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Abstract. Genetic algorithms are adaptive methods based on natural evolution that may be used for search
and optimization problems. They process a population of search space solutions with three operations: selection,
crossover, and mutation. Under their initial formulation, the search space solutions are coded using the binary
alphabet, however other coding types have been taken into account for the representation issue, such as real coding.
The real-coding approach seems particularly natural when tackling optimization problems of parameters with
variables in continuous domains.

A problem in the use of genetic algorithms is premature convergence, a premature stagnation of the search caused
by the lack of population diversity. The mutation operator is the one responsible for the generation of diversity and
therefore may be considered to be an important element in solving this problem. For the case of working under real
coding, a solution involves the control, throughout the run, of the strength in which real genes are mutated, i.e., the
step size.

This paper presents TRAMSS, a Two-loop Real-coded genetic algorithm with Adaptive control of Mutation Step
Sizes. It adjusts the step size of a mutation operator applied during the inner loop, for producing efficient local
tuning. It also controls the step size of a mutation operator used by a restart operator performed in the outer loop,
for reinitializing the population in order to ensure that different promising search zones are focused by the inner
loop throughout the run. Experimental results show that the proposal consistently outperforms other mechanisms
presented for controlling mutation step sizes, offering two main advantages simultaneously, better reliability and
accuracy.
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1. Introduction

Genetic algorithms(GAs) are general purpose search
algorithms which use principles inspired by natural
genetic populations to evolve solutions for problems
[1, 2]. The basic idea is to maintain a population of
chromosomes, which represent candidate solutions for
the specific problem, which evolves over time through
a process of competition and controlled variation. The
following bibliography may be examined for a more
detailed discussion about GAs: [1–5].

Under their initial formulation, the search space so-
lutions are coded using the binary alphabet. However,

other coding types have been considered for the rep-
resentation issue, such as real coding, which would
seem particularly natural when tackling optimization
problems of parameters with variables on continuous
domains. Then a chromosome is a vector of floating
point numbers, the size of which is kept the same as
the length of the vector, which is the solution to the
problem. GAs with this type of coding are calledreal-
coded GAs(RCGAs) [6, 7]. There are other types of
evolutionary algorithms, i.e., implementing the idea of
evolution [3], which are based on real coding as well.
These areevolution strategies[8] andevolutionary pro-
gramming[9]. This paper deals with RCGAs.
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Population diversity is crucial to a GA’s ability to
continue the fruitful exploration of the search space
[10]. If the lack of population diversity takes place too
early, a premature stagnation of the search is caused.
Under these circumstances, the search is likely to be
trapped in a local optimum before the global optimum
is found. This problem, calledpremature convergence,
has long been recognized as a serious failure mode for
GAs [11].

The mutation operator may be considered to be an
important element for solving the premature conver-
gence problem, since it serves to create random diver-
sity in the population [12]. Different techniques have
been suggested for thecontrol, during the GA’s run, of
parameters associated with this operator, depending on
either the current state of the search or other GA related
parameters [13–15]. They try to offer suitable diversity
levels for avoiding premature convergence and improv-
ing the results. In the case of working with real coding,
a topic of major importance involves the control of the
proportion or strength in which real-coded genes are
mutated, i.e., thestep size[16].

The objective of this paper is to formulate a mecha-
nism for the control of mutation step sizes for RCGAs,
which should handle and maintain population diversity
that in some way helps produce good chromosomes,
i.e.,useful diversity[17]. We present TRAMSS, aTwo-
loop RCGA model with Adaptive control of Mutation
Step Sizesthat attempts to do this. It consists of two
loops, aninner loop and anouterone:

• The inner loop is designed for processing useful di-
versity in order to lead the population toward the
most promising search areas, producing an effective
refinement on them. So, its principal mission is to
obtain the best possibleaccuracylevels.

The inner loop performs the selection process and
fires the crossover and mutation operators. Further-
more, for achieving its objective, it controls the step
size of the mutation operator.
• The outer loop introduces new population diversity,

after the inner loop reaches a stationary point where
there are no improvements, that helps the next one
to reach better solutions. Therefore, it attempts to
inducereliability in the search process.

The outer loop iteratively performs the inner one,
and later, it applies arestart operatorthat reinitial-
izes the population by mutating all genes, using a
step size that is adapted as well, throughout the runs
for this loop.

The paper is set up as follows. In Section 2, we ana-
lyze two mutation issues, the ways in which the control
of mutation step sizes may be made and the idea of the
restart operator. In Section 3, we present TRAMSS.
In Section 4, we study TRAMSS from an empirical
point of view, by dealing with the following issues:
1) performance improvement, i.e., if its results on a
given test suite are better than the ones obtained using
other mechanisms for controlling mutation step sizes
that were proposed in the GA literature, 2) adaptation
itself, i.e., if it adjusts the mutation step size according
to the particularities of the problem to be solved, and
3) their relation, i.e., if adaptation is responsible for the
performance improvement. Finally, some conclusions
are dealt with in Section 5.

2. Mutation Issues

In this section, we explain two issues that will
be included as important components in the con-
ceptual foundation of TRAMSS, mutation step size
control (Subsection 2.1) and the restart operator
(Subsection 2.2).

2.1. Mutation Step Size Control

In general, the mechanisms presented for controlling
parameters associated with evolutionary algorithms
may be assigned to the following three categories [15]:

• Deterministic control. It takes place if the values of
the parameters to be controlled are altered by some
deterministic rule, without using any feedback from
the evolutionary algorithm. Usually, a time-varying
schedule is used.
• Adaptive control. It takes place if there is some form

of feedback from the evolutionary algorithm that is
used to determine the direction and/or magnitude of
the change to the parameters to be controlled.

The rules for updating parameters that are used
by this type of control and, by the previous one, are
termedabsolute adaptive heuristics[13] and, ide-
ally, capture some lawful operation of the dynamics
of the evolutionary algorithm over a broad range of
problems.
• Self-adaptive control. The parameters to be con-

trolled are encoded onto the chromosomes of the
individual and undergo mutation and recombination.

Self-adaptation was initially proposed for evolu-
tion strategies [18] and was extended to GAs in
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[19–21]. This type of control exploits the indirect
link between favorable control parameter values and
objective function values, with the parameters be-
ing capable of adapting implicitly, according to the
topology of the objective function [20].

