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Abstract

Although Mamdani-type fuzzy rule-based systems (FRBSs) became successfully
performing clearly interpretable fuzzy models, they still have some lacks related to their
accuracy when solving complex problems. A variant of these kinds of systems, which
allows to perform a more accurate model representation, are the so-called approximate
FRBSs. This alternative representation still cannot avoid the problems concerning the
fuzzy rule learning methods, which as prototype identification algorithms, try to extract
those approximate rules from the object problem space. In this paper we deal with the
previous problems, viewing fuzzy models as a class of local modeling approaches which
attempt to solve a complex problem by decomposing it into a number of simpler sub-
problems with smooth transitions between them. In order to develop this class of
models, we first propose a common framework to characterize available approximate
fuzzy rule learning methods, and later we modify it by introducing a fuzzy rule base
hierarchical learning methodology (FRB-HLM). This methodology is based on the
extension of the simple building process of the fuzzy rule base of FRBSs in a hierar-
chical way, in order to make the system more accurate. This flexibilization will allow us
to have fuzzy rules with different degrees of specificity, and thus to improve the mod-
eling of those problem subspaces where the former models have bad performance, as a
refinement. This approach allows us not to have to assume a fixed number of rules and
to integrate the good local behavior of the hierarchical model with the global model,
ensuring a good global performance. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Nowadays, one of the most important areas for the application of fuzzy set
theory as developed by Zadeh [35] are fuzzy rule-based systems (FRBSs). These
kinds of systems constitute an extension of classical rule-based systems, be-
cause they deal with fuzzy rules instead of classical logic rules. Thanks to this,
they have been successfully applied to a wide range of problems from different
areas presenting uncertainty and vagueness in different ways [3,21,24,26].

There are at least two different kinds of FRBSs in the literature, the
Mamdani and Takagi-Sugeno-Kang (TSK), which differ on the composition
of the rule consequent. The use of one or the other depends on the fact that the
main requirement is the interpretability or the accuracy of the model, respec-
tively.

Although the Mamdani-type FRBS presents the maximum description le-
vel, it is not as accurate as desired in some cases. Therefore, at least two things
could be done to improve the accuracy of this model type. On the one hand,
we can preserve the linguistic representation of this model and perform suc-
cessive refinements on it, improving its accuracy without losing interpretability
to a high degree [13,15]. On the other hand, we can improve the model by
using a more accurate representation. To do so, we focus our attention on a
variant of Mamdani-type, the so-called approximate FRBSs [1,2]. These kinds
of FRBSs are the ones that have fuzzy rules composed of fuzzy variables —
with a fuzzy set associated defining their meaning — that do not take as a value
a linguistic term, like in the case of linguistic variables [36-38], but a real fuzzy
set.

Even though a great deal of research activity has focused on the develop-
ment of methods to build or refine approximate FRBSs from numerical data,
they still present some problems. To deal with these kinds of models and
methods, in this paper we first propose a common framework to group and
characterize fuzzy rule generation methods (FRG-methods), i.e., methods for
learning approximate rules. Later, we introduce a modification of this frame-
work in order to solve many of the former problems by designing a fuzzy rule
base hierarchical learning methodology (FRB-HLM). The main purpose of
this methodology is to automatically generate more accurate approximate
fuzzy models by performing successive refinements of initial models generated
by FRG-methods.

To do so, we introduce the concept of layers, which was previously applied
to descriptive models in [13,15]. In this extension, the fuzzy rule base (FRB) is
constructed by the development of set of layers or FRBs, each one containing
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fuzzy rules with a different specificity level, i.e. different fuzzinesses. These
kinds of rules are called hierarchically generated fuzzy rules.

In order to do that, this paper is set up as follows. In Section 2, a description
of the approximate FRBS model is introduced, as well as its advantages and
drawbacks. In this section, we also consider some problems associated with the
FRG-methods, and propose a common framework for dealing with them. In
Section 3, we introduce the FRB-HLM as a solution to many of the previous
problems and perform a description of the hierarchically built FRB philosophy
and the relation between its components. Next, the algorithm is explained
in detail. In Section 4, the fuzzy modeling process obtained from FRB-
HLM and well-known inductive FRG-methods is applied to solve three dif-
ferent applications. Finally, in Section 5, some concluding remarks are pointed
out.

2. Approximate FRBSs

In this section we first compare the approximate FRBSs with the linguistic
ones, highlighting their advantages and lacks. Next, we characterize the FRG-
methods, which built approximate FRBSs, providing a common framework to
deal with them. Finally, the drawbacks of the FRG-methods are also discussed.

2.1. Approximate versus linguistic FRBSs

As we have said, there are at least two different forms of fuzzy modeling:
Mamdani-type and TSK FRBSs. The former presents the maximum descrip-
tion and interpretability level, but it is not as accurate as desired in some
complex problems. In opposite, the second approach performs the more ac-
curate approximation with the drawback of losing interpretability in their
consequents.

The lack of accuracy of Mamdani-type models is due to some problems
related to the linguistic rule structure considered, which are a consequence of
the inflexibility of the concept of linguistic variable [36-38]. A summary of
these problems may be found in [1,4,8], and is briefly enumerated as follows:
e There is a lack of flexibility in the FRBS because of the rigid partitioning of

the input and output spaces.

e When the system input variables are dependent themselves, it is very hard to
fuzzy partition the input spaces.

e The homogenous partitioning of the input and output spaces when the in-
put—-output mapping varies in complexity within the space is inefficient
and does not scale to high-dimensional spaces.

o The size of the FRB directly depends on the number of variables and linguis-
tic terms in the system. Obtaining an accurate FRBS requires a significant
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granularity amount, i.e., it needs the creation of new linguistic terms. This

granularity increase causes the number of rules to rise significantly, which

may take the system to lose the capability of being interpretable for human
beings.

A variant of these Mamdani-type FRBS-based modeling approaches has
been proposed in the last few years, the approximate FRBS [1,4]. It is based on
the former approach but considers the lack of accuracy as a major drawback.
While the former descriptive FRBSs have associated a knowledge base com-
posed of a database — containing linguistic partitions — and a rule base —
composed of linguistic rules which make use of these linguistic partitions —, the
approximate ones only have to define an FRB. This happens because their
aproximate fuzzy rules contain variables which are different locally defined
fuzzy values.

In order to distinguish between the type of modeling performed to obtain
Mamdani-type and approximate FRBSs, we are going to refer to the former as
linguistic modeling, and to the latter as fuzzy modeling. That is, linguistic models
are performed by descriptive Mamdani-type rules or linguistic rules, and fuzzy
models are developed by approximate Mamdani-type rules or fuzzy rules. In the
following some distinctions between both types of modeling are given:

o Linguistic modeling makes use of fuzzy rules composed of linguistic variables
that take values in a term set with real-world meaning (linguistic rules).
These kinds of models are characterized by the fact that their main require-
ment is the system interpretability.

o In fuzzy modeling, the fuzzy rules are composed of fuzzy predicates without a
linguistic meaning, i.e., the variables forming the rules do not take as a value
a linguistic term with a fuzzy set associated defining their meaning, but a real
fuzzy set. These models pretend to be more accurate than the former ones.

