these experts is considered [23]. The training set contains 75
elements and the test set contains 30 elements.

Appendix C. Simulated annealing

SA [1] is derived from the analogy between statistical mechanics of particles
of a substance (either liquid or solid) and the search for solutions in complex
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combinatorial optimization problems. Statistical mechanics addresses the be-
haviour of interacting particles of a substance. Di�erent placements of particles
in a substance yield di�erent levels of energy. If the state of the substance is
de®ned by the placement of its particles and thus its energy, the Metropolis
algorithm is a mathematical model used to describe the transition of the sub-
stance from state i with energy E(i) to state j with energy E(j) at temperature
T by a simple mechanism.

The Metropolis algorithm describes the process in which liquids crystallize:
at high temperatures the energetic particles are free to move and rearrange; at
low temperatures, the particles lose mobility as a result of decreasing energy,
®nally settling down to an equilibrium state resulting in the formation of a
crystal having the minimum energy.

SA searches for the optimal solution or con®guration of a combinatorial
optimization problem. Let us suppose one needs to minimize a cost function
described by many variables. A simple iterative scheme known as local search
could be performed to ®nd the minimum cost. During a local search process,
an initial solution is given and then a new solution is proposed at random. If
the cost of the new solution is lesser than that of the current solution, then the
current solution is replaced by the new solution. If the cost of the new solution
is higher than that of the current solution, a new solution is proposed again at
random. This procedure continues until the solution with the minimum cost is
found. Unfortunately, a local search may get stack at local minima. To alle-
viate the problem of getting trapped at local minima, SA occasionally allows
``uphill moves'' to solutions of higher cost. This is the essence of SA.

The acceptance probability of a new generated solution (Scand), respect to the
actual solution considered (Sact) is governed by the Metropolis criterion:

Pacc �Scand� � 1 if Cost�Scand� < Cost�Sact�;
exp�ÿ Cost�Scand�ÿCost�Sact�

T � otherwise:

�
SA requires two operations: a thermostatic operation known as a cooling

schedule, which guides the decrease of the temperature, and a stocastic relax-
ation process that searches for the equilibrium solutions at each temperature. It
can be demonstrated that SA is capable of reaching the optimal solutions as-
ymptotically; that is, the proof assumes that the procedure undergoes an in®-
nite number of transitions. To be practical, SA has to be implemented in ®nite
time. Otherwise, it will not have any advantage over a very simple random
search.

Therefore, it is necessary to specify an initial temperature, a cooling scheme
to decrease the temperature, a criterion for determining the number of state
transitions per temperature, the ®nal temperature and the stopping criterion of
the procedure. There are di�erent cooling schedules proposed in the specialized
literature [28]. As regards the initial temperature value, we will use the next
formula:
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T0 � l
ÿ ln�/� Cost�S0�

with T0 being the initial temperature, S0 being the initial solution and / being
the probability of acceptance for a solution that can be l per 1 worse than
Cost�S0�. The latter two parameters are de®ned in the interval �0; 1�.

The basic operation mode of SA, adapted to our problem, is described next:

INPUT �T0; a;N ; L�
T  T0

Sact  Generate Initial Solution
solutions 1
Sbest  Sact

iterations without improv: 0
iteration without accepted solution false
WHILE �solutions6LN � AND �iterations without improv: < N�
AND NOT �iteration without accepted solution� DO

BEGIN
best improvement false
accepted solution number  0
count  0
WHILE �count < N 3� AND �accepted solution number < N 2� DO

BEGIN
count  count � 1
Scand  Generate Candidate Solution�Sact�
solutions solutions� 1
d cost�Scand� ÿ cost�Sact�
IF �U�0; 1� < e�ÿd=T �� OR �d < 0�

THEN BEGIN
Sact  Scand

accepted solution number  accepted solution number � 1
IF BETTER�Sact; Sbest�

THEN BEGIN
Sbest  Sact

best improvement  true
END

END
END

T  a�T �
IF �accepted solution number � 0�

THEN iteration without accepted solution true
IF �best improvement�

THEN iterations without improv: 0
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ELSE iterations without improv: iterations without improv:� 1
END
{Write as ®nal solution, Sbest}
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