Next, we describe mechanisms for the control of
mutation step sizes that belong to each one of these
categories.

2.1.1. Deterministic Step Size Control.In [5], a mu-
tation operator for RCGAs, callednon-uniform muta-
tion, was presented, which is based on the absolute
adaptive heuristic “to protect the exploration in the ini-
tial stages and the exploitation later”. It implements
this idea by decreasing the step size as the GA’s exe-
cution advances. Let us suppose that this operator is
applied on a real-coded gene,x ∈ [a, b] (a, b ∈ <),
at generationt , and thatT is the maximum number of
generations, then it generates a gene,x′, as follows:

x′ =
{

x +1(t, b− x) if τ = 0,

x −1(t, x − a) if τ = 1,

with τ being a random number that may have a value
of zero or one, and

1(t, y) = y
(
1− r (1−(t/T))b

)
,

wherer is a random number from the interval [0, 1]
andb is a parameter chosen by the user. This function
gives a value in the range [0, y] such that the probabil-
ity of returning a number close to zero increases as the
algorithm advances. The size of the gene generation in-
terval shall be smaller with the passing of generations.
This property causes this operator to make an uniform
search in the initial space whent is small, and very
locally at a later stage, favoring local tuning.

The non-uniform mutation operator has been widely
used, reporting good results [22–24]. It is considered
to be one of the most suitable mutation operators for
RCGAs [6].

2.1.2. Adaptive Step Size Control.The (1 + 1)-
evolution strategy ((1+1)-ES) [8] is an evolutionary
algorithm that uses adaptive step size control. It at-
tempts to adapt its mutation step size to the problem
according to the absolute adaptive heuristic: “expand
the step size when making progress, shrink it when
stuck”. This heuristic will be denoted asE/S heuristic.

(1+ 1)-ES works using a continuous representation
and a mutation operator based on normally distributed
modifications with expectation zero and given vari-
ance,σ , as the step size. It operates on a vector of
variables by applying mutation with identicalσ to each
variable, so generating a descendant. The better of an-
cestor and descendant is considered as the new starting
point. (1+ 1)-ES applies the E/S heuristic for adapt-
ing σ by means of the1/5 success rule. This rule uses
the results obtained by mutation in the last few gen-
erations: “if more than one fifth of the mutation have
been successful, the step size is increased, otherwise it
is decreased”.

In [25], a dynamic hill climbing algorithm is pre-
sented, which uses the E/S heuristic as well. We would
like to point out that the model proposed in this paper,
TRAMSS, uses important ideas that are present in this
algorithm.

2.1.3. Self-Adaptive Step Size Control.Hinterding
et al. [26, 27] apply self-adaptive control of the mu-
tation step sizes for optimizing numeric functions in
a real valued GA. Their GA uses Gaussian mutation,
which adds Gaussian noise to the gene to be mutated.
Gaussian noise is obtained from a normally distributed
random variable which has a mean of 0 and standard
deviation ofσ (step size), whereσ is an extra gene
added to the front of each chromosome. The values of
this gene are allowed to vary from 0.000001 to 0.2,
and participate in crossover and mutation. The follow-
ing steps are followed for mutating genes in a
chromosome:

1. Apply Gaussian noise to theσ value using a standard
deviation of 0.013 (meta-mutation).

2. Use theσ value as the standard deviation for the
Gaussian noise to mutate the other genes in the
chromosome.

3. Write the mutated genes (includingσ value) back
to the chromosome.

During the initialization process, the value ofσ for
all chromosomes is set using a Gaussian distributed
random variable with mean 0.1 and standard deviation
0.01.

2.2. Restart Operator

Premature convergence causes a drop in the GA’s
efficiency; the genetic operators do not produce the
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feasible diversity to tackle new search space zones and
thus the algorithm reiterates over the known zones pro-
ducing a slowing-down in the search process. Under
these circumstances, resources may be wasted by the
GA searching an area not containing a solution of suf-
ficient quality, where any possible improvement in the
solution quality is not justified by the resources used.
Therefore, resources would be better utilized in restart-
ing the search in a new area, with a new population [28].
This is carried out by means of arestart operator. Next,
we review some different approaches to this operator.

• In [29], it was suggested restarting GAs that have
substantially converged, by reinitializing the popu-
lation using both randomly generated individuals and
the best individual from the converged population.
• In [30], upon convergence, the population is reini-

tialized by using the best individual found so far
as a template for creating a new population. Each
individual is created by flipping a fixed proportion
(35%) of the bits of the template chosen at random
without replacement. If several successive reinitial-
izations fail to yield an improvement, the population
is completely (100%) randomly reinitialized.
• In [28], aselectively destructive restartis proposed

that does not completely destroy the converged pop-
ulation; a percentage of the converged genes will sur-
vive untouched to begin the next convergence stage.
A probability of gene reinitialization,pr , is used; the
higher the rate, the more genes are initialized. Expe-
riments carried out with somepr values showed that
different problems have different optimal reinitial-
ization probabilities. This model seems to provide
an improved method for renewing genetic diversity
in GA search. Intuitively, the complete reinitializa-
tion of the population forgets the previous solutions,
therefore it cannot make use of previously discov-
ered building blocks.
• In [31], a similar mechanism, calledpartial hyper-

mutationmodel, was introduced, which replaces, at
each generation, a percentage of the population by
randomly generated individuals. The percentage is
calledreplacement rate. The intended effect is simi-
lar to the one of the previous approach: to maintain a
continuous level of exploration of the search space,
while trying to minimize disruption for the ongoing
search.

Other important GA models based on the restart op-
erator areARGOT[32], dynamic parameter encoding
[33] anddelta coding[34].

3. Two-Loop RCGA Model with Adaptive
Control of Step Sizes

In this section, we present TRAMSS. It uses:

• an instance of the absolute adaptive E/S heuristic,
presented in Subsection 2.1.2, for the adaptive step
size control of the mutation operator applied in the
inner loop, and
• an instance of its opposite version, denoted here as

S/E heuristic, for the adaptive step size control of the
mutation operator used by the restart operator that is
executed by the outer loop.