The choice between how interpretable and how accurate the model must be,
usually depends on the user’s needs for a specific problem and will condition
the kind of FRBS selected to model it. As well as that, in this paper we will
focus on developing more accurate fuzzy models by an FRB-HLM, which
provides approximate solutions to different problems, especially real-world
problems.

2.2. Approximate FRBS features

Approximate FRBSs have some interesting advantages that get them to be

very suitable for fuzzy modeling purposes in many cases [8]:

o The expressive power of the rules, that present their own specificity in terms
of the fuzzy sets involved in them, thus introducing additional degrees of
freedom in the system.

e The number of rules is adapted to the complexity of the problem, needing
less rules in simple problems, and being able to use more rules if it is neces-
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sary. This is likely to be of benefit in tackling the course of dimensionality
when scaling to multidimensional systems.
These facts, which allow approximate FRBSs to be more accurate in com-

plex problems, have unfortunately some drawbacks associated [1]:

e The FRB readability is lost because there is no global interpretation of the
variables considered. In spite of this, approximate FRBSs locally describe
the system behavior in a similar way to other models like neural networks,
but in a more descriptive way.

e The approximation capability causes an excessive specificity with bad gener-
alization, sometimes obtaining an unwanted overfitting.

Although fuzzy and linguistic modeling are not incompatible, but comple-
mentary, in this paper we focus our attention in the former, and consequently
on the model accuracy.

2.3. Approximate FRBSs learning methods (FRG-methods) as prototype-
identification algorithms

Some automatic techniques have been proposed to learn a proper FRB for
an approximate FRBS to solve a specific problem. The accuracy of the FRBS
in solving this problem will depend on the intrinsic characteristics of the
problem and on the mentioned learning tasks. In spite of these dependences, we
will attempt to characterize these learning methods which we have labeled as
FRG-methods.

Regarding [29,40], we can say that basically an FRG-method does its job as
a prototype-identification algorithm, which performs the optimization of a
functional Q(F; Model(y)) that measures the extent by which the parameter-
ized model Model(y) fits the subset F of the object being described (see Fig. 1).

From this perspective, the problem is formulated as a clustering problem in
the sense that extracted subsets meet, to some extent, the requirements imposed
by the model collection in the same way that elements of a clustering partition
satisfy the constraint that their members be as similar as possible [29,40]. This
point of view follows the original ideas of Ruspini [28], later expanded by
Bezdek introducing various methods centered upon the notion of prototype [5].
The basic idea of summarizing a dataset by a number of representative proto-
types — objects lying in the same space as the sample points — was later extended
in many significant directions by relaxing this concept in a variety of ways, for
example, line segments, ellipsoids, etc. [7]. In this paper we particularize this
concept by considering these prototypes as being fuzzy rules [2,17,18].

Having these concepts in mind, FRG-methods can be seen as identification
algorithms with fuzzy rule prototypes, i.e., fuzzy model builders whose main
purpose is to extract the most suitable set of fuzzy rules from an object (input—
output data) according to an optimization measure, which evaluates the
quality of the approximation. Additionally, they organize results and
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Fig. 1. FRG-methods as prototype-identification algorithms.

summarize them by an interestingness criterion, in order to provide a more
compact and useful representation of the salient structures.

In order to illustrate this situation, consider for example the Weighted
Counting Algorithm introduced by Bardossy and Duckstein [3] which, as can
be seen in Appendix A, identifies approximate fuzzy rules from a set of input—
output data (object F) for an approximate fuzzy model Model(y). The quality
of identified candidate substructures (rule premises) is measured in base of its
degree of fulfillment, i.e., a covering criterion (Q(F; Model(y))). These extracted
rules could also be summarized by, for example, a user-based relation of in-
terest which imposes a maximum acceptable number of rules.

2.4. Drawbacks of the FRG-methods

All of these models generated by FRG-methods have the same drawbacks
that prototype identification methods have, and all of them try to give their
different own solutions, which become particular to the corresponding method:
e Simple formulation of the prototype-identification problem as an optimiza-

tion of a functional would simply result in a large collection of very specific

rules with small extent and high accuracy, but with poor generalization.

Smaller rather than larger significative sets with high generalization power

would be preferred.

e The determination of a complete clustering or a partition of the dataset into

a fixed number of prototypes becomes a big deal for a long time.
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To deal with these problems, in the following section we will present an FRB-
HLM in order to build a FRB with the purpose of solving some of the above
drawbacks.

3. Fuzzy rule base hierarchical learning methodology

To overcome some of the drawbacks of the approximate FRBSs (Section
2.4) and of the FRG-methods (Section 2.3), we propose a FRB-HLM which, as
a meta-method, modifies the framework shown in Fig. 1 and considers the
following points:
¢ On the one hand, we would like to implement a sort of trade-off between the

extensionality and the accuracy of the models generated, having in mind that

rules which perform good explanations tend to be limited in extent while
those that, conversely, are capable of describing large subsets of the dataset,
do it so poorly.

e On the other hand, we will adopt a more general treatment than that of a
typical clustering problem, emphasizing the sequential isolation of individ-
ual clusters [23] rather than determination of a full clustering. Furthermore,
we do not want to assume a priori knowledge of the total number of clusters
—rule prototypes — requiring that the set of all clusters be an exhaustive par-
tition of the complete object.

To do so, the FRB-HLM will modify the initial model identified by a FRG-
method in an iterative way, performing a gradual refinement of it. Moreover, it
will also modify the summarization process seen in Fig. 1, by adding a rule
selection process to obtain a compact set of rules that have good cooperation
between them and to remove the unnecessary ones.

3.1. Keypoints of the FRB-HLM

Our approach owes much to those clustering generalizations mentioned in
Section 2.3 and to the notion of hierarchical clusters [17,19]. It is also closely
related to other modeling techniques which work with fuzzy granules, fuzzy
graphs, etc. [27,39]. As them, we should also answer some important questions
which concern the structures (clusters, rules, granules, etc.) used by the former
techniques:

How can rules, granules, clusters, etc. be partitioned?
This question is related to some aspects like the compactness of a cluster,

measures inside the cluster, measures between clusters, granule perimeters, rule
scopes, etc.
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How many rules, granules, clusters, etc. could exist?

This is concerned with system comprehension, accuracy, overfitting, etc.
In order to give an answer to these questions, and to previous problems, in the
following we list some keypoints of the FRB-HLM:

o Dynamic rule expansion or partition depending on the FRG-method used, in
order to take advantage of its intrinsic capabilities. These methods some-
times perform this task in a more static or dynamic way according to their
philosophy.

o [terative methodology which, as is done by hierarchical clustering techniques,
emphasizes the sequential isolation of clusters rather than a full clustering.
Hence, we do not have to assume an a priori fixed number of rules.

o Gradual localized refinements on bad modeled zones rather than in the whole
problem domain, as a regulation among extensionality and precision. This
task is controlled by an expansion factor, which also acts as an overfitting
foreseer.

o Summarization by rule selection, in order to integrate the local behavior of
the hierarchically built model with the global one of the whole model, ensur-
ing a good performance.