Next, in Subsection 3.1, we examine the application
of the E/S and S/E heuristics for step size control in
RCGAs, and, in Subsections 3.2 and 3.3, we present
the TRAMSS inner and outer loops, respectively.

3.1. The E/S and S/E Heuristics

Let’s suppose that an RCGA is applying a mutation op-
erator withδ being its step size. If a stationary state is
detected (the fitness of the best individual or the average
fitness have not been improved during the previous gen-
erations), there are two possible causes concerningδ:

1. it is too high, which does not allow the convergence
to be produced for obtaining better individuals, or

2. it is too low, which induces a premature conver-
gence, with the search process being trapped in a
local optimum.

On the one hand, if we decided to include an adaptive
control ofδ based on the instance of the E/S heuristic
“ increaseδ when making progress, decrease it when
stuck”, a stationary state caused by (1) would be suit-
ably tackled, sinceδ would become lower, so introduc-
ing more convergence. However, this heuristic would
not be adequate if the stationary state is caused by (2),
because it would complicate the problem even more.

Precisely, this last circumstance will occur as the
number of iterations increases. Since the RCGA will
find more difficulties for making progress, the natural
trend of the instance of the E/S heuristic will be to leadδ

to lower values, so producing more convergence. Some
authors have claimed the possibility of this problem.
For example, in [35], the following was stated about
the 1/5 success rule:
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“ . . . the1/5success rule may cause premature stag-
nation of the search due to the deterministic decrease
of the step size whenever the topological situation
does not lead to a sufficiently large success rate”.

For complex problems, this effect will probably be-
come a premature convergence. This explains the fol-
lowing claim, again about the 1/5 success rule [13]:

“ . . . this heuristic is especially useful in smooth
multimodal environments of the type well studied
by the evolution strategies community but would be
less applicable in discontinuous or extremely rough
environments”.

On the other hand, if we are inclined to use the in-
stance of the S/E heuristic “decreaseδ when progress
is made, increase it when there are no improvements”,
a stationary state produced by (2) will be adequately
attacked, sinceδ would be greater and so, more di-
versity is introduced with the possibility of escaping
from the local optimum. However, an important prob-
lem may occur: as no improvements are made by the
RCGA, higherδ values are tried, so introducing too
much diversity and not considering the possibility that
convergence may be suffice for improving results.

So, all these facts show that serious problems may
arise when the E/S and S/E heuristics are applied sep-
arately. However, we think that a mechanism apply-
ing both of these heuristics would handle the popula-
tion diversity suitably to avoid the premature conver-
gence problem and improve the behavior of the search
process.

The adaptive RCGA model proposed, TRAMSS, in-
cludes this idea: it uses the E/S heuristic for adapting
the step size of a mutation operator applied in the inner
loop and the S/E heuristic for adapting the step size of a
mutation operator used by a restart operator performed
in the outer loop.

3.2. TRAMSS Inner Loop

The inner loop performs the usual process (selection,
crossover, and mutation) over a number of generations,
G, called time-interval between observations. Then,
depending on the progress of the population mean fit-
ness found throughout these generations, it adjusts the
step size of the mutation operator, and calculates a new
value forG. Next, we fully describe these steps where
a minimization problem is assumed.

Selection, Crossover, and Mutation (Step 2.2).
Over the time-interval between observations,G, the
following selection mechanism, and crossover and mu-
tation operators are applied.

• The selection probability calculation followslinear
ranking [36], with ηmin= 0.25, and the sampling
algorithm is the stochastic universal sampling
[37].

The elitist strategy[38] is considered as well. It
involves making sure that the best performing chro-
mosome always survives intact from one generation
to the next. This is necessary since it is possible that
the best chromosome disappears, due to crossover or
mutation.
• We have tried different crossover operators, which

are described in Appendix A.
• The mutation operator used is denoted as

Mutation(δ), whereδ is the step size (0≤ δ ≤ 1).
This operator is defined as follows: Ifx ∈ [a, b] is
a gene to be mutated, then the gene resulting from
the application of this operator,x′, will be a ran-
dom (uniform) number chosen from [x−δ · (x−a),
x + δ · (b− x)]. Clearly, the higherδ is, the greater
changes onx are produced.

Adaptive Control of δ (Step 2.3). After G gener-
ations, theδ parameter used by the mutation opera-
tor is adapted following a particular instance of the
E/S heuristic: “increaseδ when observing progress
on f̄ (population mean fitness), decrease it when
stuck”. δ is kept in the interval [δmin,1], where1
is a parameter calculated by the outer loop, as de-
scribed in Subsection 3.3, andδmin (δ≥ δmin) is the min-
imum threshold defined by the user (in experiments we
assume a value of 1.0e−100).

The inner loop ends whenδ reaches theδmin value.
By finishing with a fine grained search with small step
sizes, we are sure that a local optimum, or the global
one, will be located precisely [25]. It will stop as well,
when a maximum number of generations is reached.

The update rates forδ depend on the number of pre-
vious successive observations that were successful or
not successful. Two variables,yesandno, are used for
recording these occurrences, respectively. If progress
is made during many successive previous observations
( f̄Old ≥ f̄ , f̄Old being the population mean fitness of the
previous iteration), then the increasing rate forδ is very
high (in particular,δ is multiplied by 2yes), whereas if
these observations were not successful, then the de-
creasing rate is high (δ is divided by 2no). In this way,
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Figure 1. TRAMSS inner loop structure.

when the search process is located in a local optimum
and improvements are still not surely expected by
reducingδ, the inner loop duration will not be too
long.

Time-Interval Calculation (Step 2.4). The time-
interval between observations,G, is calculated depend-
ing on the current values ofδ with regard to1. If δ is
similar to1, then the time-interval is high (G0= 100
in the experiments), and if it is lower, the time-interval
will become likeGmin (Gmin = 5 in the experiments).
This allows δ values similar to1 to be used for a
long time (1 is considered a good starting point for
δ, because it is adapted in the outer loop on the basis
thereof, as we will explain in Subsection 3.3). Further-
more, we need to point out that the initial1, 10, was
assigned to 1 in the experiments, in order to favor explo-
ration during the initial stages of the first inner loop’s
run.

Figure 1 shows the pseudocode algorithm for the
whole TRAMSS inner loop. In short, the objective of
this loop is to find and refine local optima (or the global
one), in an efficient way.

3.3. TRAMSS Outer Loop

The outer loop randomly initializes the population that
will be handled throughout the TRAMSS run. It fires
the inner loop, and when this one returns, it applies a
restart operator based on a step size that is adaptively
controlled throughout its execution. Now, we explain,
in depth, the main issues related to this loop.

Restart Operator Application (Step 3.4). The outer
loop applies a restart operator, calledRestart(1) (0 ≤
1 ≤ 1) that appliesMutation(1) to all the genes in the
chromosomes stored in the population. The objective
of this operator is similar to one of the partial restart
operators for binary-coded GAs, described in Section
2.2, i.e., to maintain a continuous level of exploration
of the search space, while trying to use the promising
zones located as a kind of sketch. It attempts to ensure
that new and promising genetic material is available
in the population for being handled and treated by
the next inner loop.

Adaptive Control of 1 (Step 3.3).The outer loop
adapts the1 parameter, using information obtained



Two-Loop Real-Coded Genetic Algorithms 193

Figure 2. TRAMSS outer loop structure.

after each inner loop run, by means of an instance of
the S/E heuristic: “decrease1when observing progress
on fBest (fitness of the best element found so far), oth-
erwise increase it”. This is implemented by dividing
the previous1 value by 2 or multiplying it by 2, re-
spectively. The new1 value will be the first value for
theδ parameter used in the next inner loop.

The pseudocode algorithm for the outer loop is de-
picted in Fig. 2. To sum up, the outer loop attempts
to introduce adequate diversity levels for allowing the
subsequent inner loop processing to be capable of find-
ing better local optima, or the global one, every time.
For this reason, it uses thefBest for the adaptive step
size control. When no better local optima are found
after the last inner loop runs, the outer loop produces
more diversity in order to increase the probability of
having access to a better one, which will be refined by
the next inner loop. On the other hand, if better solu-
tions are being found by previous inner loop’s runs,
1 becomes low, so avoiding, for the moment, great
destructive effects of the restart operator.

4. Experiments

Minimization experiments on the test suite, described
in Subsection 4.1, were carried out in order to study the
behavior of the TRAMSS model. In Subsection 4.2, we

describe the algorithms built in order to do this, and, in
Subsection 4.3, we show the results and discuss some
conclusions about them.

4.1. Test Suite

For the experiments, we have considered six test func-
tions used in the GA literature:Spheremodel (fSph)
[18, 38], Generalized Rosenbrock’s function (fRos)
[38], Schwefel’s Problem1.2 (fSch) [18], Generalized
Rastrigin’sfunction (fRas) [40, 41],Griewangk’sfunc-
tion [39], andExpansion of f10 (ef10) [42]. Figure 3
shows their formulation. The dimension of the search
space is 25.

fSph is a continuous, strictly convex, and unimodal
function.

fRos is a continuous and unimodal function, with the
optimum located in a steep parabolic valley with a
flat bottom. This feature will probably cause slow
progress in many algorithms since they must perma-
nently change their search direction to reach the op-
timum. This function has been considered by some
authors to be a real challenge for any continuous
function optimization program [43]. A great part
of its difficulty lies in the fact that there are non-
linear interactions between the variables, i.e., it is
nonseparable[44].
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Figure 3. Test functions.

fSch is a continuous and unimodal function. Its diffi-
culty lies in the fact that searching along the coor-
dinate axes only gives a poor rate of convergence,
since the gradient offSch is not oriented along the
axes. It presents similar difficulties tofRos, but its
valley is much narrower.

fRas is a scalable, continuous, separable, and multi-
modal function which is produced fromfSph by
modulating it witha · cos(ω · xi ).

fGri is a continuous and multimodal function. This
function is difficult to optimize because it is nonsep-
arable [45] and the search algorithm has to climb a
hill to reach the next valley. Nevertheless, one unde-
sirable property exhibited is that it becomes easier
as the dimensionality is increased [44].

f10 is a function that has nonlinear interactions between
two variables. Its expanded version,ef10, is built
in such a way that it induces nonlinear interaction
across multiple variables. It is nonseparable as well.

4.2. Algorithms

We have built five different TRAMSS versions that ap-
ply the following crossover operators: linear [46], dis-
crete [47], BLX-α [48], and fuzzy recombination [49]
(they are described in Appendix A). The TRAMSS

versions are calledTRA-LIN, TRA-DIS, TRA-
BLX, andTRA-FR, respectively. They are compared
with RCGAs that use the same crossover operators and
different mutation operators:

• Random mutation[5]. If x ∈ [a, b] is a gene to
be mutated, then the gene resulting from the appli-
cation of this operator,x′, is a random (uniform)
number from the domain [a, b]. The RCGAs based
on this operator will be denoted asR-RAN-LIN,
R-RAN-DIS, R-RAN-BLX, andR-RAN-FR.
• BGA mutation[47]. x′ = x± rang· γ , whererang

defines the mutation range and it is normally set to
0.1 · (b − a). The+ or − sign is chosen with a
probability of 0.5 andγ = ∑15

k=0 αk · 2−k, where
αk ∈ {0, 1} is randomly generated withp(αi = 1)
= 1/16.

This operator returns values in the interval [x −
rang, x + rang], with the probability of generating
a neighborhood ofx being very high. The mini-
mum possible proximity is produced with a precision
of rang · 2−15. The RCGAs with this operator will
be calledR-BGA-LIN, R-BGA-DIS, R-BGA-
BLX, andR-BGA-FR.

Random mutation and the BGA mutation are two
representatives of non-adaptive mutation operators
for RCGAs.
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• Non-uniform mutation. In this operator the step size
is controlled using a deterministic rule (Sub-
section 2.1.1). We have implemented five RCGAs
with it: R-NU-LIN, R-NU-DIS, R-NU-BLX,
andR-NU-FR.
• Self-adaptive mutation.We have built five RCGAs

with the mutation operator described in Subsection
2.1.3, which follows the idea of self-adaptive control
of step sizes. These algorithms areR-SELF-LIN,
R-SELF-DIS, R-SELF-BLX, and R-SELF-
FR.