We should note that there are many proposals in order to answer each one of

the former questions or to solve the said problems [2,27,29,39]. Some of their

skills will be considered as extensions of the present methodology in future
works. In the following subsections, the composition of the hierarchically built

FRB and the methodology will be described in detail.

3.2. Hierarchically built fuzzy rule base

In this section we present a flexible hierarchical process to define the FRB
structure — based on previous keypoints — that allows us to solve some of the
lacks described in Sections 2.2 and 2.4, and consequently to improve the ap-
proximate fuzzy models performance/accuracy. The hierarchical process is
based on the generation of a set of layers, each one becoming an FRB which
contains fuzzy rules with a different degree of specificity or extent, i.e., fuzziness

layer(t) = FRB' = URf

with FRB' being the FRB built in iteration ¢ formed by approximate fuzzy
rules R!, according to the present methodology. From now on and for the sake
of simplicity, we are going to refer to the components of a FRB' as r-fuzzy
rules.

These t-fuzzy rules are organized as a hierarchy, where the order is given by
increasingly more specific input subspaces, i.e., the input support extent cov-
ered by the antecedents of the approximate fuzzy rules. This can be regarded as
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a kind of information quantization included in the fuzzy variables of the rules,
i.e., their fuzziness. For example, given two successive layers ¢ and ¢+ 1, the
fuzzy input subspace covered by a t-fuzzy rule is more general (larger) than the
ones embraced by each one of the (¢ + 1)-fuzzy rules derived from it [25]. From
this point of view, the successive approximate fuzzy rules generated can be seen
as an input subspace refinement of previous layer fuzzy rules. This structure is
illustrated in Fig. 2.

As is seen, the representation takes the form of a tree, where the root rep-
resents the entire problem domain space, and the nodes represent good per-
formance t-fuzzy rules (light grey rectangles), which model fuzzy input
subspaces that do not require further decomposition, or more specific (¢ + 1)-
fuzzy rules that model decomposed subspaces from a bad performance ¢-fuzzy
rule (black rectangles). This process is performed in an iterative way. Thus,
good t-fuzzy rules and new generated (¢ + 1)-fuzzy rules compose the new level
of the tree generated in iteration ¢ + 1, i.e., layer (¢ + 1).

How can we develop a FRB™! from a FRB' in order to create the final
more accurate FRB?

Each FRB' is formed by a collection of approximate Mamdani-type fuzzy rules
Ri: IF x; is S} and ... and x,, is S;, THEN y is B!

with x,...,x, and y being the input fuzzy variables and the output one, re-
spectively; and with S},,..., S} , B} being the fuzzy sets. As has been said, each

individual fuzzy rule directly contains the meaning describing it, i.e., each
variable has a fuzzy set associated as shown in Fig. 3.

R! Layer I - FRB' + Fuzziness <::> - Specificity

R} R’, Layer 2 - FRB?

Layer 3 - FRB®

Layert - FRB' - Fuzziness <::>+ Specificity

Fig. 2. Hierarchically built FRB.
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Ry:TFxis /> THEN yis __/

Fig. 3. Approximate fuzzy rules.

As said, the main purpose of developing a hierarchically built FRB is to

model the problem space in a more accurate way. To do so, we consider the
following summarizing points:

Those t-fuzzy rules that model a subspace with bad performance are ex-
panded into a set of more specific (¢ + 1)-fuzzy rules, which become their im-
age in layer(t + 1). This set of rules models the same subspace that the
former one — but in a more local way — and replaces it

R —{R}',...,R}

il

with L being the number of rules generated by a base FRG-method (see Fig.
2).

We should note that not all #-fuzzy rules have to be expanded by the

learning methodology in the present iteration 7. Only those -fuzzy rules
which model a subspace of the problem with a significant error become
the ones that are involved in this rule expansion process to build the
layer(t + 1). The remaining rules preserve the same appearance that they
have in layer(t) and are just copied to layer(t + 1).
This expansion process is performed taking advantage of the rule construc-
tion mechanism used by the original FRG-method. Thus, the rule expansion
is a dynamic process without a predefined number of rules if this condition is
not imposed by the FRG-method. Although the rule construction in the ex-
pansion process is guided by the FRG-method and performed according to
its own philosophy, the decision over which rule should be expanded and
consequently the replacement scope is a matter of the FRB-HLM.

An explanation for this behavior could be found in the fact that it is not
always true that a set of rules with high specificity performs a better model-
ing of a problem than other set composed of more general fuzzy rules with
more fuzziness (the chance of overfitting appears). Moreover, this is not true
for all kinds of problems, and what is more, it is also not true for all fuzzy
rules that model a problem [14].

Finally, in Fig. 2 successive layers are viewed as a hierarchical clustering rep-
resentation. These more specific rules, which replace the bad ones, are com-
bined with previous good rules in a proper way, to generate a new layer.
Before a new layer is finally created, a local summarization is performed
in order to optimize the behavior of the corresponding FRB, leaving only
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those rules (clusters, prototypes) which become nonredundant (light-grey
rectangles) and with good cooperation (see Section 3.4, Step 3). Otherwise,
this local treatment allows us to stop the search in any layer(z), which as a
gradual refinement of its predecessor layer, ensures to obtain an improved
even though not optimal FRB.

3.3. Fuzzy rule consequents in the FRB-HLM

As said, the FRB-HLM has been thought of as a meta-strategy to im-
prove simple FRG-methods performance. To do so, it provides an iterative
mechanism to generate a more accurate FRB. During this process, FRB-
HLM generates sets of more specific (¢ + 1)-fuzzy rules from those -fuzzy
rules that perform a bad modeling of the problem subspace. Let us first
consider what is the meaning of a bad rule from the FRB-HLM point of
view:

a t-fuzzy rule is considered as a bad one if the performance of this rule is
worst, in some measure, than the global error of the whole rule set.

As said, once a bad rule is identified, it should be replaced by more specific
ones. In order to do this, we should define the scope of this hierarchical re-
placement process. A good point to start to find a proper replacement scope is
to analyze

what is the reason for this bad modeling performed by the bad rule?

To answer this question we will make use of previous considerations of a
fuzzy rule as a prototype, which performs data (object) covering, i.e., that have
some positive examples associated or belonging to it in some degree.