The crossover probability used by the algorithms is
0.6, the mutation probability 0.005, and the population
size 60 chromosomes. The selection probability calcu-
lation follows linear ranking (ηmin= 0.25) and the sam-
pling algorithm is the stochastic universal sampling (as
the inner loop of the TRAMSS versions). The algo-
rithms were executed 30 times, each one with 10,000
generations, except the ones based on linear crossover,
which performed 6,666 generations (each application
of this crossover operator needs three evaluations). In
this way, the number of fitness function evaluations
required by all algorithms are similar.

4.3. Results

Tables 1–4 show the results obtained for each test func-
tion. The performance measures used are:

• A performance: average of the best fitness function
found at the end of each run.
• SDperformance: standard deviation.

Moreover, at-test(at 0.05 level of significance) was
applied in order to ascertain if differences in theA
performance for the TRAMSS versions are significant
when compared against one for the other RCGAs in
the respective table. The direction of any significant
differences is denoted either by:

• a plus sign(+) for an improvement in theA perfor-
mance for the TRAMSS versions with regards to the
other RCGAs, or
• a minus sign (−) for a reduction, or
• an approximate sign (∼) for non significant differ-

ences.

The places in these tables where these signs do not
appear correspond with the performance values for
TRAMSS versions.

Next, we analyze these results following three ways.
First, we compare the behavior of the TRAMSS ver-
sions with the one achieved using the mutation opera-
tors for RCGAs (Subsection 4.3.1). Then, we ascertain
whether the TRAMSS versions achieve arobustoper-
ation, in the sense that they obtain a significant perfor-
mance for each one of the test functions (Subsection
4.3.2). Finally, we attempt to determine the type of
crossover operator that allow TRAMSS to obtain the
best results (Subsection 4.3.3).

4.3.1. TRAMSS and Mutation Operators.For each
mutation operator (random, BGA, non-uniform, and
self-adaptive), Table 5 shows the percentages for im-
provements, reductions, and non differences (accord-
ing to thet-test results in Tables 1–4) in theA perfor-
mance for the TRAMSS versions with regards to their
corresponding RCGAs based on this mutation opera-
tor, on all test functions, and independently from the
crossover operator used. The table is useful for compar-
ing the results of TRAMSS against the ones obtained
when using these mutation operators.

We may observe in the table the remarkable percent-
ages for improvements and the very low percentages
for reductions. Furthermore, the percentages for non
differences are significant as well, however, they are
lower than the ones for improvements. These results
indicate that TRAMSS is the most effective model for
controlling mutation step sizes as compared with the
mutation operators considered for these experiments.

On the other hand, we need to point out that the
non-uniform mutation has been the mutation operator
that offered the most significant resistance against the
results for the TRAMSS model, in fact, this operator
is considered to be one of the most profitable mutation
operators for RCGAs (such as it is claimed in 2.1.1).

4.3.2. TRAMSS and Test Functions.For each test
function, Table 6 shows the percentages for improve-
ments, reductions, and non differences (according to
thet-test results in Tables 1–4) in theAperformance for
the TRAMSS versions with regards to the other RCGAs
on such function, independently from the crossover op-
erator and mutation operator used. This table may be
useful for ascertaining whether the TRAMSS versions
achieve arobustoperation, in the sense that they obtain
a significant performance for each one of the test func-
tions, which have different features (modality, com-
plexity, type of interactions between variables, etc.),
such as mentioned in Subsection 4.1.



196 Herrera and Lozano

Ta
bl

e
1.

R
es

ul
ts

fo
r

al
go

ri
th

m
s

ba
se

d
on

lin
ea

r
cr

os
so

ve
r.

f S
ph

f R
os

f S
ch

f R
as

f G
ri

ef
10

A
lg

or
ith

m
s

A
SD

A
SD

A
SD

A
SD

A
SD

A
SD

R
-R

A
N

-L
IN

6.
0e

−1
3

(+
)

2.
0e

−1
2

2.
1e

1
(∼

)
4.

0e
−1

5.
1e

−1
(+

)
3.

8e
−1

3.
2e

−1
0

(−
)

4.
8e

−1
0

2.
0e

−2
(+

)
2.

0e
−2

2.
2e

−2
(∼

)
1.

6e
−2

R
-B

G
A

-L
IN

5.
9e

−1
4

(+
)

9.
8e

−1
4

1.
9e

1
(+

)
1.

0e
0

6.
6e

−2
(+

)
6.

9e
−2

9.
3e

−1
(∼

)
2.

0e
0

2.
3e

−2
(+

)
2.

5e
−2

1.
5e

−2
(∼

)
1.

3e
−2

R
-N

U
-L

IN
1.

9e
−2

0
(+

)
4.

3e
−2

0
1.

9e
1

(+
)

8.
3e

−1
4.

2e
−3

(+
)

4.
3e

−3
0.

0e
0

(−
)

0.
0e

0
1.

9e
−2

(+
)

2.
1e

−2
5.

6e
−5

(∼
)

3.
6e

−5
R

-S
E

L
F-

L
IN

4.
5e

−1
6

(+
)

1.
1e

−1
5

1.
9e

1
(+

)
1.

7e
0

8.
5e

−4
(+

)
1.

3e
−3

1.
2e

1
(+

)
4.

1e
0

1.
4e

−2
(+

)
1.

3e
−2

7.
1e

1
(+

)
7.

7e
0

T
R

A
-L

IN
3.

6e
−7

2
2.

0e
−7

1
1.

8e
1

5.
5e

−1
2.

9e
−5

7.
8e

−5
7.

6e
−1

1.
2e

0
6.

1e
−3

1.
1e

−2
3.

7e
−2

2.
0e

−1

Ta
bl

e
2.

R
es

ul
ts

fo
r

al
go

ri
th

m
s

ba
se

d
on

di
sc

re
te

cr
os

so
ve

r.

f S
ph

f R
os

f S
ch

f R
as

f G
ri

ef
10

A
lg

or
ith

m
s

A
SD

A
SD

A
SD

A
SD

A
SD

A
SD

R
-R

A
N

-D
IS

2.
4e

−4
(+

)
9.

8e
−5

5.
2e

1
(+

)
3.

5e
1

7.
4e

2
(+

)
3.

1e
2

4.
7e

−2
(+

)
2.

0e
−2

1.
5e

−1
(+

)
4.