Having the above connection in mind, let us consider the rule expansion as a
splitting process from two different points of view: the hierarchical and opti-
mization clustering ones [19]:

e In the former approach, the points from a cluster selected to be split can go
to any subclusters generated from its parent cluster in order to optimize a
grouping similarity measure. In the same way, the points covered by a
bad t-fuzzy rule could be reallocated in more specific (¢ + 1)-fuzzy rules,
which perform a better modeling of the original rule subspace. Therefore,
if this replacement is caused by the need for more specificity inside the
bad rule subspace, those fuzzy rules which replace it will have associated
consequents restricted to the original rule subspace, i.e., constrained conse-
quent scope (CCS).

e Otherwise, in the latter optimization approach, the points are allowed to be
transferred between clusters with the only restriction of optimizing some
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Fig. 4. Constrained consequent scope.

clustering criteria. This unrestricted approach suggests that the split rule
could be better replaced by more specific rules whose consequents are not
necessarily in the same subspace of the original rule, but in a neighbor or dif-
ferent one. Rules of this form will be called rules with an unconstrained con-
sequent scope (UCS).

The above distinction is in agreement with the classification performed in [1]

over the restrictions that the learning processes of the FRG-methods impose on
the fuzzy sets in the generation of each approximate fuzzy rule:

Soft constrained learning, where there are variation intervals that determine
the region in which each point defining the membership functions may take
value during the learning process.

Unconstrained learning, where there are no restrictions imposed on the fuzzy
sets, but they can lie in any region of the corresponding variable domain.
Thus, summarizing the above concepts, hierarchically built fuzzy rules can

be generated in one of the following ways:

Constrained consequent scope. When the scope of the membership func-
tions of the consequent variables of the hierarchically built rules should
be defined in the output subspaces of their ancestors, i.e., the consequent
support sets of the expanded fuzzy rules. Fig. 4 illustrates how a ¢-fuzzy
rule R; can be replaced by its image, i.e., (¢+ 1)-fuzzy rules
Ri1,Ri2,Ri3,Ri4. All of these rules are completely defined in the former
rule subspace.

Unconstrained consequent scope. Where the only restriction imposed on the
consequent membership function locations of the hierarchically built fuzzy
rule is to lie in the whole domain of the system variable. Fig. 5 illustrates this
scope where some of the (¢ + 1)-fuzzy rules — R;;,R;» — are defined outside
the former t-fuzzy rule R; output subspace, even if they are still inside its an-
tecedent bounds.
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Yyt R,

X

v

Fig. 5. Unconstrained consequent scope.

3.4. Algorithm of the basic FRB-HLM design process

In this section we present FRB-HLM as an iterative methodology to gen-
erate an FRB. To do so, we take a FRG-method as a base, which — as an
inductive method — is based on the existence of a set of input—output data Etps,
and a previously defined approximate fuzzy model obtained from this FRG-

method. The dataset Etps = {e!,...,e/,...,e?} is composed of ¢ input-output
data pairs e’ = (ex!,...,ex!, ey'), which represent the behavior of the system
being modeled.

It basically consists of the following steps which may be also graphically
seen in Fig. 6.

Initialization process

Step 0. FRB! generation process. Generate FRB'. A FRG-method is run in
order to generate the rules of the initial layer (¢ = 1)

FRB' = FRG-method(U, V, Erps)

with U and V being the domains where the antecedents and consequents are
defined, respectively, and ¢ being the iteration counter and the last layer gen-
erated.

Iteration process (iteration t)

Step 1. FRB iterative generation process. Generate FRB'"!, where the fuzzy
rules from layer (4 1) — FRB"™! are generated taking into account FRB’

(a) Bad performance t-fuzzy rule selection process. This process performs the
selection of those r-fuzzy rules from FRB' which will be expanded in FRB'*!,
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Fig. 6. FRB-HLM algorithm.

no

based on an error measure. This measure analyzes the accuracy of the mod-
eling performed by each individual ¢-fuzzy rule in its definition subspace with
respect to the global performance of the whole FRB. Each bad performance
t-fuzzy rule is going to be replaced by a subset of (¢ + 1)-fuzzy rules, which
will be generated as its image. To do so, we have to follow the next steps:

(i) Calculate the error of FRB' as a whole. Compute MSE(Erps, FRB').
The mean square error (MSE) calculated over the training dataset Etps
is the error measure used in this work. Therefore, the MSE of the entire
set of t-fuzzy rules is represented by the following expression:
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o ev! — s(ex! 2
MSE (Erpg, FRB!) = 2=¢kms (@~ $(e))
2 |Erps|

with s(ex’) being the output value obtained from the FRB', when the input

variable values are ex’ = (exi,...,ex’), and ey’ is the known desired value.

(1) Calculate the error of each individual t-fuzzy rule. Compute
MSE(E;, R!). To do so, we need to define a subset of Erps, E;, to be used
to calculate the error of the rule R!. The set E; is a set of examples match-
ing the antecedents of the rule R to a specific degree t:

E; = {e' € Exps/Min(ug (ex)),. .., ug (ex,,)) > 1},
where 7 € [0, 1]. Then, we calculate the MSE of a single ¢-fuzzy rule R! as

Perer ey = silex'))’

MSE(E;,R}) = 2 )|

with s;(ex’) being the output value obtained when inferring with R.. We
should note that any other local error measure can be considered with
no change in our methodology, such as the one shown in [34].

(ii1) Select the t-fuzzy rules with bad performance. Select those bad -fuzzy
rules which are going to be expanded, making the difference from the
good ones

FRBLad = {RE/MSE(E”RZ) =0 MSE(ETD57 FRB’)}’

FRB,, = {R//MSE(E;,R}) < o.- MSE(Erps, FRB')}

with o being a threshold that represents a percentage of the error of the
whole FRB, which determines the expansion of a rule. The threshold «,
for example o = 1.1, means that a z-fuzzy rule with an MSE a 10% higher
than the MSE of the entire FRB’ should be expanded. It may be adapted
in order to have more or less expanded rules. It is noteworthy that this
adaptation is not linear and, as a consequence, the expansion of more rules
does not ensure the decrease of the global error of the modeled system.

Now, for each R! € FRB} ;:

(b) Bad performance t-fuzzy rule expansion process. Produce a set of L
(t + 1)-fuzzy rules, which are the expansion of the bad #-fuzzy rule R. This
task is performed by a FRG-method, which takes ANT(R!), CON(R!)
and the set of input-output data E; as its parameters

CFR(R!) = FRG-method(ANT(R!), CON(R!),E;) = {R'"', ..., R
1 L
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with CFR(R!) being the image of the expanded fuzzy rule R/, i.e., the
candidate fuzzy rules to be in the FRB™' from rule R/, ANT(R!) being
the product of the support set of each antecedent fuzzy term of the rule
R

ANT(R;) = supp(S;;) X -+ x supp(S;,,)

m

and CON(R!) being the support set of the consequents which in case of
using CCS is defined as

CON(R;) = supp(B))
and in case of using UCS as
CON(R) =V

with 7 being the domain where the consequent is defined.

Step 2. Summarization process. Obtain a joined set of candidate fuzzy rules
(JCFR) performing the union of the group of the new generated (¢ + 1)-fuzzy
rules and the former good performance ¢-fuzzy rules:

JCFR = FRB,, U <UCFR(R§)>
with R’ € FRB ;.

Step 3. FRB selection process. Simplify the set JCFR by removing the un-
necessary rules from it, in order to generate an FRB'™ with good cooperation.
In this paper we consider a genetic process [11,20,22] to put this task into effect,
but any other technique could be considered

FRB'"! = Selection(JCFR).

In the JCFR — where there are coexisting rules generated in different layers — it
may happen that a complete set of (¢ + 1)-fuzzy rules, which replaces an ex-
panded t-fuzzy rule, does not produce good results. However, a subset of this
set of (¢t + 1)-fuzzy rules may work properly, with less rules that have good
cooperation between them and with the good rules from the previous layer.
Thus, the JCFR set of rules generated may present redundant or unnecessary
rules making the model using this FRB less accurate.

The genetic rule selection process [11,20] is based on a binary coded genetic
algorithm (GA) in which the selection of the individuals is performed using the
stochastic universal sampling procedure together with an elitist selection
scheme, and the generation of the offspring population is put into effect by
using the classical binary multipoint crossover (performed at two points) and
uniform mutation operators.
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The coding scheme generates fixed-length chromosomes. Considering the
rules contained in JCFR counted from 1 to z, an z-bit string C = (cy,...,c,)
represents a subset of rules for the FRB'', such that

IF ¢; = 1 THEN (R, € FRB"*') ELSE (R; ¢ FRB""").

The initial population is generated by introducing a chromosome representing
the complete previously obtained rule set, i.e., with all ¢; = 1. The remaining
chromosomes are selected at random.

As regards the fitness function F(C;), it is based on a global error measure
that determines the accuracy of the FRBS encoded in the chromosome, which
depends on the cooperation level of the rules existing in the JCFR. We usually
work with the MSE over a training data set, as was previously defined, al-
though other measures may be used.

Step 4. Model validation process. The final model is either accepted as
proper for the given purpose or it is rejected generating another iteration of the
process. Although many indexes can be used to measure the quality of linear or
nonlinear systems after an identification loop [2,7], we consider a monotonic
MSE measure on the training and test sets, combined with a previously defined
maximum number of iterations 7max, which is based on a trade-off between
the complexity and the accuracy of the model generated.

This measure is computed as:

IF (MSE(FRB""!(Erps)) < MSE(FRB'(Erpg)) and
(MSE(FRB"! (E1gr)) < MSE(FRB'(Etgt)) and (¢ < Tpa))
THEN ¢ — ¢+ 1;
Goto Step 1
ELSE
FRB™! — FRB' or FRB"*!.

We should note that for the sake of simplicity in the present implementation,
we only keep the last two layers of the FRB in order to allow the validation of
the algorithm output model. Therefore, at last we only select as FRB™ one of
these two FRBs , i.e., FRB' or FRB'"!, the one with better performance.

4. Examples of application: experiments and analysis of results

With the aim of analyzing the behavior of the proposed methodology, two
different FRG-methods aligned with the characteristics presented in this paper
have been chosen. The first is the one proposed by Bardossy and Duckstein [3],
Weighted Counting Algorithm (WCA), and the second is a well-known fuzzy
clustering method based on Bezdek’s work, the Fuzzy C-means (FCM) [5-7].
Both methods are briefly described in Appendix A.
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In this section, FRB-HLM will be combined with the former FR G-methods
to model three different applications: two- three-dimensional functions [9,11]
and a real-world electrical engineering distribution problem in Spain [12,30,31].

In order to do this, we have organized this Section in three parts: a first part
of notation and parameters, a second of experiments and a final one with an
analysis of results for the experimental study.

4.1. Notation and parameters

For the sake of simplicity, in the following applications we are going to refer
to those experiments produced by the FRB-HLM by the following notation:

FRB-HLM (FRG-method, CS, #),

where ¢ is the number of layers or iterations with rule expansions performed by
the methodology, and CS represents the type of consequent scope selected, i.¢.,
CCS or UCS, e.g., FRB-HLM (FRG-method, CCS, 3).

Two FRG-methods, WCA and FCM, will be used for the experimentation.
The WCA is considered with two different interval initializations, both based
on the extraction of the support set from fuzzy partitions [1]. The first one,
static initialization (S-WCA), is built based on a symmetrical and uniformly
distributed fuzzy partition of three and five fuzzy terms for initial and subse-
quent iterations of the algorithms [13], respectively. The second one, dynamic
initialization (D-WCA), is performed by the use of a fuzzy clustering-devel-
oped fuzzy partition. To do so, in this paper we use FCM combined with a
validation index which measures the partition quality and iteratively detects a
good number of clusters [32]. Both methods are briefly described in Appendix
A and summarized in Table 1.

The general parameters used in all of these experiments are listed in Table 2.

Table 1
Summarization of WCA and FCM tasks
WCA FCM
S-WCA D-WCA
Symmetrical, Incremental application of Incremental application of

uniformly distributed
fuzzy partition

FCM and validation index
Cluster center projections
on the antecedent domains

Partition construction with a 0.5 cross level between

adjacent fuzzy sets

Support set extraction and intervals definition
Rule construction by WCA philosophy

FCM and validation index
Clusters projection on
antecedent and consequent
variable domains

Rule construction
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Table 2

Parameter values
Parameter Decision
Generation
o rule expansion factor 0.5,0.9,1.1
T positive examples 0.5,0.3

GA selection

Number of generations 500, 1500
Population size 61, 81
Mutation probability 0.1, 0.21
Crossover probability 0.6

In this contribution, we will use the minimum f-norm in the role of con-
junctive and implication operator and the center of gravity weighted by the
matching degree [10] as defuzzification strategy.

The results obtained in the experiments developed are collected in tables
where MSE,;, and MSE; stand for the values obtained in the MSE measure
computed over the training and test data sets, respectively, and % indicates the
percentage in which the FRG-method models in the table are improved by the
hierarchically built FRB-based models. #R stands for the number of rules of
the corresponding FRB.

4.2. Experiments

We will show results comparing the effectiveness of the hierarchical learning
methodology with both original FRG-methods (WCA and FCM) on the said
three problems. We should note that the hierarchically built FRBs are ini-
tialized with the FRG-methods output, in order to allow the former compar-
ison. In all cases we show examples applying CCS and UCS consequent scope.
Additionally, in the real-world electrical problem we will also compare the
results obtained by FRB-HLM with other techniques: classical regressions,
multilayer perceptron and a linguistic modeling hierarchical learning meth-
odology HSLR-LM [13,16].

Finally, we will analyze the effect of using different expansion factors o,
showing the robustness of the FRB-HLM and its role as an accuracy-com-
plexity regulator and overfiting controller.

4.2.1. Fuzzy modeling of an intermediate complexity multimodal three-dimen-
sional function (F;)

The expression of the selected function is shown as follows, along with the
universes of discourse considered for the variables [9]. Its graphical represen-
tation is shown in Fig. 7. As may be seen, F; is an intermediate complexity
multimodal function whose expression is shown as follows:
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Fig. 7. Exact graphical representation of the function F.