6e
−2

1.
1e

1
(+

)
1.

5e
0

R
-B

G
A

-D
IS

2.
0e

−9
(+

)
3.

8e
−1

0
2.

3e
1

(∼
)

2.
7e

1
6.

2e
1

(+
)

2.
6e

1
4.

0e
−7

(∼
)

7.
9e

−8
3.

0e
−2

(+
)

2.
6e

−2
1.

7e
0

(∼
)

5.
8e

0

R
-N

U
-D

IS
2.

4e
−1

7
(+

)
2.

3e
−1

7
1.

9e
1

(∼
)

2.
5e

1
1.

6e
1

(+
)

1.
1e

1
3.

5e
−1

4
(∼

)
2.

8e
−1

4
1.

9e
−2

(∼
)

2.
4e

−2
1.

9e
−2

(∼
)

2.
0e

−2
R

-S
E

L
F-

D
IS

3.
5e

−1
0

(+
)

2.
8e

−1
0

3.
0e

1
(∼

)
2.

3e
1

8.
1e

1
(+

)
5.

9e
1

5.
8e

1
(+

)
1.

9e
1

3.
3e

1
(+

)
1.

4e
1

1.
3e

2
(+

)
1.

2e
1

T
R

A
-D

IS
4.

8e
−7

8
1.

8e
−7

7
1.

7e
1

2.
6e

1
3.

0e
−1

2.
7e

−1
2.

3e
−1

4
2.

4e
−1

4
1.

5e
−2

1.
6e

−2
3.

1e
−2

1.
6e

−1



Two-Loop Real-Coded Genetic Algorithms 197

Ta
bl

e
3.

R
es

ul
ts

fo
r

al
go

ri
th

m
s

ba
se

d
on

B
L

X
-α

cr
os

so
ve

r.

f S
ph

f R
os

f S
ch

f R
as

f G
ri

ef
10

A
lg

or
ith

m
s

A
SD

A
SD

A
SD

A
SD

A
SD

A
SD

R
-R

A
N

-B
L

X
7.

7e
−2

4
(+

)
2.

7e
−2

3
2.

0e
1

(+
)

1.
5e

1
5.

1e
−5

(+
)

6.
3e

−5
0.

0e
0

(−
)

0.
0e

0
8.

1e
−3

(+
)

1.
5e

−2
2.

2e
−5

(∼
)

1.
6e

−5
R

-B
G

A
-B

L
X

6.
6e

−2
3

(+
)

3.
5e

−2
2

1.
7e

1
(∼

)
9.

7e
0

1.
7e

−6
(+

)
1.

5e
−6

5.
4e

−1
(−

)
1.

4e
0

4.
3e

−3
(+

)
6.

9e
−3

6.
5e

−7
(∼

)
3.

5e
−6

R
-N

U
-B

L
X

2.
0e

−3
1

(+
)

5.
8e

−3
1

1.
8e

1
(+

)
1.

4e
1

3.
6e

−7
(+

)
4.

2e
−7

2.
3e

−1
(−

)
9.

5e
−1

4.
7e

−3
(+

)
8.

4e
−3

1.
7e

−7
(∼

)
9.

9e
−8

R
-S

E
L

F-
B

L
X

1.
4e

−2
6

(+
)

4.
7e

−2
6

1.
6e

1
(∼

)
1.

0e
1

7.
4e

−8
(+

)
5.

7e
−8

1.
8e

1
(∼

)
4.

8e
0

2.
9e

−2
(∼

)
1.

1e
−1

9.
5e

−1
(+

)
2.

2e
0

T
R

A
-B

L
X

1.
4e

−2
00

0.
0e

0
1.

2e
1

4.
8e

0
8.

8e
−1

2
1.

5e
−1

1
3.

3e
0

2.
2e

0
0.

0e
0

0.
0e

0
1.

8e
−4

9.
8e

−4

Ta
bl

e
4.

R
es

ul
ts

fo
r

al
go

ri
th

m
s

ba
se

d
of

fu
zz

y
re

co
m

bi
na

tio
n.

f S
ph

f R
os

f S
ch

f R
as

f G
ri

ef
10

A
lg

or
ith

m
s

A
SD

A
SD

A
SD

A
SD

A
SD

A
SD

R
-R

A
N

-F
R

1.
3e

−2
6

(+
)

2.
4e

−2
6

1.
8e

1
(∼

)
1.

1e
1

1.
4e

0
(+

)
7.

7e
−1

0.
0e

0
(∼

)
0.

0e
0

1.
2e

−2
(+

)
1.

7e
−2

1.
3e

−6
(+

)
1.

5e
−6

R
-B

G
A

-F
R

9.
8e

−1
9

(+
)

4.
1e

−1
8

2.
0e

1
(∼

)
1.

8e
1

2.
6e

−1
(+

)
1.

4e
−1

0.
0e

0
(∼

)
0.

0e
0

2.
1e

−2
(+

)
2.

3e
−2

1.
4e

−4
(+

)
1.

9e
−4

R
-N

U
-F

R
1.

6e
−3

2
(+

)
3.

7e
−3

2
2.

3e
1

(∼
)

2.
2e

1
1.

1e
−2

(+
)

1.
1e

−2
0.

0e
0

(∼
)

0.
0e

0
1.

9e
−2

(+
)

2.
2e

−2
2.

4e
−8

(+
)

1.
9e

−8
R

-S
E

L
F-

FR
2.

4e
−3

0
(+

)
8.

0e
−3

0
1.

9e
1

(∼
)

1.
8e

1
6.

7e
−4

(+
)

7.
1e

−4
2.

3e
1

(+
)

5.
8e

0
3.

2e
−1

(+
)

4.
9e

−1
6.

1e
0

(+
)

5.
1e

0

T
R

A
-F

R
5.

5e
−1

89
0.

0e
0

1.
6e

1
1.

5e
1

8.
9e

−6
1.

1e
−5

6.
6e

−2
3.

6e
−1

9.
1e

−4
3.

4e
−3

9.
6e

−2
3

5.
2e

−2
2



198 Herrera and Lozano

Table 5. Comparison between TRAMSS and mutation
operators.