Fi(x1,x) =¢€"- sin® x» 4 € - sin’xj,
X1,X € [—8, 8], F (xl,xz) S [O, 5836]

In order to model the F; function, a training data set composed of 1089 data
uniformly distributed in the three-dimensional definition space has been ob-
tained experimentally. On the other hand, another data set has been generated
for its use as a test set for evaluating the performance of the design methods,
avoiding any possible bias related to the data in the training set. The size of this
data set is a percentage of the training set one, ten percent to be precise. The
data are obtained by generating at random the state variable values in the
specific universes of discourse for each one of them, and computing the asso-
ciated output variable value. Hence the test set, formed by 108 data, is used to
measure the accuracy of the different models designed by computing the MSE
for them.

4.2.1.1. Experiments with FRG-methods. The results obtained with our FRB-
HLM for WCA and FCM are shown in Table 3 and a graphical illustration of
the modeling obtained can be seen in Fig. 8§ (FRB-HLM (S-WCA, UCS, 3)).

Table 3

Results obtained in the fuzzy modeling of the function F}
Method o #R MSE,.. MSE, Youa Yorst
S-WCA 9 244,632 257,047
FRB-HLM (S-WCA, CCS, 3) 0.5 316 3876 6140 98.41 97.61
FRB-HLM (S-WCA, UCS, 3) 0.5 201 2406 3634 99.01 98.58
D-WCA 570 116,992 59,878
FRB-HLM (D-WCA, CCS, 2) 0.5 718 60,142 27,947 48.59 53.32
FRB-HLM (D-WCA, UCS, 2) 0.5 838 4984 4036 95.73 93.25
FCM 6 447,584 430,713
FRB-HLM (FCM, CCS, 1) 0.5 5 123,984 88,494 72.29 79.45

FRB-HLM (FCM, UCS, 1) 0.5 9 110,210 55,404 75.37 87.13
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Fig. 8. F; modeled with 201 rules.

4.2.1.2. Experiments with different values for the expansion factor o. The results
obtained with FRB-HLM with different values for the expansion factor o are
shown in Table 4. We should note that we only present experiments with values
of o that become representative, even though other values could have been
used. Besides this, Table 4 shows experiments that have been done up to the
same iterations in order to allow the comparison among different values of .
Anyway, almost all of these values can be overcome in more iterations.

4.2.2. Fuzzy modeling of a very complex multimodal three-dimensional function
(F2)

In the following, we present a very complex multimodal three-dimensional
function, £ [9,11]. Its graphical representation is shown in Fig. 9. Its expres-
sion, along with the universes of discourse considered for the variables, is also
shown as follows:

Table 4
Results obtained in the fuzzy modeling of the function F} considering different values of the ex-
pansion factor o

o CCS UCS

#R MSE,, MSE,, HR MSE,, MSE,,
(a) S-WCA
0.5 316 3876 6140 201 2406 3634
0.9 214 5012 6248 239 3897 3123
1.1 218 3780 5979 168 3614 4036
(b) D-WCA
0.5 718 60,142 27,944 838 4984 4036
0.9 424 73,408 79,082 668 27,476 39,463
1.1 371 94,682 69,347 571 28,771 43,508
(c) FCM
0.5 5 123,984 88,494 9 110,210 55,404
0.9 5 123,984 88,494 9 110,210 55,404

1.1 4 112,871 90,068 9 110,210 55,404
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N Ao 4N e s

Fig. 9. Exact graphical representation of the function F.

B(xi,x) = x% —|—x§ — cos(18x;) — cos(18x,),

X1,X2 € [—1, 1], Fz(xl,XQ) S [—2,35231]

The second function, F3, has been modeled using a training data set composed
of 1681 data uniformly distributed in the three-dimensional definition space. A
test set of 167 data, generated in the same way that was done in function F,
was selected for evaluating the performance of the design methods.

4.2.2.1. Experiments with FRG-methods. The results obtained with our FRB-
HLM for WCA and FCM methods are shown in Table 5 and also illustrated in
Fig. 10 (FRB-HLM (S-WCA, CCS, 3)).

4.2.2.2. Experiments with different values for the expansion factor o. The results
obtained with our FRB-HLM with different values for the expansion factor o
are shown in Tables 6 and 7. The assumptions made in the previous experiment
remain for the present one. Empty boxes mean that the value of « is too high to
expand rules.

Table 5

Results obtained in the fuzzy modeling of the function F,
Method o #R MSE;;, MSEy:  Yota Yorst
S-WCA 9 0.580 0.660
FRB-HLM (S-WCA, CCS, 3) 0.9 486 0.106 0.129 81.72 80.45
FRB-HLM (S-WCA, UCS, 3) 0.9 379 0.178 0.195 69.31 70.45
D-WCA 49 0.516 0.578
FRB-HLM (D-WCA, CCS, 2) 0.5 1657 0.094 0.084 81.78 85.46
FRB-HLM (D-WCA, UCS, 2) 0.5 2296 0.073 0.072 85.85 87.54
FCM 7 0.553 0.579
FRB-HLM (FCM, CCS, 4) 0.5 146 0.324 0.331 41.41 42.83

FRB-HLM (FCM, UCS, 3) 0.5 15 0.506 0.541 8.49 6.56
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Fig. 10. F, modeled with 486 rules.

Table 6
Results obtained in the fuzzy modeling of the function F, considering different values of the ex-
pansion factor o

o CCS UCS
#R MSE;, MSE #R MSE. MSE,.,

(a) S-WCA
0.5 710 0.100 0.121 699 0.171 0.195
0.9 486 0.106 0.129 379 0.178 0.195
1.1
(b) D-WCA
0.5 2296 0.094 0.084 1657 0.073 0.072
0.9 697 0.163 0.169 587 0.138 0.184
1.1 213 0.297 0.299 210 0.290 0.275
(c) FCM
0.5 127 0.374 0.388 15 0.506 0.541
0.9 66 0.385 0.421
1.1

Table 7

Results obtained in the fuzzy modeling of the function />, comparing results with two different
values of o and a different number of iterations

Method o #R MSE,, MSE,,
FRB-HLM (D-WCA, CCS, 2) 0.5 1657 0.094 0.084
FRB-HLM (D-WCA, CCS, 4) 1.1 750 0.129 0.133

4.2.3. The electrical engineering distribution problems

Sometimes, there is a need to measure the amount of electricity lines that an
electric company owns. This measurement may be useful for several aspects
such us the estimation of the maintenance costs of the network, which was the
main goal of the problem presented in Spain [12,31]. High and medium voltage
lines can be easily measured, but low voltage line is contained in cities and
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Table 8
Notation considered for the problem variables
Symbol Meaning
X Number of clients in population
X Radius of ith population in the sample
y Line length, population i

villages, and it would be very expensive to measure it. This kind of line used to
be very convoluted and, in some cases, one company may serve more than
10,000 small nuclei. An indirect method to determine the length of line is
needed.