Mutation % Impr. (+) % Red. (−) % Non diff. (∼)

Random 70.83 8.33 20.83

BGA 58.33 4.16 37.50

Non-Uniform 58.33 8.33 33.33

Self-Adaptive 79.16 0 20.83

Table 6. Behavior of TRAMSS on each test function.

Function % Impr. (+) % Red. (−) % Non diff. (∼)

f Sph 100 0 0

f Ros 37.5 0 62.5

f Sch 100 0 0

f Ras 25 31.25 43.75

f Gri 87.5 0 12.5

ef10 50 0 50

This table indicates that the TRAMSS versions
clearly improve theA performance of all the other
algorithms onfSph, fSch, and fGri . For fRos andef10

the results are similar or superior.fRas has been the
unique function where the TRAMSS versions have
shown a sign of performance degradation (31.25% of
reduction).

Therefore, we may remark that a high degree of
robustnessis obtained with the TRAMSS model on
the test functions considered. In order to explain this
suitable behavior, we should focus on the study of the
adaptation ability that it provides, which is tackled in
Subsection 4.4.

4.3.3. TRAMSS and Crossover Operators.For each
crossover operator (linear, discrete, BLX-α, and fuzzy
recombination), Table 7 summarizes the percentages
for improvements, reductions, and non differences (ac-
cording to thet-test results in Tables 1–4) in theA per-
formance for the TRAMSS versions with regards to the

Table 7. Behavior of TRAMSS when using different
crossover operators.

Crossover % Impr. (+) % Red. (−) % Non diff. (∼)

Linear 70.83 8.33 20.83

Discrete 66.66 0 33.33

BLX-α 58.33 12.5 29.16

Fuzzy Rec. 70.83 0 29.16

corresponding RCGAs based on this crossover opera-
tor, on all test functions, and independently from the
mutation operator used. This table is useful for detect-
ing the crossover operator that couples suitably with
the TRAMSS model, obtaining the best results.

In this table, we may see that the improvements
of the TRAMSS implementations with regards to the
other RCGAs are very notable when using fuzzy re-
combination, furthermore, no reductions are achieved
with this crossover operator. None of the remaining
crossover operators allows a better operation to be ob-
tained. Therefore, we conclude that the performance of
the TRAMSS model is enhanced using fuzzy recombi-
nation. Next, we attempt to explain why. The adaptive
step size control performed in the inner loop depends
on the changes produced on̄f , which are determined
by the joint effects of the selection process, and the
mutation and crossover operators. Let us consider only
the interactions between the last ones. The mutation
operator generates diversity and the crossover operator
would have to use it for creating better individuals. If
the crossover operator achieves this task, then the mu-
tation operator would be generatinguseful diversity,
and so evolution is introduced. Therefore, only if the
mutation and the crossover operators are being suitably
coupled, the success of the inner loop may be accom-
plished. Results have shown that in the case of using
fuzzy recombination, this circumstance is held. More-
over, the associated property of this crossover operator
(to fit their action range depending on the diversity of
the population) is one of the main responsible aspects
for making this union so profitable. It would allow this
operator to exploit the diversity generated by the mu-
tation operator.

4.4. Study of the Adaptation in TRAMSS

There are, at least, two ways to study the operation of an
adaptive mechanism for GAs [50]. The first is from the
point of view of performance (test functions are com-
monly used to evaluate performance improvement).
The second view is quite different in that it ignores per-
formance and concentrates more on the adaptive mech-
anism itself, i.e., its ability to adjust the GA configura-
tion according to the particularities of the problem to be
solved. Once given these two points of view, it is nat-
ural to investigate the way in which adaptive behavior
is responsible for the performance improvement.

In Subsection 4.3, we studied the first point of view.
In this subsection, we consider the point of view of the
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Figure 4. Step sizes used by TRA-FR forfSph, fSch, fGri .

adaptation itself. In particular, we are interested in as-
certaining whether TRAMSS adjusts step sizes accord-
ing to the particularities of the problem to be solved,
and if this adaptation ability is responsible for the per-
formance improvement observed in Subsection 4.3.
Figure 4 was introduced in order to do this. It outlines
the log scaled step size values used byTRA-FR dur-
ing a run on three test functions,fSph, fSch, and fGri ,
which have different features.fSph and fSch are uni-
modal functions, withfSch being more complex than
fSph, whereasfGri is a complex multimodal function
(Subsection 4.1). We may observe that there are notable
differences in the way in whichTRA-FR controls the
step size for each one of these functions:

• For fSph, TRA-FR decreases continually the step
size from 1 to 1e−100 to properly suit the local na-
ture of the landscape in this function. The effects
induced on performance may be seen in Fig. 5. It
shows the log scaled best fitness value,fBest, for each
generation in the run ofTRA-FR on this function.
We observe that improvements onfBestpredominate
during the whole run, obtaining very accurate final
results. These results suggest that TRA-FR has been

generating useful diversity throughout the run for
this function.

We have included in Fig. 5 the log scaledfBest for
the RCGA based on non-uniform mutation (R-NU-
FR), which has arisen as the most suitable reference
point for comparing the results of the TRAMSS ver-
sions (Subsection 4.3.1). In this case, we notice that
fBestadvances through descending steps (such as the
ones near generations 4000, 4500, and 6000). Non-
uniform mutation does not take into account whether
the diversity being generated is useful or not. It only
decreases the step size depending on the time with-
out observing if improvements are made, or not. This
fact causesfBest to be stagnated during long time in-
tervals, up until a suitable step size value is reached,
which will introduce a new descending step.
• For fSch, TRA-FR has controlled the step size

following a different way (Fig. 4). Now, the step
sizes used are between 1 and 1e−5. The optimum
of the function is located at the end of a very steep
and curved valley. In order to reach the optimum, a
GA must permanently change their search direction.
TRA-FR has attempted to achieve this behavior
by considering such high step size values. In this
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Figure 5. Evolution of TRA-FR and R-NU-FR forfSph.

way, it might produce improvements onfBest con-
tinually, such as is shown in Fig. 6. This suitable
progress may be compared with the one made by
R-NU-FR. Until approximately generation 1200,
this algorithm achieves results that are similar to the
ones of TRA-FR, which is due to the high step size
values used throughout these generations. However,
the deterministic step size descent produced during
the following generations induced a drop in perfor-
mance.

Another interesting conclusion from Fig. 4 is that
TRA-FR performed its inner loop only once when
dealing with fSph and fSch, which seems reasonable
since they are unimodal. In fact, this has been ob-
served during the runs of the TRAMSS instances on
all unimodal functions. This did not occur with the
multimodal functions, as we will see for the case of
fGri .

From these results we may say that the imple-
mentation of the E/S heuristic used for controlling
step sizes is highly suitable for dealing with uni-
modal functions. In fact, we should point out that

this heuristic has already been used for designing
efficient local search procedures [25].
• The plot for fGri (Fig. 4) shows many peaks, while the

ones for fSphand fSchnone. Each peak corresponds
to the location and refinement of a local optimum
(or the global one) by the inner loop. After this is ac-
complished, the outer loop fires the restart operator
and sets the step size to an initial value. The influ-
ence of this step size control on performance may
be seen in Fig. 7. The peaks in the plot for TRA-
FR are produced by the application of the restart
operator, and each one is associated with a peak in
Fig. 4. The most interesting remark is thatTRA-FR
might find the global optimum after the third restart
operator call, produced at generation 4800 (and af-
ter the following one as well). On the other hand, we
may observe the low performance ofR-NU-FR on
this function. The descent of the step size performed
by the non-uniform mutation does not allow the
search direction to escape from a possible stagnation
in a local optimum, when working on multimodal
functions.
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Figure 6. Evolution of TRA-FR and R-NU-FR forfSch.

Therefore, we conclude that the participation of
the restart operator in the outer loop allowed relia-
bility to be improved on the multimodal functions,
with regard to thercgas based on non-uniform mu-
tation.

To sum up, this study shows that the adaptation abil-
ity of the TRAMSS model allows the population diver-
sity to be controlled according to the particularities of
the search space, allowing significant performance to
be achieved for problems with different difficulties.

5. Conclusions

This paper presented TRAMSS, a two-loopRCGA
model that adjusts the step size of a mutation operator
applied during the inner loop, for producing an efficient
local tuning, and controls the step size of a mutation
operator used by the outer loop, for reinitializing the
population in order to ensure that different promising
search zones are focused by the inner loop throughout
the run. An instance of the E/S heuristic was used for

implementing the adaptive mechanism in the inner loop
whereas an instance of its opposite, the S/E heuristic,
was considered for the outer loop.

Four TRAMSS algorithms were built using four
crossover operators for RCGAs, linear, discrete,
BLX-α, and fuzzy recombination, which represent
different ways in which randomness may be used for
generating real-coded genes.

The principal conclusions derived from the results
of experiments carried out are the following:

• The TRAMSS model allows the control of useful
population diversity to be accomplished (thanks to its
adaptation ability) for improving accuracy in the case
of unimodal functions, and, both reliability and accu-
racy for the multimodal ones, with regard to RCGAs
based on other mutation operators presented in the
GA literature.
• The adaptive control of step size performed by

TRAMSS couples suitably with fuzzy recombina-
tion. Its interactions allow TRAMSS to manage use-
ful diversity, so inducing an effective behavior on all
test functions.



202 Herrera and Lozano

Figure 7. Evolution of TRA-FR and R-NU-FR forfGri .

Finally, we should point out that TRAMSS exten-
sions may be followed in three ways: 1) control the
parameter associated with the fuzzy recombination in
order to exploit, even more, the profitable combina-
tion between TRAMSS and this crossover operator, 2)
study the possible application of dynamic crossover
operators, such as thedynamic FCB-crossovers[22]
anddynamic heuristic FCB-crossovers[51], which are
based on the same absolute adaptive heuristics as the
non-uniform mutation operator, and 3) investigate the
impact of the mutation probability into TRAMSS per-
formance, and, on the basis of this future study, to de-
sign an extended TRAMSS model that controls the mu-
tation probability together with the mutation step size.

Appendix A. Crossover Operators for RCGAs

Let us assume thatX = (x1. . xn)andY = (y1 . . yn)are
two real-coded chromosomes that have been selected to
apply the crossover operator to them. Below, the effects
of the four crossover operators used in the paper are
shown.

• Linear crossover[46]. It returns three offspring:

Z1=
(
z1

1, . . . , z
1
i , . . . , z

1
n

)
with z1

i =
1

2
· xi + 1

2
· yi ,

Z2=
(
z2

1, . . . , z
2
i , . . . , z

2
n

)
with z2

i =
3

2
· xi − 1

2
· yi ,

Z3=
(
z3

1, . . . , z
3
i , . . . , z

3
n

)
with z3

i =−
1

2
· xi + 3

2
· yi.

The resulting descendents are the two best of these
three offspring.
• Discrete crossover[47]. zi is a randomly (uniformly)

chosen value from the set{xi , yi }.
• BLX-α crossover[48]. zi is a randomly (uniformly)

chosen number from the interval [Min − I ·α,
Max+ I ·α], where Max= max{xi , yi },Min=
min{xi , yi }, andI = Max−Min. We have assumed
α = 0.5.
• Fuzzy recombination[49]. The probability that the

i -th gene in the offspring has the valuezi is given
by the distributionp(zi ) ∈ {φxi , φyi }, whereφxi and
φyi are triangular probability distributions with the
following features (d ≥ 0.5):
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Triangular
prob. dist. Minimum value Modal value Maximum value

φxi xi − d · |yi − xi | xi xi + d · |yi − xi |
φyi yi − d · |yi − xi | yi yi + d · |yi − xi |

d has been set to 0.5 in the experiments.
All these crossover operators may be ordered with

regard to the way randomness is used for generating
the genes of the offspring: 1) linear crossover do not
use it, 2) discrete crossover considers discrete probabil-
ity distributions, where there are only two possibilities
(xi or yi ), 3) BLX-α introduces uniform continuous
probability distributions, and 4) fuzzy recombination
applies triangular continuous probability distributions,
and therefore, it may be considered as a hybrid between
discrete crossover and BLX-α.

Probability distributions used by BLX-α and fuzzy
recombination are calculated according to the distance
between the genes in the parents (xi and yi ), and the
α andd values, respectively. So, they fit their action
range depending on the diversity of the population us-
ing specific information held by the parents [48].
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