Therefore, a relationship must be found between some characteristics of the
population and the length of line installed on it, making use of some known
data, that may be employed to predict the real length of line in any other
village. We will try to solve this problem by generating different kinds of
models determining the unknown relationship: fuzzy, classical regression and
neural models. To do so, we were provided with the measured line length, the
number of inhabitants and the mean distance from the center of the town to the
three furthest clients, considered as the radius of population i in a sample of
495 rural nuclei [30,31]. Our variables are named as shown in Table 8.

To design the different models we have randomly divided the sample into
two sets comprising 396 and 99 samples, labeled training and test, respectively.

4.2.3.1. Experiments with different predefined types of FRG-methods. The results
obtained with our FRB-HLM with the two said FRG-methods are shown in
Table 9.

4.2.3.2. Experiments with different values for the expansion factor o. The results
obtained with our FRB-HLM with different values for the expansion factor «

Table 9

Results obtained in the low voltage electrical application
Method o #R MSE,.. MSE, Youa Yorst
S-WCA 9 777,306 717,472
FRB-HLM (S-WCA, CCS,2) 0.5 60 154,109 184,178 80.17 74.32
FRB-HLM (S-WCA, UCS, 2) 0.5 40 158,879 186,819 79.56 73.96
D-WCA 25 192,818 202,095
FRB-HLM (D-WCA, CCS, 1) 1.1 115 97,187 144,865 49.59 28.31
FRB-HLM (D-WCA, UCS, 1) 1.1 136 87,675 146,155 54.52 27.68
FCM 5 508,426 464,130
FRB-HLM (FCM, CCS, 4) 0.5 27 181,196 158,312 64.36 55.01

FRB-HLM (FCM, UCS, 2) 0.9 8 208,777 171,379 58.93 63.07
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Table 10
Results obtained in the low voltage electrical application considering different values of the ex-
pansion factor o

o CCS ucCs

#R MSE,;, MSE #R MSE;;, MSE,,,
(a) S-WCA
0.5 60 154,109 184,178 40 158,879 186,819
0.9 38 186,343 207,585 39 168,988 189,795
1.1 23 359,169 320,839 31 228,388 235,460
(b) D-WCA
0.5 205 80,840 206,961 209 70,903 158,572
0.9 132 87,091 163,687 151 78,857 169,366
1.1 115 97,187 144,865 136 87,675 146,155
(c) FCM
0.5 14 191,441 181,375 11 211,719 177,138
0.9 10 205,221 189,842 8 208,777 171,379
1.1 7 229,559 206,363 8 231,280 207,120

are shown in Table 10. The assumptions made in previous experiments remain
for the present one.

4.2.3.3. Experiment comparing models from FRB-HLM with other techniques.
Once we have analyzed the behavior of the fuzzy models designed individually,
we are going to compare their accuracy with the remaining techniques con-
sidered. Table 11 shows the results obtained by them and the best ones ob-
tained by our FRB-HLM as well. To apply classical regression, the parameters
of the polynomial models were fit by Levenberg—Marquardt, while exponential
and linear models were fit by linear least squares. The multilayer perceptron
was trained with the QuickPropagation algorithm. The number of neurons in
the hidden layer was chosen to minimize the test error [12,31]. We also compare
the obtained results with a linguistic model obtained by means of a hierarchical
approach described in [13,15,16], i.e., a hierarchical system of linguistic rules

Table 11

Results obtained in the low voltage electrical application compared with other techniques
Method MSE,.. MSE, Complexity
Linear 287,775 209,656 7 nodes, 2 par.
Exponential 232,743 197,004 7 nodes, 2 par
Second-order polynomial 235,948 203,232 25 nodes, 2 par.
Third-order polynomial 235,934 202,991 49 nodes, 2 par.
Three-layer perceptron 2-25-1 169,399 167,092 102 par.
HSLR-LM 154,411 156,197 25 rules
FRB-HLM (D-WCA, UCS, 1) 97,187 144,865 115 rules

FRB-HLM (D-WCA, CCS, 1) 87,675 146,155 136 rules
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learning methodology (HSLR-LM) combined with Wang and Mendel’s rule
generation method [33].

4.3. Analysis of results

In view of the results obtained in the above experiments, we should remark
some important conclusions:

From the accuracy point of view. The different models generated from our
process clearly outperform the ones of the original FRG-methods in all
problems, even if they perform a bad initial approximation (see Tables 3, 5 and
9). Moreover, the most accurate FRB-HLM models outperform classical re-
gression, neural network and hierarchical linguistic models in the approxi-
mation of both data sets, training and test, in the real-world electrical problem
(see Table 11).

On the one hand, we should note that a FRG-method with known or in-
formed premises like WCA accomplishes a good covering of the examples. This
fact gives later more freedom to choose subsequent hierarchical partitions
without leaving uncovered examples. On the other hand, less informed tech-
niques with an unknown structure like FCM, perform good approximations in
complex problems (Tables 5 and 9), but sometimes the expansion process is
early stopped (Table 3) because of the fixed condition of the factor of expan-
sion o and the high fuzziness of the fuzzy rules identified. An adaptive a could
be an option to choose in order to solve this problem.

Finally, we should not forget that these results could not escape from the
initial models generated by the FRG-methods and their performance. Thus,
good initial conditions usually drive faster to good solutions, as can be seen
comparing different types of initial FRG-methods results and their respective
hierarchically built models. Therefore, right-side percentages of the tables are
better estimators of the benefits of our approach.

From the complexity point of view. This work is oriented to obtain very
accurate models, thus making them to become complex in comparison with the
simple initial ones, which are refined by the FRB-HLM. In spite of this, we can
deal with this point by different ways.

On the one hand, the iterative character of our methodology allows us to
have intermediate solutions, each one producing a hierarchically built FRB
which improves the previous one but increases its complexity. On the other
hand, the factor of expansion o works as a regulator among accuracy and
complexity, as shown in Tables 4, 6, and 10. There, all results become im-
provements to the ones of the original FRG-method but with different number
of rules. In this sense, we should highlight the results of Table 10 for WCA in a
complex real world problem, where the best results are obtained with a high
value of «, i.e., less expansion of rules. This fact prevents the system to become
overfitted. In view of these results, we empirically corroborate what we previ-
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ously introduced in Section 4.2, taking note that it is not always true that a fuzzy

model composed of more specific fuzzy rules, and consequently with a larger

number of rules, models better a problem than a less complex one [13,14].

In this real world electrical problem, the fuzzy models generated from FRB-
HLM with the D-WCA FRG-methods are quite complex, but we should note
that they clearly overcome the numeric models in the resulting test and training
errors (see Table 11).

As we have stated previously, our main purpose is to perform gradual re-
finements of a system on bad modeled subspaces, trying to preserve as much as
possible its original model and without causing overfitting. Table 7 is an ex-
ample which shows how a combination of a high expansion factor (o = 1.1)
and more iterations (4) performs good results with less than a half of the rules
generated by a lower expansion model (o = 0.5).

Finally, let us give some final considerations about the different FRG-
methods used in this work:

e We can observe that S-WCA and FCM become the less complex combina-
tion of FRG-methods and FRB-HLM. The former because of its simple ini-
tialization and minimum subsequent partitions [13], and the latter because of
its projection-oriented partition.

e Those methods which perform dynamic rule identification, i.e., D-WCA, fol-
low the data direction by clustering the space of the rule without a fixed
number of initial and subsequent partitions (not a minimum number as in
S-WCA). They produce more locally learned rules, i.e., more options to
choose a good combination of them when bad rules have to be replaced.
This better approximation could produce overfitting as seen in Table 9.

e The use of CCS and UCS gives the methods more locally freedom degrees to
select the best consequent. The latter ones, which search in a wider space,
increase the computational cost of the learning process. They seem to give
accurate results when redundant information exists as with D-WCA, but
produce rules with more fuzziness when rule components are identified by
projection on the variable space, like FCM. ' In practice, the apparent dif-
ferences between CCS and UCS have been found not to be too severe. CCS
usually obtains good solutions, if it is provided with a generous o.

5. Concluding remarks

In this paper, fuzzy models are viewed as a class of local modeling
approaches, which attempt to solve a complex modeling problem by

! Sometimes this fact produces an earlier stop of the algorithm, which can be treated with an
adaptive value of «.
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decomposing it into a number of simpler subproblems. Fuzzy set theory offers
an excellent tool for representing the uncertainty associated with the decom-
position task, for providing smooth transitions between the individual local
submodels, and for integrating various types of knowledge within a common
framework. From this perspective, fuzzy modeling can be regarded as a search
for a decomposition of a nonlinear system, which gives a desired balance be-
tween the complexity and the accuracy of the model, effectively exploring the
fact that the complexity of systems is usually not uniform.

In this view, we presented FRB-HLM. Its gradual refinement, which per-
forms localized refinements on bad modeled zones rather than in the whole
problem domain, allows a regulation among extensionality and precision of the
system modeled. The combination of the former tasks with an iterative process
emphasizes the sequential isolation of clusters rather than a full clustering.
Moreover, the combination with a dynamic rule expansion, which depends on
the FRG-methods used, allows us not to have to assume a fixed number of
rules. Finally, a global summarization rule selection process integrates the
good local behavior of the hierarchically built model with the whole model,
ensuring a good global performance.
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Appendix A
A.1. Weighted counting algorithm

Here, we briefly describe Bardossy and Duckstein’s method, which is ex-
plained in detail in [3]. It requires a previous definition of the fuzzy set
supports and the number of rules. This information in our case is obtained
from preliminary fuzzy partitions of the antecedents in the case of static
identification [1], and by a fuzzy clustering method FCM combined with
Sugeno’s validation index in the dynamic case. Only those rules whose
subspace is formed by the examples contained in these supports will be
considered.

o The supports (a;, a;;) of the fuzzy sets 4; belonging to the antecedents of the
rules in the FRB are defined previously.
e The shape of the k antecedent fuzzy sets 4; — which are triangular fuzzy sets

defined, respectively, by the parameters (ay,a);,a;;) — is calculated with a),

being
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g ex;,

eleE;

aik

\E | 4
where
E = {el = (ex],...,ex',ey') € Erps/ex; € (ay,ay), Vke{l,... ,m}}

e The matching degree of the example e’ € E; with the antecedent of the rule R;
is computed as i(e',R;) = T(p,, (ex}),..., py, (ext,)), with T being a r-norm
and p, (ex;) being the membership degree of the value ex; to the fuzzy set
A

e The shape of the consequent B; is determined using the examples contained
in a new subset £, formed by the examples of E; that match the antecedents
of the rule R, to a degree greater than or equal to ¢ € (0,1] ie.,
E;, = {e/ € E;lh(¢/,R;) = ¢}. Such a consequent is a triangular fuzzy set de-
fined by (b;,b!,b;)

ARG R

! 1
1 ZeleE(,,[ h(e',R;) - ey L
b; = miney, b = ; , b= maxey
e/eE(/) 231€E¢i h(e ,R,‘) e €E¢

A.2. Fuzzy C-means clustering algorithm

Perhaps this method developed by Bezdek [7] is the best known and most
widely used fuzzy clustering algorithm. FCM is an iterative optimization al-
gorithm that minimizes the cost function

I —ZZM,[ ‘e —v,”

To do so it follows the next steps:

o Initialize:
Object data: Etps = {e',...,¢,...,e"} composed of n input-output data
pairs ¢/ = (ex!,... ex!, ey')
Termination threshold: ¢ > 0
Initial prototypes: ¥y = (vy,...,0.) € R?
Number of clusters: ¢
Maximum number of iterations: 7'
Weighting exponent: m > 1
Tterate while (¢+ < 7) and (||V, — V,_i|| = &)
o Calculate U, with V,_,

-1

(e =)\
e Z(He’—ﬂo !
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o Update V;_; to ¥, with U,

zwm”"el] '
v= | S | Vi
[ lel(uik)

o Get V.

A.3. Sugeno’s model validation index

This index serves as an estimator of the cluster partition quality. The
number of clusters, ¢, is determined so that S(c) reaches a minimum as ¢ in-
creases (usually a local minimum)[32]:

Se) = g _il (l‘ij)m(He[ =u|" = [lvi - é||2)7

where 7 is the number of data to be clustered, c is the number of clusters >2, ¢’
is the /th data vector, ¢ is the average of data; v; is the center of ith cluster, p;; is
the grade of jth data belonging to the ith cluster, m is the adjustable weight, ||-||
is the norm.

The first term is the variance of the data in a cluster and the second term is
that of the clusters themselves. Therefore, the optimal clustering is considered
to minimize the variance in each cluster and to maximize the variance between
the clusters.

A.4. Cluster projection on the variable domains

In order to estimate the membership functions of the fuzzy variables of a
rule determined by a fuzzy cluster, we project the degree of membership of its
members on the variable axis [2,32]. To do so, we consider triangular mem-
bership functions and a linear regression from the cluster center (xg,)p) in the
variable domain, with the aim of obtaining the corresponding triangular ex-
tremes. To perform this calculus only those positive examples to a certain
degree (&) are considered.

Having a set of examples: Erps = {e',...,¢',...,e"} composed of n input-
output data pairs e’ = (ex!,...,ex!,ey') and a variable 4;, we will identify its
membership function from the ith cluster.

Consider a linear equation in x and y of the form:

y=a-x+b
and the ith cluster center of the form (x, o), where yo = p,(xo), then we get the
constants
e x-S ex) — o Y el % g n

a n 2 n 2
Z[:l(exllc) —2-x0- ), ex; +n - (xo)

)
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bzyo—x0~a,

where # represents the amount of left or right positive examples — according to
the extreme which is being calculated

n = (u(ex) > ) & (ex) <xo),

nt = ((ex)) = &) & (ex} > xo).

Finally, we get the extreme (left or right) of the triangular membership function
as

X — ——.
a

Then the triangular membership function of variable 4; is determined by the
points (x; , xo,X;).
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